xref: /openbmc/linux/kernel/auditsc.c (revision 3b64b188)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71 
72 #include "audit.h"
73 
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78 
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80  * for saving names from getname().  If we get more names we will allocate
81  * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES	5
83 
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
86 
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* number of audit rules */
91 int audit_n_rules;
92 
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
95 
96 struct audit_cap_data {
97 	kernel_cap_t		permitted;
98 	kernel_cap_t		inheritable;
99 	union {
100 		unsigned int	fE;		/* effective bit of a file capability */
101 		kernel_cap_t	effective;	/* effective set of a process */
102 	};
103 };
104 
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106  * we don't let putname() free it (instead we free all of the saved
107  * pointers at syscall exit time).
108  *
109  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct audit_names {
111 	struct list_head list;		/* audit_context->names_list */
112 	const char	*name;
113 	unsigned long	ino;
114 	dev_t		dev;
115 	umode_t		mode;
116 	kuid_t		uid;
117 	kgid_t		gid;
118 	dev_t		rdev;
119 	u32		osid;
120 	struct audit_cap_data fcap;
121 	unsigned int	fcap_ver;
122 	int		name_len;	/* number of name's characters to log */
123 	bool		name_put;	/* call __putname() for this name */
124 	/*
125 	 * This was an allocated audit_names and not from the array of
126 	 * names allocated in the task audit context.  Thus this name
127 	 * should be freed on syscall exit
128 	 */
129 	bool		should_free;
130 };
131 
132 struct audit_aux_data {
133 	struct audit_aux_data	*next;
134 	int			type;
135 };
136 
137 #define AUDIT_AUX_IPCPERM	0
138 
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS	16
141 
142 struct audit_aux_data_execve {
143 	struct audit_aux_data	d;
144 	int argc;
145 	int envc;
146 	struct mm_struct *mm;
147 };
148 
149 struct audit_aux_data_pids {
150 	struct audit_aux_data	d;
151 	pid_t			target_pid[AUDIT_AUX_PIDS];
152 	kuid_t			target_auid[AUDIT_AUX_PIDS];
153 	kuid_t			target_uid[AUDIT_AUX_PIDS];
154 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
155 	u32			target_sid[AUDIT_AUX_PIDS];
156 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 	int			pid_count;
158 };
159 
160 struct audit_aux_data_bprm_fcaps {
161 	struct audit_aux_data	d;
162 	struct audit_cap_data	fcap;
163 	unsigned int		fcap_ver;
164 	struct audit_cap_data	old_pcap;
165 	struct audit_cap_data	new_pcap;
166 };
167 
168 struct audit_aux_data_capset {
169 	struct audit_aux_data	d;
170 	pid_t			pid;
171 	struct audit_cap_data	cap;
172 };
173 
174 struct audit_tree_refs {
175 	struct audit_tree_refs *next;
176 	struct audit_chunk *c[31];
177 };
178 
179 /* The per-task audit context. */
180 struct audit_context {
181 	int		    dummy;	/* must be the first element */
182 	int		    in_syscall;	/* 1 if task is in a syscall */
183 	enum audit_state    state, current_state;
184 	unsigned int	    serial;     /* serial number for record */
185 	int		    major;      /* syscall number */
186 	struct timespec	    ctime;      /* time of syscall entry */
187 	unsigned long	    argv[4];    /* syscall arguments */
188 	long		    return_code;/* syscall return code */
189 	u64		    prio;
190 	int		    return_valid; /* return code is valid */
191 	/*
192 	 * The names_list is the list of all audit_names collected during this
193 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
194 	 * actually be from the preallocated_names array for performance
195 	 * reasons.  Except during allocation they should never be referenced
196 	 * through the preallocated_names array and should only be found/used
197 	 * by running the names_list.
198 	 */
199 	struct audit_names  preallocated_names[AUDIT_NAMES];
200 	int		    name_count; /* total records in names_list */
201 	struct list_head    names_list;	/* anchor for struct audit_names->list */
202 	char *		    filterkey;	/* key for rule that triggered record */
203 	struct path	    pwd;
204 	struct audit_context *previous; /* For nested syscalls */
205 	struct audit_aux_data *aux;
206 	struct audit_aux_data *aux_pids;
207 	struct sockaddr_storage *sockaddr;
208 	size_t sockaddr_len;
209 				/* Save things to print about task_struct */
210 	pid_t		    pid, ppid;
211 	kuid_t		    uid, euid, suid, fsuid;
212 	kgid_t		    gid, egid, sgid, fsgid;
213 	unsigned long	    personality;
214 	int		    arch;
215 
216 	pid_t		    target_pid;
217 	kuid_t		    target_auid;
218 	kuid_t		    target_uid;
219 	unsigned int	    target_sessionid;
220 	u32		    target_sid;
221 	char		    target_comm[TASK_COMM_LEN];
222 
223 	struct audit_tree_refs *trees, *first_trees;
224 	struct list_head killed_trees;
225 	int tree_count;
226 
227 	int type;
228 	union {
229 		struct {
230 			int nargs;
231 			long args[6];
232 		} socketcall;
233 		struct {
234 			kuid_t			uid;
235 			kgid_t			gid;
236 			umode_t			mode;
237 			u32			osid;
238 			int			has_perm;
239 			uid_t			perm_uid;
240 			gid_t			perm_gid;
241 			umode_t			perm_mode;
242 			unsigned long		qbytes;
243 		} ipc;
244 		struct {
245 			mqd_t			mqdes;
246 			struct mq_attr 		mqstat;
247 		} mq_getsetattr;
248 		struct {
249 			mqd_t			mqdes;
250 			int			sigev_signo;
251 		} mq_notify;
252 		struct {
253 			mqd_t			mqdes;
254 			size_t			msg_len;
255 			unsigned int		msg_prio;
256 			struct timespec		abs_timeout;
257 		} mq_sendrecv;
258 		struct {
259 			int			oflag;
260 			umode_t			mode;
261 			struct mq_attr		attr;
262 		} mq_open;
263 		struct {
264 			pid_t			pid;
265 			struct audit_cap_data	cap;
266 		} capset;
267 		struct {
268 			int			fd;
269 			int			flags;
270 		} mmap;
271 	};
272 	int fds[2];
273 
274 #if AUDIT_DEBUG
275 	int		    put_count;
276 	int		    ino_count;
277 #endif
278 };
279 
280 static inline int open_arg(int flags, int mask)
281 {
282 	int n = ACC_MODE(flags);
283 	if (flags & (O_TRUNC | O_CREAT))
284 		n |= AUDIT_PERM_WRITE;
285 	return n & mask;
286 }
287 
288 static int audit_match_perm(struct audit_context *ctx, int mask)
289 {
290 	unsigned n;
291 	if (unlikely(!ctx))
292 		return 0;
293 	n = ctx->major;
294 
295 	switch (audit_classify_syscall(ctx->arch, n)) {
296 	case 0:	/* native */
297 		if ((mask & AUDIT_PERM_WRITE) &&
298 		     audit_match_class(AUDIT_CLASS_WRITE, n))
299 			return 1;
300 		if ((mask & AUDIT_PERM_READ) &&
301 		     audit_match_class(AUDIT_CLASS_READ, n))
302 			return 1;
303 		if ((mask & AUDIT_PERM_ATTR) &&
304 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
305 			return 1;
306 		return 0;
307 	case 1: /* 32bit on biarch */
308 		if ((mask & AUDIT_PERM_WRITE) &&
309 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 			return 1;
311 		if ((mask & AUDIT_PERM_READ) &&
312 		     audit_match_class(AUDIT_CLASS_READ_32, n))
313 			return 1;
314 		if ((mask & AUDIT_PERM_ATTR) &&
315 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 			return 1;
317 		return 0;
318 	case 2: /* open */
319 		return mask & ACC_MODE(ctx->argv[1]);
320 	case 3: /* openat */
321 		return mask & ACC_MODE(ctx->argv[2]);
322 	case 4: /* socketcall */
323 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 	case 5: /* execve */
325 		return mask & AUDIT_PERM_EXEC;
326 	default:
327 		return 0;
328 	}
329 }
330 
331 static int audit_match_filetype(struct audit_context *ctx, int val)
332 {
333 	struct audit_names *n;
334 	umode_t mode = (umode_t)val;
335 
336 	if (unlikely(!ctx))
337 		return 0;
338 
339 	list_for_each_entry(n, &ctx->names_list, list) {
340 		if ((n->ino != -1) &&
341 		    ((n->mode & S_IFMT) == mode))
342 			return 1;
343 	}
344 
345 	return 0;
346 }
347 
348 /*
349  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350  * ->first_trees points to its beginning, ->trees - to the current end of data.
351  * ->tree_count is the number of free entries in array pointed to by ->trees.
352  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
354  * it's going to remain 1-element for almost any setup) until we free context itself.
355  * References in it _are_ dropped - at the same time we free/drop aux stuff.
