1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 68 #include "audit.h" 69 70 /* flags stating the success for a syscall */ 71 #define AUDITSC_INVALID 0 72 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_FAILURE 2 74 75 /* no execve audit message should be longer than this (userspace limits), 76 * see the note near the top of audit_log_execve_info() about this value */ 77 #define MAX_EXECVE_AUDIT_LEN 7500 78 79 /* max length to print of cmdline/proctitle value during audit */ 80 #define MAX_PROCTITLE_AUDIT_LEN 128 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 /* Number of target pids per aux struct. */ 94 #define AUDIT_AUX_PIDS 16 95 96 struct audit_aux_data_pids { 97 struct audit_aux_data d; 98 pid_t target_pid[AUDIT_AUX_PIDS]; 99 kuid_t target_auid[AUDIT_AUX_PIDS]; 100 kuid_t target_uid[AUDIT_AUX_PIDS]; 101 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 102 u32 target_sid[AUDIT_AUX_PIDS]; 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 104 int pid_count; 105 }; 106 107 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data d; 109 struct audit_cap_data fcap; 110 unsigned int fcap_ver; 111 struct audit_cap_data old_pcap; 112 struct audit_cap_data new_pcap; 113 }; 114 115 struct audit_tree_refs { 116 struct audit_tree_refs *next; 117 struct audit_chunk *c[31]; 118 }; 119 120 struct audit_nfcfgop_tab { 121 enum audit_nfcfgop op; 122 const char *s; 123 }; 124 125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 126 { AUDIT_XT_OP_REGISTER, "xt_register" }, 127 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 145 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 146 }; 147 148 static int audit_match_perm(struct audit_context *ctx, int mask) 149 { 150 unsigned n; 151 152 if (unlikely(!ctx)) 153 return 0; 154 n = ctx->major; 155 156 switch (audit_classify_syscall(ctx->arch, n)) { 157 case AUDITSC_NATIVE: 158 if ((mask & AUDIT_PERM_WRITE) && 159 audit_match_class(AUDIT_CLASS_WRITE, n)) 160 return 1; 161 if ((mask & AUDIT_PERM_READ) && 162 audit_match_class(AUDIT_CLASS_READ, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_ATTR) && 165 audit_match_class(AUDIT_CLASS_CHATTR, n)) 166 return 1; 167 return 0; 168 case AUDITSC_COMPAT: /* 32bit on biarch */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 177 return 1; 178 return 0; 179 case AUDITSC_OPEN: 180 return mask & ACC_MODE(ctx->argv[1]); 181 case AUDITSC_OPENAT: 182 return mask & ACC_MODE(ctx->argv[2]); 183 case AUDITSC_SOCKETCALL: 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 185 case AUDITSC_EXECVE: 186 return mask & AUDIT_PERM_EXEC; 187 case AUDITSC_OPENAT2: 188 return mask & ACC_MODE((u32)((struct open_how *)ctx->argv[2])->flags); 189 default: 190 return 0; 191 } 192 } 193 194 static int audit_match_filetype(struct audit_context *ctx, int val) 195 { 196 struct audit_names *n; 197 umode_t mode = (umode_t)val; 198 199 if (unlikely(!ctx)) 200 return 0; 201 202 list_for_each_entry(n, &ctx->names_list, list) { 203 if ((n->ino != AUDIT_INO_UNSET) && 204 ((n->mode & S_IFMT) == mode)) 205 return 1; 206 } 207 208 return 0; 209 } 210 211 /* 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 213 * ->first_trees points to its beginning, ->trees - to the current end of data. 214 * ->tree_count is the number of free entries in array pointed to by ->trees. 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 217 * it's going to remain 1-element for almost any setup) until we free context itself. 218 * References in it _are_ dropped - at the same time we free/drop aux stuff. 219 */ 220 221 static void audit_set_auditable(struct audit_context *ctx) 222 { 223 if (!ctx->prio) { 224 ctx->prio = 1; 225 ctx->current_state = AUDIT_STATE_RECORD; 226 } 227 } 228 229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 int left = ctx->tree_count; 233 234 if (likely(left)) { 235 p->c[--left] = chunk; 236 ctx->tree_count = left; 237 return 1; 238 } 239 if (!p) 240 return 0; 241 p = p->next; 242 if (p) { 243 p->c[30] = chunk; 244 ctx->trees = p; 245 ctx->tree_count = 30; 246 return 1; 247 } 248 return 0; 249 } 250 251 static int grow_tree_refs(struct audit_context *ctx) 252 { 253 struct audit_tree_refs *p = ctx->trees; 254 255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 256 if (!ctx->trees) { 257 ctx->trees = p; 258 return 0; 259 } 260 if (p) 261 p->next = ctx->trees; 262 else 263 ctx->first_trees = ctx->trees; 264 ctx->tree_count = 31; 265 return 1; 266 } 267 268 static void unroll_tree_refs(struct audit_context *ctx, 269 struct audit_tree_refs *p, int count) 270 { 271 struct audit_tree_refs *q; 272 int n; 273 274 if (!p) { 275 /* we started with empty chain */ 276 p = ctx->first_trees; 277 count = 31; 278 /* if the very first allocation has failed, nothing to do */ 279 if (!p) 280 return; 281 } 282 n = count; 283 for (q = p; q != ctx->trees; q = q->next, n = 31) { 284 while (n--) { 285 audit_put_chunk(q->c[n]); 286 q->c[n] = NULL; 287 } 288 } 289 while (n-- > ctx->tree_count) { 290 audit_put_chunk(q->c[n]); 291 q->c[n] = NULL; 292 } 293 ctx->trees = p; 294 ctx->tree_count = count; 295 } 296 297 static void free_tree_refs(struct audit_context *ctx) 298 { 299 struct audit_tree_refs *p, *q; 300 301 for (p = ctx->first_trees; p; p = q) { 302 q = p->next; 303 kfree(p); 304 } 305 } 306 307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 308 { 309 struct audit_tree_refs *p; 310 int n; 311 312 if (!tree) 313 return 0; 314 /* full ones */ 315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 316 for (n = 0; n < 31; n++) 317 if (audit_tree_match(p->c[n], tree)) 318 return 1; 319 } 320 /* partial */ 321 if (p) { 322 for (n = ctx->tree_count; n < 31; n++) 323 if (audit_tree_match(p->c[n], tree)) 324 return 1; 325 } 326 return 0; 327 } 328 329 static int audit_compare_uid(kuid_t uid, 330 struct audit_names *name, 331 struct audit_field *f, 332 struct audit_context *ctx) 333 { 334 struct audit_names *n; 335 int rc; 336 337 if (name) { 338 rc = audit_uid_comparator(uid, f->op, name->uid); 339 if (rc) 340 return rc; 341 } 342 343 if (ctx) { 344 list_for_each_entry(n, &ctx->names_list, list) { 345 rc = audit_uid_comparator(uid, f->op, n->uid); 346 if (rc) 347 return rc; 348 } 349 } 350 return 0; 351 } 352 353 static int audit_compare_gid(kgid_t gid, 354 struct audit_names *name, 355 struct audit_field *f, 356 struct audit_context *ctx) 357 { 358 struct audit_names *n; 359 int rc; 360 361 if (name) { 362 rc = audit_gid_comparator(gid, f->op, name->gid); 363 if (rc) 364 return rc; 365 } 366 367 if (ctx) { 368 list_for_each_entry(n, &ctx->names_list, list) { 369 rc = audit_gid_comparator(gid, f->op, n->gid); 370 if (rc) 371 return rc; 372 } 373 } 374 return 0; 375 } 376 377 static int audit_field_compare(struct task_struct *tsk, 378 const struct cred *cred, 379 struct audit_field *f, 380 struct audit_context *ctx, 381 struct audit_names *name) 382 { 383 switch (f->val) { 384 /* process to file object comparisons */ 385 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 return audit_compare_uid(cred->uid, name, f, ctx); 387 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 return audit_compare_gid(cred->gid, name, f, ctx); 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 return audit_compare_uid(cred->euid, name, f, ctx); 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 return audit_compare_gid(cred->egid, name, f, ctx); 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 return audit_compare_uid(cred->suid, name, f, ctx); 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 return audit_compare_gid(cred->sgid, name, f, ctx); 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->fsuid, name, f, ctx); 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->fsgid, name, f, ctx); 403 /* uid comparisons */ 404 case AUDIT_COMPARE_UID_TO_AUID: 405 return audit_uid_comparator(cred->uid, f->op, 406 audit_get_loginuid(tsk)); 407 case AUDIT_COMPARE_UID_TO_EUID: 408 return audit_uid_comparator(cred->uid, f->op, cred->euid); 409 case AUDIT_COMPARE_UID_TO_SUID: 410 return audit_uid_comparator(cred->uid, f->op, cred->suid); 411 case AUDIT_COMPARE_UID_TO_FSUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 413 /* auid comparisons */ 414 case AUDIT_COMPARE_AUID_TO_EUID: 415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 416 cred->euid); 417 case AUDIT_COMPARE_AUID_TO_SUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->suid); 420 case AUDIT_COMPARE_AUID_TO_FSUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->fsuid); 423 /* euid comparisons */ 424 case AUDIT_COMPARE_EUID_TO_SUID: 425 return audit_uid_comparator(cred->euid, f->op, cred->suid); 426 case AUDIT_COMPARE_EUID_TO_FSUID: 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 428 /* suid comparisons */ 429 case AUDIT_COMPARE_SUID_TO_FSUID: 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 431 /* gid comparisons */ 432 case AUDIT_COMPARE_GID_TO_EGID: 433 return audit_gid_comparator(cred->gid, f->op, cred->egid); 434 case AUDIT_COMPARE_GID_TO_SGID: 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 436 case AUDIT_COMPARE_GID_TO_FSGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 438 /* egid comparisons */ 439 case AUDIT_COMPARE_EGID_TO_SGID: 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 441 case AUDIT_COMPARE_EGID_TO_FSGID: 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 443 /* sgid comparison */ 444 case AUDIT_COMPARE_SGID_TO_FSGID: 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 446 default: 447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 448 return 0; 449 } 450 return 0; 451 } 452 453 /* Determine if any context name data matches a rule's watch data */ 454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 455 * otherwise. 