xref: /openbmc/linux/kernel/auditsc.c (revision 413d6ed3)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79 
80 #include "audit.h"
81 
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86 
87 /* no execve audit message should be longer than this (userspace limits),
88  * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90 
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93 
94 /* number of audit rules */
95 int audit_n_rules;
96 
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99 
100 struct audit_aux_data {
101 	struct audit_aux_data	*next;
102 	int			type;
103 };
104 
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS	16
107 
108 struct audit_aux_data_pids {
109 	struct audit_aux_data	d;
110 	pid_t			target_pid[AUDIT_AUX_PIDS];
111 	kuid_t			target_auid[AUDIT_AUX_PIDS];
112 	kuid_t			target_uid[AUDIT_AUX_PIDS];
113 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
114 	u32			target_sid[AUDIT_AUX_PIDS];
115 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 	int			pid_count;
117 };
118 
119 struct audit_aux_data_bprm_fcaps {
120 	struct audit_aux_data	d;
121 	struct audit_cap_data	fcap;
122 	unsigned int		fcap_ver;
123 	struct audit_cap_data	old_pcap;
124 	struct audit_cap_data	new_pcap;
125 };
126 
127 struct audit_tree_refs {
128 	struct audit_tree_refs *next;
129 	struct audit_chunk *c[31];
130 };
131 
132 struct audit_nfcfgop_tab {
133 	enum audit_nfcfgop	op;
134 	const char		*s;
135 };
136 
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
139 	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
140 	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
141 	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
142 	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
143 	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
144 	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
145 	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
146 	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
147 	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
148 	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
149 	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
150 	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
151 	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
152 	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
153 	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
154 	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
155 	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
156 	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
157 	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
158 };
159 
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 	unsigned n;
163 	if (unlikely(!ctx))
164 		return 0;
165 	n = ctx->major;
166 
167 	switch (audit_classify_syscall(ctx->arch, n)) {
168 	case 0:	/* native */
169 		if ((mask & AUDIT_PERM_WRITE) &&
170 		     audit_match_class(AUDIT_CLASS_WRITE, n))
171 			return 1;
172 		if ((mask & AUDIT_PERM_READ) &&
173 		     audit_match_class(AUDIT_CLASS_READ, n))
174 			return 1;
175 		if ((mask & AUDIT_PERM_ATTR) &&
176 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
177 			return 1;
178 		return 0;
179 	case 1: /* 32bit on biarch */
180 		if ((mask & AUDIT_PERM_WRITE) &&
181 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
182 			return 1;
183 		if ((mask & AUDIT_PERM_READ) &&
184 		     audit_match_class(AUDIT_CLASS_READ_32, n))
185 			return 1;
186 		if ((mask & AUDIT_PERM_ATTR) &&
187 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
188 			return 1;
189 		return 0;
190 	case 2: /* open */
191 		return mask & ACC_MODE(ctx->argv[1]);
192 	case 3: /* openat */
193 		return mask & ACC_MODE(ctx->argv[2]);
194 	case 4: /* socketcall */
195 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
196 	case 5: /* execve */
197 		return mask & AUDIT_PERM_EXEC;
198 	default:
199 		return 0;
200 	}
201 }
202 
203 static int audit_match_filetype(struct audit_context *ctx, int val)
204 {
205 	struct audit_names *n;
206 	umode_t mode = (umode_t)val;
207 
208 	if (unlikely(!ctx))
209 		return 0;
210 
211 	list_for_each_entry(n, &ctx->names_list, list) {
212 		if ((n->ino != AUDIT_INO_UNSET) &&
213 		    ((n->mode & S_IFMT) == mode))
214 			return 1;
215 	}
216 
217 	return 0;
218 }
219 
220 /*
221  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222  * ->first_trees points to its beginning, ->trees - to the current end of data.
223  * ->tree_count is the number of free entries in array pointed to by ->trees.
224  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
226  * it's going to remain 1-element for almost any setup) until we free context itself.
227  * References in it _are_ dropped - at the same time we free/drop aux stuff.
228  */
229 
230 static void audit_set_auditable(struct audit_context *ctx)
231 {
232 	if (!ctx->prio) {
233 		ctx->prio = 1;
234 		ctx->current_state = AUDIT_RECORD_CONTEXT;
235 	}
236 }
237 
238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
239 {
240 	struct audit_tree_refs *p = ctx->trees;
241 	int left = ctx->tree_count;
242 	if (likely(left)) {
243 		p->c[--left] = chunk;
244 		ctx->tree_count = left;
245 		return 1;
246 	}
247 	if (!p)
248 		return 0;
249 	p = p->next;
250 	if (p) {
251 		p->c[30] = chunk;
252 		ctx->trees = p;
253 		ctx->tree_count = 30;
254 		return 1;
255 	}
256 	return 0;
257 }
258 
259 static int grow_tree_refs(struct audit_context *ctx)
260 {
261 	struct audit_tree_refs *p = ctx->trees;
262 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
263 	if (!ctx->trees) {
264 		ctx->trees = p;
265 		return 0;
266 	}
267 	if (p)
268 		p->next = ctx->trees;
269 	else
270 		ctx->first_trees = ctx->trees;
271 	ctx->tree_count = 31;
272 	return 1;
273 }
274 
275 static void unroll_tree_refs(struct audit_context *ctx,
276 		      struct audit_tree_refs *p, int count)
277 {
278 	struct audit_tree_refs *q;
279 	int n;
280 	if (!p) {
281 		/* we started with empty chain */
282 		p = ctx->first_trees;
283 		count = 31;
284 		/* if the very first allocation has failed, nothing to do */
285 		if (!p)
286 			return;
287 	}
288 	n = count;
289 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
290 		while (n--) {
291 			audit_put_chunk(q->c[n]);
292 			q->c[n] = NULL;
293 		}
294 	}
295 	while (n-- > ctx->tree_count) {
296 		audit_put_chunk(q->c[n]);
297 		q->c[n] = NULL;
298 	}
299 	ctx->trees = p;
300 	ctx->tree_count = count;
301 }
302 
303 static void free_tree_refs(struct audit_context *ctx)
304 {
305 	struct audit_tree_refs *p, *q;
306 	for (p = ctx->first_trees; p; p = q) {
307 		q = p->next;
308 		kfree(p);
309 	}
310 }
311 
312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
313 {
314 	struct audit_tree_refs *p;
315 	int n;
316 	if (!tree)
317 		return 0;
318 	/* full ones */
319 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
320 		for (n = 0; n < 31; n++)
321 			if (audit_tree_match(p->c[n], tree))
322 				return 1;
323 	}
324 	/* partial */
325 	if (p) {
326 		for (n = ctx->tree_count; n < 31; n++)
327 			if (audit_tree_match(p->c[n], tree))
328 				return 1;
329 	}
330 	return 0;
331 }
332 
333 static int audit_compare_uid(kuid_t uid,
334 			     struct audit_names *name,
335 			     struct audit_field *f,
336 			     struct audit_context *ctx)
337 {
338 	struct audit_names *n;
339 	int rc;
340 
341 	if (name) {
342 		rc = audit_uid_comparator(uid, f->op, name->uid);
343 		if (rc)
344 			return rc;
345 	}
346 
347 	if (ctx) {
348 		list_for_each_entry(n, &ctx->names_list, list) {
349 			rc = audit_uid_comparator(uid, f->op, n->uid);
350 			if (rc)
351 				return rc;
352 		}
353 	}
354 	return 0;
355 }
356 
357 static int audit_compare_gid(kgid_t gid,
358 			     struct audit_names *name,
359 			     struct audit_field *f,
360 			     struct audit_context *ctx)
361 {
362 	struct audit_names *n;
363 	int rc;
364 
365 	if (name) {
366 		rc = audit_gid_comparator(gid, f->op, name->gid);
367 		if (rc)
368 			return rc;
369 	}
370 
371 	if (ctx) {
372 		list_for_each_entry(n, &ctx->names_list, list) {
373 			rc = audit_gid_comparator(gid, f->op, n->gid);
374 			if (rc)
375 				return rc;
376 		}
377 	}
378 	return 0;
379 }
380 
381 static int audit_field_compare(struct task_struct *tsk,
382 			       const struct cred *cred,
383 			       struct audit_field *f,
384 			       struct audit_context *ctx,
385 			       struct audit_names *name)
386 {
387 	switch (f->val) {
388 	/* process to file object comparisons */
389 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
390 		return audit_compare_uid(cred->uid, name, f, ctx);
391 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
392 		return audit_compare_gid(cred->gid, name, f, ctx);
393 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
394 		return audit_compare_uid(cred->euid, name, f, ctx);
395 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
396 		return audit_compare_gid(cred->egid, name, f, ctx);
397 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
398 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
399 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
400 		return audit_compare_uid(cred->suid, name, f, ctx);
401 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
402 		return audit_compare_gid(cred->sgid, name, f, ctx);
403 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
404 		return audit_compare_uid(cred->fsuid, name, f, ctx);
405 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
406 		return audit_compare_gid(cred->fsgid, name, f, ctx);
407 	/* uid comparisons */
408 	case AUDIT_COMPARE_UID_TO_AUID:
409 		return audit_uid_comparator(cred->uid, f->op,
410 					    audit_get_loginuid(tsk));
411 	case AUDIT_COMPARE_UID_TO_EUID:
412 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
413 	case AUDIT_COMPARE_UID_TO_SUID:
414 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
415 	case AUDIT_COMPARE_UID_TO_FSUID:
416 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
417 	/* auid comparisons */
418 	case AUDIT_COMPARE_AUID_TO_EUID:
419 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 					    cred->euid);
421 	case AUDIT_COMPARE_AUID_TO_SUID:
422 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 					    cred->suid);
424 	case AUDIT_COMPARE_AUID_TO_FSUID:
425 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 					    cred->fsuid);
427 	/* euid comparisons */
428 	case AUDIT_COMPARE_EUID_TO_SUID:
429 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
430 	case AUDIT_COMPARE_EUID_TO_FSUID:
431 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
432 	/* suid comparisons */
433 	case AUDIT_COMPARE_SUID_TO_FSUID:
434 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
435 	/* gid comparisons */
436 	case AUDIT_COMPARE_GID_TO_EGID:
437 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
438 	case AUDIT_COMPARE_GID_TO_SGID:
439 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
440 	case AUDIT_COMPARE_GID_TO_FSGID:
441 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
442 	/* egid comparisons */
443 	case AUDIT_COMPARE_EGID_TO_SGID:
444 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
445 	case AUDIT_COMPARE_EGID_TO_FSGID:
446 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
447 	/* sgid comparison */
448 	case AUDIT_COMPARE_SGID_TO_FSGID:
449 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 	default:
451 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
452 		return 0;
453 	}
454 	return 0;
455 }
456 
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
459  * otherwise.
