1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <asm/syscall.h> 71 #include <linux/capability.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compat.h> 74 #include <linux/ctype.h> 75 #include <linux/string.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits) */ 86 #define MAX_EXECVE_AUDIT_LEN 7500 87 88 /* max length to print of cmdline/proctitle value during audit */ 89 #define MAX_PROCTITLE_AUDIT_LEN 128 90 91 /* number of audit rules */ 92 int audit_n_rules; 93 94 /* determines whether we collect data for signals sent */ 95 int audit_signals; 96 97 struct audit_aux_data { 98 struct audit_aux_data *next; 99 int type; 100 }; 101 102 #define AUDIT_AUX_IPCPERM 0 103 104 /* Number of target pids per aux struct. */ 105 #define AUDIT_AUX_PIDS 16 106 107 struct audit_aux_data_pids { 108 struct audit_aux_data d; 109 pid_t target_pid[AUDIT_AUX_PIDS]; 110 kuid_t target_auid[AUDIT_AUX_PIDS]; 111 kuid_t target_uid[AUDIT_AUX_PIDS]; 112 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 113 u32 target_sid[AUDIT_AUX_PIDS]; 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 115 int pid_count; 116 }; 117 118 struct audit_aux_data_bprm_fcaps { 119 struct audit_aux_data d; 120 struct audit_cap_data fcap; 121 unsigned int fcap_ver; 122 struct audit_cap_data old_pcap; 123 struct audit_cap_data new_pcap; 124 }; 125 126 struct audit_tree_refs { 127 struct audit_tree_refs *next; 128 struct audit_chunk *c[31]; 129 }; 130 131 static int audit_match_perm(struct audit_context *ctx, int mask) 132 { 133 unsigned n; 134 if (unlikely(!ctx)) 135 return 0; 136 n = ctx->major; 137 138 switch (audit_classify_syscall(ctx->arch, n)) { 139 case 0: /* native */ 140 if ((mask & AUDIT_PERM_WRITE) && 141 audit_match_class(AUDIT_CLASS_WRITE, n)) 142 return 1; 143 if ((mask & AUDIT_PERM_READ) && 144 audit_match_class(AUDIT_CLASS_READ, n)) 145 return 1; 146 if ((mask & AUDIT_PERM_ATTR) && 147 audit_match_class(AUDIT_CLASS_CHATTR, n)) 148 return 1; 149 return 0; 150 case 1: /* 32bit on biarch */ 151 if ((mask & AUDIT_PERM_WRITE) && 152 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 153 return 1; 154 if ((mask & AUDIT_PERM_READ) && 155 audit_match_class(AUDIT_CLASS_READ_32, n)) 156 return 1; 157 if ((mask & AUDIT_PERM_ATTR) && 158 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 159 return 1; 160 return 0; 161 case 2: /* open */ 162 return mask & ACC_MODE(ctx->argv[1]); 163 case 3: /* openat */ 164 return mask & ACC_MODE(ctx->argv[2]); 165 case 4: /* socketcall */ 166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 167 case 5: /* execve */ 168 return mask & AUDIT_PERM_EXEC; 169 default: 170 return 0; 171 } 172 } 173 174 static int audit_match_filetype(struct audit_context *ctx, int val) 175 { 176 struct audit_names *n; 177 umode_t mode = (umode_t)val; 178 179 if (unlikely(!ctx)) 180 return 0; 181 182 list_for_each_entry(n, &ctx->names_list, list) { 183 if ((n->ino != AUDIT_INO_UNSET) && 184 ((n->mode & S_IFMT) == mode)) 185 return 1; 186 } 187 188 return 0; 189 } 190 191 /* 192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 193 * ->first_trees points to its beginning, ->trees - to the current end of data. 194 * ->tree_count is the number of free entries in array pointed to by ->trees. 195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 197 * it's going to remain 1-element for almost any setup) until we free context itself. 198 * References in it _are_ dropped - at the same time we free/drop aux stuff. 199 */ 200 201 #ifdef CONFIG_AUDIT_TREE 202 static void audit_set_auditable(struct audit_context *ctx) 203 { 204 if (!ctx->prio) { 205 ctx->prio = 1; 206 ctx->current_state = AUDIT_RECORD_CONTEXT; 207 } 208 } 209 210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 211 { 212 struct audit_tree_refs *p = ctx->trees; 213 int left = ctx->tree_count; 214 if (likely(left)) { 215 p->c[--left] = chunk; 216 ctx->tree_count = left; 217 return 1; 218 } 219 if (!p) 220 return 0; 221 p = p->next; 222 if (p) { 223 p->c[30] = chunk; 224 ctx->trees = p; 225 ctx->tree_count = 30; 226 return 1; 227 } 228 return 0; 229 } 230 231 static int grow_tree_refs(struct audit_context *ctx) 232 { 233 struct audit_tree_refs *p = ctx->trees; 234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 235 if (!ctx->trees) { 236 ctx->trees = p; 237 return 0; 238 } 239 if (p) 240 p->next = ctx->trees; 241 else 242 ctx->first_trees = ctx->trees; 243 ctx->tree_count = 31; 244 return 1; 245 } 246 #endif 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 #ifdef CONFIG_AUDIT_TREE 252 struct audit_tree_refs *q; 253 int n; 254 if (!p) { 255 /* we started with empty chain */ 256 p = ctx->first_trees; 257 count = 31; 258 /* if the very first allocation has failed, nothing to do */ 259 if (!p) 260 return; 261 } 262 n = count; 263 for (q = p; q != ctx->trees; q = q->next, n = 31) { 264 while (n--) { 265 audit_put_chunk(q->c[n]); 266 q->c[n] = NULL; 267 } 268 } 269 while (n-- > ctx->tree_count) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 ctx->trees = p; 274 ctx->tree_count = count; 275 #endif 276 } 277 278 static void free_tree_refs(struct audit_context *ctx) 279 { 280 struct audit_tree_refs *p, *q; 281 for (p = ctx->first_trees; p; p = q) { 282 q = p->next; 283 kfree(p); 284 } 285 } 286 287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 288 { 289 #ifdef CONFIG_AUDIT_TREE 290 struct audit_tree_refs *p; 291 int n; 292 if (!tree) 293 return 0; 294 /* full ones */ 295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 296 for (n = 0; n < 31; n++) 297 if (audit_tree_match(p->c[n], tree)) 298 return 1; 299 } 300 /* partial */ 301 if (p) { 302 for (n = ctx->tree_count; n < 31; n++) 303 if (audit_tree_match(p->c[n], tree)) 304 return 1; 305 } 306 #endif 307 return 0; 308 } 309 310 static int audit_compare_uid(kuid_t uid, 311 struct audit_names *name, 312 struct audit_field *f, 313 struct audit_context *ctx) 314 { 315 struct audit_names *n; 316 int rc; 317 318 if (name) { 319 rc = audit_uid_comparator(uid, f->op, name->uid); 320 if (rc) 321 return rc; 322 } 323 324 if (ctx) { 325 list_for_each_entry(n, &ctx->names_list, list) { 326 rc = audit_uid_comparator(uid, f->op, n->uid); 327 if (rc) 328 return rc; 329 } 330 } 331 return 0; 332 } 333 334 static int audit_compare_gid(kgid_t gid, 335 struct audit_names *name, 336 struct audit_field *f, 337 struct audit_context *ctx) 338 { 339 struct audit_names *n; 340 int rc; 341 342 if (name) { 343 rc = audit_gid_comparator(gid, f->op, name->gid); 344 if (rc) 345 return rc; 346 } 347 348 if (ctx) { 349 list_for_each_entry(n, &ctx->names_list, list) { 350 rc = audit_gid_comparator(gid, f->op, n->gid); 351 if (rc) 352 return rc; 353 } 354 } 355 return 0; 356 } 357 358 static int audit_field_compare(struct task_struct *tsk, 359 const struct cred *cred, 360 struct audit_field *f, 361 struct audit_context *ctx, 362 struct audit_names *name) 363 { 364 switch (f->val) { 365 /* process to file object comparisons */ 366 case AUDIT_COMPARE_UID_TO_OBJ_UID: 367 return audit_compare_uid(cred->uid, name, f, ctx); 368 case AUDIT_COMPARE_GID_TO_OBJ_GID: 369 return audit_compare_gid(cred->gid, name, f, ctx); 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 371 return audit_compare_uid(cred->euid, name, f, ctx); 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 373 return audit_compare_gid(cred->egid, name, f, ctx); 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 375 return audit_compare_uid(tsk->loginuid, name, f, ctx); 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->suid, name, f, ctx); 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->sgid, name, f, ctx); 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 381 return audit_compare_uid(cred->fsuid, name, f, ctx); 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 383 return audit_compare_gid(cred->fsgid, name, f, ctx); 384 /* uid comparisons */ 385 case AUDIT_COMPARE_UID_TO_AUID: 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 387 case AUDIT_COMPARE_UID_TO_EUID: 388 return audit_uid_comparator(cred->uid, f->op, cred->euid); 389 case AUDIT_COMPARE_UID_TO_SUID: 390 return audit_uid_comparator(cred->uid, f->op, cred->suid); 391 case AUDIT_COMPARE_UID_TO_FSUID: 