456 * 457 * If task_creation is true, this is an explicit indication that we are 458 * filtering a task rule at task creation time. This and tsk == current are 459 * the only situations where tsk->cred may be accessed without an rcu read lock. 460 */ 461 static int audit_filter_rules(struct task_struct *tsk, 462 struct audit_krule *rule, 463 struct audit_context *ctx, 464 struct audit_names *name, 465 enum audit_state *state, 466 bool task_creation) 467 { 468 const struct cred *cred; 469 int i, need_sid = 1; 470 u32 sid; 471 unsigned int sessionid; 472 473 if (ctx && rule->prio <= ctx->prio) 474 return 0; 475 476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 477 478 for (i = 0; i < rule->field_count; i++) { 479 struct audit_field *f = &rule->fields[i]; 480 struct audit_names *n; 481 int result = 0; 482 pid_t pid; 483 484 switch (f->type) { 485 case AUDIT_PID: 486 pid = task_tgid_nr(tsk); 487 result = audit_comparator(pid, f->op, f->val); 488 break; 489 case AUDIT_PPID: 490 if (ctx) { 491 if (!ctx->ppid) 492 ctx->ppid = task_ppid_nr(tsk); 493 result = audit_comparator(ctx->ppid, f->op, f->val); 494 } 495 break; 496 case AUDIT_EXE: 497 result = audit_exe_compare(tsk, rule->exe); 498 if (f->op == Audit_not_equal) 499 result = !result; 500 break; 501 case AUDIT_UID: 502 result = audit_uid_comparator(cred->uid, f->op, f->uid); 503 break; 504 case AUDIT_EUID: 505 result = audit_uid_comparator(cred->euid, f->op, f->uid); 506 break; 507 case AUDIT_SUID: 508 result = audit_uid_comparator(cred->suid, f->op, f->uid); 509 break; 510 case AUDIT_FSUID: 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 512 break; 513 case AUDIT_GID: 514 result = audit_gid_comparator(cred->gid, f->op, f->gid); 515 if (f->op == Audit_equal) { 516 if (!result) 517 result = groups_search(cred->group_info, f->gid); 518 } else if (f->op == Audit_not_equal) { 519 if (result) 520 result = !groups_search(cred->group_info, f->gid); 521 } 522 break; 523 case AUDIT_EGID: 524 result = audit_gid_comparator(cred->egid, f->op, f->gid); 525 if (f->op == Audit_equal) { 526 if (!result) 527 result = groups_search(cred->group_info, f->gid); 528 } else if (f->op == Audit_not_equal) { 529 if (result) 530 result = !groups_search(cred->group_info, f->gid); 531 } 532 break; 533 case AUDIT_SGID: 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 535 break; 536 case AUDIT_FSGID: 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 538 break; 539 case AUDIT_SESSIONID: 540 sessionid = audit_get_sessionid(tsk); 541 result = audit_comparator(sessionid, f->op, f->val); 542 break; 543 case AUDIT_PERS: 544 result = audit_comparator(tsk->personality, f->op, f->val); 545 break; 546 case AUDIT_ARCH: 547 if (ctx) 548 result = audit_comparator(ctx->arch, f->op, f->val); 549 break; 550 551 case AUDIT_EXIT: 552 if (ctx && ctx->return_valid != AUDITSC_INVALID) 553 result = audit_comparator(ctx->return_code, f->op, f->val); 554 break; 555 case AUDIT_SUCCESS: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 557 if (f->val) 558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 559 else 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 561 } 562 break; 563 case AUDIT_DEVMAJOR: 564 if (name) { 565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 566 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 567 ++result; 568 } else if (ctx) { 569 list_for_each_entry(n, &ctx->names_list, list) { 570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_DEVMINOR: 579 if (name) { 580 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 581 audit_comparator(MINOR(name->rdev), f->op, f->val)) 582 ++result; 583 } else if (ctx) { 584 list_for_each_entry(n, &ctx->names_list, list) { 585 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 586 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_INODE: 594 if (name) 595 result = audit_comparator(name->ino, f->op, f->val); 596 else if (ctx) { 597 list_for_each_entry(n, &ctx->names_list, list) { 598 if (audit_comparator(n->ino, f->op, f->val)) { 599 ++result; 600 break; 601 } 602 } 603 } 604 break; 605 case AUDIT_OBJ_UID: 606 if (name) { 607 result = audit_uid_comparator(name->uid, f->op, f->uid); 608 } else if (ctx) { 609 list_for_each_entry(n, &ctx->names_list, list) { 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 611 ++result; 612 break; 613 } 614 } 615 } 616 break; 617 case AUDIT_OBJ_GID: 618 if (name) { 619 result = audit_gid_comparator(name->gid, f->op, f->gid); 620 } else if (ctx) { 621 list_for_each_entry(n, &ctx->names_list, list) { 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 623 ++result; 624 break; 625 } 626 } 627 } 628 break; 629 case AUDIT_WATCH: 630 if (name) { 631 result = audit_watch_compare(rule->watch, 632 name->ino, 633 name->dev); 634 if (f->op == Audit_not_equal) 635 result = !result; 636 } 637 break; 638 case AUDIT_DIR: 639 if (ctx) { 640 result = match_tree_refs(ctx, rule->tree); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_LOGINUID: 646 result = audit_uid_comparator(audit_get_loginuid(tsk), 647 f->op, f->uid); 648 break; 649 case AUDIT_LOGINUID_SET: 650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 651 break; 652 case AUDIT_SADDR_FAM: 653 if (ctx && ctx->sockaddr) 654 result = audit_comparator(ctx->sockaddr->ss_family, 655 f->op, f->val); 656 break; 657 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_CLR: 662 /* NOTE: this may return negative values indicating 663 a temporary error. We simply treat this as a 664 match for now to avoid losing information that 665 may be wanted. An error message will also be 666 logged upon error */ 667 if (f->lsm_rule) { 668 if (need_sid) { 669 /* @tsk should always be equal to 670 * @current with the exception of 671 * fork()/copy_process() in which case 672 * the new @tsk creds are still a dup 673 * of @current's creds so we can still 674 * use security_current_getsecid_subj() 675 * here even though it always refs 676 * @current's creds 677 */ 678 security_current_getsecid_subj(&sid); 679 need_sid = 0; 680 } 681 result = security_audit_rule_match(sid, f->type, 682 f->op, 683 f->lsm_rule); 684 } 685 break; 686 case AUDIT_OBJ_USER: 687 case AUDIT_OBJ_ROLE: 688 case AUDIT_OBJ_TYPE: 689 case AUDIT_OBJ_LEV_LOW: 690 case AUDIT_OBJ_LEV_HIGH: 691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 692 also applies here */ 693 if (f->lsm_rule) { 694 /* Find files that match */ 695 if (name) { 696 result = security_audit_rule_match( 697 name->osid, 698 f->type, 699 f->op, 700 f->lsm_rule); 701 } else if (ctx) { 702 list_for_each_entry(n, &ctx->names_list, list) { 703 if (security_audit_rule_match( 704 n->osid, 705 f->type, 706 f->op, 707 f->lsm_rule)) { 708 ++result; 709 break; 710 } 711 } 712 } 713 /* Find ipc objects that match */ 714 if (!ctx || ctx->type != AUDIT_IPC) 715 break; 716 if (security_audit_rule_match(ctx->ipc.osid, 717 f->type, f->op, 718 f->lsm_rule)) 719 ++result; 720 } 721 break; 722 case AUDIT_ARG0: 723 case AUDIT_ARG1: 724 case AUDIT_ARG2: 725 case AUDIT_ARG3: 726 if (ctx) 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 728 break; 729 case AUDIT_FILTERKEY: 730 /* ignore this field for filtering */ 731 result = 1; 732 break; 733 case AUDIT_PERM: 734 result = audit_match_perm(ctx, f->val); 735 if (f->op == Audit_not_equal) 736 result = !result; 737 break; 738 case AUDIT_FILETYPE: 739 result = audit_match_filetype(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FIELD_COMPARE: 744 result = audit_field_compare(tsk, cred, f, ctx, name); 745 break; 746 } 747 if (!result) 748 return 0; 749 } 750 751 if (ctx) { 752 if (rule->filterkey) { 753 kfree(ctx->filterkey); 754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 755 } 756 ctx->prio = rule->prio; 757 } 758 switch (rule->action) { 759 case AUDIT_NEVER: 760 *state = AUDIT_STATE_DISABLED; 761 break; 762 case AUDIT_ALWAYS: 763 *state = AUDIT_STATE_RECORD; 764 break; 765 } 766 return 1; 767 } 768 769 /* At process creation time, we can determine if system-call auditing is 770 * completely disabled for this task. Since we only have the task 771 * structure at this point, we can only check uid and gid. 772 */ 773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 774 { 775 struct audit_entry *e; 776 enum audit_state state; 777 778 rcu_read_lock(); 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 781 &state, true)) { 782 if (state == AUDIT_STATE_RECORD) 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 784 rcu_read_unlock(); 785 return state; 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_STATE_BUILD; 790 } 791 792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 793 { 794 int word, bit; 795 796 if (val > 0xffffffff) 797 return false; 798 799 word = AUDIT_WORD(val); 800 if (word >= AUDIT_BITMASK_SIZE) 801 return false; 802 803 bit = AUDIT_BIT(val); 804 805 return rule->mask[word] & bit; 806 } 807 808 /** 809 * audit_filter_uring - apply filters to an io_uring operation 810 * @tsk: associated task 811 * @ctx: audit context 812 */ 813 static void audit_filter_uring(struct task_struct *tsk, 814 struct audit_context *ctx) 815 { 816 struct audit_entry *e; 817 enum audit_state state; 818 819 if (auditd_test_task(tsk)) 820 return; 821 822 rcu_read_lock(); 823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 824 list) { 825 if (audit_in_mask(&e->rule, ctx->uring_op) && 826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, 827 false)) { 828 rcu_read_unlock(); 829 ctx->current_state = state; 830 return; 831 } 832 } 833 rcu_read_unlock(); 834 } 835 836 /* At syscall exit time, this filter is called if the audit_state is 837 * not low enough that auditing cannot take place, but is also not 838 * high enough that we already know we have to write an audit record 839 * (i.e., the state is AUDIT_STATE_BUILD). 840 */ 841 static void audit_filter_syscall(struct task_struct *tsk, 842 struct audit_context *ctx) 843 { 844 struct audit_entry *e; 845 enum audit_state state; 846 847 if (auditd_test_task(tsk)) 848 return; 849 850 rcu_read_lock(); 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 852 if (audit_in_mask(&e->rule, ctx->major) && 853 audit_filter_rules(tsk, &e->rule, ctx, NULL, 854 &state, false)) { 855 rcu_read_unlock(); 856 ctx->current_state = state; 857 return; 858 } 859 } 860 rcu_read_unlock(); 861 return; 862 } 863 864 /* 865 * Given an audit_name check the inode hash table to see if they match. 866 * Called holding the rcu read lock to protect the use of audit_inode_hash 867 */ 868 static int audit_filter_inode_name(struct task_struct *tsk, 869 struct audit_names *n, 870 struct audit_context *ctx) { 871 int h = audit_hash_ino((u32)n->ino); 872 struct list_head *list = &audit_inode_hash[h]; 873 struct audit_entry *e; 874 enum audit_state state; 875 876 list_for_each_entry_rcu(e, list, list) { 877 if (audit_in_mask(&e->rule, ctx->major) && 878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 879 ctx->current_state = state; 880 return 1; 881 } 882 } 883 return 0; 884 } 885 886 /* At syscall exit time, this filter is called if any audit_names have been 887 * collected during syscall processing. We only check rules in sublists at hash 888 * buckets applicable to the inode numbers in audit_names. 