356  */
357 
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
360 {
361 	if (!ctx->prio) {
362 		ctx->prio = 1;
363 		ctx->current_state = AUDIT_RECORD_CONTEXT;
364 	}
365 }
366 
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 {
369 	struct audit_tree_refs *p = ctx->trees;
370 	int left = ctx->tree_count;
371 	if (likely(left)) {
372 		p->c[--left] = chunk;
373 		ctx->tree_count = left;
374 		return 1;
375 	}
376 	if (!p)
377 		return 0;
378 	p = p->next;
379 	if (p) {
380 		p->c[30] = chunk;
381 		ctx->trees = p;
382 		ctx->tree_count = 30;
383 		return 1;
384 	}
385 	return 0;
386 }
387 
388 static int grow_tree_refs(struct audit_context *ctx)
389 {
390 	struct audit_tree_refs *p = ctx->trees;
391 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 	if (!ctx->trees) {
393 		ctx->trees = p;
394 		return 0;
395 	}
396 	if (p)
397 		p->next = ctx->trees;
398 	else
399 		ctx->first_trees = ctx->trees;
400 	ctx->tree_count = 31;
401 	return 1;
402 }
403 #endif
404 
405 static void unroll_tree_refs(struct audit_context *ctx,
406 		      struct audit_tree_refs *p, int count)
407 {
408 #ifdef CONFIG_AUDIT_TREE
409 	struct audit_tree_refs *q;
410 	int n;
411 	if (!p) {
412 		/* we started with empty chain */
413 		p = ctx->first_trees;
414 		count = 31;
415 		/* if the very first allocation has failed, nothing to do */
416 		if (!p)
417 			return;
418 	}
419 	n = count;
420 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 		while (n--) {
422 			audit_put_chunk(q->c[n]);
423 			q->c[n] = NULL;
424 		}
425 	}
426 	while (n-- > ctx->tree_count) {
427 		audit_put_chunk(q->c[n]);
428 		q->c[n] = NULL;
429 	}
430 	ctx->trees = p;
431 	ctx->tree_count = count;
432 #endif
433 }
434 
435 static void free_tree_refs(struct audit_context *ctx)
436 {
437 	struct audit_tree_refs *p, *q;
438 	for (p = ctx->first_trees; p; p = q) {
439 		q = p->next;
440 		kfree(p);
441 	}
442 }
443 
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 {
446 #ifdef CONFIG_AUDIT_TREE
447 	struct audit_tree_refs *p;
448 	int n;
449 	if (!tree)
450 		return 0;
451 	/* full ones */
452 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 		for (n = 0; n < 31; n++)
454 			if (audit_tree_match(p->c[n], tree))
455 				return 1;
456 	}
457 	/* partial */
458 	if (p) {
459 		for (n = ctx->tree_count; n < 31; n++)
460 			if (audit_tree_match(p->c[n], tree))
461 				return 1;
462 	}
463 #endif
464 	return 0;
465 }
466 
467 static int audit_compare_uid(kuid_t uid,
468 			     struct audit_names *name,
469 			     struct audit_field *f,
470 			     struct audit_context *ctx)
471 {
472 	struct audit_names *n;
473 	int rc;
474 
475 	if (name) {
476 		rc = audit_uid_comparator(uid, f->op, name->uid);
477 		if (rc)
478 			return rc;
479 	}
480 
481 	if (ctx) {
482 		list_for_each_entry(n, &ctx->names_list, list) {
483 			rc = audit_uid_comparator(uid, f->op, n->uid);
484 			if (rc)
485 				return rc;
486 		}
487 	}
488 	return 0;
489 }
490 
491 static int audit_compare_gid(kgid_t gid,
492 			     struct audit_names *name,
493 			     struct audit_field *f,
494 			     struct audit_context *ctx)
495 {
496 	struct audit_names *n;
497 	int rc;
498 
499 	if (name) {
500 		rc = audit_gid_comparator(gid, f->op, name->gid);
501 		if (rc)
502 			return rc;
503 	}
504 
505 	if (ctx) {
506 		list_for_each_entry(n, &ctx->names_list, list) {
507 			rc = audit_gid_comparator(gid, f->op, n->gid);
508 			if (rc)
509 				return rc;
510 		}
511 	}
512 	return 0;
513 }
514 
515 static int audit_field_compare(struct task_struct *tsk,
516 			       const struct cred *cred,
517 			       struct audit_field *f,
518 			       struct audit_context *ctx,
519 			       struct audit_names *name)
520 {
521 	switch (f->val) {
522 	/* process to file object comparisons */
523 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
524 		return audit_compare_uid(cred->uid, name, f, ctx);
525 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
526 		return audit_compare_gid(cred->gid, name, f, ctx);
527 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
528 		return audit_compare_uid(cred->euid, name, f, ctx);
529 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
530 		return audit_compare_gid(cred->egid, name, f, ctx);
531 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
532 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
533 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 		return audit_compare_uid(cred->suid, name, f, ctx);
535 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
536 		return audit_compare_gid(cred->sgid, name, f, ctx);
537 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
538 		return audit_compare_uid(cred->fsuid, name, f, ctx);
539 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
540 		return audit_compare_gid(cred->fsgid, name, f, ctx);
541 	/* uid comparisons */
542 	case AUDIT_COMPARE_UID_TO_AUID:
543 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
544 	case AUDIT_COMPARE_UID_TO_EUID:
545 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
546 	case AUDIT_COMPARE_UID_TO_SUID:
547 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
548 	case AUDIT_COMPARE_UID_TO_FSUID:
549 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
550 	/* auid comparisons */
551 	case AUDIT_COMPARE_AUID_TO_EUID:
552 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
553 	case AUDIT_COMPARE_AUID_TO_SUID:
554 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
555 	case AUDIT_COMPARE_AUID_TO_FSUID:
556 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
557 	/* euid comparisons */
558 	case AUDIT_COMPARE_EUID_TO_SUID:
559 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
560 	case AUDIT_COMPARE_EUID_TO_FSUID:
561 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
562 	/* suid comparisons */
563 	case AUDIT_COMPARE_SUID_TO_FSUID:
564 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
565 	/* gid comparisons */
566 	case AUDIT_COMPARE_GID_TO_EGID:
567 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
568 	case AUDIT_COMPARE_GID_TO_SGID:
569 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
570 	case AUDIT_COMPARE_GID_TO_FSGID:
571 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
572 	/* egid comparisons */
573 	case AUDIT_COMPARE_EGID_TO_SGID:
574 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
575 	case AUDIT_COMPARE_EGID_TO_FSGID:
576 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
577 	/* sgid comparison */
578 	case AUDIT_COMPARE_SGID_TO_FSGID:
579 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
580 	default:
581 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
582 		return 0;
583 	}
584 	return 0;
585 }
586 
587 /* Determine if any context name data matches a rule's watch data */
588 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
589  * otherwise.
590  *
591  * If task_creation is true, this is an explicit indication that we are
592  * filtering a task rule at task creation time.  This and tsk == current are
593  * the only situations where tsk->cred may be accessed without an rcu read lock.
594  */
595 static int audit_filter_rules(struct task_struct *tsk,
596 			      struct audit_krule *rule,
597 			      struct audit_context *ctx,
598 			      struct audit_names *name,
599 			      enum audit_state *state,
600 			      bool task_creation)
601 {
602 	const struct cred *cred;
603 	int i, need_sid = 1;
604 	u32 sid;
605 
606 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607 
608 	for (i = 0; i < rule->field_count; i++) {
609 		struct audit_field *f = &rule->fields[i];
610 		struct audit_names *n;
611 		int result = 0;
612 
613 		switch (f->type) {
614 		case AUDIT_PID:
615 			result = audit_comparator(tsk->pid, f->op, f->val);
616 			break;
617 		case AUDIT_PPID:
618 			if (ctx) {
619 				if (!ctx->ppid)
620 					ctx->ppid = sys_getppid();
621 				result = audit_comparator(ctx->ppid, f->op, f->val);
622 			}
623 			break;
624 		case AUDIT_UID:
625 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
626 			break;
627 		case AUDIT_EUID:
628 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
629 			break;
630 		case AUDIT_SUID:
631 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
632 			break;
633 		case AUDIT_FSUID:
634 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
635 			break;
636 		case AUDIT_GID:
637 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
638 			break;
639 		case AUDIT_EGID:
640 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
641 			break;
642 		case AUDIT_SGID:
643 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
644 			break;
645 		case AUDIT_FSGID:
646 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
647 			break;
648 		case AUDIT_PERS:
649 			result = audit_comparator(tsk->personality, f->op, f->val);
650 			break;
651 		case AUDIT_ARCH:
652 			if (ctx)
653 				result = audit_comparator(ctx->arch, f->op, f->val);
654 			break;
655 
656 		case AUDIT_EXIT:
657 			if (ctx && ctx->return_valid)
658 				result = audit_comparator(ctx->return_code, f->op, f->val);
659 			break;
660 		case AUDIT_SUCCESS:
661 			if (ctx && ctx->return_valid) {
662 				if (f->val)
663 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
664 				else
665 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
666 			}
667 			break;
668 		case AUDIT_DEVMAJOR:
669 			if (name) {
670 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
672 					++result;
673 			} else if (ctx) {
674 				list_for_each_entry(n, &ctx->names_list, list) {
675 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
677 						++result;
678 						break;
679 					}
680 				}
681 			}
682 			break;
683 		case AUDIT_DEVMINOR:
684 			if (name) {
685 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
687 					++result;
688 			} else if (ctx) {
689 				list_for_each_entry(n, &ctx->names_list, list) {
690 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
692 						++result;
693 						break;
694 					}
695 				}
696 			}
697 			break;
698 		case AUDIT_INODE:
699 			if (name)
700 				result = (name->ino == f->val);
701 			else if (ctx) {
702 				list_for_each_entry(n, &ctx->names_list, list) {
703 					if (audit_comparator(n->ino, f->op, f->val)) {
704 						++result;
705 						break;
706 					}
707 				}
708 			}
709 			break;
710 		case AUDIT_OBJ_UID:
711 			if (name) {
712 				result = audit_uid_comparator(name->uid, f->op, f->uid);
713 			} else if (ctx) {
714 				list_for_each_entry(n, &ctx->names_list, list) {
715 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
716 						++result;
717 						break;
718 					}
719 				}
720 			}
721 			break;
722 		case AUDIT_OBJ_GID:
723 			if (name) {
724 				result = audit_gid_comparator(name->gid, f->op, f->gid);
725 			} else if (ctx) {
726 				list_for_each_entry(n, &ctx->names_list, list) {
727 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
728 						++result;
729 						break;
730 					}
731 				}
732 			}
733 			break;
734 		case AUDIT_WATCH:
735 			if (name)
736 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
737 			break;
738 		case AUDIT_DIR:
739 			if (ctx)
740 				result = match_tree_refs(ctx, rule->tree);
741 			break;
742 		case AUDIT_LOGINUID:
743 			result = 0;
744 			if (ctx)
745 				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
746 			break;
747 		case AUDIT_SUBJ_USER:
748 		case AUDIT_SUBJ_ROLE:
749 		case AUDIT_SUBJ_TYPE:
750 		case AUDIT_SUBJ_SEN:
751 		case AUDIT_SUBJ_CLR:
752 			/* NOTE: this may return negative values indicating
753 			   a temporary error.  We simply treat this as a
754 			   match for now to avoid losing information that
755 			   may be wanted.   An error message will also be
756 			   logged upon error */
757 			if (f->lsm_rule) {
758 				if (need_sid) {
759 					security_task_getsecid(tsk, &sid);
760 					need_sid = 0;
761 				}
762 				result = security_audit_rule_match(sid, f->type,
763 				                                  f->op,
764 				                                  f->lsm_rule,
765 				                                  ctx);
766 			}
767 			break;
768 		case AUDIT_OBJ_USER:
769 		case AUDIT_OBJ_ROLE:
770 		case AUDIT_OBJ_TYPE:
771 		case AUDIT_OBJ_LEV_LOW:
772 		case AUDIT_OBJ_LEV_HIGH:
773 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 			   also applies here */
775 			if (f->lsm_rule) {
776 				/* Find files that match */
777 				if (name) {
778 					result = security_audit_rule_match(
779 					           name->osid, f->type, f->op,
780 					           f->lsm_rule, ctx);
781 				} else if (ctx) {
782 					list_for_each_entry(n, &ctx->names_list, list) {
783 						if (security_audit_rule_match(n->osid, f->type,
784 									      f->op, f->lsm_rule,
785 									      ctx)) {
786 							++result;
787 							break;
788 						}
789 					}
790 				}
791 				/* Find ipc objects that match */
792 				if (!ctx || ctx->type != AUDIT_IPC)
793 					break;
794 				if (security_audit_rule_match(ctx->ipc.osid,
795 							      f->type, f->op,
796 							      f->lsm_rule, ctx))
797 					++result;
798 			}
799 			break;
800 		case AUDIT_ARG0:
801 		case AUDIT_ARG1:
802 		case AUDIT_ARG2:
803 		case AUDIT_ARG3:
804 			if (ctx)
805 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
806 			break;
807 		case AUDIT_FILTERKEY:
808 			/* ignore this field for filtering */
809 			result = 1;
810 			break;
811 		case AUDIT_PERM:
812 			result = audit_match_perm(ctx, f->val);
813 			break;
814 		case AUDIT_FILETYPE:
815 			result = audit_match_filetype(ctx, f->val);
816 			break;
817 		case AUDIT_FIELD_COMPARE:
818 			result = audit_field_compare(tsk, cred, f, ctx, name);
819 			break;
820 		}
821 		if (!result)
822 			return 0;
823 	}
824 
825 	if (ctx) {
826 		if (rule->prio <= ctx->prio)
827 			return 0;
828 		if (rule->filterkey) {
829 			kfree(ctx->filterkey);
830 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 		}
832 		ctx->prio = rule->prio;
833 	}
834 	switch (rule->action) {
835 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
836 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
837 	}
838 	return 1;
839 }
840 
841 /* At process creation time, we can determine if system-call auditing is
842  * completely disabled for this task.  Since we only have the task
843  * structure at this point, we can only check uid and gid.