460  *
461  * If task_creation is true, this is an explicit indication that we are
462  * filtering a task rule at task creation time.  This and tsk == current are
463  * the only situations where tsk->cred may be accessed without an rcu read lock.
464  */
465 static int audit_filter_rules(struct task_struct *tsk,
466 			      struct audit_krule *rule,
467 			      struct audit_context *ctx,
468 			      struct audit_names *name,
469 			      enum audit_state *state,
470 			      bool task_creation)
471 {
472 	const struct cred *cred;
473 	int i, need_sid = 1;
474 	u32 sid;
475 	unsigned int sessionid;
476 
477 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478 
479 	for (i = 0; i < rule->field_count; i++) {
480 		struct audit_field *f = &rule->fields[i];
481 		struct audit_names *n;
482 		int result = 0;
483 		pid_t pid;
484 
485 		switch (f->type) {
486 		case AUDIT_PID:
487 			pid = task_tgid_nr(tsk);
488 			result = audit_comparator(pid, f->op, f->val);
489 			break;
490 		case AUDIT_PPID:
491 			if (ctx) {
492 				if (!ctx->ppid)
493 					ctx->ppid = task_ppid_nr(tsk);
494 				result = audit_comparator(ctx->ppid, f->op, f->val);
495 			}
496 			break;
497 		case AUDIT_EXE:
498 			result = audit_exe_compare(tsk, rule->exe);
499 			if (f->op == Audit_not_equal)
500 				result = !result;
501 			break;
502 		case AUDIT_UID:
503 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
504 			break;
505 		case AUDIT_EUID:
506 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
507 			break;
508 		case AUDIT_SUID:
509 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
510 			break;
511 		case AUDIT_FSUID:
512 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
513 			break;
514 		case AUDIT_GID:
515 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 			if (f->op == Audit_equal) {
517 				if (!result)
518 					result = groups_search(cred->group_info, f->gid);
519 			} else if (f->op == Audit_not_equal) {
520 				if (result)
521 					result = !groups_search(cred->group_info, f->gid);
522 			}
523 			break;
524 		case AUDIT_EGID:
525 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 			if (f->op == Audit_equal) {
527 				if (!result)
528 					result = groups_search(cred->group_info, f->gid);
529 			} else if (f->op == Audit_not_equal) {
530 				if (result)
531 					result = !groups_search(cred->group_info, f->gid);
532 			}
533 			break;
534 		case AUDIT_SGID:
535 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
536 			break;
537 		case AUDIT_FSGID:
538 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 			break;
540 		case AUDIT_SESSIONID:
541 			sessionid = audit_get_sessionid(tsk);
542 			result = audit_comparator(sessionid, f->op, f->val);
543 			break;
544 		case AUDIT_PERS:
545 			result = audit_comparator(tsk->personality, f->op, f->val);
546 			break;
547 		case AUDIT_ARCH:
548 			if (ctx)
549 				result = audit_comparator(ctx->arch, f->op, f->val);
550 			break;
551 
552 		case AUDIT_EXIT:
553 			if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 				result = audit_comparator(ctx->return_code, f->op, f->val);
555 			break;
556 		case AUDIT_SUCCESS:
557 			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 				if (f->val)
559 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 				else
561 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
562 			}
563 			break;
564 		case AUDIT_DEVMAJOR:
565 			if (name) {
566 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
568 					++result;
569 			} else if (ctx) {
570 				list_for_each_entry(n, &ctx->names_list, list) {
571 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
573 						++result;
574 						break;
575 					}
576 				}
577 			}
578 			break;
579 		case AUDIT_DEVMINOR:
580 			if (name) {
581 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
583 					++result;
584 			} else if (ctx) {
585 				list_for_each_entry(n, &ctx->names_list, list) {
586 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
588 						++result;
589 						break;
590 					}
591 				}
592 			}
593 			break;
594 		case AUDIT_INODE:
595 			if (name)
596 				result = audit_comparator(name->ino, f->op, f->val);
597 			else if (ctx) {
598 				list_for_each_entry(n, &ctx->names_list, list) {
599 					if (audit_comparator(n->ino, f->op, f->val)) {
600 						++result;
601 						break;
602 					}
603 				}
604 			}
605 			break;
606 		case AUDIT_OBJ_UID:
607 			if (name) {
608 				result = audit_uid_comparator(name->uid, f->op, f->uid);
609 			} else if (ctx) {
610 				list_for_each_entry(n, &ctx->names_list, list) {
611 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
612 						++result;
613 						break;
614 					}
615 				}
616 			}
617 			break;
618 		case AUDIT_OBJ_GID:
619 			if (name) {
620 				result = audit_gid_comparator(name->gid, f->op, f->gid);
621 			} else if (ctx) {
622 				list_for_each_entry(n, &ctx->names_list, list) {
623 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
624 						++result;
625 						break;
626 					}
627 				}
628 			}
629 			break;
630 		case AUDIT_WATCH:
631 			if (name) {
632 				result = audit_watch_compare(rule->watch,
633 							     name->ino,
634 							     name->dev);
635 				if (f->op == Audit_not_equal)
636 					result = !result;
637 			}
638 			break;
639 		case AUDIT_DIR:
640 			if (ctx) {
641 				result = match_tree_refs(ctx, rule->tree);
642 				if (f->op == Audit_not_equal)
643 					result = !result;
644 			}
645 			break;
646 		case AUDIT_LOGINUID:
647 			result = audit_uid_comparator(audit_get_loginuid(tsk),
648 						      f->op, f->uid);
649 			break;
650 		case AUDIT_LOGINUID_SET:
651 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 			break;
653 		case AUDIT_SADDR_FAM:
654 			if (ctx->sockaddr)
655 				result = audit_comparator(ctx->sockaddr->ss_family,
656 							  f->op, f->val);
657 			break;
658 		case AUDIT_SUBJ_USER:
659 		case AUDIT_SUBJ_ROLE:
660 		case AUDIT_SUBJ_TYPE:
661 		case AUDIT_SUBJ_SEN:
662 		case AUDIT_SUBJ_CLR:
663 			/* NOTE: this may return negative values indicating
664 			   a temporary error.  We simply treat this as a
665 			   match for now to avoid losing information that
666 			   may be wanted.   An error message will also be
667 			   logged upon error */
668 			if (f->lsm_rule) {
669 				if (need_sid) {
670 					security_task_getsecid_subj(tsk, &sid);
671 					need_sid = 0;
672 				}
673 				result = security_audit_rule_match(sid, f->type,
674 								   f->op,
675 								   f->lsm_rule);
676 			}
677 			break;
678 		case AUDIT_OBJ_USER:
679 		case AUDIT_OBJ_ROLE:
680 		case AUDIT_OBJ_TYPE:
681 		case AUDIT_OBJ_LEV_LOW:
682 		case AUDIT_OBJ_LEV_HIGH:
683 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
684 			   also applies here */
685 			if (f->lsm_rule) {
686 				/* Find files that match */
687 				if (name) {
688 					result = security_audit_rule_match(
689 								name->osid,
690 								f->type,
691 								f->op,
692 								f->lsm_rule);
693 				} else if (ctx) {
694 					list_for_each_entry(n, &ctx->names_list, list) {
695 						if (security_audit_rule_match(
696 								n->osid,
697 								f->type,
698 								f->op,
699 								f->lsm_rule)) {
700 							++result;
701 							break;
702 						}
703 					}
704 				}
705 				/* Find ipc objects that match */
706 				if (!ctx || ctx->type != AUDIT_IPC)
707 					break;
708 				if (security_audit_rule_match(ctx->ipc.osid,
709 							      f->type, f->op,
710 							      f->lsm_rule))
711 					++result;
712 			}
713 			break;
714 		case AUDIT_ARG0:
715 		case AUDIT_ARG1:
716 		case AUDIT_ARG2:
717 		case AUDIT_ARG3:
718 			if (ctx)
719 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
720 			break;
721 		case AUDIT_FILTERKEY:
722 			/* ignore this field for filtering */
723 			result = 1;
724 			break;
725 		case AUDIT_PERM:
726 			result = audit_match_perm(ctx, f->val);
727 			if (f->op == Audit_not_equal)
728 				result = !result;
729 			break;
730 		case AUDIT_FILETYPE:
731 			result = audit_match_filetype(ctx, f->val);
732 			if (f->op == Audit_not_equal)
733 				result = !result;
734 			break;
735 		case AUDIT_FIELD_COMPARE:
736 			result = audit_field_compare(tsk, cred, f, ctx, name);
737 			break;
738 		}
739 		if (!result)
740 			return 0;
741 	}
742 
743 	if (ctx) {
744 		if (rule->prio <= ctx->prio)
745 			return 0;
746 		if (rule->filterkey) {
747 			kfree(ctx->filterkey);
748 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
749 		}
750 		ctx->prio = rule->prio;
751 	}
752 	switch (rule->action) {
753 	case AUDIT_NEVER:
754 		*state = AUDIT_DISABLED;
755 		break;
756 	case AUDIT_ALWAYS:
757 		*state = AUDIT_RECORD_CONTEXT;
758 		break;
759 	}
760 	return 1;
761 }
762 
763 /* At process creation time, we can determine if system-call auditing is
764  * completely disabled for this task.  Since we only have the task
765  * structure at this point, we can only check uid and gid.