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 393 /* auid comparisons */ 394 case AUDIT_COMPARE_AUID_TO_EUID: 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 396 case AUDIT_COMPARE_AUID_TO_SUID: 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 398 case AUDIT_COMPARE_AUID_TO_FSUID: 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 450 451 for (i = 0; i < rule->field_count; i++) { 452 struct audit_field *f = &rule->fields[i]; 453 struct audit_names *n; 454 int result = 0; 455 pid_t pid; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 pid = task_pid_nr(tsk); 460 result = audit_comparator(pid, f->op, f->val); 461 break; 462 case AUDIT_PPID: 463 if (ctx) { 464 if (!ctx->ppid) 465 ctx->ppid = task_ppid_nr(tsk); 466 result = audit_comparator(ctx->ppid, f->op, f->val); 467 } 468 break; 469 case AUDIT_EXE: 470 result = audit_exe_compare(tsk, rule->exe); 471 break; 472 case AUDIT_UID: 473 result = audit_uid_comparator(cred->uid, f->op, f->uid); 474 break; 475 case AUDIT_EUID: 476 result = audit_uid_comparator(cred->euid, f->op, f->uid); 477 break; 478 case AUDIT_SUID: 479 result = audit_uid_comparator(cred->suid, f->op, f->uid); 480 break; 481 case AUDIT_FSUID: 482 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 483 break; 484 case AUDIT_GID: 485 result = audit_gid_comparator(cred->gid, f->op, f->gid); 486 if (f->op == Audit_equal) { 487 if (!result) 488 result = in_group_p(f->gid); 489 } else if (f->op == Audit_not_equal) { 490 if (result) 491 result = !in_group_p(f->gid); 492 } 493 break; 494 case AUDIT_EGID: 495 result = audit_gid_comparator(cred->egid, f->op, f->gid); 496 if (f->op == Audit_equal) { 497 if (!result) 498 result = in_egroup_p(f->gid); 499 } else if (f->op == Audit_not_equal) { 500 if (result) 501 result = !in_egroup_p(f->gid); 502 } 503 break; 504 case AUDIT_SGID: 505 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 506 break; 507 case AUDIT_FSGID: 508 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 509 break; 510 case AUDIT_PERS: 511 result = audit_comparator(tsk->personality, f->op, f->val); 512 break; 513 case AUDIT_ARCH: 514 if (ctx) 515 result = audit_comparator(ctx->arch, f->op, f->val); 516 break; 517 518 case AUDIT_EXIT: 519 if (ctx && ctx->return_valid) 520 result = audit_comparator(ctx->return_code, f->op, f->val); 521 break; 522 case AUDIT_SUCCESS: 523 if (ctx && ctx->return_valid) { 524 if (f->val) 525 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 526 else 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 528 } 529 break; 530 case AUDIT_DEVMAJOR: 531 if (name) { 532 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 533 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 534 ++result; 535 } else if (ctx) { 536 list_for_each_entry(n, &ctx->names_list, list) { 537 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 538 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 539 ++result; 540 break; 541 } 542 } 543 } 544 break; 545 case AUDIT_DEVMINOR: 546 if (name) { 547 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 548 audit_comparator(MINOR(name->rdev), f->op, f->val)) 549 ++result; 550 } else if (ctx) { 551 list_for_each_entry(n, &ctx->names_list, list) { 552 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 553 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 554 ++result; 555 break; 556 } 557 } 558 } 559 break; 560 case AUDIT_INODE: 561 if (name) 562 result = audit_comparator(name->ino, f->op, f->val); 563 else if (ctx) { 564 list_for_each_entry(n, &ctx->names_list, list) { 565 if (audit_comparator(n->ino, f->op, f->val)) { 566 ++result; 567 break; 568 } 569 } 570 } 571 break; 572 case AUDIT_OBJ_UID: 573 if (name) { 574 result = audit_uid_comparator(name->uid, f->op, f->uid); 575 } else if (ctx) { 576 list_for_each_entry(n, &ctx->names_list, list) { 577 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 578 ++result; 579 break; 580 } 581 } 582 } 583 break; 584 case AUDIT_OBJ_GID: 585 if (name) { 586 result = audit_gid_comparator(name->gid, f->op, f->gid); 587 } else if (ctx) { 588 list_for_each_entry(n, &ctx->names_list, list) { 589 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 590 ++result; 591 break; 592 } 593 } 594 } 595 break; 596 case AUDIT_WATCH: 597 if (name) 598 result = audit_watch_compare(rule->watch, name->ino, name->dev); 599 break; 600 case AUDIT_DIR: 601 if (ctx) 602 result = match_tree_refs(ctx, rule->tree); 603 break; 604 case AUDIT_LOGINUID: 605 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 606 break; 607 case AUDIT_LOGINUID_SET: 608 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 609 break; 610 case AUDIT_SUBJ_USER: 611 case AUDIT_SUBJ_ROLE: 612 case AUDIT_SUBJ_TYPE: 613 case AUDIT_SUBJ_SEN: 614 case AUDIT_SUBJ_CLR: 615 /* NOTE: this may return negative values indicating 616 a temporary error. We simply treat this as a 617 match for now to avoid losing information that 618 may be wanted. An error message will also be 619 logged upon error */ 620 if (f->lsm_rule) { 621 if (need_sid) { 622 security_task_getsecid(tsk, &sid); 623 need_sid = 0; 624 } 625 result = security_audit_rule_match(sid, f->type, 626 f->op, 627 f->lsm_rule, 628 ctx); 629 } 630 break; 631 case AUDIT_OBJ_USER: 632 case AUDIT_OBJ_ROLE: 633 case AUDIT_OBJ_TYPE: 634 case AUDIT_OBJ_LEV_LOW: 635 case AUDIT_OBJ_LEV_HIGH: 636 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 637 also applies here */ 638 if (f->lsm_rule) { 639 /* Find files that match */ 640 if (name) { 641 result = security_audit_rule_match( 642 name->osid, f->type, f->op, 643 f->lsm_rule, ctx); 644 } else if (ctx) { 645 list_for_each_entry(n, &ctx->names_list, list) { 646 if (security_audit_rule_match(n->osid, f->type, 647 f->op, f->lsm_rule, 648 ctx)) { 649 ++result; 650 break; 651 } 652 } 653 } 654 /* Find ipc objects that match */ 655 if (!ctx || ctx->type != AUDIT_IPC) 656 break; 657 if (security_audit_rule_match(ctx->ipc.osid, 658 f->type, f->op, 659 f->lsm_rule, ctx)) 660 ++result; 661 } 662 break; 663 case AUDIT_ARG0: 664 case AUDIT_ARG1: 665 case AUDIT_ARG2: 666 case AUDIT_ARG3: 667 if (ctx) 668 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 669 break; 670 case AUDIT_FILTERKEY: 671 /* ignore this field for filtering */ 672 result = 1; 673 break; 674 case AUDIT_PERM: 675 result = audit_match_perm(ctx, f->val); 676 break; 677 case AUDIT_FILETYPE: 678 result = audit_match_filetype(ctx, f->val); 679 break; 680 case AUDIT_FIELD_COMPARE: 681 result = audit_field_compare(tsk, cred, f, ctx, name); 682 break; 683 } 684 if (!result) 685 return 0; 686 } 687 688 if (ctx) { 689 if (rule->prio <= ctx->prio) 690 return 0; 691 if (rule->filterkey) { 692 kfree(ctx->filterkey); 693 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 694 } 695 ctx->prio = rule->prio; 696 } 697 switch (rule->action) { 698 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 699 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 700 } 701 return 1; 702 } 703 704 /* At process creation time, we can determine if system-call auditing is 705 * completely disabled for this task. Since we only have the task 706 * structure at this point, we can only check uid and gid. 707 */ 708 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 709 { 710 struct audit_entry *e; 711 enum audit_state state; 712 713 rcu_read_lock(); 714 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 715 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 716 &state, true)) { 717 if (state == AUDIT_RECORD_CONTEXT) 718 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 719 rcu_read_unlock(); 720 return state; 721 } 722 } 723 rcu_read_unlock(); 724 return AUDIT_BUILD_CONTEXT; 725 } 726 727 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 728 { 729 int word, bit; 730 731 if (val > 0xffffffff) 732 return false; 733 734 word = AUDIT_WORD(val); 735 if (word >= AUDIT_BITMASK_SIZE) 736 return false; 737 738 bit = AUDIT_BIT(val); 739 740 return rule->mask[word] & bit; 741 } 742 743 /* At syscall entry and exit time, this filter is called if the 744 * audit_state is not low enough that auditing cannot take place, but is 745 * also not high enough that we already know we have to write an audit 746 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 747 */ 748 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 749 struct audit_context *ctx, 750 struct list_head *list) 751 { 752 struct audit_entry *e; 753 enum audit_state state; 754 755 if (audit_pid && tsk->tgid == audit_pid) 756 return AUDIT_DISABLED; 757 758 rcu_read_lock(); 759 if (!list_empty(list)) { 760 list_for_each_entry_rcu(e, list, list) { 761 if (audit_in_mask(&e->rule, ctx->major) && 762 audit_filter_rules(tsk, &e->rule, ctx, NULL, 763 &state, false)) { 764 rcu_read_unlock(); 765 ctx->current_state = state; 766 return state; 767 } 768 } 769 } 770 rcu_read_unlock(); 771 return AUDIT_BUILD_CONTEXT; 772 } 773 774 /* 775 * Given an audit_name check the inode hash table to see if they match. 