844  */
845 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
846 {
847 	struct audit_entry *e;
848 	enum audit_state   state;
849 
850 	rcu_read_lock();
851 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
852 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 				       &state, true)) {
854 			if (state == AUDIT_RECORD_CONTEXT)
855 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
856 			rcu_read_unlock();
857 			return state;
858 		}
859 	}
860 	rcu_read_unlock();
861 	return AUDIT_BUILD_CONTEXT;
862 }
863 
864 /* At syscall entry and exit time, this filter is called if the
865  * audit_state is not low enough that auditing cannot take place, but is
866  * also not high enough that we already know we have to write an audit
867  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
868  */
869 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 					     struct audit_context *ctx,
871 					     struct list_head *list)
872 {
873 	struct audit_entry *e;
874 	enum audit_state state;
875 
876 	if (audit_pid && tsk->tgid == audit_pid)
877 		return AUDIT_DISABLED;
878 
879 	rcu_read_lock();
880 	if (!list_empty(list)) {
881 		int word = AUDIT_WORD(ctx->major);
882 		int bit  = AUDIT_BIT(ctx->major);
883 
884 		list_for_each_entry_rcu(e, list, list) {
885 			if ((e->rule.mask[word] & bit) == bit &&
886 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
887 					       &state, false)) {
888 				rcu_read_unlock();
889 				ctx->current_state = state;
890 				return state;
891 			}
892 		}
893 	}
894 	rcu_read_unlock();
895 	return AUDIT_BUILD_CONTEXT;
896 }
897 
898 /*
899  * Given an audit_name check the inode hash table to see if they match.
900  * Called holding the rcu read lock to protect the use of audit_inode_hash
901  */
902 static int audit_filter_inode_name(struct task_struct *tsk,
903 				   struct audit_names *n,
904 				   struct audit_context *ctx) {
905 	int word, bit;
906 	int h = audit_hash_ino((u32)n->ino);
907 	struct list_head *list = &audit_inode_hash[h];
908 	struct audit_entry *e;
909 	enum audit_state state;
910 
911 	word = AUDIT_WORD(ctx->major);
912 	bit  = AUDIT_BIT(ctx->major);
913 
914 	if (list_empty(list))
915 		return 0;
916 
917 	list_for_each_entry_rcu(e, list, list) {
918 		if ((e->rule.mask[word] & bit) == bit &&
919 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 			ctx->current_state = state;
921 			return 1;
922 		}
923 	}
924 
925 	return 0;
926 }
927 
928 /* At syscall exit time, this filter is called if any audit_names have been
929  * collected during syscall processing.  We only check rules in sublists at hash
930  * buckets applicable to the inode numbers in audit_names.
931  * Regarding audit_state, same rules apply as for audit_filter_syscall().
932  */
933 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
934 {
935 	struct audit_names *n;
936 
937 	if (audit_pid && tsk->tgid == audit_pid)
938 		return;
939 
940 	rcu_read_lock();
941 
942 	list_for_each_entry(n, &ctx->names_list, list) {
943 		if (audit_filter_inode_name(tsk, n, ctx))
944 			break;
945 	}
946 	rcu_read_unlock();
947 }
948 
949 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
950 						      int return_valid,
951 						      long return_code)
952 {
953 	struct audit_context *context = tsk->audit_context;
954 
955 	if (!context)
956 		return NULL;
957 	context->return_valid = return_valid;
958 
959 	/*
960 	 * we need to fix up the return code in the audit logs if the actual
961 	 * return codes are later going to be fixed up by the arch specific
962 	 * signal handlers
963 	 *
964 	 * This is actually a test for:
965 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 	 *
968 	 * but is faster than a bunch of ||
969 	 */
970 	if (unlikely(return_code <= -ERESTARTSYS) &&
971 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
972 	    (return_code != -ENOIOCTLCMD))
973 		context->return_code = -EINTR;
974 	else
975 		context->return_code  = return_code;
976 
977 	if (context->in_syscall && !context->dummy) {
978 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 		audit_filter_inodes(tsk, context);
980 	}
981 
982 	tsk->audit_context = NULL;
983 	return context;
984 }
985 
986 static inline void audit_free_names(struct audit_context *context)
987 {
988 	struct audit_names *n, *next;
989 
990 #if AUDIT_DEBUG == 2
991 	if (context->put_count + context->ino_count != context->name_count) {
992 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
993 		       " name_count=%d put_count=%d"
994 		       " ino_count=%d [NOT freeing]\n",
995 		       __FILE__, __LINE__,
996 		       context->serial, context->major, context->in_syscall,
997 		       context->name_count, context->put_count,
998 		       context->ino_count);
999 		list_for_each_entry(n, &context->names_list, list) {
1000 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1001 			       n->name, n->name ?: "(null)");
1002 		}
1003 		dump_stack();
1004 		return;
1005 	}
1006 #endif
1007 #if AUDIT_DEBUG
1008 	context->put_count  = 0;
1009 	context->ino_count  = 0;
1010 #endif
1011 
1012 	list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 		list_del(&n->list);
1014 		if (n->name && n->name_put)
1015 			__putname(n->name);
1016 		if (n->should_free)
1017 			kfree(n);
1018 	}
1019 	context->name_count = 0;
1020 	path_put(&context->pwd);
1021 	context->pwd.dentry = NULL;
1022 	context->pwd.mnt = NULL;
1023 }
1024 
1025 static inline void audit_free_aux(struct audit_context *context)
1026 {
1027 	struct audit_aux_data *aux;
1028 
1029 	while ((aux = context->aux)) {
1030 		context->aux = aux->next;
1031 		kfree(aux);
1032 	}
1033 	while ((aux = context->aux_pids)) {
1034 		context->aux_pids = aux->next;
1035 		kfree(aux);
1036 	}
1037 }
1038 
1039 static inline void audit_zero_context(struct audit_context *context,
1040 				      enum audit_state state)
1041 {
1042 	memset(context, 0, sizeof(*context));
1043 	context->state      = state;
1044 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1045 }
1046 
1047 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048 {
1049 	struct audit_context *context;
1050 
1051 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 		return NULL;
1053 	audit_zero_context(context, state);
1054 	INIT_LIST_HEAD(&context->killed_trees);
1055 	INIT_LIST_HEAD(&context->names_list);
1056 	return context;
1057 }
1058 
1059 /**
1060  * audit_alloc - allocate an audit context block for a task
1061  * @tsk: task
1062  *
1063  * Filter on the task information and allocate a per-task audit context
1064  * if necessary.  Doing so turns on system call auditing for the
1065  * specified task.  This is called from copy_process, so no lock is
1066  * needed.