766  */
767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
768 {
769 	struct audit_entry *e;
770 	enum audit_state   state;
771 
772 	rcu_read_lock();
773 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
774 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
775 				       &state, true)) {
776 			if (state == AUDIT_RECORD_CONTEXT)
777 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
778 			rcu_read_unlock();
779 			return state;
780 		}
781 	}
782 	rcu_read_unlock();
783 	return AUDIT_BUILD_CONTEXT;
784 }
785 
786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
787 {
788 	int word, bit;
789 
790 	if (val > 0xffffffff)
791 		return false;
792 
793 	word = AUDIT_WORD(val);
794 	if (word >= AUDIT_BITMASK_SIZE)
795 		return false;
796 
797 	bit = AUDIT_BIT(val);
798 
799 	return rule->mask[word] & bit;
800 }
801 
802 /* At syscall exit time, this filter is called if the audit_state is
803  * not low enough that auditing cannot take place, but is also not
804  * high enough that we already know we have to write an audit record
805  * (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
806  */
807 static void audit_filter_syscall(struct task_struct *tsk,
808 				 struct audit_context *ctx)
809 {
810 	struct audit_entry *e;
811 	enum audit_state state;
812 
813 	if (auditd_test_task(tsk))
814 		return;
815 
816 	rcu_read_lock();
817 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
818 		if (audit_in_mask(&e->rule, ctx->major) &&
819 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
820 				       &state, false)) {
821 			rcu_read_unlock();
822 			ctx->current_state = state;
823 			return;
824 		}
825 	}
826 	rcu_read_unlock();
827 	return;
828 }
829 
830 /*
831  * Given an audit_name check the inode hash table to see if they match.
832  * Called holding the rcu read lock to protect the use of audit_inode_hash
833  */
834 static int audit_filter_inode_name(struct task_struct *tsk,
835 				   struct audit_names *n,
836 				   struct audit_context *ctx) {
837 	int h = audit_hash_ino((u32)n->ino);
838 	struct list_head *list = &audit_inode_hash[h];
839 	struct audit_entry *e;
840 	enum audit_state state;
841 
842 	list_for_each_entry_rcu(e, list, list) {
843 		if (audit_in_mask(&e->rule, ctx->major) &&
844 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
845 			ctx->current_state = state;
846 			return 1;
847 		}
848 	}
849 	return 0;
850 }
851 
852 /* At syscall exit time, this filter is called if any audit_names have been
853  * collected during syscall processing.  We only check rules in sublists at hash
854  * buckets applicable to the inode numbers in audit_names.
855  * Regarding audit_state, same rules apply as for audit_filter_syscall().
856  */
857 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
858 {
859 	struct audit_names *n;
860 
861 	if (auditd_test_task(tsk))
862 		return;
863 
864 	rcu_read_lock();
865 
866 	list_for_each_entry(n, &ctx->names_list, list) {
867 		if (audit_filter_inode_name(tsk, n, ctx))
868 			break;
869 	}
870 	rcu_read_unlock();
871 }
872 
873 static inline void audit_proctitle_free(struct audit_context *context)
874 {
875 	kfree(context->proctitle.value);
876 	context->proctitle.value = NULL;
877 	context->proctitle.len = 0;
878 }
879 
880 static inline void audit_free_module(struct audit_context *context)
881 {
882 	if (context->type == AUDIT_KERN_MODULE) {
883 		kfree(context->module.name);
884 		context->module.name = NULL;
885 	}
886 }
887 static inline void audit_free_names(struct audit_context *context)
888 {
889 	struct audit_names *n, *next;
890 
891 	list_for_each_entry_safe(n, next, &context->names_list, list) {
892 		list_del(&n->list);
893 		if (n->name)
894 			putname(n->name);
895 		if (n->should_free)
896 			kfree(n);
897 	}
898 	context->name_count = 0;
899 	path_put(&context->pwd);
900 	context->pwd.dentry = NULL;
901 	context->pwd.mnt = NULL;
902 }
903 
904 static inline void audit_free_aux(struct audit_context *context)
905 {
906 	struct audit_aux_data *aux;
907 
908 	while ((aux = context->aux)) {
909 		context->aux = aux->next;
910 		kfree(aux);
911 	}
912 	while ((aux = context->aux_pids)) {
913 		context->aux_pids = aux->next;
914 		kfree(aux);
915 	}
916 }
917 
918 static inline struct audit_context *audit_alloc_context(enum audit_state state)
919 {
920 	struct audit_context *context;
921 
922 	context = kzalloc(sizeof(*context), GFP_KERNEL);
923 	if (!context)
924 		return NULL;
925 	context->state = state;
926 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
927 	INIT_LIST_HEAD(&context->killed_trees);
928 	INIT_LIST_HEAD(&context->names_list);
929 	context->fds[0] = -1;
930 	context->return_valid = AUDITSC_INVALID;
931 	return context;
932 }
933 
934 /**
935  * audit_alloc - allocate an audit context block for a task
936  * @tsk: task
937  *
938  * Filter on the task information and allocate a per-task audit context
939  * if necessary.  Doing so turns on system call auditing for the
940  * specified task.  This is called from copy_process, so no lock is
941  * needed.
942  */
943 int audit_alloc(struct task_struct *tsk)
944 {
945 	struct audit_context *context;
946 	enum audit_state     state;
947 	char *key = NULL;
948 
949 	if (likely(!audit_ever_enabled))
950 		return 0; /* Return if not auditing. */
951 
952 	state = audit_filter_task(tsk, &key);
953 	if (state == AUDIT_DISABLED) {
954 		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
955 		return 0;
956 	}
957 
958 	if (!(context = audit_alloc_context(state))) {
959 		kfree(key);
960 		audit_log_lost("out of memory in audit_alloc");
961 		return -ENOMEM;
962 	}
963 	context->filterkey = key;
964 
965 	audit_set_context(tsk, context);
966 	set_task_syscall_work(tsk, SYSCALL_AUDIT);
967 	return 0;
968 }
969 
970 static inline void audit_free_context(struct audit_context *context)
971 {
972 	audit_free_module(context);
973 	audit_free_names(context);
974 	unroll_tree_refs(context, NULL, 0);
975 	free_tree_refs(context);
976 	audit_free_aux(context);
977 	kfree(context->filterkey);
978 	kfree(context->sockaddr);
979 	audit_proctitle_free(context);
980 	kfree(context);
981 }
982 
983 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
984 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
985 				 u32 sid, char *comm)
986 {
987 	struct audit_buffer *ab;
988 	char *ctx = NULL;
989 	u32 len;
990 	int rc = 0;
991 
992 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
993 	if (!ab)
994 		return rc;
995 
996 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
997 			 from_kuid(&init_user_ns, auid),
998 			 from_kuid(&init_user_ns, uid), sessionid);
999 	if (sid) {
1000 		if (security_secid_to_secctx(sid, &ctx, &len)) {
1001 			audit_log_format(ab, " obj=(none)");
1002 			rc = 1;
1003 		} else {
1004 			audit_log_format(ab, " obj=%s", ctx);
1005 			security_release_secctx(ctx, len);
1006 		}
1007 	}
1008 	audit_log_format(ab, " ocomm=");
1009 	audit_log_untrustedstring(ab, comm);
1010 	audit_log_end(ab);
1011 
1012 	return rc;
1013 }
1014 
1015 static void audit_log_execve_info(struct audit_context *context,
1016 				  struct audit_buffer **ab)
1017 {
1018 	long len_max;
1019 	long len_rem;
1020 	long len_full;
1021 	long len_buf;
1022 	long len_abuf = 0;
1023 	long len_tmp;
1024 	bool require_data;
1025 	bool encode;
1026 	unsigned int iter;
1027 	unsigned int arg;
1028 	char *buf_head;
1029 	char *buf;
1030 	const char __user *p = (const char __user *)current->mm->arg_start;
1031 
1032 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1033 	 *       data we put in the audit record for this argument (see the
1034 	 *       code below) ... at this point in time 96 is plenty */
1035 	char abuf[96];
1036 
1037 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1038 	 *       current value of 7500 is not as important as the fact that it
1039 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1040 	 *       room if we go over a little bit in the logging below */
1041 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1042 	len_max = MAX_EXECVE_AUDIT_LEN;
1043 
1044 	/* scratch buffer to hold the userspace args */
1045 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1046 	if (!buf_head) {
1047 		audit_panic("out of memory for argv string");
1048 		return;
1049 	}
1050 	buf = buf_head;
1051 
1052 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1053 
1054 	len_rem = len_max;
1055 	len_buf = 0;
1056 	len_full = 0;
1057 	require_data = true;
1058 	encode = false;
1059 	iter = 0;
1060 	arg = 0;
1061 	do {
1062 		/* NOTE: we don't ever want to trust this value for anything
1063 		 *       serious, but the audit record format insists we
1064 		 *       provide an argument length for really long arguments,
1065 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1066 		 *       to use strncpy_from_user() to obtain this value for
1067 		 *       recording in the log, although we don't use it
1068 		 *       anywhere here to avoid a double-fetch problem */
1069 		if (len_full == 0)
1070 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1071 
1072 		/* read more data from userspace */
1073 		if (require_data) {
1074 			/* can we make more room in the buffer? */
1075 			if (buf != buf_head) {
1076 				memmove(buf_head, buf, len_buf);
1077 				buf = buf_head;
1078 			}
1079 
1080 			/* fetch as much as we can of the argument */
1081 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1082 						    len_max - len_buf);
1083 			if (len_tmp == -EFAULT) {
1084 				/* unable to copy from userspace */
1085 				send_sig(SIGKILL, current, 0);
1086 				goto out;
1087 			} else if (len_tmp == (len_max - len_buf)) {
1088 				/* buffer is not large enough */
1089 				require_data = true;
1090 				/* NOTE: if we are going to span multiple
1091 				 *       buffers force the encoding so we stand
1092 				 *       a chance at a sane len_full value and
1093 				 *       consistent record encoding */
1094 				encode = true;
1095 				len_full = len_full * 2;
1096 				p += len_tmp;
1097 			} else {
1098 				require_data = false;
1099 				if (!encode)
1100 					encode = audit_string_contains_control(
1101 								buf, len_tmp);
1102 				/* try to use a trusted value for len_full */
1103 				if (len_full < len_max)
1104 					len_full = (encode ?
