1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 75 #include "audit.h" 76 77 /* flags stating the success for a syscall */ 78 #define AUDITSC_INVALID 0 79 #define AUDITSC_SUCCESS 1 80 #define AUDITSC_FAILURE 2 81 82 /* no execve audit message should be longer than this (userspace limits) */ 83 #define MAX_EXECVE_AUDIT_LEN 7500 84 85 /* max length to print of cmdline/proctitle value during audit */ 86 #define MAX_PROCTITLE_AUDIT_LEN 128 87 88 /* number of audit rules */ 89 int audit_n_rules; 90 91 /* determines whether we collect data for signals sent */ 92 int audit_signals; 93 94 struct audit_aux_data { 95 struct audit_aux_data *next; 96 int type; 97 }; 98 99 #define AUDIT_AUX_IPCPERM 0 100 101 /* Number of target pids per aux struct. */ 102 #define AUDIT_AUX_PIDS 16 103 104 struct audit_aux_data_pids { 105 struct audit_aux_data d; 106 pid_t target_pid[AUDIT_AUX_PIDS]; 107 kuid_t target_auid[AUDIT_AUX_PIDS]; 108 kuid_t target_uid[AUDIT_AUX_PIDS]; 109 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 110 u32 target_sid[AUDIT_AUX_PIDS]; 111 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 112 int pid_count; 113 }; 114 115 struct audit_aux_data_bprm_fcaps { 116 struct audit_aux_data d; 117 struct audit_cap_data fcap; 118 unsigned int fcap_ver; 119 struct audit_cap_data old_pcap; 120 struct audit_cap_data new_pcap; 121 }; 122 123 struct audit_tree_refs { 124 struct audit_tree_refs *next; 125 struct audit_chunk *c[31]; 126 }; 127 128 static inline int open_arg(int flags, int mask) 129 { 130 int n = ACC_MODE(flags); 131 if (flags & (O_TRUNC | O_CREAT)) 132 n |= AUDIT_PERM_WRITE; 133 return n & mask; 134 } 135 136 static int audit_match_perm(struct audit_context *ctx, int mask) 137 { 138 unsigned n; 139 if (unlikely(!ctx)) 140 return 0; 141 n = ctx->major; 142 143 switch (audit_classify_syscall(ctx->arch, n)) { 144 case 0: /* native */ 145 if ((mask & AUDIT_PERM_WRITE) && 146 audit_match_class(AUDIT_CLASS_WRITE, n)) 147 return 1; 148 if ((mask & AUDIT_PERM_READ) && 149 audit_match_class(AUDIT_CLASS_READ, n)) 150 return 1; 151 if ((mask & AUDIT_PERM_ATTR) && 152 audit_match_class(AUDIT_CLASS_CHATTR, n)) 153 return 1; 154 return 0; 155 case 1: /* 32bit on biarch */ 156 if ((mask & AUDIT_PERM_WRITE) && 157 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 158 return 1; 159 if ((mask & AUDIT_PERM_READ) && 160 audit_match_class(AUDIT_CLASS_READ_32, n)) 161 return 1; 162 if ((mask & AUDIT_PERM_ATTR) && 163 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 164 return 1; 165 return 0; 166 case 2: /* open */ 167 return mask & ACC_MODE(ctx->argv[1]); 168 case 3: /* openat */ 169 return mask & ACC_MODE(ctx->argv[2]); 170 case 4: /* socketcall */ 171 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 172 case 5: /* execve */ 173 return mask & AUDIT_PERM_EXEC; 174 default: 175 return 0; 176 } 177 } 178 179 static int audit_match_filetype(struct audit_context *ctx, int val) 180 { 181 struct audit_names *n; 182 umode_t mode = (umode_t)val; 183 184 if (unlikely(!ctx)) 185 return 0; 186 187 list_for_each_entry(n, &ctx->names_list, list) { 188 if ((n->ino != -1) && 189 ((n->mode & S_IFMT) == mode)) 190 return 1; 191 } 192 193 return 0; 194 } 195 196 /* 197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 198 * ->first_trees points to its beginning, ->trees - to the current end of data. 199 * ->tree_count is the number of free entries in array pointed to by ->trees. 200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 202 * it's going to remain 1-element for almost any setup) until we free context itself. 203 * References in it _are_ dropped - at the same time we free/drop aux stuff. 