1067  */
1068 int audit_alloc(struct task_struct *tsk)
1069 {
1070 	struct audit_context *context;
1071 	enum audit_state     state;
1072 	char *key = NULL;
1073 
1074 	if (likely(!audit_ever_enabled))
1075 		return 0; /* Return if not auditing. */
1076 
1077 	state = audit_filter_task(tsk, &key);
1078 	if (state == AUDIT_DISABLED)
1079 		return 0;
1080 
1081 	if (!(context = audit_alloc_context(state))) {
1082 		kfree(key);
1083 		audit_log_lost("out of memory in audit_alloc");
1084 		return -ENOMEM;
1085 	}
1086 	context->filterkey = key;
1087 
1088 	tsk->audit_context  = context;
1089 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1090 	return 0;
1091 }
1092 
1093 static inline void audit_free_context(struct audit_context *context)
1094 {
1095 	struct audit_context *previous;
1096 	int		     count = 0;
1097 
1098 	do {
1099 		previous = context->previous;
1100 		if (previous || (count &&  count < 10)) {
1101 			++count;
1102 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 			       " freeing multiple contexts (%d)\n",
1104 			       context->serial, context->major,
1105 			       context->name_count, count);
1106 		}
1107 		audit_free_names(context);
1108 		unroll_tree_refs(context, NULL, 0);
1109 		free_tree_refs(context);
1110 		audit_free_aux(context);
1111 		kfree(context->filterkey);
1112 		kfree(context->sockaddr);
1113 		kfree(context);
1114 		context  = previous;
1115 	} while (context);
1116 	if (count >= 10)
1117 		printk(KERN_ERR "audit: freed %d contexts\n", count);
1118 }
1119 
1120 void audit_log_task_context(struct audit_buffer *ab)
1121 {
1122 	char *ctx = NULL;
1123 	unsigned len;
1124 	int error;
1125 	u32 sid;
1126 
1127 	security_task_getsecid(current, &sid);
1128 	if (!sid)
1129 		return;
1130 
1131 	error = security_secid_to_secctx(sid, &ctx, &len);
1132 	if (error) {
1133 		if (error != -EINVAL)
1134 			goto error_path;
1135 		return;
1136 	}
1137 
1138 	audit_log_format(ab, " subj=%s", ctx);
1139 	security_release_secctx(ctx, len);
1140 	return;
1141 
1142 error_path:
1143 	audit_panic("error in audit_log_task_context");
1144 	return;
1145 }
1146 
1147 EXPORT_SYMBOL(audit_log_task_context);
1148 
1149 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1150 {
1151 	const struct cred *cred;
1152 	char name[sizeof(tsk->comm)];
1153 	struct mm_struct *mm = tsk->mm;
1154 	struct vm_area_struct *vma;
1155 	char *tty;
1156 
1157 	if (!ab)
1158 		return;
1159 
1160 	/* tsk == current */
1161 	cred = current_cred();
1162 
1163 	spin_lock_irq(&tsk->sighand->siglock);
1164 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1165 		tty = tsk->signal->tty->name;
1166 	else
1167 		tty = "(none)";
1168 	spin_unlock_irq(&tsk->sighand->siglock);
1169 
1170 
1171 	audit_log_format(ab,
1172 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1173 			 " euid=%u suid=%u fsuid=%u"
1174 			 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1175 			 sys_getppid(),
1176 			 tsk->pid,
1177 			 from_kuid(&init_user_ns, tsk->loginuid),
1178 			 from_kuid(&init_user_ns, cred->uid),
1179 			 from_kgid(&init_user_ns, cred->gid),
1180 			 from_kuid(&init_user_ns, cred->euid),
1181 			 from_kuid(&init_user_ns, cred->suid),
1182 			 from_kuid(&init_user_ns, cred->fsuid),
1183 			 from_kgid(&init_user_ns, cred->egid),
1184 			 from_kgid(&init_user_ns, cred->sgid),
1185 			 from_kgid(&init_user_ns, cred->fsgid),
1186 			 tsk->sessionid, tty);
1187 
1188 	get_task_comm(name, tsk);
1189 	audit_log_format(ab, " comm=");
1190 	audit_log_untrustedstring(ab, name);
1191 
1192 	if (mm) {
1193 		down_read(&mm->mmap_sem);
1194 		vma = mm->mmap;
1195 		while (vma) {
1196 			if ((vma->vm_flags & VM_EXECUTABLE) &&
1197 			    vma->vm_file) {
1198 				audit_log_d_path(ab, " exe=",
1199 						 &vma->vm_file->f_path);
1200 				break;
1201 			}
1202 			vma = vma->vm_next;
1203 		}
1204 		up_read(&mm->mmap_sem);
1205 	}
1206 	audit_log_task_context(ab);
1207 }
1208 
1209 EXPORT_SYMBOL(audit_log_task_info);
1210 
1211 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1212 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1213 				 u32 sid, char *comm)
1214 {
1215 	struct audit_buffer *ab;
1216 	char *ctx = NULL;
1217 	u32 len;
1218 	int rc = 0;
1219 
1220 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1221 	if (!ab)
1222 		return rc;
1223 
1224 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1225 			 from_kuid(&init_user_ns, auid),
1226 			 from_kuid(&init_user_ns, uid), sessionid);
1227 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1228 		audit_log_format(ab, " obj=(none)");
1229 		rc = 1;
1230 	} else {
1231 		audit_log_format(ab, " obj=%s", ctx);
1232 		security_release_secctx(ctx, len);
1233 	}
1234 	audit_log_format(ab, " ocomm=");
1235 	audit_log_untrustedstring(ab, comm);
1236 	audit_log_end(ab);
1237 
1238 	return rc;
1239 }
1240 
1241 /*
1242  * to_send and len_sent accounting are very loose estimates.  We aren't
1243  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1244  * within about 500 bytes (next page boundary)
1245  *
1246  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1247  * logging that a[%d]= was going to be 16 characters long we would be wasting
1248  * space in every audit message.  In one 7500 byte message we can log up to
1249  * about 1000 min size arguments.  That comes down to about 50% waste of space
1250  * if we didn't do the snprintf to find out how long arg_num_len was.
1251  */
1252 static int audit_log_single_execve_arg(struct audit_context *context,
1253 					struct audit_buffer **ab,
1254 					int arg_num,
1255 					size_t *len_sent,
1256 					const char __user *p,
1257 					char *buf)
1258 {
1259 	char arg_num_len_buf[12];
1260 	const char __user *tmp_p = p;
1261 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1262 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1263 	size_t len, len_left, to_send;
1264 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1265 	unsigned int i, has_cntl = 0, too_long = 0;
1266 	int ret;
1267 
1268 	/* strnlen_user includes the null we don't want to send */
1269 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1270 
1271 	/*
1272 	 * We just created this mm, if we can't find the strings
1273 	 * we just copied into it something is _very_ wrong. Similar
1274 	 * for strings that are too long, we should not have created
1275 	 * any.
1276 	 */
1277 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1278 		WARN_ON(1);
1279 		send_sig(SIGKILL, current, 0);
1280 		return -1;
1281 	}
1282 
1283 	/* walk the whole argument looking for non-ascii chars */
1284 	do {
1285 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1286 			to_send = MAX_EXECVE_AUDIT_LEN;
1287 		else
1288 			to_send = len_left;
1289 		ret = copy_from_user(buf, tmp_p, to_send);
1290 		/*
1291 		 * There is no reason for this copy to be short. We just
1292 		 * copied them here, and the mm hasn't been exposed to user-
1293 		 * space yet.
1294 		 */
1295 		if (ret) {
1296 			WARN_ON(1);
1297 			send_sig(SIGKILL, current, 0);
1298 			return -1;
1299 		}
1300 		buf[to_send] = '\0';
1301 		has_cntl = audit_string_contains_control(buf, to_send);
1302 		if (has_cntl) {
1303 			/*
1304 			 * hex messages get logged as 2 bytes, so we can only
1305 			 * send half as much in each message
1306 			 */
1307 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1308 			break;
1309 		}
1310 		len_left -= to_send;
1311 		tmp_p += to_send;
1312 	} while (len_left > 0);
1313 
1314 	len_left = len;
1315 
1316 	if (len > max_execve_audit_len)
1317 		too_long = 1;
1318 
1319 	/* rewalk the argument actually logging the message */
1320 	for (i = 0; len_left > 0; i++) {
1321 		int room_left;
1322 
1323 		if (len_left > max_execve_audit_len)
1324 			to_send = max_execve_audit_len;
1325 		else
1326 			to_send = len_left;
1327 
1328 		/* do we have space left to send this argument in this ab? */
1329 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1330 		if (has_cntl)
1331 			room_left -= (to_send * 2);
1332 		else
1333 			room_left -= to_send;
1334 		if (room_left < 0) {
1335 			*len_sent = 0;
1336 			audit_log_end(*ab);
1337 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1338 			if (!*ab)
1339 				return 0;
1340 		}
1341 
1342 		/*
1343 		 * first record needs to say how long the original string was
1344 		 * so we can be sure nothing was lost.
1345 		 */
1346 		if ((i == 0) && (too_long))
1347 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1348 					 has_cntl ? 2*len : len);
1349 
1350 		/*
1351 		 * normally arguments are small enough to fit and we already
1352 		 * filled buf above when we checked for control characters
1353 		 * so don't bother with another copy_from_user
1354 		 */
1355 		if (len >= max_execve_audit_len)
1356 			ret = copy_from_user(buf, p, to_send);
1357 		else
1358 			ret = 0;
1359 		if (ret) {
1360 			WARN_ON(1);
1361 			send_sig(SIGKILL, current, 0);
1362 			return -1;
1363 		}
1364 		buf[to_send] = '\0';
1365 
1366 		/* actually log it */
1367 		audit_log_format(*ab, " a%d", arg_num);
1368 		if (too_long)
1369 			audit_log_format(*ab, "[%d]", i);
1370 		audit_log_format(*ab, "=");
1371 		if (has_cntl)
1372 			audit_log_n_hex(*ab, buf, to_send);
1373 		else
1374 			audit_log_string(*ab, buf);
1375 
1376 		p += to_send;
1377 		len_left -= to_send;
1378 		*len_sent += arg_num_len;
1379 		if (has_cntl)
1380 			*len_sent += to_send * 2;
1381 		else
1382 			*len_sent += to_send;
1383 	}
1384 	/* include the null we didn't log */
1385 	return len + 1;
1386 }
1387 
1388 static void audit_log_execve_info(struct audit_context *context,
1389 				  struct audit_buffer **ab,
1390 				  struct audit_aux_data_execve *axi)
1391 {
1392 	int i, len;
1393 	size_t len_sent = 0;
1394 	const char __user *p;
1395 	char *buf;
1396 
1397 	if (axi->mm != current->mm)
1398 		return; /* execve failed, no additional info */
1399 
1400 	p = (const char __user *)axi->mm->arg_start;
1401 
1402 	audit_log_format(*ab, "argc=%d", axi->argc);
1403 
1404 	/*
1405 	 * we need some kernel buffer to hold the userspace args.  Just
1406 	 * allocate one big one rather than allocating one of the right size
1407 	 * for every single argument inside audit_log_single_execve_arg()
1408 	 * should be <8k allocation so should be pretty safe.