1105 						    len_tmp * 2 : len_tmp);
1106 				p += len_tmp + 1;
1107 			}
1108 			len_buf += len_tmp;
1109 			buf_head[len_buf] = '\0';
1110 
1111 			/* length of the buffer in the audit record? */
1112 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1113 		}
1114 
1115 		/* write as much as we can to the audit log */
1116 		if (len_buf >= 0) {
1117 			/* NOTE: some magic numbers here - basically if we
1118 			 *       can't fit a reasonable amount of data into the
1119 			 *       existing audit buffer, flush it and start with
1120 			 *       a new buffer */
1121 			if ((sizeof(abuf) + 8) > len_rem) {
1122 				len_rem = len_max;
1123 				audit_log_end(*ab);
1124 				*ab = audit_log_start(context,
1125 						      GFP_KERNEL, AUDIT_EXECVE);
1126 				if (!*ab)
1127 					goto out;
1128 			}
1129 
1130 			/* create the non-arg portion of the arg record */
1131 			len_tmp = 0;
1132 			if (require_data || (iter > 0) ||
1133 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1134 				if (iter == 0) {
1135 					len_tmp += snprintf(&abuf[len_tmp],
1136 							sizeof(abuf) - len_tmp,
1137 							" a%d_len=%lu",
1138 							arg, len_full);
1139 				}
1140 				len_tmp += snprintf(&abuf[len_tmp],
1141 						    sizeof(abuf) - len_tmp,
1142 						    " a%d[%d]=", arg, iter++);
1143 			} else
1144 				len_tmp += snprintf(&abuf[len_tmp],
1145 						    sizeof(abuf) - len_tmp,
1146 						    " a%d=", arg);
1147 			WARN_ON(len_tmp >= sizeof(abuf));
1148 			abuf[sizeof(abuf) - 1] = '\0';
1149 
1150 			/* log the arg in the audit record */
1151 			audit_log_format(*ab, "%s", abuf);
1152 			len_rem -= len_tmp;
1153 			len_tmp = len_buf;
1154 			if (encode) {
1155 				if (len_abuf > len_rem)
1156 					len_tmp = len_rem / 2; /* encoding */
1157 				audit_log_n_hex(*ab, buf, len_tmp);
1158 				len_rem -= len_tmp * 2;
1159 				len_abuf -= len_tmp * 2;
1160 			} else {
1161 				if (len_abuf > len_rem)
1162 					len_tmp = len_rem - 2; /* quotes */
1163 				audit_log_n_string(*ab, buf, len_tmp);
1164 				len_rem -= len_tmp + 2;
1165 				/* don't subtract the "2" because we still need
1166 				 * to add quotes to the remaining string */
1167 				len_abuf -= len_tmp;
1168 			}
1169 			len_buf -= len_tmp;
1170 			buf += len_tmp;
1171 		}
1172 
1173 		/* ready to move to the next argument? */
1174 		if ((len_buf == 0) && !require_data) {
1175 			arg++;
1176 			iter = 0;
1177 			len_full = 0;
1178 			require_data = true;
1179 			encode = false;
1180 		}
1181 	} while (arg < context->execve.argc);
1182 
1183 	/* NOTE: the caller handles the final audit_log_end() call */
1184 
1185 out:
1186 	kfree(buf_head);
1187 }
1188 
1189 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1190 			  kernel_cap_t *cap)
1191 {
1192 	int i;
1193 
1194 	if (cap_isclear(*cap)) {
1195 		audit_log_format(ab, " %s=0", prefix);
1196 		return;
1197 	}
1198 	audit_log_format(ab, " %s=", prefix);
1199 	CAP_FOR_EACH_U32(i)
1200 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1201 }
1202 
1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204 {
1205 	if (name->fcap_ver == -1) {
1206 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1207 		return;
1208 	}
1209 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1210 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1211 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1212 			 name->fcap.fE, name->fcap_ver,
1213 			 from_kuid(&init_user_ns, name->fcap.rootid));
1214 }
1215 
1216 static void show_special(struct audit_context *context, int *call_panic)
1217 {
1218 	struct audit_buffer *ab;
1219 	int i;
1220 
1221 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1222 	if (!ab)
1223 		return;
1224 
1225 	switch (context->type) {
1226 	case AUDIT_SOCKETCALL: {
1227 		int nargs = context->socketcall.nargs;
1228 		audit_log_format(ab, "nargs=%d", nargs);
1229 		for (i = 0; i < nargs; i++)
1230 			audit_log_format(ab, " a%d=%lx", i,
1231 				context->socketcall.args[i]);
1232 		break; }
1233 	case AUDIT_IPC: {
1234 		u32 osid = context->ipc.osid;
1235 
1236 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1237 				 from_kuid(&init_user_ns, context->ipc.uid),
1238 				 from_kgid(&init_user_ns, context->ipc.gid),
1239 				 context->ipc.mode);
1240 		if (osid) {
1241 			char *ctx = NULL;
1242 			u32 len;
1243 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1244 				audit_log_format(ab, " osid=%u", osid);
1245 				*call_panic = 1;
1246 			} else {
1247 				audit_log_format(ab, " obj=%s", ctx);
1248 				security_release_secctx(ctx, len);
1249 			}
1250 		}
1251 		if (context->ipc.has_perm) {
1252 			audit_log_end(ab);
1253 			ab = audit_log_start(context, GFP_KERNEL,
1254 					     AUDIT_IPC_SET_PERM);
1255 			if (unlikely(!ab))
1256 				return;
1257 			audit_log_format(ab,
1258 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1259 				context->ipc.qbytes,
1260 				context->ipc.perm_uid,
1261 				context->ipc.perm_gid,
1262 				context->ipc.perm_mode);
1263 		}
1264 		break; }
1265 	case AUDIT_MQ_OPEN:
1266 		audit_log_format(ab,
1267 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1268 			"mq_msgsize=%ld mq_curmsgs=%ld",
1269 			context->mq_open.oflag, context->mq_open.mode,
1270 			context->mq_open.attr.mq_flags,
1271 			context->mq_open.attr.mq_maxmsg,
1272 			context->mq_open.attr.mq_msgsize,
1273 			context->mq_open.attr.mq_curmsgs);
1274 		break;
1275 	case AUDIT_MQ_SENDRECV:
1276 		audit_log_format(ab,
1277 			"mqdes=%d msg_len=%zd msg_prio=%u "
1278 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1279 			context->mq_sendrecv.mqdes,
1280 			context->mq_sendrecv.msg_len,
1281 			context->mq_sendrecv.msg_prio,
1282 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1283 			context->mq_sendrecv.abs_timeout.tv_nsec);
1284 		break;
1285 	case AUDIT_MQ_NOTIFY:
1286 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1287 				context->mq_notify.mqdes,
1288 				context->mq_notify.sigev_signo);
1289 		break;
1290 	case AUDIT_MQ_GETSETATTR: {
1291 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1292 		audit_log_format(ab,
1293 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1294 			"mq_curmsgs=%ld ",
1295 			context->mq_getsetattr.mqdes,
1296 			attr->mq_flags, attr->mq_maxmsg,
1297 			attr->mq_msgsize, attr->mq_curmsgs);
1298 		break; }
1299 	case AUDIT_CAPSET:
1300 		audit_log_format(ab, "pid=%d", context->capset.pid);
1301 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1302 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1303 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1304 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1305 		break;
1306 	case AUDIT_MMAP:
1307 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1308 				 context->mmap.flags);
1309 		break;
1310 	case AUDIT_EXECVE:
1311 		audit_log_execve_info(context, &ab);
1312 		break;
1313 	case AUDIT_KERN_MODULE:
1314 		audit_log_format(ab, "name=");
1315 		if (context->module.name) {
1316 			audit_log_untrustedstring(ab, context->module.name);
1317 		} else
1318 			audit_log_format(ab, "(null)");
1319 
1320 		break;
1321 	}
1322 	audit_log_end(ab);
1323 }
1324 
1325 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1326 {
1327 	char *end = proctitle + len - 1;
1328 	while (end > proctitle && !isprint(*end))
1329 		end--;
1330 
1331 	/* catch the case where proctitle is only 1 non-print character */
1332 	len = end - proctitle + 1;
1333 	len -= isprint(proctitle[len-1]) == 0;
1334 	return len;
1335 }
1336 
1337 /*
1338  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1339  * @context: audit_context for the task
1340  * @n: audit_names structure with reportable details
1341  * @path: optional path to report instead of audit_names->name
1342  * @record_num: record number to report when handling a list of names
1343  * @call_panic: optional pointer to int that will be updated if secid fails
1344  */
1345 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1346 		    const struct path *path, int record_num, int *call_panic)
1347 {
1348 	struct audit_buffer *ab;
1349 
1350 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1351 	if (!ab)
1352 		return;
1353 
1354 	audit_log_format(ab, "item=%d", record_num);
1355 
1356 	if (path)
1357 		audit_log_d_path(ab, " name=", path);
1358 	else if (n->name) {
1359 		switch (n->name_len) {
1360 		case AUDIT_NAME_FULL:
1361 			/* log the full path */
1362 			audit_log_format(ab, " name=");
1363 			audit_log_untrustedstring(ab, n->name->name);
1364 			break;
1365 		case 0:
1366 			/* name was specified as a relative path and the
1367 			 * directory component is the cwd
1368 			 */
1369 			if (context->pwd.dentry && context->pwd.mnt)
1370 				audit_log_d_path(ab, " name=", &context->pwd);
1371 			else
1372 				audit_log_format(ab, " name=(null)");
1373 			break;
1374 		default:
1375 			/* log the name's directory component */
1376 			audit_log_format(ab, " name=");
1377 			audit_log_n_untrustedstring(ab, n->name->name,
1378 						    n->name_len);
1379 		}
1380 	} else
1381 		audit_log_format(ab, " name=(null)");
1382 
1383 	if (n->ino != AUDIT_INO_UNSET)
1384 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1385 				 n->ino,
1386 				 MAJOR(n->dev),
1387 				 MINOR(n->dev),
1388 				 n->mode,
1389 				 from_kuid(&init_user_ns, n->uid),
1390 				 from_kgid(&init_user_ns, n->gid),
1391 				 MAJOR(n->rdev),
1392 				 MINOR(n->rdev));
1393 	if (n->osid != 0) {
1394 		char *ctx = NULL;
1395 		u32 len;
1396 
1397 		if (security_secid_to_secctx(
1398 			n->osid, &ctx, &len)) {
1399 			audit_log_format(ab, " osid=%u", n->osid);
1400 			if (call_panic)
1401 				*call_panic = 2;
1402 		} else {