776 * Called holding the rcu read lock to protect the use of audit_inode_hash 777 */ 778 static int audit_filter_inode_name(struct task_struct *tsk, 779 struct audit_names *n, 780 struct audit_context *ctx) { 781 int h = audit_hash_ino((u32)n->ino); 782 struct list_head *list = &audit_inode_hash[h]; 783 struct audit_entry *e; 784 enum audit_state state; 785 786 if (list_empty(list)) 787 return 0; 788 789 list_for_each_entry_rcu(e, list, list) { 790 if (audit_in_mask(&e->rule, ctx->major) && 791 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 792 ctx->current_state = state; 793 return 1; 794 } 795 } 796 797 return 0; 798 } 799 800 /* At syscall exit time, this filter is called if any audit_names have been 801 * collected during syscall processing. We only check rules in sublists at hash 802 * buckets applicable to the inode numbers in audit_names. 803 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 804 */ 805 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 806 { 807 struct audit_names *n; 808 809 if (audit_pid && tsk->tgid == audit_pid) 810 return; 811 812 rcu_read_lock(); 813 814 list_for_each_entry(n, &ctx->names_list, list) { 815 if (audit_filter_inode_name(tsk, n, ctx)) 816 break; 817 } 818 rcu_read_unlock(); 819 } 820 821 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 822 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 823 int return_valid, 824 long return_code) 825 { 826 struct audit_context *context = tsk->audit_context; 827 828 if (!context) 829 return NULL; 830 context->return_valid = return_valid; 831 832 /* 833 * we need to fix up the return code in the audit logs if the actual 834 * return codes are later going to be fixed up by the arch specific 835 * signal handlers 836 * 837 * This is actually a test for: 838 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 839 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 840 * 841 * but is faster than a bunch of || 842 */ 843 if (unlikely(return_code <= -ERESTARTSYS) && 844 (return_code >= -ERESTART_RESTARTBLOCK) && 845 (return_code != -ENOIOCTLCMD)) 846 context->return_code = -EINTR; 847 else 848 context->return_code = return_code; 849 850 if (context->in_syscall && !context->dummy) { 851 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 852 audit_filter_inodes(tsk, context); 853 } 854 855 tsk->audit_context = NULL; 856 return context; 857 } 858 859 static inline void audit_proctitle_free(struct audit_context *context) 860 { 861 kfree(context->proctitle.value); 862 context->proctitle.value = NULL; 863 context->proctitle.len = 0; 864 } 865 866 static inline void audit_free_names(struct audit_context *context) 867 { 868 struct audit_names *n, *next; 869 870 list_for_each_entry_safe(n, next, &context->names_list, list) { 871 list_del(&n->list); 872 if (n->name) 873 putname(n->name); 874 if (n->should_free) 875 kfree(n); 876 } 877 context->name_count = 0; 878 path_put(&context->pwd); 879 context->pwd.dentry = NULL; 880 context->pwd.mnt = NULL; 881 } 882 883 static inline void audit_free_aux(struct audit_context *context) 884 { 885 struct audit_aux_data *aux; 886 887 while ((aux = context->aux)) { 888 context->aux = aux->next; 889 kfree(aux); 890 } 891 while ((aux = context->aux_pids)) { 892 context->aux_pids = aux->next; 893 kfree(aux); 894 } 895 } 896 897 static inline struct audit_context *audit_alloc_context(enum audit_state state) 898 { 899 struct audit_context *context; 900 901 context = kzalloc(sizeof(*context), GFP_KERNEL); 902 if (!context) 903 return NULL; 904 context->state = state; 905 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 906 INIT_LIST_HEAD(&context->killed_trees); 907 INIT_LIST_HEAD(&context->names_list); 908 return context; 909 } 910 911 /** 912 * audit_alloc - allocate an audit context block for a task 913 * @tsk: task 914 * 915 * Filter on the task information and allocate a per-task audit context 916 * if necessary. Doing so turns on system call auditing for the 917 * specified task. This is called from copy_process, so no lock is 918 * needed. 919 */ 920 int audit_alloc(struct task_struct *tsk) 921 { 922 struct audit_context *context; 923 enum audit_state state; 924 char *key = NULL; 925 926 if (likely(!audit_ever_enabled)) 927 return 0; /* Return if not auditing. */ 928 929 state = audit_filter_task(tsk, &key); 930 if (state == AUDIT_DISABLED) { 931 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 932 return 0; 933 } 934 935 if (!(context = audit_alloc_context(state))) { 936 kfree(key); 937 audit_log_lost("out of memory in audit_alloc"); 938 return -ENOMEM; 939 } 940 context->filterkey = key; 941 942 tsk->audit_context = context; 943 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 944 return 0; 945 } 946 947 static inline void audit_free_context(struct audit_context *context) 948 { 949 audit_free_names(context); 950 unroll_tree_refs(context, NULL, 0); 951 free_tree_refs(context); 952 audit_free_aux(context); 953 kfree(context->filterkey); 954 kfree(context->sockaddr); 955 audit_proctitle_free(context); 956 kfree(context); 957 } 958 959 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 960 kuid_t auid, kuid_t uid, unsigned int sessionid, 961 u32 sid, char *comm) 962 { 963 struct audit_buffer *ab; 964 char *ctx = NULL; 965 u32 len; 966 int rc = 0; 967 968 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 969 if (!ab) 970 return rc; 971 972 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 973 from_kuid(&init_user_ns, auid), 974 from_kuid(&init_user_ns, uid), sessionid); 975 if (sid) { 976 if (security_secid_to_secctx(sid, &ctx, &len)) { 977 audit_log_format(ab, " obj=(none)"); 978 rc = 1; 979 } else { 980 audit_log_format(ab, " obj=%s", ctx); 981 security_release_secctx(ctx, len); 982 } 983 } 984 audit_log_format(ab, " ocomm="); 985 audit_log_untrustedstring(ab, comm); 986 audit_log_end(ab); 987 988 return rc; 989 } 990 991 /* 992 * to_send and len_sent accounting are very loose estimates. We aren't 993 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 994 * within about 500 bytes (next page boundary) 995 * 996 * why snprintf? an int is up to 12 digits long. if we just assumed when 997 * logging that a[%d]= was going to be 16 characters long we would be wasting 998 * space in every audit message. In one 7500 byte message we can log up to 999 * about 1000 min size arguments. That comes down to about 50% waste of space 1000 * if we didn't do the snprintf to find out how long arg_num_len was. 1001 */ 1002 static int audit_log_single_execve_arg(struct audit_context *context, 1003 struct audit_buffer **ab, 1004 int arg_num, 1005 size_t *len_sent, 1006 const char __user *p, 1007 char *buf) 1008 { 1009 char arg_num_len_buf[12]; 1010 const char __user *tmp_p = p; 1011 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1012 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1013 size_t len, len_left, to_send; 1014 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1015 unsigned int i, has_cntl = 0, too_long = 0; 1016 int ret; 1017 1018 /* strnlen_user includes the null we don't want to send */ 1019 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1020 1021 /* 1022 * We just created this mm, if we can't find the strings 1023 * we just copied into it something is _very_ wrong. Similar 1024 * for strings that are too long, we should not have created 1025 * any. 1026 */ 1027 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) { 1028 