204 */ 205 206 #ifdef CONFIG_AUDIT_TREE 207 static void audit_set_auditable(struct audit_context *ctx) 208 { 209 if (!ctx->prio) { 210 ctx->prio = 1; 211 ctx->current_state = AUDIT_RECORD_CONTEXT; 212 } 213 } 214 215 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 216 { 217 struct audit_tree_refs *p = ctx->trees; 218 int left = ctx->tree_count; 219 if (likely(left)) { 220 p->c[--left] = chunk; 221 ctx->tree_count = left; 222 return 1; 223 } 224 if (!p) 225 return 0; 226 p = p->next; 227 if (p) { 228 p->c[30] = chunk; 229 ctx->trees = p; 230 ctx->tree_count = 30; 231 return 1; 232 } 233 return 0; 234 } 235 236 static int grow_tree_refs(struct audit_context *ctx) 237 { 238 struct audit_tree_refs *p = ctx->trees; 239 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 240 if (!ctx->trees) { 241 ctx->trees = p; 242 return 0; 243 } 244 if (p) 245 p->next = ctx->trees; 246 else 247 ctx->first_trees = ctx->trees; 248 ctx->tree_count = 31; 249 return 1; 250 } 251 #endif 252 253 static void unroll_tree_refs(struct audit_context *ctx, 254 struct audit_tree_refs *p, int count) 255 { 256 #ifdef CONFIG_AUDIT_TREE 257 struct audit_tree_refs *q; 258 int n; 259 if (!p) { 260 /* we started with empty chain */ 261 p = ctx->first_trees; 262 count = 31; 263 /* if the very first allocation has failed, nothing to do */ 264 if (!p) 265 return; 266 } 267 n = count; 268 for (q = p; q != ctx->trees; q = q->next, n = 31) { 269 while (n--) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 } 274 while (n-- > ctx->tree_count) { 275 audit_put_chunk(q->c[n]); 276 q->c[n] = NULL; 277 } 278 ctx->trees = p; 279 ctx->tree_count = count; 280 #endif 281 } 282 283 static void free_tree_refs(struct audit_context *ctx) 284 { 285 struct audit_tree_refs *p, *q; 286 for (p = ctx->first_trees; p; p = q) { 287 q = p->next; 288 kfree(p); 289 } 290 } 291 292 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 293 { 294 #ifdef CONFIG_AUDIT_TREE 295 struct audit_tree_refs *p; 296 int n; 297 if (!tree) 298 return 0; 299 /* full ones */ 300 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 301 for (n = 0; n < 31; n++) 302 if (audit_tree_match(p->c[n], tree)) 303 return 1; 304 } 305 /* partial */ 306 if (p) { 307 for (n = ctx->tree_count; n < 31; n++) 308 if (audit_tree_match(p->c[n], tree)) 309 return 1; 310 } 311 #endif 312 return 0; 313 } 314 315 static int audit_compare_uid(kuid_t uid, 316 struct audit_names *name, 317 struct audit_field *f, 318 struct audit_context *ctx) 319 { 320 struct audit_names *n; 321 int rc; 322 323 if (name) { 324 rc = audit_uid_comparator(uid, f->op, name->uid); 325 if (rc) 326 return rc; 327 } 328 329 if (ctx) { 330 list_for_each_entry(n, &ctx->names_list, list) { 331 rc = audit_uid_comparator(uid, f->op, n->uid); 332 if (rc) 333 return rc; 334 } 335 } 336 return 0; 337 } 338 339 static int audit_compare_gid(kgid_t gid, 340 struct audit_names *name, 341 struct audit_field *f, 342 struct audit_context *ctx) 343 { 344 struct audit_names *n; 345 int rc; 346 347 if (name) { 348 rc = audit_gid_comparator(gid, f->op, name->gid); 349 if (rc) 350 return rc; 351 } 352 353 if (ctx) { 354 list_for_each_entry(n, &ctx->names_list, list) { 355 rc = audit_gid_comparator(gid, f->op, n->gid); 356 if (rc) 357 return rc; 358 } 359 } 360 return 0; 361 } 362 363 static int audit_field_compare(struct task_struct *tsk, 364 const struct cred *cred, 365 struct audit_field *f, 366 struct audit_context *ctx, 367 struct audit_names *name) 368 { 369 switch (f->val) { 370 /* process to file object comparisons */ 371 case AUDIT_COMPARE_UID_TO_OBJ_UID: 372 return audit_compare_uid(cred->uid, name, f, ctx); 373 case AUDIT_COMPARE_GID_TO_OBJ_GID: 374 return audit_compare_gid(cred->gid, name, f, ctx); 375 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 376 return audit_compare_uid(cred->euid, name, f, ctx); 377 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 378 return audit_compare_gid(cred->egid, name, f, ctx); 