1403 			audit_log_format(ab, " obj=%s", ctx);
1404 			security_release_secctx(ctx, len);
1405 		}
1406 	}
1407 
1408 	/* log the audit_names record type */
1409 	switch (n->type) {
1410 	case AUDIT_TYPE_NORMAL:
1411 		audit_log_format(ab, " nametype=NORMAL");
1412 		break;
1413 	case AUDIT_TYPE_PARENT:
1414 		audit_log_format(ab, " nametype=PARENT");
1415 		break;
1416 	case AUDIT_TYPE_CHILD_DELETE:
1417 		audit_log_format(ab, " nametype=DELETE");
1418 		break;
1419 	case AUDIT_TYPE_CHILD_CREATE:
1420 		audit_log_format(ab, " nametype=CREATE");
1421 		break;
1422 	default:
1423 		audit_log_format(ab, " nametype=UNKNOWN");
1424 		break;
1425 	}
1426 
1427 	audit_log_fcaps(ab, n);
1428 	audit_log_end(ab);
1429 }
1430 
1431 static void audit_log_proctitle(void)
1432 {
1433 	int res;
1434 	char *buf;
1435 	char *msg = "(null)";
1436 	int len = strlen(msg);
1437 	struct audit_context *context = audit_context();
1438 	struct audit_buffer *ab;
1439 
1440 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1441 	if (!ab)
1442 		return;	/* audit_panic or being filtered */
1443 
1444 	audit_log_format(ab, "proctitle=");
1445 
1446 	/* Not  cached */
1447 	if (!context->proctitle.value) {
1448 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1449 		if (!buf)
1450 			goto out;
1451 		/* Historically called this from procfs naming */
1452 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1453 		if (res == 0) {
1454 			kfree(buf);
1455 			goto out;
1456 		}
1457 		res = audit_proctitle_rtrim(buf, res);
1458 		if (res == 0) {
1459 			kfree(buf);
1460 			goto out;
1461 		}
1462 		context->proctitle.value = buf;
1463 		context->proctitle.len = res;
1464 	}
1465 	msg = context->proctitle.value;
1466 	len = context->proctitle.len;
1467 out:
1468 	audit_log_n_untrustedstring(ab, msg, len);
1469 	audit_log_end(ab);
1470 }
1471 
1472 static void audit_log_exit(void)
1473 {
1474 	int i, call_panic = 0;
1475 	struct audit_context *context = audit_context();
1476 	struct audit_buffer *ab;
1477 	struct audit_aux_data *aux;
1478 	struct audit_names *n;
1479 
1480 	context->personality = current->personality;
1481 
1482 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1483 	if (!ab)
1484 		return;		/* audit_panic has been called */
1485 	audit_log_format(ab, "arch=%x syscall=%d",
1486 			 context->arch, context->major);
1487 	if (context->personality != PER_LINUX)
1488 		audit_log_format(ab, " per=%lx", context->personality);
1489 	if (context->return_valid != AUDITSC_INVALID)
1490 		audit_log_format(ab, " success=%s exit=%ld",
1491 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1492 				 context->return_code);
1493 
1494 	audit_log_format(ab,
1495 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1496 			 context->argv[0],
1497 			 context->argv[1],
1498 			 context->argv[2],
1499 			 context->argv[3],
1500 			 context->name_count);
1501 
1502 	audit_log_task_info(ab);
1503 	audit_log_key(ab, context->filterkey);
1504 	audit_log_end(ab);
1505 
1506 	for (aux = context->aux; aux; aux = aux->next) {
1507 
1508 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1509 		if (!ab)
1510 			continue; /* audit_panic has been called */
1511 
1512 		switch (aux->type) {
1513 
1514 		case AUDIT_BPRM_FCAPS: {
1515 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1516 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1517 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1518 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1519 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1520 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1521 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1522 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1523 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1524 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1525 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1526 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1527 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1528 			audit_log_format(ab, " frootid=%d",
1529 					 from_kuid(&init_user_ns,
1530 						   axs->fcap.rootid));
1531 			break; }
1532 
1533 		}
1534 		audit_log_end(ab);
1535 	}
1536 
1537 	if (context->type)
1538 		show_special(context, &call_panic);
1539 
1540 	if (context->fds[0] >= 0) {
1541 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1542 		if (ab) {
1543 			audit_log_format(ab, "fd0=%d fd1=%d",
1544 					context->fds[0], context->fds[1]);
1545 			audit_log_end(ab);
1546 		}
1547 	}
1548 
1549 	if (context->sockaddr_len) {
1550 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1551 		if (ab) {
1552 			audit_log_format(ab, "saddr=");
1553 			audit_log_n_hex(ab, (void *)context->sockaddr,
1554 					context->sockaddr_len);
1555 			audit_log_end(ab);
1556 		}
1557 	}
1558 
1559 	for (aux = context->aux_pids; aux; aux = aux->next) {
1560 		struct audit_aux_data_pids *axs = (void *)aux;
1561 
1562 		for (i = 0; i < axs->pid_count; i++)
1563 			if (audit_log_pid_context(context, axs->target_pid[i],
1564 						  axs->target_auid[i],
1565 						  axs->target_uid[i],
1566 						  axs->target_sessionid[i],
1567 						  axs->target_sid[i],
1568 						  axs->target_comm[i]))
1569 				call_panic = 1;
1570 	}
1571 
1572 	if (context->target_pid &&
1573 	    audit_log_pid_context(context, context->target_pid,
1574 				  context->target_auid, context->target_uid,
1575 				  context->target_sessionid,
1576 				  context->target_sid, context->target_comm))
1577 			call_panic = 1;
1578 
1579 	if (context->pwd.dentry && context->pwd.mnt) {
1580 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1581 		if (ab) {
1582 			audit_log_d_path(ab, "cwd=", &context->pwd);
1583 			audit_log_end(ab);
1584 		}
1585 	}
1586 
1587 	i = 0;
1588 	list_for_each_entry(n, &context->names_list, list) {
1589 		if (n->hidden)
1590 			continue;
1591 		audit_log_name(context, n, NULL, i++, &call_panic);
1592 	}
1593 
1594 	audit_log_proctitle();
1595 
1596 	/* Send end of event record to help user space know we are finished */
1597 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1598 	if (ab)
1599 		audit_log_end(ab);
1600 	if (call_panic)
1601 		audit_panic("error converting sid to string");
1602 }
1603 
1604 /**
1605  * __audit_free - free a per-task audit context
1606  * @tsk: task whose audit context block to free
1607  *
1608  * Called from copy_process and do_exit
1609  */
1610 void __audit_free(struct task_struct *tsk)
1611 {
1612 	struct audit_context *context = tsk->audit_context;
1613 
1614 	if (!context)
1615 		return;
1616 
1617 	if (!list_empty(&context->killed_trees))
1618 		audit_kill_trees(context);
1619 
1620 	/* We are called either by do_exit() or the fork() error handling code;
1621 	 * in the former case tsk == current and in the latter tsk is a
1622 	 * random task_struct that doesn't doesn't have any meaningful data we
1623 	 * need to log via audit_log_exit().
1624 	 */
1625 	if (tsk == current && !context->dummy && context->in_syscall) {
1626 		context->return_valid = AUDITSC_INVALID;
1627 		context->return_code = 0;
1628 
1629 		audit_filter_syscall(tsk, context);
1630 		audit_filter_inodes(tsk, context);
1631 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1632 			audit_log_exit();
1633 	}
1634 
1635 	audit_set_context(tsk, NULL);
1636 	audit_free_context(context);
1637 }
1638 
1639 /**
1640  * __audit_syscall_entry - fill in an audit record at syscall entry
1641  * @major: major syscall type (function)
1642  * @a1: additional syscall register 1
1643  * @a2: additional syscall register 2
1644  * @a3: additional syscall register 3
1645  * @a4: additional syscall register 4
1646  *
1647  * Fill in audit context at syscall entry.  This only happens if the
1648  * audit context was created when the task was created and the state or
1649  * filters demand the audit context be built.  If the state from the
1650  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1651  * then the record will be written at syscall exit time (otherwise, it
1652  * will only be written if another part of the kernel requests that it
1653  * be written).
1654  */
1655 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1656 			   unsigned long a3, unsigned long a4)
1657 {
1658 	struct audit_context *context = audit_context();
1659 	enum audit_state     state;
1660 
1661 	if (!audit_enabled || !context)
1662 		return;
1663 
1664 	BUG_ON(context->in_syscall || context->name_count);
1665 
1666 	state = context->state;
1667 	if (state == AUDIT_DISABLED)
1668 		return;
1669 
1670 	context->dummy = !audit_n_rules;
1671 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1672 		context->prio = 0;
1673 		if (auditd_test_task(current))
1674 			return;
1675 	}
1676 
1677 	context->arch	    = syscall_get_arch(current);
1678 	context->major      = major;
1679 	context->argv[0]    = a1;
1680 	context->argv[1]    = a2;
1681 	context->argv[2]    = a3;
1682 	context->argv[3]    = a4;
1683 	context->serial     = 0;
1684 	context->in_syscall = 1;
1685 	context->current_state  = state;
1686 	context->ppid       = 0;
1687 	ktime_get_coarse_real_ts64(&context->ctime);
1688 }
1689 
1690 /**
1691  * __audit_syscall_exit - deallocate audit context after a system call
1692  * @success: success value of the syscall
1693  * @return_code: return value of the syscall
1694  *
1695  * Tear down after system call.  If the audit context has been marked as
1696  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1697  * filtering, or because some other part of the kernel wrote an audit
1698  * message), then write out the syscall information.  In call cases,
1699  * free the names stored from getname().