send_sig(SIGKILL, current, 0); 1029 return -1; 1030 } 1031 1032 /* walk the whole argument looking for non-ascii chars */ 1033 do { 1034 if (len_left > MAX_EXECVE_AUDIT_LEN) 1035 to_send = MAX_EXECVE_AUDIT_LEN; 1036 else 1037 to_send = len_left; 1038 ret = copy_from_user(buf, tmp_p, to_send); 1039 /* 1040 * There is no reason for this copy to be short. We just 1041 * copied them here, and the mm hasn't been exposed to user- 1042 * space yet. 1043 */ 1044 if (ret) { 1045 WARN_ON(1); 1046 send_sig(SIGKILL, current, 0); 1047 return -1; 1048 } 1049 buf[to_send] = '\0'; 1050 has_cntl = audit_string_contains_control(buf, to_send); 1051 if (has_cntl) { 1052 /* 1053 * hex messages get logged as 2 bytes, so we can only 1054 * send half as much in each message 1055 */ 1056 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1057 break; 1058 } 1059 len_left -= to_send; 1060 tmp_p += to_send; 1061 } while (len_left > 0); 1062 1063 len_left = len; 1064 1065 if (len > max_execve_audit_len) 1066 too_long = 1; 1067 1068 /* rewalk the argument actually logging the message */ 1069 for (i = 0; len_left > 0; i++) { 1070 int room_left; 1071 1072 if (len_left > max_execve_audit_len) 1073 to_send = max_execve_audit_len; 1074 else 1075 to_send = len_left; 1076 1077 /* do we have space left to send this argument in this ab? */ 1078 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1079 if (has_cntl) 1080 room_left -= (to_send * 2); 1081 else 1082 room_left -= to_send; 1083 if (room_left < 0) { 1084 *len_sent = 0; 1085 audit_log_end(*ab); 1086 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1087 if (!*ab) 1088 return 0; 1089 } 1090 1091 /* 1092 * first record needs to say how long the original string was 1093 * so we can be sure nothing was lost. 1094 */ 1095 if ((i == 0) && (too_long)) 1096 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1097 has_cntl ? 2*len : len); 1098 1099 /* 1100 * normally arguments are small enough to fit and we already 1101 * filled buf above when we checked for control characters 1102 * so don't bother with another copy_from_user 1103 */ 1104 if (len >= max_execve_audit_len) 1105 ret = copy_from_user(buf, p, to_send); 1106 else 1107 ret = 0; 1108 if (ret) { 1109 WARN_ON(1); 1110 send_sig(SIGKILL, current, 0); 1111 return -1; 1112 } 1113 buf[to_send] = '\0'; 1114 1115 /* actually log it */ 1116 audit_log_format(*ab, " a%d", arg_num); 1117 if (too_long) 1118 audit_log_format(*ab, "[%d]", i); 1119 audit_log_format(*ab, "="); 1120 if (has_cntl) 1121 audit_log_n_hex(*ab, buf, to_send); 1122 else 1123 audit_log_string(*ab, buf); 1124 1125 p += to_send; 1126 len_left -= to_send; 1127 *len_sent += arg_num_len; 1128 if (has_cntl) 1129 *len_sent += to_send * 2; 1130 else 1131 *len_sent += to_send; 1132 } 1133 /* include the null we didn't log */ 1134 return len + 1; 1135 } 1136 1137 static void audit_log_execve_info(struct audit_context *context, 1138 struct audit_buffer **ab) 1139 { 1140 int i, len; 1141 size_t len_sent = 0; 1142 const char __user *p; 1143 char *buf; 1144 1145 p = (const char __user *)current->mm->arg_start; 1146 1147 audit_log_format(*ab, "argc=%d", context->execve.argc); 1148 1149 /* 1150 * we need some kernel buffer to hold the userspace args. Just 1151 * allocate one big one rather than allocating one of the right size 1152 * for every single argument inside audit_log_single_execve_arg() 1153 * should be <8k allocation so should be pretty safe. 1154 */ 1155 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1156 if (!buf) { 1157 audit_panic("out of memory for argv string"); 1158 return; 1159 } 1160 1161 for (i = 0; i < context->execve.argc; i++) { 1162 len = audit_log_single_execve_arg(context, ab, i, 1163 &len_sent, p, buf); 1164 if (len <= 0) 1165 break; 1166 p += len; 1167 } 1168 kfree(buf); 1169 } 1170 1171 static void show_special(struct audit_context *context, int *call_panic) 1172 { 1173 struct audit_buffer *ab; 1174 int i; 1175 1176 ab = audit_log_start(context, GFP_KERNEL, context->type); 1177 if (!ab) 1178 return; 1179 1180 switch (context->type) { 1181 case AUDIT_SOCKETCALL: { 1182 int nargs = context->socketcall.nargs; 1183 audit_log_format(ab, "nargs=%d", nargs); 1184 for (i = 0; i < nargs; i++) 1185 audit_log_format(ab, " a%d=%lx", i, 1186 context->socketcall.args[i]); 1187 break; } 1188 case AUDIT_IPC: { 1189 u32 osid = context->ipc.osid; 1190 1191 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1192 from_kuid(&init_user_ns, context->ipc.uid), 1193 from_kgid(&init_user_ns, context->ipc.gid), 1194 context->ipc.mode); 1195 if (osid) { 1196 char *ctx = NULL; 1197 u32 len; 1198 if (security_secid_to_secctx(osid, &ctx, &len)) { 1199 audit_log_format(ab, " osid=%u", osid); 1200 *call_panic = 1; 1201 } else { 1202 audit_log_format(ab, " obj=%s", ctx); 1203 security_release_secctx(ctx, len); 1204 } 1205 } 1206 if (context->ipc.has_perm) { 1207 audit_log_end(ab); 1208 ab = audit_log_start(context, GFP_KERNEL, 1209 AUDIT_IPC_SET_PERM); 1210 if (unlikely(!ab)) 1211 return; 1212 audit_log_format(ab, 1213 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1214 context->ipc.qbytes, 1215 context->ipc.perm_uid, 1216 context->ipc.perm_gid, 1217 context->ipc.perm_mode); 1218 } 1219 break; } 1220 case AUDIT_MQ_OPEN: { 1221 audit_log_format(ab, 1222 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1223 "mq_msgsize=%ld mq_curmsgs=%ld", 1224 context->mq_open.oflag, context->mq_open.mode, 1225 context->mq_open.attr.mq_flags, 1226 context->mq_open.attr.mq_maxmsg, 1227 context->mq_open.attr.mq_msgsize, 1228 context->mq_open.attr.mq_curmsgs); 1229 break; } 1230 case AUDIT_MQ_SENDRECV: { 1231 audit_log_format(ab, 1232 "mqdes=%d msg_len=%zd msg_prio=%u " 1233 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1234 context->mq_sendrecv.mqdes, 1235 context->mq_sendrecv.msg_len, 1236 context->mq_sendrecv.msg_prio, 1237 context->mq_sendrecv.abs_timeout.tv_sec, 1238 context->mq_sendrecv.abs_timeout.tv_nsec); 1239 break; } 1240 case AUDIT_MQ_NOTIFY: { 1241 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1242 context->mq_notify.mqdes, 1243 context->mq_notify.sigev_signo); 1244 break; } 1245 case AUDIT_MQ_GETSETATTR: { 1246 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1247 audit_log_format(ab, 1248 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1249 "mq_curmsgs=%ld ", 1250 context->mq_getsetattr.mqdes, 1251 attr->mq_flags, attr->mq_maxmsg, 1252 attr->mq_msgsize, attr->mq_curmsgs); 1253 break; } 1254 case AUDIT_CAPSET: { 1255 audit_log_format(ab, "pid=%d", context->capset.pid); 1256 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1257 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1258 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1259 break; } 1260 case AUDIT_MMAP: { 1261 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1262 context->mmap.flags); 1263 break; } 1264 case AUDIT_EXECVE: { 1265 audit_log_execve_info(context, &ab); 1266 break; } 1267 } 1268 audit_log_end(ab); 1269 } 1270 1271 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1272 { 1273 char *end = proctitle + len - 1; 1274 while (end > proctitle && !isprint(*end)) 1275 end--; 1276 1277 /* catch the case where proctitle is only 1 non-print character */ 1278 len = end - proctitle + 1; 1279 len -= isprint(proctitle[len-1]) == 0; 1280 return len; 1281 } 1282 1283 static void audit_log_proctitle(struct task_struct *tsk, 1284 struct audit_context *context) 1285 { 1286 int res; 1287 char *buf; 1288 char *msg = "(null)"; 1289 int len = strlen(msg); 1290 struct audit_buffer *ab; 1291 1292 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1293 if (!ab) 1294 return; /* audit_panic or being filtered */ 1295 1296 audit_log_format(ab, "proctitle="); 1297 1298 /* Not cached */ 1299 if (!context->proctitle.value) { 1300 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1301 if (!buf) 1302 goto out; 1303 /* Historically called this from procfs naming */ 1304 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1305 if (res == 0) { 1306 kfree(buf); 1307 goto out; 1308 } 1309 res = audit_proctitle_rtrim(buf, res); 1310 if (res == 0) { 1311 kfree(buf); 1312 goto out; 1313 } 1314 context->proctitle.value = buf; 1315 context->proctitle.len = res; 1316 } 1317 msg = context->proctitle.value; 1318 len = context->proctitle.len; 1319 out: 1320 audit_log_n_untrustedstring(ab, msg, len); 1321 audit_log_end(ab); 1322 } 1323 1324 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1325 { 1326 int i, call_panic = 0; 1327 struct audit_buffer *ab; 1328 struct audit_aux_data *aux; 1329 struct audit_names *n; 1330 1331 /* tsk == current */ 1332 context->personality = tsk->personality; 1333 1334 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1335 if (!ab) 1336 return; /* audit_panic has been called */ 1337 audit_log_format(ab, "arch=%x syscall=%d", 1338 context->arch, context->major); 1339 if (context->personality != PER_LINUX) 1340 audit_log_format(ab, " per=%lx", context->personality); 1341 if (context->return_valid) 1342 audit_log_format(ab, " success=%s exit=%ld", 1343 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1344 context->return_code); 1345 1346 audit_log_format(ab, 1347 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1348 context->argv[0], 1349 context->argv[1], 1350 context->argv[2], 1351 context->argv[3], 1352 context->name_count); 1353 1354 audit_log_task_info(ab, tsk); 1355 audit_log_key(ab, context->filterkey); 1356 audit_log_end(ab); 1357 1358 for (aux = context->aux; aux; aux = aux->next) { 1359 1360 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1361 if (!ab) 1362 continue; /* audit_panic has been called */ 1363 1364 switch (aux->type) { 1365 1366 case AUDIT_BPRM_FCAPS: { 1367 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1368 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1369 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1370 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1371 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1372 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1373 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1374 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1375 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1376 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1377 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1378 break; } 1379 1380 } 1381 audit_log_end(ab); 1382 } 1383 1384 if (context->type) 1385 show_special(context, &call_panic); 1386 1387 if (context->fds[0] >= 0) { 1388 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1389 if (ab) { 1390 audit_log_format(ab, "fd0=%d fd1=%d", 1391 context->fds[0], context->fds[1]); 1392 audit_log_end(ab); 1393 } 1394 } 1395 1396 if (context->sockaddr_len) { 1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1398 if (ab) { 1399 audit_log_format(ab, "saddr="); 1400 audit_log_n_hex(ab, (void *)context->sockaddr, 1401 context->sockaddr_len); 1402 audit_log_end(ab); 1403 } 1404 } 1405 1406 for (aux = context->aux_pids; aux; aux = aux->next) { 1407 struct audit_aux_data_pids *axs = (void *)aux; 1408 1409 for (i = 0; i < axs->pid_count; i++) 1410 if (audit_log_pid_context(context, axs->target_pid[i], 1411 axs->target_auid[i], 1412 axs->target_uid[i], 1413 axs->target_sessionid[i], 1414 axs->target_sid[i], 1415 axs->target_comm[i])) 1416 call_panic = 1; 1417 } 1418 1419 if (context->target_pid && 1420 audit_log_pid_context(context, context->target_pid, 1421 context->target_auid, context->target_uid, 1422 context->target_sessionid, 1423 context->target_sid, context->target_comm)) 1424 call_panic = 1; 1425 1426 if (context->pwd.dentry && context->pwd.mnt) { 1427 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1428 if (ab) { 1429 audit_log_d_path(ab, " cwd=", &context->pwd); 1430 audit_log_end(ab); 1431 } 1432 } 1433 1434 i = 0; 1435 list_for_each_entry(n, &context->names_list, list) { 1436 if (n->hidden) 1437 continue; 1438 audit_log_name(context, n, NULL, i++, &call_panic); 1439 } 1440 1441 audit_log_proctitle(tsk, context); 1442 1443 /* Send end of event record to help user space know we are finished */ 1444 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1445 if (ab) 1446 audit_log_end(ab); 1447 if (call_panic) 1448 audit_panic("error converting sid to string"); 1449 } 1450 1451 /** 1452 * audit_free - free a per-task audit context 1453 * @tsk: task whose audit context block to free 1454 * 1455 * Called from copy_process and do_exit 1456 */ 1457 void __audit_free(struct task_struct *tsk) 1458 { 1459 struct audit_context *context; 1460 1461 context = audit_take_context(tsk, 0, 0); 1462 if (!context) 1463 return; 1464 1465 /* Check for system calls that do not go through the exit 1466 * function (e.g., exit_group), then free context block. 1467 * We use GFP_ATOMIC here because we might be doing this 1468 * in the context of the idle thread */ 1469 /* that can happen only if we are called from do_exit() */ 1470 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1471 audit_log_exit(context, tsk); 1472 if (!list_empty(&context->killed_trees)) 1473 audit_kill_trees(&context->killed_trees); 1474 1475 audit_free_context(context); 1476 } 1477 1478 /** 1479 * audit_syscall_entry - fill in an audit record at syscall entry 1480 * @major: major syscall type (function) 1481 * @a1: additional syscall register 1 1482 * @a2: additional syscall register 2 1483 * @a3: additional syscall register 3 1484 * @a4: additional syscall register 4 1485 * 1486 * Fill in audit context at syscall entry. This only happens if the 1487 * audit context was created when the task was created and the state or 1488 * filters demand the audit context be built. If the state from the 1489 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1490 * then the record will be written at syscall exit time (otherwise, it 1491 * will only be written if another part of the kernel requests that it 1492 * be written). 1493 */ 1494 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1495 unsigned long a3, unsigned long a4) 1496 { 1497 struct task_struct *tsk = current; 1498 struct audit_context *context = tsk->audit_context; 1499 enum audit_state state; 1500 1501 if (!context) 1502 return; 1503 1504 BUG_ON(context->in_syscall || context->name_count); 1505 1506 if (!audit_enabled) 1507 return; 1508 1509 context->arch = syscall_get_arch(); 1510 context->major = major; 1511 context->argv[0] = a1; 1512 context->argv[1] = a2; 1513 context->argv[2] = a3; 1514 context->argv[3] = a4; 1515 1516 state = context->state; 1517 context->dummy = !audit_n_rules; 1518 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1519 context->prio = 0; 1520 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1521 } 1522 if (state == AUDIT_DISABLED) 1523 return; 1524 1525 context->serial = 0; 1526 context->ctime = CURRENT_TIME; 1527 context->in_syscall = 1; 1528 context->current_state = state; 1529 context->ppid = 0; 1530 } 1531 1532 /** 1533 * audit_syscall_exit - deallocate audit context after a system call 1534 * @success: success value of the syscall 1535 * @return_code: return value of the syscall 1536 * 1537 * Tear down after system call. If the audit context has been marked as 1538 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1539 * filtering, or because some other part of the kernel wrote an audit 1540 * message), then write out the syscall information. In call cases, 1541 * free the names stored from getname(). 