1409 	 */
1410 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1411 	if (!buf) {
1412 		audit_panic("out of memory for argv string\n");
1413 		return;
1414 	}
1415 
1416 	for (i = 0; i < axi->argc; i++) {
1417 		len = audit_log_single_execve_arg(context, ab, i,
1418 						  &len_sent, p, buf);
1419 		if (len <= 0)
1420 			break;
1421 		p += len;
1422 	}
1423 	kfree(buf);
1424 }
1425 
1426 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1427 {
1428 	int i;
1429 
1430 	audit_log_format(ab, " %s=", prefix);
1431 	CAP_FOR_EACH_U32(i) {
1432 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1433 	}
1434 }
1435 
1436 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1437 {
1438 	kernel_cap_t *perm = &name->fcap.permitted;
1439 	kernel_cap_t *inh = &name->fcap.inheritable;
1440 	int log = 0;
1441 
1442 	if (!cap_isclear(*perm)) {
1443 		audit_log_cap(ab, "cap_fp", perm);
1444 		log = 1;
1445 	}
1446 	if (!cap_isclear(*inh)) {
1447 		audit_log_cap(ab, "cap_fi", inh);
1448 		log = 1;
1449 	}
1450 
1451 	if (log)
1452 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1453 }
1454 
1455 static void show_special(struct audit_context *context, int *call_panic)
1456 {
1457 	struct audit_buffer *ab;
1458 	int i;
1459 
1460 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1461 	if (!ab)
1462 		return;
1463 
1464 	switch (context->type) {
1465 	case AUDIT_SOCKETCALL: {
1466 		int nargs = context->socketcall.nargs;
1467 		audit_log_format(ab, "nargs=%d", nargs);
1468 		for (i = 0; i < nargs; i++)
1469 			audit_log_format(ab, " a%d=%lx", i,
1470 				context->socketcall.args[i]);
1471 		break; }
1472 	case AUDIT_IPC: {
1473 		u32 osid = context->ipc.osid;
1474 
1475 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1476 				 from_kuid(&init_user_ns, context->ipc.uid),
1477 				 from_kgid(&init_user_ns, context->ipc.gid),
1478 				 context->ipc.mode);
1479 		if (osid) {
1480 			char *ctx = NULL;
1481 			u32 len;
1482 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1483 				audit_log_format(ab, " osid=%u", osid);
1484 				*call_panic = 1;
1485 			} else {
1486 				audit_log_format(ab, " obj=%s", ctx);
1487 				security_release_secctx(ctx, len);
1488 			}
1489 		}
1490 		if (context->ipc.has_perm) {
1491 			audit_log_end(ab);
1492 			ab = audit_log_start(context, GFP_KERNEL,
1493 					     AUDIT_IPC_SET_PERM);
1494 			audit_log_format(ab,
1495 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1496 				context->ipc.qbytes,
1497 				context->ipc.perm_uid,
1498 				context->ipc.perm_gid,
1499 				context->ipc.perm_mode);
1500 			if (!ab)
1501 				return;
1502 		}
1503 		break; }
1504 	case AUDIT_MQ_OPEN: {
1505 		audit_log_format(ab,
1506 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1507 			"mq_msgsize=%ld mq_curmsgs=%ld",
1508 			context->mq_open.oflag, context->mq_open.mode,
1509 			context->mq_open.attr.mq_flags,
1510 			context->mq_open.attr.mq_maxmsg,
1511 			context->mq_open.attr.mq_msgsize,
1512 			context->mq_open.attr.mq_curmsgs);
1513 		break; }
1514 	case AUDIT_MQ_SENDRECV: {
1515 		audit_log_format(ab,
1516 			"mqdes=%d msg_len=%zd msg_prio=%u "
1517 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1518 			context->mq_sendrecv.mqdes,
1519 			context->mq_sendrecv.msg_len,
1520 			context->mq_sendrecv.msg_prio,
1521 			context->mq_sendrecv.abs_timeout.tv_sec,
1522 			context->mq_sendrecv.abs_timeout.tv_nsec);
1523 		break; }
1524 	case AUDIT_MQ_NOTIFY: {
1525 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1526 				context->mq_notify.mqdes,
1527 				context->mq_notify.sigev_signo);
1528 		break; }
1529 	case AUDIT_MQ_GETSETATTR: {
1530 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1531 		audit_log_format(ab,
1532 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1533 			"mq_curmsgs=%ld ",
1534 			context->mq_getsetattr.mqdes,
1535 			attr->mq_flags, attr->mq_maxmsg,
1536 			attr->mq_msgsize, attr->mq_curmsgs);
1537 		break; }
1538 	case AUDIT_CAPSET: {
1539 		audit_log_format(ab, "pid=%d", context->capset.pid);
1540 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1541 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1542 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1543 		break; }
1544 	case AUDIT_MMAP: {
1545 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1546 				 context->mmap.flags);
1547 		break; }
1548 	}
1549 	audit_log_end(ab);
1550 }
1551 
1552 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1553 			   int record_num, int *call_panic)
1554 {
1555 	struct audit_buffer *ab;
1556 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1557 	if (!ab)
1558 		return; /* audit_panic has been called */
1559 
1560 	audit_log_format(ab, "item=%d", record_num);
1561 
1562 	if (n->name) {
1563 		switch (n->name_len) {
1564 		case AUDIT_NAME_FULL:
1565 			/* log the full path */
1566 			audit_log_format(ab, " name=");
1567 			audit_log_untrustedstring(ab, n->name);
1568 			break;
1569 		case 0:
1570 			/* name was specified as a relative path and the
1571 			 * directory component is the cwd */
1572 			audit_log_d_path(ab, " name=", &context->pwd);
1573 			break;
1574 		default:
1575 			/* log the name's directory component */
1576 			audit_log_format(ab, " name=");
1577 			audit_log_n_untrustedstring(ab, n->name,
1578 						    n->name_len);
1579 		}
1580 	} else
1581 		audit_log_format(ab, " name=(null)");
1582 
1583 	if (n->ino != (unsigned long)-1) {
1584 		audit_log_format(ab, " inode=%lu"
1585 				 " dev=%02x:%02x mode=%#ho"
1586 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1587 				 n->ino,
1588 				 MAJOR(n->dev),
1589 				 MINOR(n->dev),
1590 				 n->mode,
1591 				 from_kuid(&init_user_ns, n->uid),
1592 				 from_kgid(&init_user_ns, n->gid),
1593 				 MAJOR(n->rdev),
1594 				 MINOR(n->rdev));
1595 	}
1596 	if (n->osid != 0) {
1597 		char *ctx = NULL;
1598 		u32 len;
1599 		if (security_secid_to_secctx(
1600 			n->osid, &ctx, &len)) {
1601 			audit_log_format(ab, " osid=%u", n->osid);
1602 			*call_panic = 2;
1603 		} else {
1604 			audit_log_format(ab, " obj=%s", ctx);
1605 			security_release_secctx(ctx, len);
1606 		}
1607 	}
1608 
1609 	audit_log_fcaps(ab, n);
1610 
1611 	audit_log_end(ab);
1612 }
1613 
1614 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1615 {
1616 	int i, call_panic = 0;
1617 	struct audit_buffer *ab;
1618 	struct audit_aux_data *aux;
1619 	struct audit_names *n;
1620 
1621 	/* tsk == current */
1622 	context->personality = tsk->personality;
1623 
1624 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1625 	if (!ab)
1626 		return;		/* audit_panic has been called */
1627 	audit_log_format(ab, "arch=%x syscall=%d",
1628 			 context->arch, context->major);
1629 	if (context->personality != PER_LINUX)
1630 		audit_log_format(ab, " per=%lx", context->personality);
1631 	if (context->return_valid)
1632 		audit_log_format(ab, " success=%s exit=%ld",
1633 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1634 				 context->return_code);
1635 
1636 	audit_log_format(ab,
1637 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1638 			 context->argv[0],
1639 			 context->argv[1],
1640 			 context->argv[2],
1641 			 context->argv[3],
1642 			 context->name_count);
1643 
1644 	audit_log_task_info(ab, tsk);
1645 	audit_log_key(ab, context->filterkey);
1646 	audit_log_end(ab);
1647 
1648 	for (aux = context->aux; aux; aux = aux->next) {
1649 
1650 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1651 		if (!ab)
1652 			continue; /* audit_panic has been called */
1653 
1654 		switch (aux->type) {
1655 
1656 		case AUDIT_EXECVE: {
1657 			struct audit_aux_data_execve *axi = (void *)aux;
1658 			audit_log_execve_info(context, &ab, axi);
1659 			break; }
1660 
1661 		case AUDIT_BPRM_FCAPS: {
1662 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1663 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1664 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1665 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1666 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1667 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1668 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1669 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1670 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1671 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1672 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1673 			break; }
1674 
1675 		}
1676 		audit_log_end(ab);
1677 	}
1678 
1679 	if (context->type)
1680 		show_special(context, &call_panic);
1681 
1682 	if (context->fds[0] >= 0) {
1683 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1684 		if (ab) {
1685 			audit_log_format(ab, "fd0=%d fd1=%d",
1686 					context->fds[0], context->fds[1]);
1687 			audit_log_end(ab);
1688 		}
1689 	}
1690 
1691 	if (context->sockaddr_len) {
1692 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1693 		if (ab) {
1694 			audit_log_format(ab, "saddr=");
1695 			audit_log_n_hex(ab, (void *)context->sockaddr,
1696 					context->sockaddr_len);
1697 			audit_log_end(ab);
1698 		}
1699 	}
1700 
1701 	for (aux = context->aux_pids; aux; aux = aux->next) {
1702 		struct audit_aux_data_pids *axs = (void *)aux;
1703 
1704 		for (i = 0; i < axs->pid_count; i++)
1705 			if (audit_log_pid_context(context, axs->target_pid[i],
1706 						  axs->target_auid[i],
1707 						  axs->target_uid[i],
1708 						  axs->target_sessionid[i],
1709 						  axs->target_sid[i],
1710 						  axs->target_comm[i]))
1711 				call_panic = 1;
1712 	}
1713 
1714 	if (context->target_pid &&
1715 	    audit_log_pid_context(context, context->target_pid,
1716 				  context->target_auid, context->target_uid,
1717 				  context->target_sessionid,
1718 				  context->target_sid, context->target_comm))
1719 			call_panic = 1;
1720 
1721 	if (context->pwd.dentry && context->pwd.mnt) {
1722 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1723 		if (ab) {
1724 			audit_log_d_path(ab, " cwd=", &context->pwd);
1725 			audit_log_end(ab);
1726 		}
1727 	}
1728 
1729 	i = 0;
1730 	list_for_each_entry(n, &context->names_list, list)
1731 		audit_log_name(context, n, i++, &call_panic);
1732 
1733 	/* Send end of event record to help user space know we are finished */
1734 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1735 	if (ab)
1736 		audit_log_end(ab);
1737 	if (call_panic)
1738 		audit_panic("error converting sid to string");
1739 }
1740 
1741 /**
1742  * audit_free - free a per-task audit context
1743  * @tsk: task whose audit context block to free
1744  *
1745  * Called from copy_process and do_exit
1746  */
1747 void __audit_free(struct task_struct *tsk)
1748 {
1749 	struct audit_context *context;
1750 
1751 	context = audit_get_context(tsk, 0, 0);
1752 	if (!context)
1753 		return;
1754 
1755 	/* Check for system calls that do not go through the exit
1756 	 * function (e.g., exit_group), then free context block.