889 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 890 */ 891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 892 { 893 struct audit_names *n; 894 895 if (auditd_test_task(tsk)) 896 return; 897 898 rcu_read_lock(); 899 900 list_for_each_entry(n, &ctx->names_list, list) { 901 if (audit_filter_inode_name(tsk, n, ctx)) 902 break; 903 } 904 rcu_read_unlock(); 905 } 906 907 static inline void audit_proctitle_free(struct audit_context *context) 908 { 909 kfree(context->proctitle.value); 910 context->proctitle.value = NULL; 911 context->proctitle.len = 0; 912 } 913 914 static inline void audit_free_module(struct audit_context *context) 915 { 916 if (context->type == AUDIT_KERN_MODULE) { 917 kfree(context->module.name); 918 context->module.name = NULL; 919 } 920 } 921 static inline void audit_free_names(struct audit_context *context) 922 { 923 struct audit_names *n, *next; 924 925 list_for_each_entry_safe(n, next, &context->names_list, list) { 926 list_del(&n->list); 927 if (n->name) 928 putname(n->name); 929 if (n->should_free) 930 kfree(n); 931 } 932 context->name_count = 0; 933 path_put(&context->pwd); 934 context->pwd.dentry = NULL; 935 context->pwd.mnt = NULL; 936 } 937 938 static inline void audit_free_aux(struct audit_context *context) 939 { 940 struct audit_aux_data *aux; 941 942 while ((aux = context->aux)) { 943 context->aux = aux->next; 944 kfree(aux); 945 } 946 context->aux = NULL; 947 while ((aux = context->aux_pids)) { 948 context->aux_pids = aux->next; 949 kfree(aux); 950 } 951 context->aux_pids = NULL; 952 } 953 954 /** 955 * audit_reset_context - reset a audit_context structure 956 * @ctx: the audit_context to reset 957 * 958 * All fields in the audit_context will be reset to an initial state, all 959 * references held by fields will be dropped, and private memory will be 960 * released. When this function returns the audit_context will be suitable 961 * for reuse, so long as the passed context is not NULL or a dummy context. 962 */ 963 static void audit_reset_context(struct audit_context *ctx) 964 { 965 if (!ctx) 966 return; 967 968 /* if ctx is non-null, reset the "ctx->state" regardless */ 969 ctx->context = AUDIT_CTX_UNUSED; 970 if (ctx->dummy) 971 return; 972 973 /* 974 * NOTE: It shouldn't matter in what order we release the fields, so 975 * release them in the order in which they appear in the struct; 976 * this gives us some hope of quickly making sure we are 977 * resetting the audit_context properly. 978 * 979 * Other things worth mentioning: 980 * - we don't reset "dummy" 981 * - we don't reset "state", we do reset "current_state" 982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 983 * - much of this is likely overkill, but play it safe for now 984 * - we really need to work on improving the audit_context struct 985 */ 986 987 ctx->current_state = ctx->state; 988 ctx->serial = 0; 989 ctx->major = 0; 990 ctx->uring_op = 0; 991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 992 memset(ctx->argv, 0, sizeof(ctx->argv)); 993 ctx->return_code = 0; 994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 995 ctx->return_valid = AUDITSC_INVALID; 996 audit_free_names(ctx); 997 if (ctx->state != AUDIT_STATE_RECORD) { 998 kfree(ctx->filterkey); 999 ctx->filterkey = NULL; 1000 } 1001 audit_free_aux(ctx); 1002 kfree(ctx->sockaddr); 1003 ctx->sockaddr = NULL; 1004 ctx->sockaddr_len = 0; 1005 ctx->pid = ctx->ppid = 0; 1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1008 ctx->personality = 0; 1009 ctx->arch = 0; 1010 ctx->target_pid = 0; 1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1012 ctx->target_sessionid = 0; 1013 ctx->target_sid = 0; 1014 ctx->target_comm[0] = '\0'; 1015 unroll_tree_refs(ctx, NULL, 0); 1016 WARN_ON(!list_empty(&ctx->killed_trees)); 1017 ctx->type = 0; 1018 audit_free_module(ctx); 1019 ctx->fds[0] = -1; 1020 audit_proctitle_free(ctx); 1021 } 1022 1023 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1024 { 1025 struct audit_context *context; 1026 1027 context = kzalloc(sizeof(*context), GFP_KERNEL); 1028 if (!context) 1029 return NULL; 1030 context->context = AUDIT_CTX_UNUSED; 1031 context->state = state; 1032 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1033 INIT_LIST_HEAD(&context->killed_trees); 1034 INIT_LIST_HEAD(&context->names_list); 1035 context->fds[0] = -1; 1036 context->return_valid = AUDITSC_INVALID; 1037 return context; 1038 } 1039 1040 /** 1041 * audit_alloc - allocate an audit context block for a task 1042 * @tsk: task 1043 * 1044 * Filter on the task information and allocate a per-task audit context 1045 * if necessary. Doing so turns on system call auditing for the 1046 * specified task. This is called from copy_process, so no lock is 1047 * needed. 1048 */ 1049 int audit_alloc(struct task_struct *tsk) 1050 { 1051 struct audit_context *context; 1052 enum audit_state state; 1053 char *key = NULL; 1054 1055 if (likely(!audit_ever_enabled)) 1056 return 0; 1057 1058 state = audit_filter_task(tsk, &key); 1059 if (state == AUDIT_STATE_DISABLED) { 1060 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1061 return 0; 1062 } 1063 1064 if (!(context = audit_alloc_context(state))) { 1065 kfree(key); 1066 audit_log_lost("out of memory in audit_alloc"); 1067 return -ENOMEM; 1068 } 1069 context->filterkey = key; 1070 1071 audit_set_context(tsk, context); 1072 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1073 return 0; 1074 } 1075 1076 /** 1077 * audit_alloc_kernel - allocate an audit_context for a kernel task 1078 * @tsk: the kernel task 1079 * 1080 * Similar to the audit_alloc() function, but intended for kernel private 1081 * threads. Returns zero on success, negative values on failure. 1082 */ 1083 int audit_alloc_kernel(struct task_struct *tsk) 1084 { 1085 /* 1086 * At the moment we are just going to call into audit_alloc() to 1087 * simplify the code, but there two things to keep in mind with this 1088 * approach: 1089 * 1090 * 1. Filtering internal kernel tasks is a bit laughable in almost all 1091 * cases, but there is at least one case where there is a benefit: 1092 * the '-a task,never' case allows the admin to effectively disable 1093 * task auditing at runtime. 1094 * 1095 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect 1096 * on these internal kernel tasks, but they probably don't hurt either. 1097 */ 1098 return audit_alloc(tsk); 1099 } 1100 1101 static inline void audit_free_context(struct audit_context *context) 1102 { 1103 /* resetting is extra work, but it is likely just noise */ 1104 audit_reset_context(context); 1105 free_tree_refs(context); 1106 kfree(context->filterkey); 1107 kfree(context); 1108 } 1109 1110 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1111 kuid_t auid, kuid_t uid, unsigned int sessionid, 1112 u32 sid, char *comm) 1113 { 1114 struct audit_buffer *ab; 1115 char *ctx = NULL; 1116 u32 len; 1117 int rc = 0; 1118 1119 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1120 if (!ab) 1121 return rc; 1122 1123 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1124 from_kuid(&init_user_ns, auid), 1125 from_kuid(&init_user_ns, uid), sessionid); 1126 if (sid) { 1127 if (security_secid_to_secctx(sid, &ctx, &len)) { 1128 audit_log_format(ab, " obj=(none)"); 1129 rc = 1; 1130 } else { 1131 audit_log_format(ab, " obj=%s", ctx); 1132 security_release_secctx(ctx, len); 1133 } 1134 } 1135 audit_log_format(ab, " ocomm="); 1136 audit_log_untrustedstring(ab, comm); 1137 audit_log_end(ab); 1138 1139 return rc; 1140 } 1141 1142 static void audit_log_execve_info(struct audit_context *context, 1143 struct audit_buffer **ab) 1144 { 1145 long len_max; 1146 long len_rem; 1147 long len_full; 1148 long len_buf; 1149 long len_abuf = 0; 1150 long len_tmp; 1151 bool require_data; 1152 bool encode; 1153 unsigned int iter; 1154 unsigned int arg; 1155 char *buf_head; 1156 char *buf; 1157 const char __user *p = (const char __user *)current->mm->arg_start; 1158 1159 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1160 * data we put in the audit record for this argument (see the 1161 * code below) ... at this point in time 96 is plenty */ 1162 char abuf[96]; 1163 1164 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1165 * current value of 7500 is not as important as the fact that it 1166 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1167 * room if we go over a little bit in the logging below */ 1168 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1169 len_max = MAX_EXECVE_AUDIT_LEN; 1170 1171 /* scratch buffer to hold the userspace args */ 1172 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1173 if (!buf_head) { 1174 audit_panic("out of memory for argv string"); 1175 return; 1176 } 1177 buf = buf_head; 1178 1179 audit_log_format(*ab, "argc=%d", context->execve.argc); 1180 1181 len_rem = len_max; 1182 len_buf = 0; 1183 len_full = 0; 1184 require_data = true; 1185 encode = false; 1186 iter = 0; 1187 arg = 0; 1188 do { 1189 /* NOTE: we don't ever want to trust this value for anything 1190 * serious, but the audit record format insists we 1191 * provide an argument length for really long arguments, 1192 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1193 * to use strncpy_from_user() to obtain this value for 1194 * recording in the log, although we don't use it 1195 * anywhere here to avoid a double-fetch problem */ 1196 if (len_full == 0) 1197 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1198 1199 /* read more data from userspace */ 1200 if (require_data) { 1201 /* can we make more room in the buffer? */ 1202 if (buf != buf_head) { 1203 memmove(buf_head, buf, len_buf); 1204 buf = buf_head; 1205 } 1206 1207 /* fetch as much as we can of the argument */ 1208 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1209 len_max - len_buf); 1210 if (len_tmp == -EFAULT) { 1211 /* unable to copy from userspace */ 1212 send_sig(SIGKILL, current, 0); 1213 goto out; 1214 } else if (len_tmp == (len_max - len_buf)) { 1215 /* buffer is not large enough */ 1216 require_data = true; 1217 /* NOTE: if we are going to span multiple 1218 * buffers force the encoding so we stand 1219 * a chance at a sane len_full value and 1220 * consistent record encoding */ 1221 encode = true; 1222 len_full = len_full * 2; 1223 p += len_tmp; 1224 } else { 1225 require_data = false; 1226 if (!encode) 1227 encode = audit_string_contains_control( 1228 buf, len_tmp); 1229 /* try to use a trusted value for len_full */ 1230 if (len_full < len_max) 1231 len_full = (encode ? 