1700  */
1701 void __audit_syscall_exit(int success, long return_code)
1702 {
1703 	struct audit_context *context;
1704 
1705 	context = audit_context();
1706 	if (!context)
1707 		return;
1708 
1709 	if (!list_empty(&context->killed_trees))
1710 		audit_kill_trees(context);
1711 
1712 	if (!context->dummy && context->in_syscall) {
1713 		if (success)
1714 			context->return_valid = AUDITSC_SUCCESS;
1715 		else
1716 			context->return_valid = AUDITSC_FAILURE;
1717 
1718 		/*
1719 		 * we need to fix up the return code in the audit logs if the
1720 		 * actual return codes are later going to be fixed up by the
1721 		 * arch specific signal handlers
1722 		 *
1723 		 * This is actually a test for:
1724 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1725 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1726 		 *
1727 		 * but is faster than a bunch of ||
1728 		 */
1729 		if (unlikely(return_code <= -ERESTARTSYS) &&
1730 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1731 		    (return_code != -ENOIOCTLCMD))
1732 			context->return_code = -EINTR;
1733 		else
1734 			context->return_code  = return_code;
1735 
1736 		audit_filter_syscall(current, context);
1737 		audit_filter_inodes(current, context);
1738 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1739 			audit_log_exit();
1740 	}
1741 
1742 	context->in_syscall = 0;
1743 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1744 
1745 	audit_free_module(context);
1746 	audit_free_names(context);
1747 	unroll_tree_refs(context, NULL, 0);
1748 	audit_free_aux(context);
1749 	context->aux = NULL;
1750 	context->aux_pids = NULL;
1751 	context->target_pid = 0;
1752 	context->target_sid = 0;
1753 	context->sockaddr_len = 0;
1754 	context->type = 0;
1755 	context->fds[0] = -1;
1756 	if (context->state != AUDIT_RECORD_CONTEXT) {
1757 		kfree(context->filterkey);
1758 		context->filterkey = NULL;
1759 	}
1760 }
1761 
1762 static inline void handle_one(const struct inode *inode)
1763 {
1764 	struct audit_context *context;
1765 	struct audit_tree_refs *p;
1766 	struct audit_chunk *chunk;
1767 	int count;
1768 	if (likely(!inode->i_fsnotify_marks))
1769 		return;
1770 	context = audit_context();
1771 	p = context->trees;
1772 	count = context->tree_count;
1773 	rcu_read_lock();
1774 	chunk = audit_tree_lookup(inode);
1775 	rcu_read_unlock();
1776 	if (!chunk)
1777 		return;
1778 	if (likely(put_tree_ref(context, chunk)))
1779 		return;
1780 	if (unlikely(!grow_tree_refs(context))) {
1781 		pr_warn("out of memory, audit has lost a tree reference\n");
1782 		audit_set_auditable(context);
1783 		audit_put_chunk(chunk);
1784 		unroll_tree_refs(context, p, count);
1785 		return;
1786 	}
1787 	put_tree_ref(context, chunk);
1788 }
1789 
1790 static void handle_path(const struct dentry *dentry)
1791 {
1792 	struct audit_context *context;
1793 	struct audit_tree_refs *p;
1794 	const struct dentry *d, *parent;
1795 	struct audit_chunk *drop;
1796 	unsigned long seq;
1797 	int count;
1798 
1799 	context = audit_context();
1800 	p = context->trees;
1801 	count = context->tree_count;
1802 retry:
1803 	drop = NULL;
1804 	d = dentry;
1805 	rcu_read_lock();
1806 	seq = read_seqbegin(&rename_lock);
1807 	for(;;) {
1808 		struct inode *inode = d_backing_inode(d);
1809 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1810 			struct audit_chunk *chunk;
1811 			chunk = audit_tree_lookup(inode);
1812 			if (chunk) {
1813 				if (unlikely(!put_tree_ref(context, chunk))) {
1814 					drop = chunk;
1815 					break;
1816 				}
1817 			}
1818 		}
1819 		parent = d->d_parent;
1820 		if (parent == d)
1821 			break;
1822 		d = parent;
1823 	}
1824 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1825 		rcu_read_unlock();
1826 		if (!drop) {
1827 			/* just a race with rename */
1828 			unroll_tree_refs(context, p, count);
1829 			goto retry;
1830 		}
1831 		audit_put_chunk(drop);
1832 		if (grow_tree_refs(context)) {
1833 			/* OK, got more space */
1834 			unroll_tree_refs(context, p, count);
1835 			goto retry;
1836 		}
1837 		/* too bad */
1838 		pr_warn("out of memory, audit has lost a tree reference\n");
1839 		unroll_tree_refs(context, p, count);
1840 		audit_set_auditable(context);
1841 		return;
1842 	}
1843 	rcu_read_unlock();
1844 }
1845 
1846 static struct audit_names *audit_alloc_name(struct audit_context *context,
1847 						unsigned char type)
1848 {
1849 	struct audit_names *aname;
1850 
1851 	if (context->name_count < AUDIT_NAMES) {
1852 		aname = &context->preallocated_names[context->name_count];
1853 		memset(aname, 0, sizeof(*aname));
1854 	} else {
1855 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1856 		if (!aname)
1857 			return NULL;
1858 		aname->should_free = true;
1859 	}
1860 
1861 	aname->ino = AUDIT_INO_UNSET;
1862 	aname->type = type;
1863 	list_add_tail(&aname->list, &context->names_list);
1864 
1865 	context->name_count++;
1866 	if (!context->pwd.dentry)
1867 		get_fs_pwd(current->fs, &context->pwd);
1868 	return aname;
1869 }
1870 
1871 /**
1872  * __audit_reusename - fill out filename with info from existing entry
1873  * @uptr: userland ptr to pathname
1874  *
1875  * Search the audit_names list for the current audit context. If there is an
1876  * existing entry with a matching "uptr" then return the filename
1877  * associated with that audit_name. If not, return NULL.
1878  */
1879 struct filename *
1880 __audit_reusename(const __user char *uptr)
1881 {
1882 	struct audit_context *context = audit_context();
1883 	struct audit_names *n;
1884 
1885 	list_for_each_entry(n, &context->names_list, list) {
1886 		if (!n->name)
1887 			continue;
1888 		if (n->name->uptr == uptr) {
1889 			n->name->refcnt++;
1890 			return n->name;
1891 		}
1892 	}
1893 	return NULL;
1894 }
1895 
1896 /**
1897  * __audit_getname - add a name to the list
1898  * @name: name to add
1899  *
1900  * Add a name to the list of audit names for this context.
1901  * Called from fs/namei.c:getname().
1902  */
1903 void __audit_getname(struct filename *name)
1904 {
1905 	struct audit_context *context = audit_context();
1906 	struct audit_names *n;
1907 
1908 	if (!context->in_syscall)
1909 		return;
1910 
1911 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1912 	if (!n)
1913 		return;
1914 
1915 	n->name = name;
1916 	n->name_len = AUDIT_NAME_FULL;
1917 	name->aname = n;
1918 	name->refcnt++;
1919 }
1920 
1921 static inline int audit_copy_fcaps(struct audit_names *name,
1922 				   const struct dentry *dentry)
1923 {
1924 	struct cpu_vfs_cap_data caps;
1925 	int rc;
1926 
1927 	if (!dentry)
1928 		return 0;
1929 
1930 	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1931 	if (rc)
1932 		return rc;
1933 
1934 	name->fcap.permitted = caps.permitted;
1935 	name->fcap.inheritable = caps.inheritable;
1936 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1937 	name->fcap.rootid = caps.rootid;
1938 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1939 				VFS_CAP_REVISION_SHIFT;
1940 
1941 	return 0;
1942 }
1943 
1944 /* Copy inode data into an audit_names. */
1945 static void audit_copy_inode(struct audit_names *name,
1946 			     const struct dentry *dentry,
1947 			     struct inode *inode, unsigned int flags)
1948 {
1949 	name->ino   = inode->i_ino;
1950 	name->dev   = inode->i_sb->s_dev;
1951 	name->mode  = inode->i_mode;
1952 	name->uid   = inode->i_uid;
1953 	name->gid   = inode->i_gid;
1954 	name->rdev  = inode->i_rdev;
1955 	security_inode_getsecid(inode, &name->osid);
1956 	if (flags & AUDIT_INODE_NOEVAL) {
1957 		name->fcap_ver = -1;
1958 		return;
1959 	}
1960 	audit_copy_fcaps(name, dentry);
1961 }
1962 
1963 /**
1964  * __audit_inode - store the inode and device from a lookup
1965  * @name: name being audited
1966  * @dentry: dentry being audited
1967  * @flags: attributes for this particular entry
1968  */
1969 void __audit_inode(struct filename *name, const struct dentry *dentry,
1970 		   unsigned int flags)
1971 {
1972 	struct audit_context *context = audit_context();
1973 	struct inode *inode = d_backing_inode(dentry);
1974 	struct audit_names *n;
1975 	bool parent = flags & AUDIT_INODE_PARENT;
1976 	struct audit_entry *e;
1977 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1978 	int i;
1979 
1980 	if (!context->in_syscall)
1981 		return;
1982 
1983 	rcu_read_lock();
1984 	list_for_each_entry_rcu(e, list, list) {
1985 		for (i = 0; i < e->rule.field_count; i++) {
1986 			struct audit_field *f = &e->rule.fields[i];
1987 
1988 			if (f->type == AUDIT_FSTYPE
1989 			    && audit_comparator(inode->i_sb->s_magic,
1990 						f->op, f->val)
1991 			    && e->rule.action == AUDIT_NEVER) {
1992 				rcu_read_unlock();
1993 				return;
1994 			}
1995 		}
1996 	}
1997 	rcu_read_unlock();
1998 
1999 	if (!name)
2000 		goto out_alloc;
2001 
2002 	/*
2003 	 * If we have a pointer to an audit_names entry already, then we can
2004 	 * just use it directly if the type is correct.
2005 	 */
2006 	n = name->aname;
2007 	if (n) {
2008 		if (parent) {
2009 			if (n->type == AUDIT_TYPE_PARENT ||
2010 			    n->type == AUDIT_TYPE_UNKNOWN)
2011 				goto out;
2012 		} else {
2013 			if (n->type != AUDIT_TYPE_PARENT)
2014 				goto out;
2015 		}
2016 	}
2017 
2018 	list_for_each_entry_reverse(n, &context->names_list, list) {
2019 		if (n->ino) {
2020 			/* valid inode number, use that for the comparison */
2021 			if (n->ino != inode->i_ino ||
2022 			    n->dev != inode->i_sb->s_dev)
2023 				continue;
2024 		} else if (n->name) {
2025 			/* inode number has not been set, check the name */
2026 			if (strcmp(n->name->name, name->name))
2027 				continue;
2028 		} else
2029 			/* no inode and no name (?!) ... this is odd ... */
2030 			continue;
2031 
2032 		/* match the correct record type */
2033 		if (parent) {
2034 			if (n->type == AUDIT_TYPE_PARENT ||
2035 			    n->type == AUDIT_TYPE_UNKNOWN)
2036 				goto out;
2037 		} else {
2038 			if (n->type != AUDIT_TYPE_PARENT)
2039 				goto out;
2040 		}
2041 	}
2042 
2043 out_alloc:
2044 	/* unable to find an entry with both a matching name and type */
2045 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2046 	if (!n)
2047 		return;
2048 	if (name) {
2049 		n->name = name;
2050 		name->refcnt++;
2051 	}
2052 
2053 out:
2054 	if (parent) {
2055 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2056 		n->type = AUDIT_TYPE_PARENT;
2057 		if (flags & AUDIT_INODE_HIDDEN)
2058 			n->hidden = true;
2059 	} else {
2060 		n->name_len = AUDIT_NAME_FULL;
2061 		n->type = AUDIT_TYPE_NORMAL;
2062 	}
2063 	handle_path(dentry);
2064 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2065 }
2066 
2067 void __audit_file(const struct file *file)
2068 {
2069 	__audit_inode(NULL, file->f_path.dentry, 0);
2070 }
2071 
2072 /**
2073  * __audit_inode_child - collect inode info for created/removed objects
2074  * @parent: inode of dentry parent
2075  * @dentry: dentry being audited
2076  * @type:   AUDIT_TYPE_* value that we're looking for
2077  *
2078  * For syscalls that create or remove filesystem objects, audit_inode
2079  * can only collect information for the filesystem object's parent.