379 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 380 return audit_compare_uid(tsk->loginuid, name, f, ctx); 381 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 382 return audit_compare_uid(cred->suid, name, f, ctx); 383 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 384 return audit_compare_gid(cred->sgid, name, f, ctx); 385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 386 return audit_compare_uid(cred->fsuid, name, f, ctx); 387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 388 return audit_compare_gid(cred->fsgid, name, f, ctx); 389 /* uid comparisons */ 390 case AUDIT_COMPARE_UID_TO_AUID: 391 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 392 case AUDIT_COMPARE_UID_TO_EUID: 393 return audit_uid_comparator(cred->uid, f->op, cred->euid); 394 case AUDIT_COMPARE_UID_TO_SUID: 395 return audit_uid_comparator(cred->uid, f->op, cred->suid); 396 case AUDIT_COMPARE_UID_TO_FSUID: 397 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 398 /* auid comparisons */ 399 case AUDIT_COMPARE_AUID_TO_EUID: 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 401 case AUDIT_COMPARE_AUID_TO_SUID: 402 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 403 case AUDIT_COMPARE_AUID_TO_FSUID: 404 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 405 /* euid comparisons */ 406 case AUDIT_COMPARE_EUID_TO_SUID: 407 return audit_uid_comparator(cred->euid, f->op, cred->suid); 408 case AUDIT_COMPARE_EUID_TO_FSUID: 409 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 410 /* suid comparisons */ 411 case AUDIT_COMPARE_SUID_TO_FSUID: 412 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 413 /* gid comparisons */ 414 case AUDIT_COMPARE_GID_TO_EGID: 415 return audit_gid_comparator(cred->gid, f->op, cred->egid); 416 case AUDIT_COMPARE_GID_TO_SGID: 417 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 418 case AUDIT_COMPARE_GID_TO_FSGID: 419 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 420 /* egid comparisons */ 421 case AUDIT_COMPARE_EGID_TO_SGID: 422 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 423 case AUDIT_COMPARE_EGID_TO_FSGID: 424 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 425 /* sgid comparison */ 426 case AUDIT_COMPARE_SGID_TO_FSGID: 427 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 428 default: 429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 430 return 0; 431 } 432 return 0; 433 } 434 435 /* Determine if any context name data matches a rule's watch data */ 436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 437 * otherwise. 438 * 439 * If task_creation is true, this is an explicit indication that we are 440 * filtering a task rule at task creation time. This and tsk == current are 441 * the only situations where tsk->cred may be accessed without an rcu read lock. 442 */ 443 static int audit_filter_rules(struct task_struct *tsk, 444 struct audit_krule *rule, 445 struct audit_context *ctx, 446 struct audit_names *name, 447 enum audit_state *state, 448 bool task_creation) 449 { 450 const struct cred *cred; 451 int i, need_sid = 1; 452 u32 sid; 453 454 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 455 456 for (i = 0; i < rule->field_count; i++) { 457 struct audit_field *f = &rule->fields[i]; 458 struct audit_names *n; 459 int result = 0; 460 pid_t pid; 461 462 switch (f->type) { 463 case AUDIT_PID: 464 pid = task_pid_nr(tsk); 465 result = audit_comparator(pid, f->op, f->val); 466 break; 467 case AUDIT_PPID: 468 if (ctx) { 469 if (!ctx->ppid) 470 ctx->ppid = task_ppid_nr(tsk); 471 result = audit_comparator(ctx->ppid, f->op, f->val); 472 } 473 break; 474 case AUDIT_UID: 475 result = audit_uid_comparator(cred->uid, f->op, f->uid); 476 break; 477 case AUDIT_EUID: 478 result = audit_uid_comparator(cred->euid, f->op, f->uid); 