1542 */ 1543 void __audit_syscall_exit(int success, long return_code) 1544 { 1545 struct task_struct *tsk = current; 1546 struct audit_context *context; 1547 1548 if (success) 1549 success = AUDITSC_SUCCESS; 1550 else 1551 success = AUDITSC_FAILURE; 1552 1553 context = audit_take_context(tsk, success, return_code); 1554 if (!context) 1555 return; 1556 1557 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1558 audit_log_exit(context, tsk); 1559 1560 context->in_syscall = 0; 1561 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1562 1563 if (!list_empty(&context->killed_trees)) 1564 audit_kill_trees(&context->killed_trees); 1565 1566 audit_free_names(context); 1567 unroll_tree_refs(context, NULL, 0); 1568 audit_free_aux(context); 1569 context->aux = NULL; 1570 context->aux_pids = NULL; 1571 context->target_pid = 0; 1572 context->target_sid = 0; 1573 context->sockaddr_len = 0; 1574 context->type = 0; 1575 context->fds[0] = -1; 1576 if (context->state != AUDIT_RECORD_CONTEXT) { 1577 kfree(context->filterkey); 1578 context->filterkey = NULL; 1579 } 1580 tsk->audit_context = context; 1581 } 1582 1583 static inline void handle_one(const struct inode *inode) 1584 { 1585 #ifdef CONFIG_AUDIT_TREE 1586 struct audit_context *context; 1587 struct audit_tree_refs *p; 1588 struct audit_chunk *chunk; 1589 int count; 1590 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1591 return; 1592 context = current->audit_context; 1593 p = context->trees; 1594 count = context->tree_count; 1595 rcu_read_lock(); 1596 chunk = audit_tree_lookup(inode); 1597 rcu_read_unlock(); 1598 if (!chunk) 1599 return; 1600 if (likely(put_tree_ref(context, chunk))) 1601 return; 1602 if (unlikely(!grow_tree_refs(context))) { 1603 pr_warn("out of memory, audit has lost a tree reference\n"); 1604 audit_set_auditable(context); 1605 audit_put_chunk(chunk); 1606 unroll_tree_refs(context, p, count); 1607 return; 1608 } 1609 put_tree_ref(context, chunk); 1610 #endif 1611 } 1612 1613 static void handle_path(const struct dentry *dentry) 1614 { 1615 #ifdef CONFIG_AUDIT_TREE 1616 struct audit_context *context; 1617 struct audit_tree_refs *p; 1618 const struct dentry *d, *parent; 1619 struct audit_chunk *drop; 1620 unsigned long seq; 1621 int count; 1622 1623 context = current->audit_context; 1624 p = context->trees; 1625 count = context->tree_count; 1626 retry: 1627 drop = NULL; 1628 d = dentry; 1629 rcu_read_lock(); 1630 seq = read_seqbegin(&rename_lock); 1631 for(;;) { 1632 struct inode *inode = d_backing_inode(d); 1633 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1634 struct audit_chunk *chunk; 1635 chunk = audit_tree_lookup(inode); 1636 if (chunk) { 1637 if (unlikely(!put_tree_ref(context, chunk))) { 1638 drop = chunk; 1639 break; 1640 } 1641 } 1642 } 1643 parent = d->d_parent; 1644 if (parent == d) 1645 break; 1646 d = parent; 1647 } 1648 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1649 rcu_read_unlock(); 1650 if (!drop) { 1651 /* just a race with rename */ 1652 unroll_tree_refs(context, p, count); 1653 goto retry; 1654 } 1655 audit_put_chunk(drop); 1656 if (grow_tree_refs(context)) { 1657 /* OK, got more space */ 1658 unroll_tree_refs(context, p, count); 1659 goto retry; 1660 } 1661 /* too bad */ 1662 pr_warn("out of memory, audit has lost a tree reference\n"); 1663 unroll_tree_refs(context, p, count); 1664 audit_set_auditable(context); 1665 return; 1666 } 1667 rcu_read_unlock(); 1668 #endif 1669 } 1670 1671 static struct audit_names *audit_alloc_name(struct audit_context *context, 1672 unsigned char type) 1673 { 1674 struct audit_names *aname; 1675 1676 if (context->name_count < AUDIT_NAMES) { 1677 aname = &context->preallocated_names[context->name_count]; 1678 memset(aname, 0, sizeof(*aname)); 1679 } else { 1680 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1681 if (!aname) 1682 return NULL; 1683 aname->should_free = true; 1684 } 1685 1686 aname->ino = AUDIT_INO_UNSET; 1687 aname->type = type; 1688 list_add_tail(&aname->list, &context->names_list); 1689 1690 context->name_count++; 1691 return aname; 1692 } 1693 1694 /** 1695 * audit_reusename - fill out filename with info from existing entry 1696 * @uptr: userland ptr to pathname 1697 * 1698 * Search the audit_names list for the current audit context. If there is an 1699 * existing entry with a matching "uptr" then return the filename 1700 * associated with that audit_name. If not, return NULL. 1701 */ 1702 struct filename * 1703 __audit_reusename(const __user char *uptr) 1704 { 1705 struct audit_context *context = current->audit_context; 1706 struct audit_names *n; 1707 1708 list_for_each_entry(n, &context->names_list, list) { 1709 if (!n->name) 1710 continue; 1711 if (n->name->uptr == uptr) { 1712 n->name->refcnt++; 1713 return n->name; 1714 } 1715 } 1716 return NULL; 1717 } 1718 1719 /** 1720 * audit_getname - add a name to the list 1721 * @name: name to add 1722 * 1723 * Add a name to the list of audit names for this context. 1724 * Called from fs/namei.c:getname(). 1725 */ 1726 void __audit_getname(struct filename *name) 1727 { 1728 struct audit_context *context = current->audit_context; 1729 struct audit_names *n; 1730 1731 if (!context->in_syscall) 1732 return; 1733 1734 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1735 if (!n) 1736 return; 1737 1738 n->name = name; 1739 n->name_len = AUDIT_NAME_FULL; 1740 name->aname = n; 1741 name->refcnt++; 1742 1743 if (!context->pwd.dentry) 1744 get_fs_pwd(current->fs, &context->pwd); 1745 } 1746 1747 /** 1748 * __audit_inode - store the inode and device from a lookup 1749 * @name: name being audited 1750 * @dentry: dentry being audited 1751 * @flags: attributes for this particular entry 1752 */ 1753 void __audit_inode(struct filename *name, const struct dentry *dentry, 1754 unsigned int flags) 1755 { 1756 struct audit_context *context = current->audit_context; 1757 struct inode *inode = d_backing_inode(dentry); 1758 struct audit_names *n; 1759 bool parent = flags & AUDIT_INODE_PARENT; 1760 1761 if (!context->in_syscall) 1762 return; 1763 1764 if (!name) 1765 goto out_alloc; 1766 1767 /* 1768 * If we have a pointer to an audit_names entry already, then we can 1769 * just use it directly if the type is correct. 1770 */ 1771 n = name->aname; 1772 if (n) { 1773 if (parent) { 1774 if (n->type == AUDIT_TYPE_PARENT || 1775 n->type == AUDIT_TYPE_UNKNOWN) 1776 goto out; 1777 } else { 1778 if (n->type != AUDIT_TYPE_PARENT) 1779 goto out; 1780 } 1781 } 1782 1783 list_for_each_entry_reverse(n, &context->names_list, list) { 1784 if (n->ino) { 1785 /* valid inode number, use that for the comparison */ 1786 if (n->ino != inode->i_ino || 1787 n->dev != inode->i_sb->s_dev) 1788 continue; 1789 } else if (n->name) { 1790 /* inode number has not been set, check the name */ 1791 if (strcmp(n->name->name, name->name)) 1792 continue; 1793 } else 1794 /* no inode and no name (?!) ... this is odd ... */ 1795 continue; 1796 1797 /* match the correct record type */ 1798 if (parent) { 1799 if (n->type == AUDIT_TYPE_PARENT || 1800 n->type == AUDIT_TYPE_UNKNOWN) 1801 goto out; 1802 } else { 1803 if (n->type != AUDIT_TYPE_PARENT) 1804 goto out; 1805 } 1806 } 1807 1808 out_alloc: 1809 /* unable to find an entry with both a matching name and type */ 1810 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1811 if (!n) 1812 return; 1813 if (name) { 1814 n->name = name; 1815 name->refcnt++; 1816 } 1817 1818 out: 1819 if (parent) { 1820 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1821 n->type = AUDIT_TYPE_PARENT; 1822 if (flags & AUDIT_INODE_HIDDEN) 1823 n->hidden = true; 1824 } else { 1825 n->name_len = AUDIT_NAME_FULL; 1826 n->type = AUDIT_TYPE_NORMAL; 1827 } 1828 handle_path(dentry); 1829 audit_copy_inode(n, dentry, inode); 1830 } 1831 1832 void __audit_file(const struct file *file) 1833 { 1834 __audit_inode(NULL, file->f_path.dentry, 0); 1835 } 1836 1837 /** 1838 * __audit_inode_child - collect inode info for created/removed objects 1839 * @parent: inode of dentry parent 1840 * @dentry: dentry being audited 1841 * @type: AUDIT_TYPE_* value that we're looking for 1842 * 1843 * For syscalls that create or remove filesystem objects, audit_inode 1844 * can only collect information for the filesystem object's parent. 1845 * This call updates the audit context with the child's information. 1846 * Syscalls that create a new filesystem object must be hooked after 1847 * the object is created. Syscalls that remove a filesystem object 1848 * must be hooked prior, in order to capture the target inode during 1849 * unsuccessful attempts. 