2080  * This call updates the audit context with the child's information.
2081  * Syscalls that create a new filesystem object must be hooked after
2082  * the object is created.  Syscalls that remove a filesystem object
2083  * must be hooked prior, in order to capture the target inode during
2084  * unsuccessful attempts.
2085  */
2086 void __audit_inode_child(struct inode *parent,
2087 			 const struct dentry *dentry,
2088 			 const unsigned char type)
2089 {
2090 	struct audit_context *context = audit_context();
2091 	struct inode *inode = d_backing_inode(dentry);
2092 	const struct qstr *dname = &dentry->d_name;
2093 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2094 	struct audit_entry *e;
2095 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2096 	int i;
2097 
2098 	if (!context->in_syscall)
2099 		return;
2100 
2101 	rcu_read_lock();
2102 	list_for_each_entry_rcu(e, list, list) {
2103 		for (i = 0; i < e->rule.field_count; i++) {
2104 			struct audit_field *f = &e->rule.fields[i];
2105 
2106 			if (f->type == AUDIT_FSTYPE
2107 			    && audit_comparator(parent->i_sb->s_magic,
2108 						f->op, f->val)
2109 			    && e->rule.action == AUDIT_NEVER) {
2110 				rcu_read_unlock();
2111 				return;
2112 			}
2113 		}
2114 	}
2115 	rcu_read_unlock();
2116 
2117 	if (inode)
2118 		handle_one(inode);
2119 
2120 	/* look for a parent entry first */
2121 	list_for_each_entry(n, &context->names_list, list) {
2122 		if (!n->name ||
2123 		    (n->type != AUDIT_TYPE_PARENT &&
2124 		     n->type != AUDIT_TYPE_UNKNOWN))
2125 			continue;
2126 
2127 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2128 		    !audit_compare_dname_path(dname,
2129 					      n->name->name, n->name_len)) {
2130 			if (n->type == AUDIT_TYPE_UNKNOWN)
2131 				n->type = AUDIT_TYPE_PARENT;
2132 			found_parent = n;
2133 			break;
2134 		}
2135 	}
2136 
2137 	/* is there a matching child entry? */
2138 	list_for_each_entry(n, &context->names_list, list) {
2139 		/* can only match entries that have a name */
2140 		if (!n->name ||
2141 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2142 			continue;
2143 
2144 		if (!strcmp(dname->name, n->name->name) ||
2145 		    !audit_compare_dname_path(dname, n->name->name,
2146 						found_parent ?
2147 						found_parent->name_len :
2148 						AUDIT_NAME_FULL)) {
2149 			if (n->type == AUDIT_TYPE_UNKNOWN)
2150 				n->type = type;
2151 			found_child = n;
2152 			break;
2153 		}
2154 	}
2155 
2156 	if (!found_parent) {
2157 		/* create a new, "anonymous" parent record */
2158 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2159 		if (!n)
2160 			return;
2161 		audit_copy_inode(n, NULL, parent, 0);
2162 	}
2163 
2164 	if (!found_child) {
2165 		found_child = audit_alloc_name(context, type);
2166 		if (!found_child)
2167 			return;
2168 
2169 		/* Re-use the name belonging to the slot for a matching parent
2170 		 * directory. All names for this context are relinquished in
2171 		 * audit_free_names() */
2172 		if (found_parent) {
2173 			found_child->name = found_parent->name;
2174 			found_child->name_len = AUDIT_NAME_FULL;
2175 			found_child->name->refcnt++;
2176 		}
2177 	}
2178 
2179 	if (inode)
2180 		audit_copy_inode(found_child, dentry, inode, 0);
2181 	else
2182 		found_child->ino = AUDIT_INO_UNSET;
2183 }
2184 EXPORT_SYMBOL_GPL(__audit_inode_child);
2185 
2186 /**
2187  * auditsc_get_stamp - get local copies of audit_context values
2188  * @ctx: audit_context for the task
2189  * @t: timespec64 to store time recorded in the audit_context
2190  * @serial: serial value that is recorded in the audit_context
2191  *
2192  * Also sets the context as auditable.
2193  */
2194 int auditsc_get_stamp(struct audit_context *ctx,
2195 		       struct timespec64 *t, unsigned int *serial)
2196 {
2197 	if (!ctx->in_syscall)
2198 		return 0;
2199 	if (!ctx->serial)
2200 		ctx->serial = audit_serial();
2201 	t->tv_sec  = ctx->ctime.tv_sec;
2202 	t->tv_nsec = ctx->ctime.tv_nsec;
2203 	*serial    = ctx->serial;
2204 	if (!ctx->prio) {
2205 		ctx->prio = 1;
2206 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2207 	}
2208 	return 1;
2209 }
2210 
2211 /**
2212  * __audit_mq_open - record audit data for a POSIX MQ open
2213  * @oflag: open flag
2214  * @mode: mode bits
2215  * @attr: queue attributes
2216  *
2217  */
2218 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2219 {
2220 	struct audit_context *context = audit_context();
2221 
2222 	if (attr)
2223 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2224 	else
2225 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2226 
2227 	context->mq_open.oflag = oflag;
2228 	context->mq_open.mode = mode;
2229 
2230 	context->type = AUDIT_MQ_OPEN;
2231 }
2232 
2233 /**
2234  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2235  * @mqdes: MQ descriptor
2236  * @msg_len: Message length
2237  * @msg_prio: Message priority
2238  * @abs_timeout: Message timeout in absolute time
2239  *
2240  */
2241 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2242 			const struct timespec64 *abs_timeout)
2243 {
2244 	struct audit_context *context = audit_context();
2245 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2246 
2247 	if (abs_timeout)
2248 		memcpy(p, abs_timeout, sizeof(*p));
2249 	else
2250 		memset(p, 0, sizeof(*p));
2251 
2252 	context->mq_sendrecv.mqdes = mqdes;
2253 	context->mq_sendrecv.msg_len = msg_len;
2254 	context->mq_sendrecv.msg_prio = msg_prio;
2255 
2256 	context->type = AUDIT_MQ_SENDRECV;
2257 }
2258 
2259 /**
2260  * __audit_mq_notify - record audit data for a POSIX MQ notify
2261  * @mqdes: MQ descriptor
2262  * @notification: Notification event
2263  *
2264  */
2265 
2266 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2267 {
2268 	struct audit_context *context = audit_context();
2269 
2270 	if (notification)
2271 		context->mq_notify.sigev_signo = notification->sigev_signo;
2272 	else
2273 		context->mq_notify.sigev_signo = 0;
2274 
2275 	context->mq_notify.mqdes = mqdes;
2276 	context->type = AUDIT_MQ_NOTIFY;
2277 }
2278 
2279 /**
2280  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2281  * @mqdes: MQ descriptor
2282  * @mqstat: MQ flags
2283  *
2284  */
2285 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2286 {
2287 	struct audit_context *context = audit_context();
2288 	context->mq_getsetattr.mqdes = mqdes;
2289 	context->mq_getsetattr.mqstat = *mqstat;
2290 	context->type = AUDIT_MQ_GETSETATTR;
2291 }
2292 
2293 /**
2294  * __audit_ipc_obj - record audit data for ipc object
2295  * @ipcp: ipc permissions
2296  *
2297  */
2298 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2299 {
2300 	struct audit_context *context = audit_context();
2301 	context->ipc.uid = ipcp->uid;
2302 	context->ipc.gid = ipcp->gid;
2303 	context->ipc.mode = ipcp->mode;
2304 	context->ipc.has_perm = 0;
2305 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2306 	context->type = AUDIT_IPC;
2307 }
2308 
2309 /**
2310  * __audit_ipc_set_perm - record audit data for new ipc permissions
2311  * @qbytes: msgq bytes
2312  * @uid: msgq user id
2313  * @gid: msgq group id
2314  * @mode: msgq mode (permissions)
2315  *
2316  * Called only after audit_ipc_obj().
2317  */
2318 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2319 {
2320 	struct audit_context *context = audit_context();
2321 
2322 	context->ipc.qbytes = qbytes;
2323 	context->ipc.perm_uid = uid;
2324 	context->ipc.perm_gid = gid;
2325 	context->ipc.perm_mode = mode;
2326 	context->ipc.has_perm = 1;
2327 }
2328 
2329 void __audit_bprm(struct linux_binprm *bprm)
2330 {
2331 	struct audit_context *context = audit_context();
2332 
2333 	context->type = AUDIT_EXECVE;
2334 	context->execve.argc = bprm->argc;
2335 }
2336 
2337 
2338 /**
2339  * __audit_socketcall - record audit data for sys_socketcall
2340  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2341  * @args: args array
2342  *
2343  */
2344 int __audit_socketcall(int nargs, unsigned long *args)
2345 {
2346 	struct audit_context *context = audit_context();
2347 
2348 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2349 		return -EINVAL;
2350 	context->type = AUDIT_SOCKETCALL;
2351 	context->socketcall.nargs = nargs;
2352 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2353 	return 0;
2354 }
2355 
2356 /**
2357  * __audit_fd_pair - record audit data for pipe and socketpair
2358  * @fd1: the first file descriptor
2359  * @fd2: the second file descriptor
2360  *
2361  */
2362 void __audit_fd_pair(int fd1, int fd2)
2363 {
2364 	struct audit_context *context = audit_context();
2365 	context->fds[0] = fd1;
2366 	context->fds[1] = fd2;
2367 }
2368 
2369 /**
2370  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2371  * @len: data length in user space
2372  * @a: data address in kernel space
2373  *
2374  * Returns 0 for success or NULL context or < 0 on error.