479 break; 480 case AUDIT_SUID: 481 result = audit_uid_comparator(cred->suid, f->op, f->uid); 482 break; 483 case AUDIT_FSUID: 484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 485 break; 486 case AUDIT_GID: 487 result = audit_gid_comparator(cred->gid, f->op, f->gid); 488 if (f->op == Audit_equal) { 489 if (!result) 490 result = in_group_p(f->gid); 491 } else if (f->op == Audit_not_equal) { 492 if (result) 493 result = !in_group_p(f->gid); 494 } 495 break; 496 case AUDIT_EGID: 497 result = audit_gid_comparator(cred->egid, f->op, f->gid); 498 if (f->op == Audit_equal) { 499 if (!result) 500 result = in_egroup_p(f->gid); 501 } else if (f->op == Audit_not_equal) { 502 if (result) 503 result = !in_egroup_p(f->gid); 504 } 505 break; 506 case AUDIT_SGID: 507 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 508 break; 509 case AUDIT_FSGID: 510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 511 break; 512 case AUDIT_PERS: 513 result = audit_comparator(tsk->personality, f->op, f->val); 514 break; 515 case AUDIT_ARCH: 516 if (ctx) 517 result = audit_comparator(ctx->arch, f->op, f->val); 518 break; 519 520 case AUDIT_EXIT: 521 if (ctx && ctx->return_valid) 522 result = audit_comparator(ctx->return_code, f->op, f->val); 523 break; 524 case AUDIT_SUCCESS: 525 if (ctx && ctx->return_valid) { 526 if (f->val) 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 528 else 529 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 530 } 531 break; 532 case AUDIT_DEVMAJOR: 533 if (name) { 534 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 535 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 536 ++result; 537 } else if (ctx) { 538 list_for_each_entry(n, &ctx->names_list, list) { 539 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 540 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 541 ++result; 542 break; 543 } 544 } 545 } 546 break; 547 case AUDIT_DEVMINOR: 548 if (name) { 549 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 550 audit_comparator(MINOR(name->rdev), f->op, f->val)) 551 ++result; 552 } else if (ctx) { 553 list_for_each_entry(n, &ctx->names_list, list) { 554 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 555 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 556 ++result; 557 break; 558 } 559 } 560 } 561 break; 562 case AUDIT_INODE: 563 if (name) 564 result = audit_comparator(name->ino, f->op, f->val); 565 else if (ctx) { 566 list_for_each_entry(n, &ctx->names_list, list) { 567 if (audit_comparator(n->ino, f->op, f->val)) { 568 ++result; 569 break; 570 } 571 } 572 } 573 break; 574 case AUDIT_OBJ_UID: 575 if (name) { 576 result = audit_uid_comparator(name->uid, f->op, f->uid); 577 } else if (ctx) { 578 list_for_each_entry(n, &ctx->names_list, list) { 579 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 580 ++result; 581 break; 582 } 583 } 584 } 585 break; 586 case AUDIT_OBJ_GID: 587 if (name) { 588 result = audit_gid_comparator(name->gid, f->op, f->gid); 589 } else if (ctx) { 590 list_for_each_entry(n, &ctx->names_list, list) { 591 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 592 ++result; 593 break; 594 } 595 } 596 } 597 break; 598 case AUDIT_WATCH: 599 if (name) 600 result = audit_watch_compare(rule->watch, name->ino, name->dev); 601 break; 602 case AUDIT_DIR: 603 if (ctx) 604 result = match_tree_refs(ctx, rule->tree); 605 break; 606 case AUDIT_LOGINUID: 607 result = 0; 608 if (ctx) 609 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 610 break; 611 case AUDIT_LOGINUID_SET: 612 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 613 break; 614 case AUDIT_SUBJ_USER: 615 case AUDIT_SUBJ_ROLE: 616 case AUDIT_SUBJ_TYPE: 617 case AUDIT_SUBJ_SEN: 618 case AUDIT_SUBJ_CLR: 619 /* NOTE: this may return negative values indicating 620 a temporary error. We simply