1850 */ 1851 void __audit_inode_child(struct inode *parent, 1852 const struct dentry *dentry, 1853 const unsigned char type) 1854 { 1855 struct audit_context *context = current->audit_context; 1856 struct inode *inode = d_backing_inode(dentry); 1857 const char *dname = dentry->d_name.name; 1858 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1859 1860 if (!context->in_syscall) 1861 return; 1862 1863 if (inode) 1864 handle_one(inode); 1865 1866 /* look for a parent entry first */ 1867 list_for_each_entry(n, &context->names_list, list) { 1868 if (!n->name || 1869 (n->type != AUDIT_TYPE_PARENT && 1870 n->type != AUDIT_TYPE_UNKNOWN)) 1871 continue; 1872 1873 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1874 !audit_compare_dname_path(dname, 1875 n->name->name, n->name_len)) { 1876 if (n->type == AUDIT_TYPE_UNKNOWN) 1877 n->type = AUDIT_TYPE_PARENT; 1878 found_parent = n; 1879 break; 1880 } 1881 } 1882 1883 /* is there a matching child entry? */ 1884 list_for_each_entry(n, &context->names_list, list) { 1885 /* can only match entries that have a name */ 1886 if (!n->name || 1887 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1888 continue; 1889 1890 if (!strcmp(dname, n->name->name) || 1891 !audit_compare_dname_path(dname, n->name->name, 1892 found_parent ? 1893 found_parent->name_len : 1894 AUDIT_NAME_FULL)) { 1895 if (n->type == AUDIT_TYPE_UNKNOWN) 1896 n->type = type; 1897 found_child = n; 1898 break; 1899 } 1900 } 1901 1902 if (!found_parent) { 1903 /* create a new, "anonymous" parent record */ 1904 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1905 if (!n) 1906 return; 1907 audit_copy_inode(n, NULL, parent); 1908 } 1909 1910 if (!found_child) { 1911 found_child = audit_alloc_name(context, type); 1912 if (!found_child) 1913 return; 1914 1915 /* Re-use the name belonging to the slot for a matching parent 1916 * directory. All names for this context are relinquished in 1917 * audit_free_names() */ 1918 if (found_parent) { 1919 found_child->name = found_parent->name; 1920 found_child->name_len = AUDIT_NAME_FULL; 1921 found_child->name->refcnt++; 1922 } 1923 } 1924 1925 if (inode) 1926 audit_copy_inode(found_child, dentry, inode); 1927 else 1928 found_child->ino = AUDIT_INO_UNSET; 1929 } 1930 EXPORT_SYMBOL_GPL(__audit_inode_child); 1931 1932 /** 1933 * auditsc_get_stamp - get local copies of audit_context values 1934 * @ctx: audit_context for the task 1935 * @t: timespec to store time recorded in the audit_context 1936 * @serial: serial value that is recorded in the audit_context 1937 * 1938 * Also sets the context as auditable. 1939 */ 1940 int auditsc_get_stamp(struct audit_context *ctx, 1941 struct timespec *t, unsigned int *serial) 1942 { 1943 if (!ctx->in_syscall) 1944 return 0; 1945 if (!ctx->serial) 1946 ctx->serial = audit_serial(); 1947 t->tv_sec = ctx->ctime.tv_sec; 1948 t->tv_nsec = ctx->ctime.tv_nsec; 1949 *serial = ctx->serial; 1950 if (!ctx->prio) { 1951 ctx->prio = 1; 1952 ctx->current_state = AUDIT_RECORD_CONTEXT; 1953 } 1954 return 1; 1955 } 1956 1957 /* global counter which is incremented every time something logs in */ 1958 static atomic_t session_id = ATOMIC_INIT(0); 1959 1960 static int audit_set_loginuid_perm(kuid_t loginuid) 1961 { 1962 /* if we are unset, we don't need privs */ 1963 if (!audit_loginuid_set(current)) 1964 return 0; 1965 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1966 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1967 return -EPERM; 1968 /* it is set, you need permission */ 1969 if (!capable(CAP_AUDIT_CONTROL)) 1970 return -EPERM; 1971 /* reject if this is not an unset and we don't allow that */ 1972 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1973 return -EPERM; 1974 return 0; 1975 } 1976 1977 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1978 unsigned int oldsessionid, unsigned int sessionid, 1979 int rc) 1980 { 1981 struct audit_buffer *ab; 1982 uid_t uid, oldloginuid, loginuid; 1983 struct tty_struct *tty; 1984 1985 if (!audit_enabled) 1986 return; 1987 1988 uid = from_kuid(&init_user_ns, task_uid(current)); 1989 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 1990 loginuid = from_kuid(&init_user_ns, kloginuid), 1991 tty = audit_get_tty(current); 1992 1993 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1994 if (!ab) 1995 return; 1996 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 1997 audit_log_task_context(ab); 1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2000 oldsessionid, sessionid, !rc); 2001 audit_put_tty(tty); 2002 audit_log_end(ab); 2003 } 2004 2005 /** 2006 * audit_set_loginuid - set current task's audit_context loginuid 2007 * @loginuid: loginuid value 2008 * 2009 * Returns 0. 2010 * 2011 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2012 */ 2013 int audit_set_loginuid(kuid_t loginuid) 2014 { 2015 struct task_struct *task = current; 2016 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2017 kuid_t oldloginuid; 2018 int rc; 2019 2020 oldloginuid = audit_get_loginuid(current); 2021 oldsessionid = audit_get_sessionid(current); 2022 2023 rc = audit_set_loginuid_perm(loginuid); 2024 if (rc) 2025 goto out; 2026 2027 /* are we setting or clearing? */ 2028 if (uid_valid(loginuid)) 2029 sessionid = (unsigned int)atomic_inc_return(&session_id); 2030 2031 task->sessionid = sessionid; 2032 task->loginuid = loginuid; 2033 out: 2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2035 return rc; 2036 } 2037 2038 /** 2039 * __audit_mq_open - record audit data for a POSIX MQ open 2040 * @oflag: open flag 2041 * @mode: mode bits 2042 * @attr: queue attributes 2043 * 2044 */ 2045 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2046 { 2047 struct audit_context *context = current->audit_context; 2048 2049 if (attr) 2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2051 else 2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2053 2054 context->mq_open.oflag = oflag; 2055 context->mq_open.mode = mode; 2056 2057 context->type = AUDIT_MQ_OPEN; 2058 } 2059 2060 /** 2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2062 * @mqdes: MQ descriptor 2063 * @msg_len: Message length 2064 * @msg_prio: Message priority 2065 * @abs_timeout: Message timeout in absolute time 2066 * 2067 */ 2068 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2069 const struct timespec *abs_timeout) 2070 { 2071 struct audit_context *context = current->audit_context; 2072 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2073 2074 if (abs_timeout) 2075 memcpy(p, abs_timeout, sizeof(struct timespec)); 2076 else 2077 memset(p, 0, sizeof(struct timespec)); 2078 2079 context->mq_sendrecv.mqdes = mqdes; 2080 context->mq_sendrecv.msg_len = msg_len; 2081 context->mq_sendrecv.msg_prio = msg_prio; 2082 2083 context->type = AUDIT_MQ_SENDRECV; 2084 } 2085 2086 /** 2087 * __audit_mq_notify - record audit data for a POSIX MQ notify 2088 * @mqdes: MQ descriptor 2089 * @notification: Notification event 2090 * 2091 */ 2092 2093 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2094 { 2095 struct audit_context *context = current->audit_context; 2096 2097 if (notification) 2098 context->mq_notify.sigev_signo = notification->sigev_signo; 2099 else 2100 context->mq_notify.sigev_signo = 0; 2101 2102 context->mq_notify.mqdes = mqdes; 2103 context->type = AUDIT_MQ_NOTIFY; 2104 } 2105 2106 /** 2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2108 * @mqdes: MQ descriptor 2109 * @mqstat: MQ flags 2110 * 2111 */ 2112 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2113 { 2114 struct audit_context *context = current->audit_context; 2115 context->mq_getsetattr.mqdes = mqdes; 2116 context->mq_getsetattr.mqstat = *mqstat; 2117 context->type = AUDIT_MQ_GETSETATTR; 2118 } 2119 2120 /** 2121 * audit_ipc_obj - record audit data for ipc object 2122 * @ipcp: ipc permissions 2123 * 2124 */ 2125 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2126 { 2127 struct audit_context *context = current->audit_context; 2128 context->ipc.uid = ipcp->uid; 2129 context->ipc.gid = ipcp->gid; 2130 context->ipc.mode = ipcp->mode; 2131 context->ipc.has_perm = 0; 2132 security_ipc_getsecid(ipcp, &context->ipc.osid); 2133 context->type = AUDIT_IPC; 2134 } 2135 2136 /** 2137 * audit_ipc_set_perm - record audit data for new ipc permissions 2138 * @qbytes: msgq bytes 2139 * @uid: msgq user id 2140 * @gid: msgq group id 2141 * @mode: msgq mode (permissions) 2142 * 2143 * Called only after audit_ipc_obj(). 