1232 len_tmp * 2 : len_tmp); 1233 p += len_tmp + 1; 1234 } 1235 len_buf += len_tmp; 1236 buf_head[len_buf] = '\0'; 1237 1238 /* length of the buffer in the audit record? */ 1239 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1240 } 1241 1242 /* write as much as we can to the audit log */ 1243 if (len_buf >= 0) { 1244 /* NOTE: some magic numbers here - basically if we 1245 * can't fit a reasonable amount of data into the 1246 * existing audit buffer, flush it and start with 1247 * a new buffer */ 1248 if ((sizeof(abuf) + 8) > len_rem) { 1249 len_rem = len_max; 1250 audit_log_end(*ab); 1251 *ab = audit_log_start(context, 1252 GFP_KERNEL, AUDIT_EXECVE); 1253 if (!*ab) 1254 goto out; 1255 } 1256 1257 /* create the non-arg portion of the arg record */ 1258 len_tmp = 0; 1259 if (require_data || (iter > 0) || 1260 ((len_abuf + sizeof(abuf)) > len_rem)) { 1261 if (iter == 0) { 1262 len_tmp += snprintf(&abuf[len_tmp], 1263 sizeof(abuf) - len_tmp, 1264 " a%d_len=%lu", 1265 arg, len_full); 1266 } 1267 len_tmp += snprintf(&abuf[len_tmp], 1268 sizeof(abuf) - len_tmp, 1269 " a%d[%d]=", arg, iter++); 1270 } else 1271 len_tmp += snprintf(&abuf[len_tmp], 1272 sizeof(abuf) - len_tmp, 1273 " a%d=", arg); 1274 WARN_ON(len_tmp >= sizeof(abuf)); 1275 abuf[sizeof(abuf) - 1] = '\0'; 1276 1277 /* log the arg in the audit record */ 1278 audit_log_format(*ab, "%s", abuf); 1279 len_rem -= len_tmp; 1280 len_tmp = len_buf; 1281 if (encode) { 1282 if (len_abuf > len_rem) 1283 len_tmp = len_rem / 2; /* encoding */ 1284 audit_log_n_hex(*ab, buf, len_tmp); 1285 len_rem -= len_tmp * 2; 1286 len_abuf -= len_tmp * 2; 1287 } else { 1288 if (len_abuf > len_rem) 1289 len_tmp = len_rem - 2; /* quotes */ 1290 audit_log_n_string(*ab, buf, len_tmp); 1291 len_rem -= len_tmp + 2; 1292 /* don't subtract the "2" because we still need 1293 * to add quotes to the remaining string */ 1294 len_abuf -= len_tmp; 1295 } 1296 len_buf -= len_tmp; 1297 buf += len_tmp; 1298 } 1299 1300 /* ready to move to the next argument? */ 1301 if ((len_buf == 0) && !require_data) { 1302 arg++; 1303 iter = 0; 1304 len_full = 0; 1305 require_data = true; 1306 encode = false; 1307 } 1308 } while (arg < context->execve.argc); 1309 1310 /* NOTE: the caller handles the final audit_log_end() call */ 1311 1312 out: 1313 kfree(buf_head); 1314 } 1315 1316 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1317 kernel_cap_t *cap) 1318 { 1319 int i; 1320 1321 if (cap_isclear(*cap)) { 1322 audit_log_format(ab, " %s=0", prefix); 1323 return; 1324 } 1325 audit_log_format(ab, " %s=", prefix); 1326 CAP_FOR_EACH_U32(i) 1327 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1328 } 1329 1330 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1331 { 1332 if (name->fcap_ver == -1) { 1333 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1334 return; 1335 } 1336 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1337 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1338 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1339 name->fcap.fE, name->fcap_ver, 1340 from_kuid(&init_user_ns, name->fcap.rootid)); 1341 } 1342 1343 static void show_special(struct audit_context *context, int *call_panic) 1344 { 1345 struct audit_buffer *ab; 1346 int i; 1347 1348 ab = audit_log_start(context, GFP_KERNEL, context->type); 1349 if (!ab) 1350 return; 1351 1352 switch (context->type) { 1353 case AUDIT_SOCKETCALL: { 1354 int nargs = context->socketcall.nargs; 1355 1356 audit_log_format(ab, "nargs=%d", nargs); 1357 for (i = 0; i < nargs; i++) 1358 audit_log_format(ab, " a%d=%lx", i, 1359 context->socketcall.args[i]); 1360 break; } 1361 case AUDIT_IPC: { 1362 u32 osid = context->ipc.osid; 1363 1364 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1365 from_kuid(&init_user_ns, context->ipc.uid), 1366 from_kgid(&init_user_ns, context->ipc.gid), 1367 context->ipc.mode); 1368 if (osid) { 1369 char *ctx = NULL; 1370 u32 len; 1371 1372 if (security_secid_to_secctx(osid, &ctx, &len)) { 1373 audit_log_format(ab, " osid=%u", osid); 1374 *call_panic = 1; 1375 } else { 1376 audit_log_format(ab, " obj=%s", ctx); 1377 security_release_secctx(ctx, len); 1378 } 1379 } 1380 if (context->ipc.has_perm) { 1381 audit_log_end(ab); 1382 ab = audit_log_start(context, GFP_KERNEL, 1383 AUDIT_IPC_SET_PERM); 1384 if (unlikely(!ab)) 1385 return; 1386 audit_log_format(ab, 1387 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1388 context->ipc.qbytes, 1389 context->ipc.perm_uid, 1390 context->ipc.perm_gid, 1391 context->ipc.perm_mode); 1392 } 1393 break; } 1394 case AUDIT_MQ_OPEN: 1395 audit_log_format(ab, 1396 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1397 "mq_msgsize=%ld mq_curmsgs=%ld", 1398 context->mq_open.oflag, context->mq_open.mode, 1399 context->mq_open.attr.mq_flags, 1400 context->mq_open.attr.mq_maxmsg, 1401 context->mq_open.attr.mq_msgsize, 1402 context->mq_open.attr.mq_curmsgs); 1403 break; 1404 case AUDIT_MQ_SENDRECV: 1405 audit_log_format(ab, 1406 "mqdes=%d msg_len=%zd msg_prio=%u " 1407 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1408 context->mq_sendrecv.mqdes, 1409 context->mq_sendrecv.msg_len, 1410 context->mq_sendrecv.msg_prio, 1411 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1412 context->mq_sendrecv.abs_timeout.tv_nsec); 1413 break; 1414 case AUDIT_MQ_NOTIFY: 1415 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1416 context->mq_notify.mqdes, 1417 context->mq_notify.sigev_signo); 1418 break; 1419 case AUDIT_MQ_GETSETATTR: { 1420 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1421 1422 audit_log_format(ab, 1423 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1424 "mq_curmsgs=%ld ", 1425 context->mq_getsetattr.mqdes, 1426 attr->mq_flags, attr->mq_maxmsg, 1427 attr->mq_msgsize, attr->mq_curmsgs); 1428 break; } 1429 case AUDIT_CAPSET: 1430 audit_log_format(ab, "pid=%d", context->capset.pid); 1431 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1432 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1433 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1434 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1435 break; 1436 case AUDIT_MMAP: 1437 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1438 context->mmap.flags); 1439 break; 1440 case AUDIT_OPENAT2: 1441 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1442 context->openat2.flags, 1443 context->openat2.mode, 1444 context->openat2.resolve); 1445 break; 1446 case AUDIT_EXECVE: 1447 audit_log_execve_info(context, &ab); 1448 break; 1449 case AUDIT_KERN_MODULE: 1450 audit_log_format(ab, "name="); 1451 if (context->module.name) { 1452 audit_log_untrustedstring(ab, context->module.name); 1453 } else 1454 audit_log_format(ab, "(null)"); 1455 1456 break; 1457 } 1458 audit_log_end(ab); 1459 } 1460 1461 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1462 { 1463 char *end = proctitle + len - 1; 1464 1465 while (end > proctitle && !isprint(*end)) 1466 end--; 1467 1468 /* catch the case where proctitle is only 1 non-print character */ 1469 len = end - proctitle + 1; 1470 len -= isprint(proctitle[len-1]) == 0; 1471 return len; 1472 } 1473 1474 /* 1475 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1476 * @context: audit_context for the task 1477 * @n: audit_names structure with reportable details 1478 * @path: optional path to report instead of audit_names->name 1479 * @record_num: record number to report when handling a list of names 1480 * @call_panic: optional pointer to int that will be updated if secid fails 1481 */ 1482 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1483 const struct path *path, int record_num, int *call_panic) 1484 { 1485 struct audit_buffer *ab; 1486 1487 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1488 if (!ab) 1489 return; 1490 1491 audit_log_format(ab, "item=%d", record_num); 1492 1493 if (path) 1494 audit_log_d_path(ab, " name=", path); 1495 else if (n->name) { 1496 switch (n->name_len) { 1497 case AUDIT_NAME_FULL: 1498 /* log the full path */ 1499 audit_log_format(ab, " name="); 1500 audit_log_untrustedstring(ab, n->name->name); 1501 break; 1502 case 0: 1503 /* name was specified as a relative path and the 1504 * directory component is the cwd 1505 */ 1506 if (context->pwd.dentry && context->pwd.mnt) 1507 audit_log_d_path(ab, " name=", &context->pwd); 1508 else 1509 audit_log_format(ab, " name=(null)"); 1510 break; 1511 default: 1512 /* log the name's directory component */ 1513 audit_log_format(ab, " name="); 1514 audit_log_n_untrustedstring(ab, n->name->name, 1515 n->name_len); 1516 } 1517 } else 1518 audit_log_format(ab, " name=(null)"); 1519 1520 if (n->ino != AUDIT_INO_UNSET) 1521 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1522 n->ino, 1523 MAJOR(n->dev), 1524 MINOR(n->dev), 1525 n->mode, 1526 from_kuid(&init_user_ns, n->uid), 1527 from_kgid(&init_user_ns, n->gid), 1528 MAJOR(n->rdev), 1529 MINOR(n->rdev)); 1530 if (n->osid != 0) { 1531 char *ctx = NULL; 1532 u32 len; 1533 1534 if (security_secid_to_secctx( 1535 n->osid, &ctx, &len)) { 1536 audit_log_format(ab, " osid=%u", n->osid); 1537 if (call_panic) 1538 *call_panic = 2; 1539 } else { 1540 audit_log_format(ab, " obj=%s", ctx); 1541 security_release_secctx(ctx, len); 1542 } 1543 } 1544 1545 /* log the audit_names record type */ 1546 switch (n->type) { 1547 case AUDIT_TYPE_NORMAL: 1548 audit_log_format(ab, " nametype=NORMAL"); 1549 break; 1550 case AUDIT_TYPE_PARENT: 1551 audit_log_format(ab, " nametype=PARENT"); 1552 break; 1553 case AUDIT_TYPE_CHILD_DELETE: 1554 audit_log_format(ab, " nametype=DELETE"); 1555 break; 1556 case AUDIT_TYPE_CHILD_CREATE: 1557 audit_log_format(ab, " nametype=CREATE"); 1558 break; 1559 default: 1560 audit_log_format(ab, " nametype=UNKNOWN"); 1561 break; 1562 } 1563 1564 audit_log_fcaps(ab, n); 1565 audit_log_end(ab); 1566 } 1567 1568 static void audit_log_proctitle(void) 1569 { 1570 int res; 1571 char *buf; 1572 char *msg = "(null)"; 1573 int len = strlen(msg); 1574 struct audit_context *context = audit_context(); 1575 struct audit_buffer *ab; 1576 1577 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1578 if (!ab) 1579 return; /* audit_panic or being filtered */ 1580 1581 audit_log_format(ab, "proctitle="); 1582 1583 /* Not cached */ 1584 if (!context->proctitle.value) { 1585 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1586 if (!buf) 1587 goto out; 1588 /* Historically called this from procfs naming */ 1589 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1590 if (res == 0) { 1591 kfree(buf); 1592 goto out; 1593 } 1594 res = audit_proctitle_rtrim(buf, res); 1595 if (res == 0) { 1596 kfree(buf); 1597 goto out; 1598 } 1599 context->proctitle.value = buf; 1600 context->proctitle.len = res; 1601 } 1602 msg = context->proctitle.value; 1603 len = context->proctitle.len; 1604 out: 1605 audit_log_n_untrustedstring(ab, msg, len); 1606 audit_log_end(ab); 1607 } 1608 1609 /** 1610 * audit_log_uring - generate a AUDIT_URINGOP record 1611 * @ctx: the audit context 1612 */ 1613 static void audit_log_uring(struct audit_context *ctx) 1614 { 1615 struct audit_buffer *ab; 1616 const struct cred *cred; 1617 1618 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1619 if (!ab) 1620 return; 1621 cred = current_cred(); 1622 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1623 if (ctx->return_valid != AUDITSC_INVALID) 1624 audit_log_format(ab, " success=%s exit=%ld", 1625 (ctx->return_valid == AUDITSC_SUCCESS ? 