treat this as a 621 match for now to avoid losing information that 622 may be wanted. An error message will also be 623 logged upon error */ 624 if (f->lsm_rule) { 625 if (need_sid) { 626 security_task_getsecid(tsk, &sid); 627 need_sid = 0; 628 } 629 result = security_audit_rule_match(sid, f->type, 630 f->op, 631 f->lsm_rule, 632 ctx); 633 } 634 break; 635 case AUDIT_OBJ_USER: 636 case AUDIT_OBJ_ROLE: 637 case AUDIT_OBJ_TYPE: 638 case AUDIT_OBJ_LEV_LOW: 639 case AUDIT_OBJ_LEV_HIGH: 640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 641 also applies here */ 642 if (f->lsm_rule) { 643 /* Find files that match */ 644 if (name) { 645 result = security_audit_rule_match( 646 name->osid, f->type, f->op, 647 f->lsm_rule, ctx); 648 } else if (ctx) { 649 list_for_each_entry(n, &ctx->names_list, list) { 650 if (security_audit_rule_match(n->osid, f->type, 651 f->op, f->lsm_rule, 652 ctx)) { 653 ++result; 654 break; 655 } 656 } 657 } 658 /* Find ipc objects that match */ 659 if (!ctx || ctx->type != AUDIT_IPC) 660 break; 661 if (security_audit_rule_match(ctx->ipc.osid, 662 f->type, f->op, 663 f->lsm_rule, ctx)) 664 ++result; 665 } 666 break; 667 case AUDIT_ARG0: 668 case AUDIT_ARG1: 669 case AUDIT_ARG2: 670 case AUDIT_ARG3: 671 if (ctx) 672 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 673 break; 674 case AUDIT_FILTERKEY: 675 /* ignore this field for filtering */ 676 result = 1; 677 break; 678 case AUDIT_PERM: 679 result = audit_match_perm(ctx, f->val); 680 break; 681 case AUDIT_FILETYPE: 682 result = audit_match_filetype(ctx, f->val); 683 break; 684 case AUDIT_FIELD_COMPARE: 685 result = audit_field_compare(tsk, cred, f, ctx, name); 686 break; 687 } 688 if (!result) 689 return 0; 690 } 691 692 if (ctx) { 693 if (rule->prio <= ctx->prio) 694 return 0; 695 if (rule->filterkey) { 696 kfree(ctx->filterkey); 697 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 698 } 699 ctx->prio = rule->prio; 700 } 701 switch (rule->action) { 702 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 703 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 704 } 705 return 1; 706 } 707 708 /* At process creation time, we can determine if system-call auditing is 709 * completely disabled for this task. Since we only have the task 710 * structure at this point, we can only check uid and gid. 711 */ 712 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 713 { 714 struct audit_entry *e; 715 enum audit_state state; 716 717 rcu_read_lock(); 718 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 719 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 720 &state, true)) { 721 if (state == AUDIT_RECORD_CONTEXT) 722 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 723 rcu_read_unlock(); 724 return state; 725 } 726 } 727 rcu_read_unlock(); 728 return AUDIT_BUILD_CONTEXT; 729 } 730 731 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 732 { 733 int word, bit; 734 735 if (val > 0xffffffff) 736 return false; 737 738 word = AUDIT_WORD(val); 739 if (word >= AUDIT_BITMASK_SIZE) 740 return false; 741 742 bit = AUDIT_BIT(val); 743 744 return rule->mask[word] & bit; 745 } 746 747 /* At syscall entry and exit time, this filter is called if the 748 * audit_state is not low enough that auditing cannot take place, but is 749 * also not high enough that we already know we have to write an audit 750 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 751 */ 752 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 753 struct audit_context *ctx, 754 struct list_head *list) 755 { 756 struct audit_entry *e; 757 enum audit_state state; 758 759 if (audit_pid && tsk->tgid == audit_pid) 760 return AUDIT_DISABLED; 761 762 rcu_read_lock(); 763 if (!list_empty(list)) { 764 list_for_each_entry_rcu(e, list, list) { 765 if (audit_in_mask(&e->rule, ctx->major) && 766 audit_filter_rules(tsk, &e->rule, ctx, NULL, 767 &state, false)) { 768 rcu_read_unlock(); 769 ctx->current_state = state; 770 return state; 771 } 772 } 773 } 774 rcu_read_unlock(); 775 return AUDIT_BUILD_CONTEXT; 776 } 777 778 /* 779 * Given an audit_name check the inode hash table to see if they match. 