1757 	 * We use GFP_ATOMIC here because we might be doing this
1758 	 * in the context of the idle thread */
1759 	/* that can happen only if we are called from do_exit() */
1760 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1761 		audit_log_exit(context, tsk);
1762 	if (!list_empty(&context->killed_trees))
1763 		audit_kill_trees(&context->killed_trees);
1764 
1765 	audit_free_context(context);
1766 }
1767 
1768 /**
1769  * audit_syscall_entry - fill in an audit record at syscall entry
1770  * @arch: architecture type
1771  * @major: major syscall type (function)
1772  * @a1: additional syscall register 1
1773  * @a2: additional syscall register 2
1774  * @a3: additional syscall register 3
1775  * @a4: additional syscall register 4
1776  *
1777  * Fill in audit context at syscall entry.  This only happens if the
1778  * audit context was created when the task was created and the state or
1779  * filters demand the audit context be built.  If the state from the
1780  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1781  * then the record will be written at syscall exit time (otherwise, it
1782  * will only be written if another part of the kernel requests that it
1783  * be written).
1784  */
1785 void __audit_syscall_entry(int arch, int major,
1786 			 unsigned long a1, unsigned long a2,
1787 			 unsigned long a3, unsigned long a4)
1788 {
1789 	struct task_struct *tsk = current;
1790 	struct audit_context *context = tsk->audit_context;
1791 	enum audit_state     state;
1792 
1793 	if (!context)
1794 		return;
1795 
1796 	/*
1797 	 * This happens only on certain architectures that make system
1798 	 * calls in kernel_thread via the entry.S interface, instead of
1799 	 * with direct calls.  (If you are porting to a new
1800 	 * architecture, hitting this condition can indicate that you
1801 	 * got the _exit/_leave calls backward in entry.S.)
1802 	 *
1803 	 * i386     no
1804 	 * x86_64   no
1805 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1806 	 *
1807 	 * This also happens with vm86 emulation in a non-nested manner
1808 	 * (entries without exits), so this case must be caught.
1809 	 */
1810 	if (context->in_syscall) {
1811 		struct audit_context *newctx;
1812 
1813 #if AUDIT_DEBUG
1814 		printk(KERN_ERR
1815 		       "audit(:%d) pid=%d in syscall=%d;"
1816 		       " entering syscall=%d\n",
1817 		       context->serial, tsk->pid, context->major, major);
1818 #endif
1819 		newctx = audit_alloc_context(context->state);
1820 		if (newctx) {
1821 			newctx->previous   = context;
1822 			context		   = newctx;
1823 			tsk->audit_context = newctx;
1824 		} else	{
1825 			/* If we can't alloc a new context, the best we
1826 			 * can do is to leak memory (any pending putname
1827 			 * will be lost).  The only other alternative is
1828 			 * to abandon auditing. */
1829 			audit_zero_context(context, context->state);
1830 		}
1831 	}
1832 	BUG_ON(context->in_syscall || context->name_count);
1833 
1834 	if (!audit_enabled)
1835 		return;
1836 
1837 	context->arch	    = arch;
1838 	context->major      = major;
1839 	context->argv[0]    = a1;
1840 	context->argv[1]    = a2;
1841 	context->argv[2]    = a3;
1842 	context->argv[3]    = a4;
1843 
1844 	state = context->state;
1845 	context->dummy = !audit_n_rules;
1846 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1847 		context->prio = 0;
1848 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1849 	}
1850 	if (state == AUDIT_DISABLED)
1851 		return;
1852 
1853 	context->serial     = 0;
1854 	context->ctime      = CURRENT_TIME;
1855 	context->in_syscall = 1;
1856 	context->current_state  = state;
1857 	context->ppid       = 0;
1858 }
1859 
1860 /**
1861  * audit_syscall_exit - deallocate audit context after a system call
1862  * @success: success value of the syscall
1863  * @return_code: return value of the syscall
1864  *
1865  * Tear down after system call.  If the audit context has been marked as
1866  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1867  * filtering, or because some other part of the kernel wrote an audit
1868  * message), then write out the syscall information.  In call cases,
1869  * free the names stored from getname().
1870  */
1871 void __audit_syscall_exit(int success, long return_code)
1872 {
1873 	struct task_struct *tsk = current;
1874 	struct audit_context *context;
1875 
1876 	if (success)
1877 		success = AUDITSC_SUCCESS;
1878 	else
1879 		success = AUDITSC_FAILURE;
1880 
1881 	context = audit_get_context(tsk, success, return_code);
1882 	if (!context)
1883 		return;
1884 
1885 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1886 		audit_log_exit(context, tsk);
1887 
1888 	context->in_syscall = 0;
1889 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1890 
1891 	if (!list_empty(&context->killed_trees))
1892 		audit_kill_trees(&context->killed_trees);
1893 
1894 	if (context->previous) {
1895 		struct audit_context *new_context = context->previous;
1896 		context->previous  = NULL;
1897 		audit_free_context(context);
1898 		tsk->audit_context = new_context;
1899 	} else {
1900 		audit_free_names(context);
1901 		unroll_tree_refs(context, NULL, 0);
1902 		audit_free_aux(context);
1903 		context->aux = NULL;
1904 		context->aux_pids = NULL;
1905 		context->target_pid = 0;
1906 		context->target_sid = 0;
1907 		context->sockaddr_len = 0;
1908 		context->type = 0;
1909 		context->fds[0] = -1;
1910 		if (context->state != AUDIT_RECORD_CONTEXT) {
1911 			kfree(context->filterkey);
1912 			context->filterkey = NULL;
1913 		}
1914 		tsk->audit_context = context;
1915 	}
1916 }
1917 
1918 static inline void handle_one(const struct inode *inode)
1919 {
1920 #ifdef CONFIG_AUDIT_TREE
1921 	struct audit_context *context;
1922 	struct audit_tree_refs *p;
1923 	struct audit_chunk *chunk;
1924 	int count;
1925 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1926 		return;
1927 	context = current->audit_context;
1928 	p = context->trees;
1929 	count = context->tree_count;
1930 	rcu_read_lock();
1931 	chunk = audit_tree_lookup(inode);
1932 	rcu_read_unlock();
1933 	if (!chunk)
1934 		return;
1935 	if (likely(put_tree_ref(context, chunk)))
1936 		return;
1937 	if (unlikely(!grow_tree_refs(context))) {
1938 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1939 		audit_set_auditable(context);
1940 		audit_put_chunk(chunk);
1941 		unroll_tree_refs(context, p, count);
1942 		return;
1943 	}
1944 	put_tree_ref(context, chunk);
1945 #endif
1946 }
1947 
1948 static void handle_path(const struct dentry *dentry)
1949 {
1950 #ifdef CONFIG_AUDIT_TREE
1951 	struct audit_context *context;
1952 	struct audit_tree_refs *p;
1953 	const struct dentry *d, *parent;
1954 	struct audit_chunk *drop;
1955 	unsigned long seq;
1956 	int count;
1957 
1958 	context = current->audit_context;
1959 	p = context->trees;
1960 	count = context->tree_count;
1961 retry:
1962 	drop = NULL;
1963 	d = dentry;
1964 	rcu_read_lock();
1965 	seq = read_seqbegin(&rename_lock);
1966 	for(;;) {
1967 		struct inode *inode = d->d_inode;
1968 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1969 			struct audit_chunk *chunk;
1970 			chunk = audit_tree_lookup(inode);
1971 			if (chunk) {
1972 				if (unlikely(!put_tree_ref(context, chunk))) {
1973 					drop = chunk;
1974 					break;
1975 				}
1976 			}
1977 		}
1978 		parent = d->d_parent;
1979 		if (parent == d)
1980 			break;
1981 		d = parent;
1982 	}
1983 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1984 		rcu_read_unlock();
1985 		if (!drop) {
1986 			/* just a race with rename */
1987 			unroll_tree_refs(context, p, count);
1988 			goto retry;
1989 		}
1990 		audit_put_chunk(drop);
1991 		if (grow_tree_refs(context)) {
1992 			/* OK, got more space */
1993 			unroll_tree_refs(context, p, count);
1994 			goto retry;
1995 		}
1996 		/* too bad */
1997 		printk(KERN_WARNING
1998 			"out of memory, audit has lost a tree reference\n");
1999 		unroll_tree_refs(context, p, count);
2000 		audit_set_auditable(context);
2001 		return;
2002 	}
2003 	rcu_read_unlock();
2004 #endif
2005 }
2006 
2007 static struct audit_names *audit_alloc_name(struct audit_context *context)
2008 {
2009 	struct audit_names *aname;
2010 
2011 	if (context->name_count < AUDIT_NAMES) {
2012 		aname = &context->preallocated_names[context->name_count];
2013 		memset(aname, 0, sizeof(*aname));
2014 	} else {
2015 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2016 		if (!aname)
2017 			return NULL;
2018 		aname->should_free = true;
2019 	}
2020 
2021 	aname->ino = (unsigned long)-1;
2022 	list_add_tail(&aname->list, &context->names_list);
2023 
2024 	context->name_count++;
2025 #if AUDIT_DEBUG
2026 	context->ino_count++;
2027 #endif
2028 	return aname;
2029 }
2030 
2031 /**
2032  * audit_getname - add a name to the list
2033  * @name: name to add
2034  *
2035  * Add a name to the list of audit names for this context.
2036  * Called from fs/namei.c:getname().
2037  */
2038 void __audit_getname(const char *name)
2039 {
2040 	struct audit_context *context = current->audit_context;
2041 	struct audit_names *n;
2042 
2043 	if (!context->in_syscall) {
2044 #if AUDIT_DEBUG == 2
2045 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2046 		       __FILE__, __LINE__, context->serial, name);
2047 		dump_stack();
2048 #endif
2049 		return;
2050 	}
2051 
2052 	n = audit_alloc_name(context);
2053 	if (!n)
2054 		return;
2055 
2056 	n->name = name;
2057 	n->name_len = AUDIT_NAME_FULL;
2058 	n->name_put = true;
2059 
2060 	if (!context->pwd.dentry)
2061 		get_fs_pwd(current->fs, &context->pwd);
2062 }
2063 
2064 /* audit_putname - intercept a putname request
2065  * @name: name to intercept and delay for putname
2066  *
2067  * If we have stored the name from getname in the audit context,
2068  * then we delay the putname until syscall exit.
2069  * Called from include/linux/fs.h:putname().