1626 "yes" : "no"), 1627 ctx->return_code); 1628 audit_log_format(ab, 1629 " items=%d" 1630 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1631 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1632 ctx->name_count, 1633 task_ppid_nr(current), task_tgid_nr(current), 1634 from_kuid(&init_user_ns, cred->uid), 1635 from_kgid(&init_user_ns, cred->gid), 1636 from_kuid(&init_user_ns, cred->euid), 1637 from_kuid(&init_user_ns, cred->suid), 1638 from_kuid(&init_user_ns, cred->fsuid), 1639 from_kgid(&init_user_ns, cred->egid), 1640 from_kgid(&init_user_ns, cred->sgid), 1641 from_kgid(&init_user_ns, cred->fsgid)); 1642 audit_log_task_context(ab); 1643 audit_log_key(ab, ctx->filterkey); 1644 audit_log_end(ab); 1645 } 1646 1647 static void audit_log_exit(void) 1648 { 1649 int i, call_panic = 0; 1650 struct audit_context *context = audit_context(); 1651 struct audit_buffer *ab; 1652 struct audit_aux_data *aux; 1653 struct audit_names *n; 1654 1655 context->personality = current->personality; 1656 1657 switch (context->context) { 1658 case AUDIT_CTX_SYSCALL: 1659 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1660 if (!ab) 1661 return; 1662 audit_log_format(ab, "arch=%x syscall=%d", 1663 context->arch, context->major); 1664 if (context->personality != PER_LINUX) 1665 audit_log_format(ab, " per=%lx", context->personality); 1666 if (context->return_valid != AUDITSC_INVALID) 1667 audit_log_format(ab, " success=%s exit=%ld", 1668 (context->return_valid == AUDITSC_SUCCESS ? 1669 "yes" : "no"), 1670 context->return_code); 1671 audit_log_format(ab, 1672 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1673 context->argv[0], 1674 context->argv[1], 1675 context->argv[2], 1676 context->argv[3], 1677 context->name_count); 1678 audit_log_task_info(ab); 1679 audit_log_key(ab, context->filterkey); 1680 audit_log_end(ab); 1681 break; 1682 case AUDIT_CTX_URING: 1683 audit_log_uring(context); 1684 break; 1685 default: 1686 BUG(); 1687 break; 1688 } 1689 1690 for (aux = context->aux; aux; aux = aux->next) { 1691 1692 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1693 if (!ab) 1694 continue; /* audit_panic has been called */ 1695 1696 switch (aux->type) { 1697 1698 case AUDIT_BPRM_FCAPS: { 1699 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1700 1701 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1702 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1703 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1704 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1705 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1706 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1707 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1708 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1709 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1710 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1711 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1712 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1713 audit_log_format(ab, " frootid=%d", 1714 from_kuid(&init_user_ns, 1715 axs->fcap.rootid)); 1716 break; } 1717 1718 } 1719 audit_log_end(ab); 1720 } 1721 1722 if (context->type) 1723 show_special(context, &call_panic); 1724 1725 if (context->fds[0] >= 0) { 1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1727 if (ab) { 1728 audit_log_format(ab, "fd0=%d fd1=%d", 1729 context->fds[0], context->fds[1]); 1730 audit_log_end(ab); 1731 } 1732 } 1733 1734 if (context->sockaddr_len) { 1735 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1736 if (ab) { 1737 audit_log_format(ab, "saddr="); 1738 audit_log_n_hex(ab, (void *)context->sockaddr, 1739 context->sockaddr_len); 1740 audit_log_end(ab); 1741 } 1742 } 1743 1744 for (aux = context->aux_pids; aux; aux = aux->next) { 1745 struct audit_aux_data_pids *axs = (void *)aux; 1746 1747 for (i = 0; i < axs->pid_count; i++) 1748 if (audit_log_pid_context(context, axs->target_pid[i], 1749 axs->target_auid[i], 1750 axs->target_uid[i], 1751 axs->target_sessionid[i], 1752 axs->target_sid[i], 1753 axs->target_comm[i])) 1754 call_panic = 1; 1755 } 1756 1757 if (context->target_pid && 1758 audit_log_pid_context(context, context->target_pid, 1759 context->target_auid, context->target_uid, 1760 context->target_sessionid, 1761 context->target_sid, context->target_comm)) 1762 call_panic = 1; 1763 1764 if (context->pwd.dentry && context->pwd.mnt) { 1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1766 if (ab) { 1767 audit_log_d_path(ab, "cwd=", &context->pwd); 1768 audit_log_end(ab); 1769 } 1770 } 1771 1772 i = 0; 1773 list_for_each_entry(n, &context->names_list, list) { 1774 if (n->hidden) 1775 continue; 1776 audit_log_name(context, n, NULL, i++, &call_panic); 1777 } 1778 1779 if (context->context == AUDIT_CTX_SYSCALL) 1780 audit_log_proctitle(); 1781 1782 /* Send end of event record to help user space know we are finished */ 1783 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1784 if (ab) 1785 audit_log_end(ab); 1786 if (call_panic) 1787 audit_panic("error in audit_log_exit()"); 1788 } 1789 1790 /** 1791 * __audit_free - free a per-task audit context 1792 * @tsk: task whose audit context block to free 1793 * 1794 * Called from copy_process, do_exit, and the io_uring code 1795 */ 1796 void __audit_free(struct task_struct *tsk) 1797 { 1798 struct audit_context *context = tsk->audit_context; 1799 1800 if (!context) 1801 return; 1802 1803 /* this may generate CONFIG_CHANGE records */ 1804 if (!list_empty(&context->killed_trees)) 1805 audit_kill_trees(context); 1806 1807 /* We are called either by do_exit() or the fork() error handling code; 1808 * in the former case tsk == current and in the latter tsk is a 1809 * random task_struct that doesn't doesn't have any meaningful data we 1810 * need to log via audit_log_exit(). 1811 */ 1812 if (tsk == current && !context->dummy) { 1813 context->return_valid = AUDITSC_INVALID; 1814 context->return_code = 0; 1815 if (context->context == AUDIT_CTX_SYSCALL) { 1816 audit_filter_syscall(tsk, context); 1817 audit_filter_inodes(tsk, context); 1818 if (context->current_state == AUDIT_STATE_RECORD) 1819 audit_log_exit(); 1820 } else if (context->context == AUDIT_CTX_URING) { 1821 /* TODO: verify this case is real and valid */ 1822 audit_filter_uring(tsk, context); 1823 audit_filter_inodes(tsk, context); 1824 if (context->current_state == AUDIT_STATE_RECORD) 1825 audit_log_uring(context); 1826 } 1827 } 1828 1829 audit_set_context(tsk, NULL); 1830 audit_free_context(context); 1831 } 1832 1833 /** 1834 * audit_return_fixup - fixup the return codes in the audit_context 1835 * @ctx: the audit_context 1836 * @success: true/false value to indicate if the operation succeeded or not 1837 * @code: operation return code 1838 * 1839 * We need to fixup the return code in the audit logs if the actual return 1840 * codes are later going to be fixed by the arch specific signal handlers. 1841 */ 1842 static void audit_return_fixup(struct audit_context *ctx, 1843 int success, long code) 1844 { 1845 /* 1846 * This is actually a test for: 1847 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1848 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1849 * 1850 * but is faster than a bunch of || 1851 */ 1852 if (unlikely(code <= -ERESTARTSYS) && 1853 (code >= -ERESTART_RESTARTBLOCK) && 1854 (code != -ENOIOCTLCMD)) 1855 ctx->return_code = -EINTR; 1856 else 1857 ctx->return_code = code; 1858 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1859 } 1860 1861 /** 1862 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1863 * @op: the io_uring opcode 1864 * 1865 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1866 * operations. This function should only ever be called from 1867 * audit_uring_entry() as we rely on the audit context checking present in that 1868 * function. 1869 */ 1870 void __audit_uring_entry(u8 op) 1871 { 1872 struct audit_context *ctx = audit_context(); 1873 1874 if (ctx->state == AUDIT_STATE_DISABLED) 1875 return; 1876 1877 /* 1878 * NOTE: It's possible that we can be called from the process' context 1879 * before it returns to userspace, and before audit_syscall_exit() 1880 * is called. In this case there is not much to do, just record 1881 * the io_uring details and return. 1882 */ 1883 ctx->uring_op = op; 1884 if (ctx->context == AUDIT_CTX_SYSCALL) 1885 return; 1886 1887 ctx->dummy = !audit_n_rules; 1888 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1889 ctx->prio = 0; 1890 1891 ctx->context = AUDIT_CTX_URING; 1892 ctx->current_state = ctx->state; 1893 ktime_get_coarse_real_ts64(&ctx->ctime); 1894 } 1895 1896 /** 1897 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1898 * @success: true/false value to indicate if the operation succeeded or not 1899 * @code: operation return code 1900 * 1901 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1902 * operations. This function should only ever be called from 1903 * audit_uring_exit() as we rely on the audit context checking present in that 1904 * function. 