780 * Called holding the rcu read lock to protect the use of audit_inode_hash 781 */ 782 static int audit_filter_inode_name(struct task_struct *tsk, 783 struct audit_names *n, 784 struct audit_context *ctx) { 785 int h = audit_hash_ino((u32)n->ino); 786 struct list_head *list = &audit_inode_hash[h]; 787 struct audit_entry *e; 788 enum audit_state state; 789 790 if (list_empty(list)) 791 return 0; 792 793 list_for_each_entry_rcu(e, list, list) { 794 if (audit_in_mask(&e->rule, ctx->major) && 795 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 796 ctx->current_state = state; 797 return 1; 798 } 799 } 800 801 return 0; 802 } 803 804 /* At syscall exit time, this filter is called if any audit_names have been 805 * collected during syscall processing. We only check rules in sublists at hash 806 * buckets applicable to the inode numbers in audit_names. 807 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 808 */ 809 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 810 { 811 struct audit_names *n; 812 813 if (audit_pid && tsk->tgid == audit_pid) 814 return; 815 816 rcu_read_lock(); 817 818 list_for_each_entry(n, &ctx->names_list, list) { 819 if (audit_filter_inode_name(tsk, n, ctx)) 820 break; 821 } 822 rcu_read_unlock(); 823 } 824 825 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 826 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 827 int return_valid, 828 long return_code) 829 { 830 struct audit_context *context = tsk->audit_context; 831 832 if (!context) 833 return NULL; 834 context->return_valid = return_valid; 835 836 /* 837 * we need to fix up the return code in the audit logs if the actual 838 * return codes are later going to be fixed up by the arch specific 839 * signal handlers 840 * 841 * This is actually a test for: 842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 844 * 845 * but is faster than a bunch of || 846 */ 847 if (unlikely(return_code <= -ERESTARTSYS) && 848 (return_code >= -ERESTART_RESTARTBLOCK) && 849 (return_code != -ENOIOCTLCMD)) 850 context->return_code = -EINTR; 851 else 852 context->return_code = return_code; 853 854 if (context->in_syscall && !context->dummy) { 855 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 856 audit_filter_inodes(tsk, context); 857 } 858 859 tsk->audit_context = NULL; 860 return context; 861 } 862 863 static inline void audit_proctitle_free(struct audit_context *context) 864 { 865 kfree(context->proctitle.value); 866 context->proctitle.value = NULL; 867 context->proctitle.len = 0; 868 } 869 870 static inline void audit_free_names(struct audit_context *context) 871 { 872 struct audit_names *n, *next; 873 874 #if AUDIT_DEBUG == 2 875 if (context->put_count + context->ino_count != context->name_count) { 876 int i = 0; 877 878 pr_err("%s:%d(:%d): major=%d in_syscall=%d" 879 " name_count=%d put_count=%d ino_count=%d" 880 " [NOT freeing]\n", __FILE__, __LINE__, 881 context->serial, context->major, context->in_syscall, 882 context->name_count, context->put_count, 883 context->ino_count); 884 list_for_each_entry(n, &context->names_list, list) { 885 pr_err("names[%d] = %p = %s\n", i++, n->name, 886 n->name->name ?: "(null)"); 887 } 888 dump_stack(); 889 return; 890 } 891 #endif 892 #if AUDIT_DEBUG 893 context->put_count = 0; 894 context->ino_count = 0; 895 #endif 896 897 list_for_each_entry_safe(n, next, &context->names_list, list) { 898 list_del(&n->list); 899 if (n->name && n->name_put) 900 final_putname(n->name); 901 if (n->should_free) 902 kfree(n); 