2070  */
2071 void audit_putname(const char *name)
2072 {
2073 	struct audit_context *context = current->audit_context;
2074 
2075 	BUG_ON(!context);
2076 	if (!context->in_syscall) {
2077 #if AUDIT_DEBUG == 2
2078 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2079 		       __FILE__, __LINE__, context->serial, name);
2080 		if (context->name_count) {
2081 			struct audit_names *n;
2082 			int i;
2083 
2084 			list_for_each_entry(n, &context->names_list, list)
2085 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2086 				       n->name, n->name ?: "(null)");
2087 			}
2088 #endif
2089 		__putname(name);
2090 	}
2091 #if AUDIT_DEBUG
2092 	else {
2093 		++context->put_count;
2094 		if (context->put_count > context->name_count) {
2095 			printk(KERN_ERR "%s:%d(:%d): major=%d"
2096 			       " in_syscall=%d putname(%p) name_count=%d"
2097 			       " put_count=%d\n",
2098 			       __FILE__, __LINE__,
2099 			       context->serial, context->major,
2100 			       context->in_syscall, name, context->name_count,
2101 			       context->put_count);
2102 			dump_stack();
2103 		}
2104 	}
2105 #endif
2106 }
2107 
2108 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2109 {
2110 	struct cpu_vfs_cap_data caps;
2111 	int rc;
2112 
2113 	if (!dentry)
2114 		return 0;
2115 
2116 	rc = get_vfs_caps_from_disk(dentry, &caps);
2117 	if (rc)
2118 		return rc;
2119 
2120 	name->fcap.permitted = caps.permitted;
2121 	name->fcap.inheritable = caps.inheritable;
2122 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2123 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2124 
2125 	return 0;
2126 }
2127 
2128 
2129 /* Copy inode data into an audit_names. */
2130 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2131 			     const struct inode *inode)
2132 {
2133 	name->ino   = inode->i_ino;
2134 	name->dev   = inode->i_sb->s_dev;
2135 	name->mode  = inode->i_mode;
2136 	name->uid   = inode->i_uid;
2137 	name->gid   = inode->i_gid;
2138 	name->rdev  = inode->i_rdev;
2139 	security_inode_getsecid(inode, &name->osid);
2140 	audit_copy_fcaps(name, dentry);
2141 }
2142 
2143 /**
2144  * audit_inode - store the inode and device from a lookup
2145  * @name: name being audited
2146  * @dentry: dentry being audited
2147  *
2148  * Called from fs/namei.c:path_lookup().
2149  */
2150 void __audit_inode(const char *name, const struct dentry *dentry)
2151 {
2152 	struct audit_context *context = current->audit_context;
2153 	const struct inode *inode = dentry->d_inode;
2154 	struct audit_names *n;
2155 
2156 	if (!context->in_syscall)
2157 		return;
2158 
2159 	list_for_each_entry_reverse(n, &context->names_list, list) {
2160 		if (n->name && (n->name == name))
2161 			goto out;
2162 	}
2163 
2164 	/* unable to find the name from a previous getname() */
2165 	n = audit_alloc_name(context);
2166 	if (!n)
2167 		return;
2168 out:
2169 	handle_path(dentry);
2170 	audit_copy_inode(n, dentry, inode);
2171 }
2172 
2173 /**
2174  * audit_inode_child - collect inode info for created/removed objects
2175  * @dentry: dentry being audited
2176  * @parent: inode of dentry parent
2177  *
2178  * For syscalls that create or remove filesystem objects, audit_inode
2179  * can only collect information for the filesystem object's parent.
2180  * This call updates the audit context with the child's information.
2181  * Syscalls that create a new filesystem object must be hooked after
2182  * the object is created.  Syscalls that remove a filesystem object
2183  * must be hooked prior, in order to capture the target inode during
2184  * unsuccessful attempts.
2185  */
2186 void __audit_inode_child(const struct dentry *dentry,
2187 			 const struct inode *parent)
2188 {
2189 	struct audit_context *context = current->audit_context;
2190 	const char *found_parent = NULL, *found_child = NULL;
2191 	const struct inode *inode = dentry->d_inode;
2192 	const char *dname = dentry->d_name.name;
2193 	struct audit_names *n;
2194 	int dirlen = 0;
2195 
2196 	if (!context->in_syscall)
2197 		return;
2198 
2199 	if (inode)
2200 		handle_one(inode);
2201 
2202 	/* parent is more likely, look for it first */
2203 	list_for_each_entry(n, &context->names_list, list) {
2204 		if (!n->name)
2205 			continue;
2206 
2207 		if (n->ino == parent->i_ino &&
2208 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2209 			n->name_len = dirlen; /* update parent data in place */
2210 			found_parent = n->name;
2211 			goto add_names;
2212 		}
2213 	}
2214 
2215 	/* no matching parent, look for matching child */
2216 	list_for_each_entry(n, &context->names_list, list) {
2217 		if (!n->name)
2218 			continue;
2219 
2220 		/* strcmp() is the more likely scenario */
2221 		if (!strcmp(dname, n->name) ||
2222 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2223 			if (inode)
2224 				audit_copy_inode(n, NULL, inode);
2225 			else
2226 				n->ino = (unsigned long)-1;
2227 			found_child = n->name;
2228 			goto add_names;
2229 		}
2230 	}
2231 
2232 add_names:
2233 	if (!found_parent) {
2234 		n = audit_alloc_name(context);
2235 		if (!n)
2236 			return;
2237 		audit_copy_inode(n, NULL, parent);
2238 	}
2239 
2240 	if (!found_child) {
2241 		n = audit_alloc_name(context);
2242 		if (!n)
2243 			return;
2244 
2245 		/* Re-use the name belonging to the slot for a matching parent
2246 		 * directory. All names for this context are relinquished in
2247 		 * audit_free_names() */
2248 		if (found_parent) {
2249 			n->name = found_parent;
2250 			n->name_len = AUDIT_NAME_FULL;
2251 			/* don't call __putname() */
2252 			n->name_put = false;
2253 		}
2254 
2255 		if (inode)
2256 			audit_copy_inode(n, NULL, inode);
2257 	}
2258 }
2259 EXPORT_SYMBOL_GPL(__audit_inode_child);
2260 
2261 /**
2262  * auditsc_get_stamp - get local copies of audit_context values
2263  * @ctx: audit_context for the task
2264  * @t: timespec to store time recorded in the audit_context
2265  * @serial: serial value that is recorded in the audit_context
2266  *
2267  * Also sets the context as auditable.
2268  */
2269 int auditsc_get_stamp(struct audit_context *ctx,
2270 		       struct timespec *t, unsigned int *serial)
2271 {
2272 	if (!ctx->in_syscall)
2273 		return 0;
2274 	if (!ctx->serial)
2275 		ctx->serial = audit_serial();
2276 	t->tv_sec  = ctx->ctime.tv_sec;
2277 	t->tv_nsec = ctx->ctime.tv_nsec;
2278 	*serial    = ctx->serial;
2279 	if (!ctx->prio) {
2280 		ctx->prio = 1;
2281 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2282 	}
2283 	return 1;
2284 }
2285 
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2288 
2289 /**
2290  * audit_set_loginuid - set current task's audit_context loginuid
2291  * @loginuid: loginuid value
2292  *
2293  * Returns 0.
2294  *
2295  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2296  */
2297 int audit_set_loginuid(kuid_t loginuid)
2298 {
2299 	struct task_struct *task = current;
2300 	struct audit_context *context = task->audit_context;
2301 	unsigned int sessionid;
2302 
2303 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2304 	if (uid_valid(task->loginuid))
2305 		return -EPERM;
2306 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2307 	if (!capable(CAP_AUDIT_CONTROL))
2308 		return -EPERM;
2309 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2310 
2311 	sessionid = atomic_inc_return(&session_id);
2312 	if (context && context->in_syscall) {
2313 		struct audit_buffer *ab;
2314 
2315 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2316 		if (ab) {
2317 			audit_log_format(ab, "login pid=%d uid=%u "
2318 				"old auid=%u new auid=%u"
2319 				" old ses=%u new ses=%u",
2320 				task->pid,
2321 				from_kuid(&init_user_ns, task_uid(task)),
2322 				from_kuid(&init_user_ns, task->loginuid),
2323 				from_kuid(&init_user_ns, loginuid),
2324 				task->sessionid, sessionid);
2325 			audit_log_end(ab);
2326 		}
2327 	}
2328 	task->sessionid = sessionid;
2329 	task->loginuid = loginuid;
2330 	return 0;
2331 }
2332 
2333 /**
2334  * __audit_mq_open - record audit data for a POSIX MQ open
2335  * @oflag: open flag
2336  * @mode: mode bits
2337  * @attr: queue attributes
2338  *
2339  */
2340 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2341 {
2342 	struct audit_context *context = current->audit_context;
2343 
2344 	if (attr)
2345 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2346 	else
2347 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2348 
2349 	context->mq_open.oflag = oflag;
2350 	context->mq_open.mode = mode;
2351 
2352 	context->type = AUDIT_MQ_OPEN;
2353 }
2354 
2355 /**
2356  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2357  * @mqdes: MQ descriptor
2358  * @msg_len: Message length
2359  * @msg_prio: Message priority
2360  * @abs_timeout: Message timeout in absolute time
2361  *
2362  */
2363 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2364 			const struct timespec *abs_timeout)
2365 {
2366 	struct audit_context *context = current->audit_context;
2367 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2368 
2369 	if (abs_timeout)
2370 		memcpy(p, abs_timeout, sizeof(struct timespec));
2371 	else
2372 		memset(p, 0, sizeof(struct timespec));
2373 
2374 	context->mq_sendrecv.mqdes = mqdes;
2375 	context->mq_sendrecv.msg_len = msg_len;
2376 	context->mq_sendrecv.msg_prio = msg_prio;
2377 
2378 	context->type = AUDIT_MQ_SENDRECV;
2379 }
2380 
2381 /**
2382  * __audit_mq_notify - record audit data for a POSIX MQ notify
2383  * @mqdes: MQ descriptor
2384  * @notification: Notification event
2385  *
2386  */
2387 
2388 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2389 {
2390 	struct audit_context *context = current->audit_context;
2391 
2392 	if (notification)
2393 		context->mq_notify.sigev_signo = notification->sigev_signo;
2394 	else
2395 		context->mq_notify.sigev_signo = 0;
2396 
2397 	context->mq_notify.mqdes = mqdes;
2398 	context->type = AUDIT_MQ_NOTIFY;
2399 }
2400 
2401 /**
2402  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2403  * @mqdes: MQ descriptor
2404  * @mqstat: MQ flags
2405  *
2406  */
2407 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2408 {
2409 	struct audit_context *context = current->audit_context;
2410 	context->mq_getsetattr.mqdes = mqdes;
2411 	context->mq_getsetattr.mqstat = *mqstat;
2412 	context->type = AUDIT_MQ_GETSETATTR;
2413 }
2414 
2415 /**
2416  * audit_ipc_obj - record audit data for ipc object
2417  * @ipcp: ipc permissions
2418  *
2419  */
2420 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2421 {
2422 	struct audit_context *context = current->audit_context;
2423 	context->ipc.uid = ipcp->uid;
2424 	context->ipc.gid = ipcp->gid;
2425 	context->ipc.mode = ipcp->mode;
2426 	context->ipc.has_perm = 0;
2427 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2428 	context->type = AUDIT_IPC;
2429 }
2430 
2431 /**
2432  * audit_ipc_set_perm - record audit data for new ipc permissions
2433  * @qbytes: msgq bytes
2434  * @uid: msgq user id
2435  * @gid: msgq group id
2436  * @mode: msgq mode (permissions)
2437  *
2438  * Called only after audit_ipc_obj().