2144 */ 2145 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2146 { 2147 struct audit_context *context = current->audit_context; 2148 2149 context->ipc.qbytes = qbytes; 2150 context->ipc.perm_uid = uid; 2151 context->ipc.perm_gid = gid; 2152 context->ipc.perm_mode = mode; 2153 context->ipc.has_perm = 1; 2154 } 2155 2156 void __audit_bprm(struct linux_binprm *bprm) 2157 { 2158 struct audit_context *context = current->audit_context; 2159 2160 context->type = AUDIT_EXECVE; 2161 context->execve.argc = bprm->argc; 2162 } 2163 2164 2165 /** 2166 * audit_socketcall - record audit data for sys_socketcall 2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2168 * @args: args array 2169 * 2170 */ 2171 int __audit_socketcall(int nargs, unsigned long *args) 2172 { 2173 struct audit_context *context = current->audit_context; 2174 2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2176 return -EINVAL; 2177 context->type = AUDIT_SOCKETCALL; 2178 context->socketcall.nargs = nargs; 2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2180 return 0; 2181 } 2182 2183 /** 2184 * __audit_fd_pair - record audit data for pipe and socketpair 2185 * @fd1: the first file descriptor 2186 * @fd2: the second file descriptor 2187 * 2188 */ 2189 void __audit_fd_pair(int fd1, int fd2) 2190 { 2191 struct audit_context *context = current->audit_context; 2192 context->fds[0] = fd1; 2193 context->fds[1] = fd2; 2194 } 2195 2196 /** 2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2198 * @len: data length in user space 2199 * @a: data address in kernel space 2200 * 2201 * Returns 0 for success or NULL context or < 0 on error. 2202 */ 2203 int __audit_sockaddr(int len, void *a) 2204 { 2205 struct audit_context *context = current->audit_context; 2206 2207 if (!context->sockaddr) { 2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2209 if (!p) 2210 return -ENOMEM; 2211 context->sockaddr = p; 2212 } 2213 2214 context->sockaddr_len = len; 2215 memcpy(context->sockaddr, a, len); 2216 return 0; 2217 } 2218 2219 void __audit_ptrace(struct task_struct *t) 2220 { 2221 struct audit_context *context = current->audit_context; 2222 2223 context->target_pid = task_pid_nr(t); 2224 context->target_auid = audit_get_loginuid(t); 2225 context->target_uid = task_uid(t); 2226 context->target_sessionid = audit_get_sessionid(t); 2227 security_task_getsecid(t, &context->target_sid); 2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2229 } 2230 2231 /** 2232 * audit_signal_info - record signal info for shutting down audit subsystem 2233 * @sig: signal value 2234 * @t: task being signaled 2235 * 2236 * If the audit subsystem is being terminated, record the task (pid) 2237 * and uid that is doing that. 2238 */ 2239 int __audit_signal_info(int sig, struct task_struct *t) 2240 { 2241 struct audit_aux_data_pids *axp; 2242 struct task_struct *tsk = current; 2243 struct audit_context *ctx = tsk->audit_context; 2244 kuid_t uid = current_uid(), t_uid = task_uid(t); 2245 2246 if (audit_pid && t->tgid == audit_pid) { 2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2248 audit_sig_pid = task_pid_nr(tsk); 2249 if (uid_valid(tsk->loginuid)) 2250 audit_sig_uid = tsk->loginuid; 2251 else 2252 audit_sig_uid = uid; 2253 security_task_getsecid(tsk, &audit_sig_sid); 2254 } 2255 if (!audit_signals || audit_dummy_context()) 2256 return 0; 2257 } 2258 2259 /* optimize the common case by putting first signal recipient directly 2260 * in audit_context */ 2261 if (!ctx->target_pid) { 2262 ctx->target_pid = task_tgid_nr(t); 2263 ctx->target_auid = audit_get_loginuid(t); 2264 ctx->target_uid = t_uid; 2265 ctx->target_sessionid = audit_get_sessionid(t); 2266 security_task_getsecid(t, &ctx->target_sid); 2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2268 return 0; 2269 } 2270 2271 axp = (void *)ctx->aux_pids; 2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2274 if (!axp) 2275 return -ENOMEM; 2276 2277 axp->d.type = AUDIT_OBJ_PID; 2278 axp->d.next = ctx->aux_pids; 2279 ctx->aux_pids = (void *)axp; 2280 } 2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2282 2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2285 axp->target_uid[axp->pid_count] = t_uid; 2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2289 axp->pid_count++; 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2296 * @bprm: pointer to the bprm being processed 2297 * @new: the proposed new credentials 2298 * @old: the old credentials 2299 * 2300 * Simply check if the proc already has the caps given by the file and if not 2301 * store the priv escalation info for later auditing at the end of the syscall 2302 * 2303 * -Eric 2304 */ 2305 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2306 const struct cred *new, const struct cred *old) 2307 { 2308 struct audit_aux_data_bprm_fcaps *ax; 2309 struct audit_context *context = current->audit_context; 2310 struct cpu_vfs_cap_data vcaps; 2311 2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2313 if (!ax) 2314 return -ENOMEM; 2315 2316 ax->d.type = AUDIT_BPRM_FCAPS; 2317 ax->d.next = context->aux; 2318 context->aux = (void *)ax; 2319 2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2321 2322 ax->fcap.permitted = vcaps.permitted; 2323 ax->fcap.inheritable = vcaps.inheritable; 2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2326 2327 ax->old_pcap.permitted = old->cap_permitted; 2328 ax->old_pcap.inheritable = old->cap_inheritable; 2329 ax->old_pcap.effective = old->cap_effective; 2330 2331 ax->new_pcap.permitted = new->cap_permitted; 2332 ax->new_pcap.inheritable = new->cap_inheritable; 2333 ax->new_pcap.effective = new->cap_effective; 2334 return 0; 2335 } 2336 2337 /** 2338 * __audit_log_capset - store information about the arguments to the capset syscall 2339 * @new: the new credentials 2340 * @old: the old (current) credentials 2341 * 2342 * Record the arguments userspace sent to sys_capset for later printing by the 2343 * audit system if applicable 2344 */ 2345 void __audit_log_capset(const struct cred *new, const struct cred *old) 2346 { 2347 struct audit_context *context = current->audit_context; 2348 context->capset.pid = task_pid_nr(current); 2349 context->capset.cap.effective = new->cap_effective; 2350 context->capset.cap.inheritable = new->cap_effective; 2351 context->capset.cap.permitted = new->cap_permitted; 2352 context->type = AUDIT_CAPSET; 2353 } 2354 2355 void __audit_mmap_fd(int fd, int flags) 2356 { 2357 struct audit_context *context = current->audit_context; 2358 context->mmap.fd = fd; 2359 context->mmap.flags = flags; 2360 context->type = AUDIT_MMAP; 2361 } 2362 2363 static void audit_log_task(struct audit_buffer *ab) 2364 { 2365 kuid_t auid, uid; 2366 kgid_t gid; 2367 unsigned int sessionid; 2368 char comm[sizeof(current->comm)]; 2369 2370 auid = audit_get_loginuid(current); 2371 sessionid = audit_get_sessionid(current); 2372 current_uid_gid(&uid, &gid); 2373 2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2375 from_kuid(&init_user_ns, auid), 2376 from_kuid(&init_user_ns, uid), 2377 from_kgid(&init_user_ns, gid), 2378 sessionid); 2379 audit_log_task_context(ab); 2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2381 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2382 audit_log_d_path_exe(ab, current->mm); 2383 } 2384 2385 /** 2386 * audit_core_dumps - record information about processes that end abnormally 2387 * @signr: signal value 2388 * 2389 * If a process ends with a core dump, something fishy is going on and we 2390 * should record the event for investigation. 2391 */ 2392 void audit_core_dumps(long signr) 2393 { 2394 struct audit_buffer *ab; 2395 2396 if (!audit_enabled) 2397 return; 2398 2399 if (signr == SIGQUIT) /* don't care for those */ 2400 return; 2401 2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2403 if (unlikely(!ab)) 2404 return; 2405 audit_log_task(ab); 2406 audit_log_format(ab, " sig=%ld", signr); 2407 audit_log_end(ab); 2408 } 2409 2410 void __audit_seccomp(unsigned long syscall, long signr, int code) 2411 { 2412 struct audit_buffer *ab; 2413 2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2415 if (unlikely(!ab)) 2416 return; 2417 audit_log_task(ab); 2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2419 signr, syscall_get_arch(), syscall, 2420 in_compat_syscall(), KSTK_EIP(current), code); 2421 audit_log_end(ab); 2422 } 2423 2424 struct list_head *audit_killed_trees(void) 2425 { 2426 struct audit_context *ctx = current->audit_context; 2427 if (likely(!ctx || !ctx->in_syscall)) 2428 return NULL; 2429 return &ctx->killed_trees; 2430 } 2431