1905 */ 1906 void __audit_uring_exit(int success, long code) 1907 { 1908 struct audit_context *ctx = audit_context(); 1909 1910 if (ctx->context == AUDIT_CTX_SYSCALL) { 1911 /* 1912 * NOTE: See the note in __audit_uring_entry() about the case 1913 * where we may be called from process context before we 1914 * return to userspace via audit_syscall_exit(). In this 1915 * case we simply emit a URINGOP record and bail, the 1916 * normal syscall exit handling will take care of 1917 * everything else. 1918 * It is also worth mentioning that when we are called, 1919 * the current process creds may differ from the creds 1920 * used during the normal syscall processing; keep that 1921 * in mind if/when we move the record generation code. 1922 */ 1923 1924 /* 1925 * We need to filter on the syscall info here to decide if we 1926 * should emit a URINGOP record. I know it seems odd but this 1927 * solves the problem where users have a filter to block *all* 1928 * syscall records in the "exit" filter; we want to preserve 1929 * the behavior here. 1930 */ 1931 audit_filter_syscall(current, ctx); 1932 if (ctx->current_state != AUDIT_STATE_RECORD) 1933 audit_filter_uring(current, ctx); 1934 audit_filter_inodes(current, ctx); 1935 if (ctx->current_state != AUDIT_STATE_RECORD) 1936 return; 1937 1938 audit_log_uring(ctx); 1939 return; 1940 } 1941 1942 /* this may generate CONFIG_CHANGE records */ 1943 if (!list_empty(&ctx->killed_trees)) 1944 audit_kill_trees(ctx); 1945 1946 /* run through both filters to ensure we set the filterkey properly */ 1947 audit_filter_uring(current, ctx); 1948 audit_filter_inodes(current, ctx); 1949 if (ctx->current_state != AUDIT_STATE_RECORD) 1950 goto out; 1951 audit_return_fixup(ctx, success, code); 1952 audit_log_exit(); 1953 1954 out: 1955 audit_reset_context(ctx); 1956 } 1957 1958 /** 1959 * __audit_syscall_entry - fill in an audit record at syscall entry 1960 * @major: major syscall type (function) 1961 * @a1: additional syscall register 1 1962 * @a2: additional syscall register 2 1963 * @a3: additional syscall register 3 1964 * @a4: additional syscall register 4 1965 * 1966 * Fill in audit context at syscall entry. This only happens if the 1967 * audit context was created when the task was created and the state or 1968 * filters demand the audit context be built. If the state from the 1969 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 1970 * then the record will be written at syscall exit time (otherwise, it 1971 * will only be written if another part of the kernel requests that it 1972 * be written). 1973 */ 1974 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1975 unsigned long a3, unsigned long a4) 1976 { 1977 struct audit_context *context = audit_context(); 1978 enum audit_state state; 1979 1980 if (!audit_enabled || !context) 1981 return; 1982 1983 WARN_ON(context->context != AUDIT_CTX_UNUSED); 1984 WARN_ON(context->name_count); 1985 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 1986 audit_panic("unrecoverable error in audit_syscall_entry()"); 1987 return; 1988 } 1989 1990 state = context->state; 1991 if (state == AUDIT_STATE_DISABLED) 1992 return; 1993 1994 context->dummy = !audit_n_rules; 1995 if (!context->dummy && state == AUDIT_STATE_BUILD) { 1996 context->prio = 0; 1997 if (auditd_test_task(current)) 1998 return; 1999 } 2000 2001 context->arch = syscall_get_arch(current); 2002 context->major = major; 2003 context->argv[0] = a1; 2004 context->argv[1] = a2; 2005 context->argv[2] = a3; 2006 context->argv[3] = a4; 2007 context->context = AUDIT_CTX_SYSCALL; 2008 context->current_state = state; 2009 ktime_get_coarse_real_ts64(&context->ctime); 2010 } 2011 2012 /** 2013 * __audit_syscall_exit - deallocate audit context after a system call 2014 * @success: success value of the syscall 2015 * @return_code: return value of the syscall 2016 * 2017 * Tear down after system call. If the audit context has been marked as 2018 * auditable (either because of the AUDIT_STATE_RECORD state from 2019 * filtering, or because some other part of the kernel wrote an audit 2020 * message), then write out the syscall information. In call cases, 2021 * free the names stored from getname(). 2022 */ 2023 void __audit_syscall_exit(int success, long return_code) 2024 { 2025 struct audit_context *context = audit_context(); 2026 2027 if (!context || context->dummy || 2028 context->context != AUDIT_CTX_SYSCALL) 2029 goto out; 2030 2031 /* this may generate CONFIG_CHANGE records */ 2032 if (!list_empty(&context->killed_trees)) 2033 audit_kill_trees(context); 2034 2035 /* run through both filters to ensure we set the filterkey properly */ 2036 audit_filter_syscall(current, context); 2037 audit_filter_inodes(current, context); 2038 if (context->current_state < AUDIT_STATE_RECORD) 2039 goto out; 2040 2041 audit_return_fixup(context, success, return_code); 2042 audit_log_exit(); 2043 2044 out: 2045 audit_reset_context(context); 2046 } 2047 2048 static inline void handle_one(const struct inode *inode) 2049 { 2050 struct audit_context *context; 2051 struct audit_tree_refs *p; 2052 struct audit_chunk *chunk; 2053 int count; 2054 2055 if (likely(!inode->i_fsnotify_marks)) 2056 return; 2057 context = audit_context(); 2058 p = context->trees; 2059 count = context->tree_count; 2060 rcu_read_lock(); 2061 chunk = audit_tree_lookup(inode); 2062 rcu_read_unlock(); 2063 if (!chunk) 2064 return; 2065 if (likely(put_tree_ref(context, chunk))) 2066 return; 2067 if (unlikely(!grow_tree_refs(context))) { 2068 pr_warn("out of memory, audit has lost a tree reference\n"); 2069 audit_set_auditable(context); 2070 audit_put_chunk(chunk); 2071 unroll_tree_refs(context, p, count); 2072 return; 2073 } 2074 put_tree_ref(context, chunk); 2075 } 2076 2077 static void handle_path(const struct dentry *dentry) 2078 { 2079 struct audit_context *context; 2080 struct audit_tree_refs *p; 2081 const struct dentry *d, *parent; 2082 struct audit_chunk *drop; 2083 unsigned long seq; 2084 int count; 2085 2086 context = audit_context(); 2087 p = context->trees; 2088 count = context->tree_count; 2089 retry: 2090 drop = NULL; 2091 d = dentry; 2092 rcu_read_lock(); 2093 seq = read_seqbegin(&rename_lock); 2094 for(;;) { 2095 struct inode *inode = d_backing_inode(d); 2096 2097 if (inode && unlikely(inode->i_fsnotify_marks)) { 2098 struct audit_chunk *chunk; 2099 2100 chunk = audit_tree_lookup(inode); 2101 if (chunk) { 2102 if (unlikely(!put_tree_ref(context, chunk))) { 2103 drop = chunk; 2104 break; 2105 } 2106 } 2107 } 2108 parent = d->d_parent; 2109 if (parent == d) 2110 break; 2111 d = parent; 2112 } 2113 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2114 rcu_read_unlock(); 2115 if (!drop) { 2116 /* just a race with rename */ 2117 unroll_tree_refs(context, p, count); 2118 goto retry; 2119 } 2120 audit_put_chunk(drop); 2121 if (grow_tree_refs(context)) { 2122 /* OK, got more space */ 2123 unroll_tree_refs(context, p, count); 2124 goto retry; 2125 } 2126 /* too bad */ 2127 pr_warn("out of memory, audit has lost a tree reference\n"); 2128 unroll_tree_refs(context, p, count); 2129 audit_set_auditable(context); 2130 return; 2131 } 2132 rcu_read_unlock(); 2133 } 2134 2135 static struct audit_names *audit_alloc_name(struct audit_context *context, 2136 unsigned char type) 2137 { 2138 struct audit_names *aname; 2139 2140 if (context->name_count < AUDIT_NAMES) { 2141 aname = &context->preallocated_names[context->name_count]; 2142 memset(aname, 0, sizeof(*aname)); 2143 } else { 2144 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2145 if (!aname) 2146 return NULL; 2147 aname->should_free = true; 2148 } 2149 2150 aname->ino = AUDIT_INO_UNSET; 2151 aname->type = type; 2152 list_add_tail(&aname->list, &context->names_list); 2153 2154 context->name_count++; 2155 if (!context->pwd.dentry) 2156 get_fs_pwd(current->fs, &context->pwd); 2157 return aname; 2158 } 2159 2160 /** 2161 * __audit_reusename - fill out filename with info from existing entry 2162 * @uptr: userland ptr to pathname 2163 * 2164 * Search the audit_names list for the current audit context. If there is an 2165 * existing entry with a matching "uptr" then return the filename 2166 * associated with that audit_name. If not, return NULL. 2167 */ 2168 struct filename * 2169 __audit_reusename(const __user char *uptr) 2170 { 2171 struct audit_context *context = audit_context(); 2172 struct audit_names *n; 2173 2174 list_for_each_entry(n, &context->names_list, list) { 2175 if (!n->name) 2176 continue; 2177 if (n->name->uptr == uptr) { 2178 n->name->refcnt++; 2179 return n->name; 2180 } 2181 } 2182 return NULL; 2183 } 2184 2185 /** 2186 * __audit_getname - add a name to the list 2187 * @name: name to add 2188 * 2189 * Add a name to the list of audit names for this context. 2190 * Called from fs/namei.c:getname(). 2191 */ 2192 void __audit_getname(struct filename *name) 2193 { 2194 struct audit_context *context = audit_context(); 2195 struct audit_names *n; 2196 2197 if (context->context == AUDIT_CTX_UNUSED) 2198 return; 2199 2200 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2201 if (!n) 2202 return; 2203 2204 n->name = name; 2205 n->name_len = AUDIT_NAME_FULL; 2206 name->aname = n; 2207 name->refcnt++; 2208 } 2209 2210 static inline int audit_copy_fcaps(struct audit_names *name, 2211 const struct dentry *dentry) 2212 { 2213 struct cpu_vfs_cap_data caps; 2214 int rc; 2215 2216 if (!dentry) 2217 return 0; 2218 2219 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 2220 if (rc) 2221 return rc; 2222 2223 name->fcap.permitted = caps.permitted; 2224 name->fcap.inheritable = caps.inheritable; 2225 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2226 name->fcap.rootid = caps.rootid; 2227 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2228 VFS_CAP_REVISION_SHIFT; 2229 2230 return 0; 2231 } 2232 2233 /* Copy inode data into an audit_names. */ 2234 static void audit_copy_inode(struct audit_names *name, 2235 const struct dentry *dentry, 2236 struct inode *inode, unsigned int flags) 2237 { 2238 name->ino = inode->i_ino; 2239 name->dev = inode->i_sb->s_dev; 2240 name->mode = inode->i_mode; 2241 name->uid = inode->i_uid; 2242 name->gid = inode->i_gid; 2243 name->rdev = inode->i_rdev; 2244 security_inode_getsecid(inode, &name->osid); 2245 if (flags & AUDIT_INODE_NOEVAL) { 2246 name->fcap_ver = -1; 2247 return; 2248 } 2249 audit_copy_fcaps(name, dentry); 2250 } 2251 2252 /** 2253 * __audit_inode - store the inode and device from a lookup 2254 * @name: name being audited 2255 * @dentry: dentry being audited 2256 * @flags: attributes for this particular entry 2257 */ 2258 void __audit_inode(struct filename *name, const struct dentry *dentry, 2259 unsigned int flags) 2260 { 2261 struct audit_context *context = audit_context(); 2262 struct inode *inode = d_backing_inode(dentry); 2263 struct audit_names *n; 2264 bool parent = flags & AUDIT_INODE_PARENT; 2265 struct audit_entry *e; 2266 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2267 int i; 2268 2269 if (context->context == AUDIT_CTX_UNUSED) 2270 return; 2271 2272 rcu_read_lock(); 2273 list_for_each_entry_rcu(e, list, list) { 2274 for (i = 0; i < e->rule.field_count; i++) { 2275 struct audit_field *f = &e->rule.fields[i]; 2276 2277 if (f->type == AUDIT_FSTYPE 2278 && audit_comparator(inode->i_sb->s_magic, 2279 f->op, f->val) 2280 && e->rule.action == AUDIT_NEVER) { 2281 rcu_read_unlock(); 2282 return; 2283 } 2284 } 2285 } 2286 rcu_read_unlock(); 2287 2288 if (!name) 2289 goto out_alloc; 2290 2291 /* 2292 * If we have a pointer to an audit_names entry already, then we can 2293 * just use it directly if the type is correct. 