2439  */
2440 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2441 {
2442 	struct audit_context *context = current->audit_context;
2443 
2444 	context->ipc.qbytes = qbytes;
2445 	context->ipc.perm_uid = uid;
2446 	context->ipc.perm_gid = gid;
2447 	context->ipc.perm_mode = mode;
2448 	context->ipc.has_perm = 1;
2449 }
2450 
2451 int __audit_bprm(struct linux_binprm *bprm)
2452 {
2453 	struct audit_aux_data_execve *ax;
2454 	struct audit_context *context = current->audit_context;
2455 
2456 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2457 	if (!ax)
2458 		return -ENOMEM;
2459 
2460 	ax->argc = bprm->argc;
2461 	ax->envc = bprm->envc;
2462 	ax->mm = bprm->mm;
2463 	ax->d.type = AUDIT_EXECVE;
2464 	ax->d.next = context->aux;
2465 	context->aux = (void *)ax;
2466 	return 0;
2467 }
2468 
2469 
2470 /**
2471  * audit_socketcall - record audit data for sys_socketcall
2472  * @nargs: number of args
2473  * @args: args array
2474  *
2475  */
2476 void __audit_socketcall(int nargs, unsigned long *args)
2477 {
2478 	struct audit_context *context = current->audit_context;
2479 
2480 	context->type = AUDIT_SOCKETCALL;
2481 	context->socketcall.nargs = nargs;
2482 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2483 }
2484 
2485 /**
2486  * __audit_fd_pair - record audit data for pipe and socketpair
2487  * @fd1: the first file descriptor
2488  * @fd2: the second file descriptor
2489  *
2490  */
2491 void __audit_fd_pair(int fd1, int fd2)
2492 {
2493 	struct audit_context *context = current->audit_context;
2494 	context->fds[0] = fd1;
2495 	context->fds[1] = fd2;
2496 }
2497 
2498 /**
2499  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2500  * @len: data length in user space
2501  * @a: data address in kernel space
2502  *
2503  * Returns 0 for success or NULL context or < 0 on error.
2504  */
2505 int __audit_sockaddr(int len, void *a)
2506 {
2507 	struct audit_context *context = current->audit_context;
2508 
2509 	if (!context->sockaddr) {
2510 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2511 		if (!p)
2512 			return -ENOMEM;
2513 		context->sockaddr = p;
2514 	}
2515 
2516 	context->sockaddr_len = len;
2517 	memcpy(context->sockaddr, a, len);
2518 	return 0;
2519 }
2520 
2521 void __audit_ptrace(struct task_struct *t)
2522 {
2523 	struct audit_context *context = current->audit_context;
2524 
2525 	context->target_pid = t->pid;
2526 	context->target_auid = audit_get_loginuid(t);
2527 	context->target_uid = task_uid(t);
2528 	context->target_sessionid = audit_get_sessionid(t);
2529 	security_task_getsecid(t, &context->target_sid);
2530 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2531 }
2532 
2533 /**
2534  * audit_signal_info - record signal info for shutting down audit subsystem
2535  * @sig: signal value
2536  * @t: task being signaled
2537  *
2538  * If the audit subsystem is being terminated, record the task (pid)
2539  * and uid that is doing that.
2540  */
2541 int __audit_signal_info(int sig, struct task_struct *t)
2542 {
2543 	struct audit_aux_data_pids *axp;
2544 	struct task_struct *tsk = current;
2545 	struct audit_context *ctx = tsk->audit_context;
2546 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2547 
2548 	if (audit_pid && t->tgid == audit_pid) {
2549 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2550 			audit_sig_pid = tsk->pid;
2551 			if (uid_valid(tsk->loginuid))
2552 				audit_sig_uid = tsk->loginuid;
2553 			else
2554 				audit_sig_uid = uid;
2555 			security_task_getsecid(tsk, &audit_sig_sid);
2556 		}
2557 		if (!audit_signals || audit_dummy_context())
2558 			return 0;
2559 	}
2560 
2561 	/* optimize the common case by putting first signal recipient directly
2562 	 * in audit_context */
2563 	if (!ctx->target_pid) {
2564 		ctx->target_pid = t->tgid;
2565 		ctx->target_auid = audit_get_loginuid(t);
2566 		ctx->target_uid = t_uid;
2567 		ctx->target_sessionid = audit_get_sessionid(t);
2568 		security_task_getsecid(t, &ctx->target_sid);
2569 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2570 		return 0;
2571 	}
2572 
2573 	axp = (void *)ctx->aux_pids;
2574 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2575 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2576 		if (!axp)
2577 			return -ENOMEM;
2578 
2579 		axp->d.type = AUDIT_OBJ_PID;
2580 		axp->d.next = ctx->aux_pids;
2581 		ctx->aux_pids = (void *)axp;
2582 	}
2583 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2584 
2585 	axp->target_pid[axp->pid_count] = t->tgid;
2586 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2587 	axp->target_uid[axp->pid_count] = t_uid;
2588 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2589 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2590 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2591 	axp->pid_count++;
2592 
2593 	return 0;
2594 }
2595 
2596 /**
2597  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2598  * @bprm: pointer to the bprm being processed
2599  * @new: the proposed new credentials
2600  * @old: the old credentials
2601  *
2602  * Simply check if the proc already has the caps given by the file and if not
2603  * store the priv escalation info for later auditing at the end of the syscall
2604  *
2605  * -Eric
2606  */
2607 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2608 			   const struct cred *new, const struct cred *old)
2609 {
2610 	struct audit_aux_data_bprm_fcaps *ax;
2611 	struct audit_context *context = current->audit_context;
2612 	struct cpu_vfs_cap_data vcaps;
2613 	struct dentry *dentry;
2614 
2615 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2616 	if (!ax)
2617 		return -ENOMEM;
2618 
2619 	ax->d.type = AUDIT_BPRM_FCAPS;
2620 	ax->d.next = context->aux;
2621 	context->aux = (void *)ax;
2622 
2623 	dentry = dget(bprm->file->f_dentry);
2624 	get_vfs_caps_from_disk(dentry, &vcaps);
2625 	dput(dentry);
2626 
2627 	ax->fcap.permitted = vcaps.permitted;
2628 	ax->fcap.inheritable = vcaps.inheritable;
2629 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2630 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2631 
2632 	ax->old_pcap.permitted   = old->cap_permitted;
2633 	ax->old_pcap.inheritable = old->cap_inheritable;
2634 	ax->old_pcap.effective   = old->cap_effective;
2635 
2636 	ax->new_pcap.permitted   = new->cap_permitted;
2637 	ax->new_pcap.inheritable = new->cap_inheritable;
2638 	ax->new_pcap.effective   = new->cap_effective;
2639 	return 0;
2640 }
2641 
2642 /**
2643  * __audit_log_capset - store information about the arguments to the capset syscall
2644  * @pid: target pid of the capset call
2645  * @new: the new credentials
2646  * @old: the old (current) credentials
2647  *
2648  * Record the aguments userspace sent to sys_capset for later printing by the
2649  * audit system if applicable
2650  */
2651 void __audit_log_capset(pid_t pid,
2652 		       const struct cred *new, const struct cred *old)
2653 {
2654 	struct audit_context *context = current->audit_context;
2655 	context->capset.pid = pid;
2656 	context->capset.cap.effective   = new->cap_effective;
2657 	context->capset.cap.inheritable = new->cap_effective;
2658 	context->capset.cap.permitted   = new->cap_permitted;
2659 	context->type = AUDIT_CAPSET;
2660 }
2661 
2662 void __audit_mmap_fd(int fd, int flags)
2663 {
2664 	struct audit_context *context = current->audit_context;
2665 	context->mmap.fd = fd;
2666 	context->mmap.flags = flags;
2667 	context->type = AUDIT_MMAP;
2668 }
2669 
2670 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2671 {
2672 	kuid_t auid, uid;
2673 	kgid_t gid;
2674 	unsigned int sessionid;
2675 
2676 	auid = audit_get_loginuid(current);
2677 	sessionid = audit_get_sessionid(current);
2678 	current_uid_gid(&uid, &gid);
2679 
2680 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2681 			 from_kuid(&init_user_ns, auid),
2682 			 from_kuid(&init_user_ns, uid),
2683 			 from_kgid(&init_user_ns, gid),
2684 			 sessionid);
2685 	audit_log_task_context(ab);
2686 	audit_log_format(ab, " pid=%d comm=", current->pid);
2687 	audit_log_untrustedstring(ab, current->comm);
2688 	audit_log_format(ab, " reason=");
2689 	audit_log_string(ab, reason);
2690 	audit_log_format(ab, " sig=%ld", signr);
2691 }
2692 /**
2693  * audit_core_dumps - record information about processes that end abnormally
2694  * @signr: signal value
2695  *
2696  * If a process ends with a core dump, something fishy is going on and we
2697  * should record the event for investigation.
2698  */
2699 void audit_core_dumps(long signr)
2700 {
2701 	struct audit_buffer *ab;
2702 
2703 	if (!audit_enabled)
2704 		return;
2705 
2706 	if (signr == SIGQUIT)	/* don't care for those */
2707 		return;
2708 
2709 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 	audit_log_abend(ab, "memory violation", signr);
2711 	audit_log_end(ab);
2712 }
2713 
2714 void __audit_seccomp(unsigned long syscall, long signr, int code)
2715 {
2716 	struct audit_buffer *ab;
2717 
2718 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 	audit_log_abend(ab, "seccomp", signr);
2720 	audit_log_format(ab, " syscall=%ld", syscall);
2721 	audit_log_format(ab, " compat=%d", is_compat_task());
2722 	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 	audit_log_format(ab, " code=0x%x", code);
2724 	audit_log_end(ab);
2725 }
2726 
2727 struct list_head *audit_killed_trees(void)
2728 {
2729 	struct audit_context *ctx = current->audit_context;
2730 	if (likely(!ctx || !ctx->in_syscall))
2731 		return NULL;
2732 	return &ctx->killed_trees;
2733 }
2734