2375  */
2376 int __audit_sockaddr(int len, void *a)
2377 {
2378 	struct audit_context *context = audit_context();
2379 
2380 	if (!context->sockaddr) {
2381 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2382 		if (!p)
2383 			return -ENOMEM;
2384 		context->sockaddr = p;
2385 	}
2386 
2387 	context->sockaddr_len = len;
2388 	memcpy(context->sockaddr, a, len);
2389 	return 0;
2390 }
2391 
2392 void __audit_ptrace(struct task_struct *t)
2393 {
2394 	struct audit_context *context = audit_context();
2395 
2396 	context->target_pid = task_tgid_nr(t);
2397 	context->target_auid = audit_get_loginuid(t);
2398 	context->target_uid = task_uid(t);
2399 	context->target_sessionid = audit_get_sessionid(t);
2400 	security_task_getsecid_obj(t, &context->target_sid);
2401 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2402 }
2403 
2404 /**
2405  * audit_signal_info_syscall - record signal info for syscalls
2406  * @t: task being signaled
2407  *
2408  * If the audit subsystem is being terminated, record the task (pid)
2409  * and uid that is doing that.
2410  */
2411 int audit_signal_info_syscall(struct task_struct *t)
2412 {
2413 	struct audit_aux_data_pids *axp;
2414 	struct audit_context *ctx = audit_context();
2415 	kuid_t t_uid = task_uid(t);
2416 
2417 	if (!audit_signals || audit_dummy_context())
2418 		return 0;
2419 
2420 	/* optimize the common case by putting first signal recipient directly
2421 	 * in audit_context */
2422 	if (!ctx->target_pid) {
2423 		ctx->target_pid = task_tgid_nr(t);
2424 		ctx->target_auid = audit_get_loginuid(t);
2425 		ctx->target_uid = t_uid;
2426 		ctx->target_sessionid = audit_get_sessionid(t);
2427 		security_task_getsecid_obj(t, &ctx->target_sid);
2428 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2429 		return 0;
2430 	}
2431 
2432 	axp = (void *)ctx->aux_pids;
2433 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2434 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2435 		if (!axp)
2436 			return -ENOMEM;
2437 
2438 		axp->d.type = AUDIT_OBJ_PID;
2439 		axp->d.next = ctx->aux_pids;
2440 		ctx->aux_pids = (void *)axp;
2441 	}
2442 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2443 
2444 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2445 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2446 	axp->target_uid[axp->pid_count] = t_uid;
2447 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2448 	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2449 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2450 	axp->pid_count++;
2451 
2452 	return 0;
2453 }
2454 
2455 /**
2456  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2457  * @bprm: pointer to the bprm being processed
2458  * @new: the proposed new credentials
2459  * @old: the old credentials
2460  *
2461  * Simply check if the proc already has the caps given by the file and if not
2462  * store the priv escalation info for later auditing at the end of the syscall
2463  *
2464  * -Eric
2465  */
2466 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2467 			   const struct cred *new, const struct cred *old)
2468 {
2469 	struct audit_aux_data_bprm_fcaps *ax;
2470 	struct audit_context *context = audit_context();
2471 	struct cpu_vfs_cap_data vcaps;
2472 
2473 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2474 	if (!ax)
2475 		return -ENOMEM;
2476 
2477 	ax->d.type = AUDIT_BPRM_FCAPS;
2478 	ax->d.next = context->aux;
2479 	context->aux = (void *)ax;
2480 
2481 	get_vfs_caps_from_disk(&init_user_ns,
2482 			       bprm->file->f_path.dentry, &vcaps);
2483 
2484 	ax->fcap.permitted = vcaps.permitted;
2485 	ax->fcap.inheritable = vcaps.inheritable;
2486 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2487 	ax->fcap.rootid = vcaps.rootid;
2488 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2489 
2490 	ax->old_pcap.permitted   = old->cap_permitted;
2491 	ax->old_pcap.inheritable = old->cap_inheritable;
2492 	ax->old_pcap.effective   = old->cap_effective;
2493 	ax->old_pcap.ambient     = old->cap_ambient;
2494 
2495 	ax->new_pcap.permitted   = new->cap_permitted;
2496 	ax->new_pcap.inheritable = new->cap_inheritable;
2497 	ax->new_pcap.effective   = new->cap_effective;
2498 	ax->new_pcap.ambient     = new->cap_ambient;
2499 	return 0;
2500 }
2501 
2502 /**
2503  * __audit_log_capset - store information about the arguments to the capset syscall
2504  * @new: the new credentials
2505  * @old: the old (current) credentials
2506  *
2507  * Record the arguments userspace sent to sys_capset for later printing by the
2508  * audit system if applicable
2509  */
2510 void __audit_log_capset(const struct cred *new, const struct cred *old)
2511 {
2512 	struct audit_context *context = audit_context();
2513 	context->capset.pid = task_tgid_nr(current);
2514 	context->capset.cap.effective   = new->cap_effective;
2515 	context->capset.cap.inheritable = new->cap_effective;
2516 	context->capset.cap.permitted   = new->cap_permitted;
2517 	context->capset.cap.ambient     = new->cap_ambient;
2518 	context->type = AUDIT_CAPSET;
2519 }
2520 
2521 void __audit_mmap_fd(int fd, int flags)
2522 {
2523 	struct audit_context *context = audit_context();
2524 	context->mmap.fd = fd;
2525 	context->mmap.flags = flags;
2526 	context->type = AUDIT_MMAP;
2527 }
2528 
2529 void __audit_log_kern_module(char *name)
2530 {
2531 	struct audit_context *context = audit_context();
2532 
2533 	context->module.name = kstrdup(name, GFP_KERNEL);
2534 	if (!context->module.name)
2535 		audit_log_lost("out of memory in __audit_log_kern_module");
2536 	context->type = AUDIT_KERN_MODULE;
2537 }
2538 
2539 void __audit_fanotify(unsigned int response)
2540 {
2541 	audit_log(audit_context(), GFP_KERNEL,
2542 		AUDIT_FANOTIFY,	"resp=%u", response);
2543 }
2544 
2545 void __audit_tk_injoffset(struct timespec64 offset)
2546 {
2547 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2548 		  "sec=%lli nsec=%li",
2549 		  (long long)offset.tv_sec, offset.tv_nsec);
2550 }
2551 
2552 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2553 			      const char *op, enum audit_ntp_type type)
2554 {
2555 	const struct audit_ntp_val *val = &ad->vals[type];
2556 
2557 	if (val->newval == val->oldval)
2558 		return;
2559 
2560 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2561 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2562 }
2563 
2564 void __audit_ntp_log(const struct audit_ntp_data *ad)
2565 {
2566 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2567 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2568 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2569 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2570 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2571 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2572 }
2573 
2574 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2575 		       enum audit_nfcfgop op, gfp_t gfp)
2576 {
2577 	struct audit_buffer *ab;
2578 	char comm[sizeof(current->comm)];
2579 
2580 	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2581 	if (!ab)
2582 		return;
2583 	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2584 			 name, af, nentries, audit_nfcfgs[op].s);
2585 
2586 	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2587 	audit_log_task_context(ab); /* subj= */
2588 	audit_log_format(ab, " comm=");
2589 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2590 	audit_log_end(ab);
2591 }
2592 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2593 
2594 static void audit_log_task(struct audit_buffer *ab)
2595 {
2596 	kuid_t auid, uid;
2597 	kgid_t gid;
2598 	unsigned int sessionid;
2599 	char comm[sizeof(current->comm)];
2600 
2601 	auid = audit_get_loginuid(current);
2602 	sessionid = audit_get_sessionid(current);
2603 	current_uid_gid(&uid, &gid);
2604 
2605 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2606 			 from_kuid(&init_user_ns, auid),
2607 			 from_kuid(&init_user_ns, uid),
2608 			 from_kgid(&init_user_ns, gid),
2609 			 sessionid);
2610 	audit_log_task_context(ab);
2611 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2612 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2613 	audit_log_d_path_exe(ab, current->mm);
2614 }
2615 
2616 /**
2617  * audit_core_dumps - record information about processes that end abnormally
2618  * @signr: signal value
2619  *
2620  * If a process ends with a core dump, something fishy is going on and we
2621  * should record the event for investigation.
2622  */
2623 void audit_core_dumps(long signr)
2624 {
2625 	struct audit_buffer *ab;
2626 
2627 	if (!audit_enabled)
2628 		return;
2629 
2630 	if (signr == SIGQUIT)	/* don't care for those */
2631 		return;
2632 
2633 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2634 	if (unlikely(!ab))
2635 		return;
2636 	audit_log_task(ab);
2637 	audit_log_format(ab, " sig=%ld res=1", signr);
2638 	audit_log_end(ab);
2639 }
2640 
2641 /**
2642  * audit_seccomp - record information about a seccomp action
2643  * @syscall: syscall number
2644  * @signr: signal value
2645  * @code: the seccomp action
2646  *
2647  * Record the information associated with a seccomp action. Event filtering for
2648  * seccomp actions that are not to be logged is done in seccomp_log().
2649  * Therefore, this function forces auditing independent of the audit_enabled
2650  * and dummy context state because seccomp actions should be logged even when
2651  * audit is not in use.
2652  */
2653 void audit_seccomp(unsigned long syscall, long signr, int code)
2654 {
2655 	struct audit_buffer *ab;
2656 
2657 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2658 	if (unlikely(!ab))
2659 		return;
2660 	audit_log_task(ab);
2661 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2662 			 signr, syscall_get_arch(current), syscall,
2663 			 in_compat_syscall(), KSTK_EIP(current), code);
2664 	audit_log_end(ab);
2665 }
2666 
2667 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2668 				  int res)
2669 {
2670 	struct audit_buffer *ab;
2671 
2672 	if (!audit_enabled)
2673 		return;
2674 
2675 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2676 			     AUDIT_CONFIG_CHANGE);
2677 	if (unlikely(!ab))
2678 		return;
2679 
2680 	audit_log_format(ab,
2681 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2682 			 names, old_names, res);
2683 	audit_log_end(ab);
2684 }
2685 
2686 struct list_head *audit_killed_trees(void)
2687 {
2688 	struct audit_context *ctx = audit_context();
2689 	if (likely(!ctx || !ctx->in_syscall))
2690 		return NULL;
2691 	return &ctx->killed_trees;
2692 }
2693