2294 */ 2295 n = name->aname; 2296 if (n) { 2297 if (parent) { 2298 if (n->type == AUDIT_TYPE_PARENT || 2299 n->type == AUDIT_TYPE_UNKNOWN) 2300 goto out; 2301 } else { 2302 if (n->type != AUDIT_TYPE_PARENT) 2303 goto out; 2304 } 2305 } 2306 2307 list_for_each_entry_reverse(n, &context->names_list, list) { 2308 if (n->ino) { 2309 /* valid inode number, use that for the comparison */ 2310 if (n->ino != inode->i_ino || 2311 n->dev != inode->i_sb->s_dev) 2312 continue; 2313 } else if (n->name) { 2314 /* inode number has not been set, check the name */ 2315 if (strcmp(n->name->name, name->name)) 2316 continue; 2317 } else 2318 /* no inode and no name (?!) ... this is odd ... */ 2319 continue; 2320 2321 /* match the correct record type */ 2322 if (parent) { 2323 if (n->type == AUDIT_TYPE_PARENT || 2324 n->type == AUDIT_TYPE_UNKNOWN) 2325 goto out; 2326 } else { 2327 if (n->type != AUDIT_TYPE_PARENT) 2328 goto out; 2329 } 2330 } 2331 2332 out_alloc: 2333 /* unable to find an entry with both a matching name and type */ 2334 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2335 if (!n) 2336 return; 2337 if (name) { 2338 n->name = name; 2339 name->refcnt++; 2340 } 2341 2342 out: 2343 if (parent) { 2344 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2345 n->type = AUDIT_TYPE_PARENT; 2346 if (flags & AUDIT_INODE_HIDDEN) 2347 n->hidden = true; 2348 } else { 2349 n->name_len = AUDIT_NAME_FULL; 2350 n->type = AUDIT_TYPE_NORMAL; 2351 } 2352 handle_path(dentry); 2353 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2354 } 2355 2356 void __audit_file(const struct file *file) 2357 { 2358 __audit_inode(NULL, file->f_path.dentry, 0); 2359 } 2360 2361 /** 2362 * __audit_inode_child - collect inode info for created/removed objects 2363 * @parent: inode of dentry parent 2364 * @dentry: dentry being audited 2365 * @type: AUDIT_TYPE_* value that we're looking for 2366 * 2367 * For syscalls that create or remove filesystem objects, audit_inode 2368 * can only collect information for the filesystem object's parent. 2369 * This call updates the audit context with the child's information. 2370 * Syscalls that create a new filesystem object must be hooked after 2371 * the object is created. Syscalls that remove a filesystem object 2372 * must be hooked prior, in order to capture the target inode during 2373 * unsuccessful attempts. 2374 */ 2375 void __audit_inode_child(struct inode *parent, 2376 const struct dentry *dentry, 2377 const unsigned char type) 2378 { 2379 struct audit_context *context = audit_context(); 2380 struct inode *inode = d_backing_inode(dentry); 2381 const struct qstr *dname = &dentry->d_name; 2382 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2383 struct audit_entry *e; 2384 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2385 int i; 2386 2387 if (context->context == AUDIT_CTX_UNUSED) 2388 return; 2389 2390 rcu_read_lock(); 2391 list_for_each_entry_rcu(e, list, list) { 2392 for (i = 0; i < e->rule.field_count; i++) { 2393 struct audit_field *f = &e->rule.fields[i]; 2394 2395 if (f->type == AUDIT_FSTYPE 2396 && audit_comparator(parent->i_sb->s_magic, 2397 f->op, f->val) 2398 && e->rule.action == AUDIT_NEVER) { 2399 rcu_read_unlock(); 2400 return; 2401 } 2402 } 2403 } 2404 rcu_read_unlock(); 2405 2406 if (inode) 2407 handle_one(inode); 2408 2409 /* look for a parent entry first */ 2410 list_for_each_entry(n, &context->names_list, list) { 2411 if (!n->name || 2412 (n->type != AUDIT_TYPE_PARENT && 2413 n->type != AUDIT_TYPE_UNKNOWN)) 2414 continue; 2415 2416 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2417 !audit_compare_dname_path(dname, 2418 n->name->name, n->name_len)) { 2419 if (n->type == AUDIT_TYPE_UNKNOWN) 2420 n->type = AUDIT_TYPE_PARENT; 2421 found_parent = n; 2422 break; 2423 } 2424 } 2425 2426 /* is there a matching child entry? */ 2427 list_for_each_entry(n, &context->names_list, list) { 2428 /* can only match entries that have a name */ 2429 if (!n->name || 2430 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2431 continue; 2432 2433 if (!strcmp(dname->name, n->name->name) || 2434 !audit_compare_dname_path(dname, n->name->name, 2435 found_parent ? 2436 found_parent->name_len : 2437 AUDIT_NAME_FULL)) { 2438 if (n->type == AUDIT_TYPE_UNKNOWN) 2439 n->type = type; 2440 found_child = n; 2441 break; 2442 } 2443 } 2444 2445 if (!found_parent) { 2446 /* create a new, "anonymous" parent record */ 2447 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2448 if (!n) 2449 return; 2450 audit_copy_inode(n, NULL, parent, 0); 2451 } 2452 2453 if (!found_child) { 2454 found_child = audit_alloc_name(context, type); 2455 if (!found_child) 2456 return; 2457 2458 /* Re-use the name belonging to the slot for a matching parent 2459 * directory. All names for this context are relinquished in 2460 * audit_free_names() */ 2461 if (found_parent) { 2462 found_child->name = found_parent->name; 2463 found_child->name_len = AUDIT_NAME_FULL; 2464 found_child->name->refcnt++; 2465 } 2466 } 2467 2468 if (inode) 2469 audit_copy_inode(found_child, dentry, inode, 0); 2470 else 2471 found_child->ino = AUDIT_INO_UNSET; 2472 } 2473 EXPORT_SYMBOL_GPL(__audit_inode_child); 2474 2475 /** 2476 * auditsc_get_stamp - get local copies of audit_context values 2477 * @ctx: audit_context for the task 2478 * @t: timespec64 to store time recorded in the audit_context 2479 * @serial: serial value that is recorded in the audit_context 2480 * 2481 * Also sets the context as auditable. 2482 */ 2483 int auditsc_get_stamp(struct audit_context *ctx, 2484 struct timespec64 *t, unsigned int *serial) 2485 { 2486 if (ctx->context == AUDIT_CTX_UNUSED) 2487 return 0; 2488 if (!ctx->serial) 2489 ctx->serial = audit_serial(); 2490 t->tv_sec = ctx->ctime.tv_sec; 2491 t->tv_nsec = ctx->ctime.tv_nsec; 2492 *serial = ctx->serial; 2493 if (!ctx->prio) { 2494 ctx->prio = 1; 2495 ctx->current_state = AUDIT_STATE_RECORD; 2496 } 2497 return 1; 2498 } 2499 2500 /** 2501 * __audit_mq_open - record audit data for a POSIX MQ open 2502 * @oflag: open flag 2503 * @mode: mode bits 2504 * @attr: queue attributes 2505 * 2506 */ 2507 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2508 { 2509 struct audit_context *context = audit_context(); 2510 2511 if (attr) 2512 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2513 else 2514 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2515 2516 context->mq_open.oflag = oflag; 2517 context->mq_open.mode = mode; 2518 2519 context->type = AUDIT_MQ_OPEN; 2520 } 2521 2522 /** 2523 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2524 * @mqdes: MQ descriptor 2525 * @msg_len: Message length 2526 * @msg_prio: Message priority 2527 * @abs_timeout: Message timeout in absolute time 2528 * 2529 */ 2530 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2531 const struct timespec64 *abs_timeout) 2532 { 2533 struct audit_context *context = audit_context(); 2534 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2535 2536 if (abs_timeout) 2537 memcpy(p, abs_timeout, sizeof(*p)); 2538 else 2539 memset(p, 0, sizeof(*p)); 2540 2541 context->mq_sendrecv.mqdes = mqdes; 2542 context->mq_sendrecv.msg_len = msg_len; 2543 context->mq_sendrecv.msg_prio = msg_prio; 2544 2545 context->type = AUDIT_MQ_SENDRECV; 2546 } 2547 2548 /** 2549 * __audit_mq_notify - record audit data for a POSIX MQ notify 2550 * @mqdes: MQ descriptor 2551 * @notification: Notification event 2552 * 2553 */ 2554 2555 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2556 { 2557 struct audit_context *context = audit_context(); 2558 2559 if (notification) 2560 context->mq_notify.sigev_signo = notification->sigev_signo; 2561 else 2562 context->mq_notify.sigev_signo = 0; 2563 2564 context->mq_notify.mqdes = mqdes; 2565 context->type = AUDIT_MQ_NOTIFY; 2566 } 2567 2568 /** 2569 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2570 * @mqdes: MQ descriptor 2571 * @mqstat: MQ flags 2572 * 2573 */ 2574 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2575 { 2576 struct audit_context *context = audit_context(); 2577 2578 context->mq_getsetattr.mqdes = mqdes; 2579 context->mq_getsetattr.mqstat = *mqstat; 2580 context->type = AUDIT_MQ_GETSETATTR; 2581 } 2582 2583 /** 2584 * __audit_ipc_obj - record audit data for ipc object 2585 * @ipcp: ipc permissions 2586 * 2587 */ 2588 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2589 { 2590 struct audit_context *context = audit_context(); 2591 2592 context->ipc.uid = ipcp->uid; 2593 context->ipc.gid = ipcp->gid; 2594 context->ipc.mode = ipcp->mode; 2595 context->ipc.has_perm = 0; 2596 security_ipc_getsecid(ipcp, &context->ipc.osid); 2597 context->type = AUDIT_IPC; 2598 } 2599 2600 /** 2601 * __audit_ipc_set_perm - record audit data for new ipc permissions 2602 * @qbytes: msgq bytes 2603 * @uid: msgq user id 2604 * @gid: msgq group id 2605 * @mode: msgq mode (permissions) 2606 * 2607 * Called only after audit_ipc_obj(). 2608 */ 2609 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2610 { 2611 struct audit_context *context = audit_context(); 2612 2613 context->ipc.qbytes = qbytes; 2614 context->ipc.perm_uid = uid; 2615 context->ipc.perm_gid = gid; 2616 context->ipc.perm_mode = mode; 2617 context->ipc.has_perm = 1; 2618 } 2619 2620 void __audit_bprm(struct linux_binprm *bprm) 2621 { 2622 struct audit_context *context = audit_context(); 2623 2624 context->type = AUDIT_EXECVE; 2625 context->execve.argc = bprm->argc; 2626 } 2627 2628 2629 /** 2630 * __audit_socketcall - record audit data for sys_socketcall 2631 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2632 * @args: args array 2633 * 2634 */ 2635 int __audit_socketcall(int nargs, unsigned long *args) 2636 { 2637 struct audit_context *context = audit_context(); 2638 2639 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2640 return -EINVAL; 2641 context->type = AUDIT_SOCKETCALL; 2642 context->socketcall.nargs = nargs; 2643 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2644 return 0; 2645 } 2646 2647 /** 2648 * __audit_fd_pair - record audit data for pipe and socketpair 2649 * @fd1: the first file descriptor 2650 * @fd2: the second file descriptor 2651 * 2652 */ 2653 void __audit_fd_pair(int fd1, int fd2) 2654 { 2655 struct audit_context *context = audit_context(); 2656 2657 context->fds[0] = fd1; 2658 context->fds[1] = fd2; 2659 } 2660 2661 /** 2662 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2663 * @len: data length in user space 2664 * @a: data address in kernel space 2665 * 2666 * Returns 0 for success or NULL context or < 0 on error. 2667 */ 2668 int __audit_sockaddr(int len, void *a) 2669 { 2670 struct audit_context *context = audit_context(); 2671 2672 if (!context->sockaddr) { 2673 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2674 2675 if (!p) 2676 return -ENOMEM; 2677 context->sockaddr = p; 2678 } 2679 2680 context->sockaddr_len = len; 2681 memcpy(context->sockaddr, a, len); 2682 return 0; 2683 } 2684 2685 void __audit_ptrace(struct task_struct *t) 2686 { 2687 struct audit_context *context = audit_context(); 2688 2689 context->target_pid = task_tgid_nr(t); 2690 context->target_auid = audit_get_loginuid(t); 2691 context->target_uid = task_uid(t); 2692 context->target_sessionid = audit_get_sessionid(t); 2693 security_task_getsecid_obj(t, &context->target_sid); 2694 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2695 } 2696 2697 /** 2698 * audit_signal_info_syscall - record signal info for syscalls 2699 * @t: task being signaled 2700 * 2701 * If the audit subsystem is being terminated, record the task (pid) 2702 * and uid that is doing that. 2703 */ 2704 int audit_signal_info_syscall(struct task_struct *t) 2705 { 2706 struct audit_aux_data_pids *axp; 2707 struct audit_context *ctx = audit_context(); 2708 kuid_t t_uid = task_uid(t); 2709 2710 if (!audit_signals || audit_dummy_context()) 2711 return 0; 2712 2713 /* optimize the common case by putting first signal recipient directly 2714 * in audit_context */ 2715 if (!ctx->target_pid) { 2716 ctx->target_pid = task_tgid_nr(t); 2717 ctx->target_auid = audit_get_loginuid(t); 2718 ctx->target_uid = t_uid; 2719 ctx->target_sessionid = audit_get_sessionid(t); 2720 security_task_getsecid_obj(t, &ctx->target_sid); 2721 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2722 return 0; 2723 } 2724 2725 axp = (void *)ctx->aux_pids; 2726 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2727 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2728 if (!axp) 2729 return -ENOMEM; 2730 2731 axp->d.type = AUDIT_OBJ_PID; 2732 axp->d.next = ctx->aux_pids; 2733 ctx->aux_pids = (void *)axp; 2734 } 2735 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2736 2737 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2738 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2739 axp->target_uid[axp->pid_count] = t_uid; 2740 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2741 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2742 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2743 axp->pid_count++; 2744 2745 return 0; 2746 } 2747 2748 /** 2749 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2750 * @bprm: pointer to the bprm being processed 2751 * @new: the proposed new credentials 2752 * @old: the old credentials 2753 * 2754 * Simply check if the proc already has the caps given by the file and if not 2755 * store the priv escalation info for later auditing at the end of the syscall 2756 * 2757 * -Eric 2758 */ 2759 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2760 const struct cred *new, const struct cred *old) 2761 { 2762 struct audit_aux_data_bprm_fcaps *ax; 2763 struct audit_context *context = audit_context(); 2764 struct cpu_vfs_cap_data vcaps; 2765 2766 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2767 if (!ax) 2768 return -ENOMEM; 2769 2770 ax->d.type = AUDIT_BPRM_FCAPS; 2771 ax->d.next = context->aux; 2772 context->aux = (void *)ax; 2773 2774 get_vfs_caps_from_disk(&init_user_ns, 2775 bprm->file->f_path.dentry, &vcaps); 2776 2777 ax->fcap.permitted = vcaps.permitted; 2778 ax->fcap.inheritable = vcaps.inheritable; 2779 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2780 ax->fcap.rootid = vcaps.rootid; 2781 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2782 2783 ax->old_pcap.permitted = old->cap_permitted; 2784 ax->old_pcap.inheritable = old->cap_inheritable; 2785 ax->old_pcap.effective = old->cap_effective; 2786 ax->old_pcap.ambient = old->cap_ambient; 2787 2788 ax->new_pcap.permitted = new->cap_permitted; 2789 ax->new_pcap.inheritable = new->cap_inheritable; 2790 ax->new_pcap.effective = new->cap_effective; 2791 ax->new_pcap.ambient = new->cap_ambient; 2792 return 0; 2793 } 2794 2795 /** 2796 * __audit_log_capset - store information about the arguments to the capset syscall 2797 * @new: the new credentials 2798 * @old: the old (current) credentials 2799 * 2800 * Record the arguments userspace sent to sys_capset for later printing by the 2801 * audit system if applicable 2802 */ 2803 void __audit_log_capset(const struct cred *new, const struct cred *old) 2804 { 2805 struct audit_context *context = audit_context(); 2806 2807 context->capset.pid = task_tgid_nr(current); 2808 context->capset.cap.effective = new->cap_effective; 2809 context->capset.cap.inheritable = new->cap_effective; 2810 context->capset.cap.permitted = new->cap_permitted; 2811 context->capset.cap.ambient = new->cap_ambient; 2812 context->type = AUDIT_CAPSET; 2813 } 2814 2815 void __audit_mmap_fd(int fd, int flags) 2816 { 2817 struct audit_context *context = audit_context(); 2818 2819 context->mmap.fd = fd; 2820 context->mmap.flags = flags; 2821 context->type = AUDIT_MMAP; 2822 } 2823 2824 void __audit_openat2_how(struct open_how *how) 2825 { 2826 struct audit_context *context = audit_context(); 2827 2828 context->openat2.flags = how->flags; 2829 context->openat2.mode = how->mode; 2830 context->openat2.resolve = how->resolve; 2831 context->type = AUDIT_OPENAT2; 2832 } 2833 2834 void __audit_log_kern_module(char *name) 2835 { 2836 struct audit_context *context = audit_context(); 2837 2838 context->module.name = kstrdup(name, GFP_KERNEL); 2839 if (!context->module.name) 2840 audit_log_lost("out of memory in __audit_log_kern_module"); 2841 context->type = AUDIT_KERN_MODULE; 2842 } 2843 2844 void __audit_fanotify(unsigned int response) 2845 { 2846 audit_log(audit_context(), GFP_KERNEL, 2847 AUDIT_FANOTIFY, "resp=%u", response); 2848 } 2849 2850 void __audit_tk_injoffset(struct timespec64 offset) 2851 { 2852 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, 2853 "sec=%lli nsec=%li", 2854 (long long)offset.tv_sec, offset.tv_nsec); 2855 } 2856 2857 static void audit_log_ntp_val(const struct audit_ntp_data *ad, 2858 const char *op, enum audit_ntp_type type) 2859 { 2860 const struct audit_ntp_val *val = &ad->vals[type]; 2861 2862 if (val->newval == val->oldval) 2863 return; 2864 2865 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, 2866 "op=%s old=%lli new=%lli", op, val->oldval, val->newval); 2867 } 2868 2869 void __audit_ntp_log(const struct audit_ntp_data *ad) 2870 { 2871 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); 2872 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); 2873 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); 2874 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); 2875 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); 2876 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); 2877 } 2878 2879 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2880 enum audit_nfcfgop op, gfp_t gfp) 2881 { 2882 struct audit_buffer *ab; 2883 char comm[sizeof(current->comm)]; 2884 2885 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2886 if (!ab) 2887 return; 2888 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2889 name, af, nentries, audit_nfcfgs[op].s); 2890 2891 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2892 audit_log_task_context(ab); /* subj= */ 2893 audit_log_format(ab, " comm="); 2894 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2895 audit_log_end(ab); 2896 } 2897 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2898 2899 static void audit_log_task(struct audit_buffer *ab) 2900 { 2901 kuid_t auid, uid; 2902 kgid_t gid; 2903 unsigned int sessionid; 2904 char comm[sizeof(current->comm)]; 2905 2906 auid = audit_get_loginuid(current); 2907 sessionid = audit_get_sessionid(current); 2908 current_uid_gid(&uid, &gid); 2909 2910 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2911 from_kuid(&init_user_ns, auid), 2912 from_kuid(&init_user_ns, uid), 2913 from_kgid(&init_user_ns, gid), 2914 sessionid); 2915 audit_log_task_context(ab); 2916 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2917 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2918 audit_log_d_path_exe(ab, current->mm); 2919 } 2920 2921 /** 2922 * audit_core_dumps - record information about processes that end abnormally 2923 * @signr: signal value 2924 * 2925 * If a process ends with a core dump, something fishy is going on and we 2926 * should record the event for investigation. 2927 */ 2928 void audit_core_dumps(long signr) 2929 { 2930 struct audit_buffer *ab; 2931 2932 if (!audit_enabled) 2933 return; 2934 2935 if (signr == SIGQUIT) /* don't care for those */ 2936 return; 2937 2938 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2939 if (unlikely(!ab)) 2940 return; 2941 audit_log_task(ab); 2942 audit_log_format(ab, " sig=%ld res=1", signr); 2943 audit_log_end(ab); 2944 } 2945 2946 /** 2947 * audit_seccomp - record information about a seccomp action 2948 * @syscall: syscall number 2949 * @signr: signal value 2950 * @code: the seccomp action 2951 * 2952 * Record the information associated with a seccomp action. Event filtering for 2953 * seccomp actions that are not to be logged is done in seccomp_log(). 2954 * Therefore, this function forces auditing independent of the audit_enabled 2955 * and dummy context state because seccomp actions should be logged even when 2956 * audit is not in use. 2957 */ 2958 void audit_seccomp(unsigned long syscall, long signr, int code) 2959 { 2960 struct audit_buffer *ab; 2961 2962 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2963 if (unlikely(!ab)) 2964 return; 2965 audit_log_task(ab); 2966 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2967 signr, syscall_get_arch(current), syscall, 2968 in_compat_syscall(), KSTK_EIP(current), code); 2969 audit_log_end(ab); 2970 } 2971 2972 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2973 int res) 2974 { 2975 struct audit_buffer *ab; 2976 2977 if (!audit_enabled) 2978 return; 2979 2980 ab = audit_log_start(audit_context(), GFP_KERNEL, 2981 AUDIT_CONFIG_CHANGE); 2982 if (unlikely(!ab)) 2983 return; 2984 2985 audit_log_format(ab, 2986 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2987 names, old_names, res); 2988 audit_log_end(ab); 2989 } 2990 2991 struct list_head *audit_killed_trees(void) 2992 { 2993 struct audit_context *ctx = audit_context(); 2994 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 2995 return NULL; 2996 return &ctx->killed_trees; 2997 } 2998