903 } 904 context->name_count = 0; 905 path_put(&context->pwd); 906 context->pwd.dentry = NULL; 907 context->pwd.mnt = NULL; 908 } 909 910 static inline void audit_free_aux(struct audit_context *context) 911 { 912 struct audit_aux_data *aux; 913 914 while ((aux = context->aux)) { 915 context->aux = aux->next; 916 kfree(aux); 917 } 918 while ((aux = context->aux_pids)) { 919 context->aux_pids = aux->next; 920 kfree(aux); 921 } 922 } 923 924 static inline struct audit_context *audit_alloc_context(enum audit_state state) 925 { 926 struct audit_context *context; 927 928 context = kzalloc(sizeof(*context), GFP_KERNEL); 929 if (!context) 930 return NULL; 931 context->state = state; 932 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 933 INIT_LIST_HEAD(&context->killed_trees); 934 INIT_LIST_HEAD(&context->names_list); 935 return context; 936 } 937 938 /** 939 * audit_alloc - allocate an audit context block for a task 940 * @tsk: task 941 * 942 * Filter on the task information and allocate a per-task audit context 943 * if necessary. Doing so turns on system call auditing for the 944 * specified task. This is called from copy_process, so no lock is 945 * needed. 946 */ 947 int audit_alloc(struct task_struct *tsk) 948 { 949 struct audit_context *context; 950 enum audit_state state; 951 char *key = NULL; 952 953 if (likely(!audit_ever_enabled)) 954 return 0; /* Return if not auditing. */ 955 956 state = audit_filter_task(tsk, &key); 957 if (state == AUDIT_DISABLED) { 958 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 959 return 0; 960 } 961 962 if (!(context = audit_alloc_context(state))) { 963 kfree(key); 964 audit_log_lost("out of memory in audit_alloc"); 965 return -ENOMEM; 966 } 967 context->filterkey = key; 968 969 tsk->audit_context = context; 970 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 971 return 0; 972 } 973 974 static inline void audit_free_context(struct audit_context *context) 975 { 976 audit_free_names(context); 977 unroll_tree_refs(context, NULL, 0); 978 free_tree_refs(context); 979 audit_free_aux(context); 980 kfree(context->filterkey); 981 kfree(context->sockaddr); 982 audit_proctitle_free(context); 983 kfree(context); 984 } 985 986 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 987 kuid_t auid, kuid_t uid, unsigned int sessionid, 988 u32 sid, char *comm) 989 { 990 struct audit_buffer *ab; 991 char *ctx = NULL; 992 u32 len; 993 int rc = 0; 994 995 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 996 if (!ab) 997 return rc; 998 999 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1000 from_kuid(&init_user_ns, auid), 1001 from_kuid(&init_user_ns, uid), sessionid); 1002 if (sid) { 1003 if (security_secid_to_secctx(sid, &ctx, &len)) { 1004 audit_log_format(ab, " obj=(none)"); 1005 rc = 1; 1006 } else { 1007 audit_log_format(ab, " obj=%s", ctx); 1008 security_release_secctx(ctx, len); 1009 } 1010 } 1011 audit_log_format(ab, " ocomm="); 1012 audit_log_untrustedstring(ab, comm); 1013 audit_log_end(ab); 1014 1015 return rc; 1016 } 1017 1018 /* 1019 * to_send and len_sent accounting are very loose estimates. We aren't 1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1021 * within about 500 bytes (next page boundary) 1022 * 1023 * why snprintf? an int is up to 12 digits long. if we just assumed when 1024 * logging that a[%d]= was going to be 16 characters long we would be wasting 1025 * space in every audit message. In one 7500 byte message we can log up to 1026 * about 1000 min size arguments. That comes down to about 50% waste of space 1027 * if we didn't do the snprintf to find out how long arg_num_len was. 1028 */ 1029 static int audit_log_single_execve_arg(struct audit_context *context, 1030 struct audit_buffer **ab, 1031 int arg_num, 1032 size_t *len_sent, 1033 const char __user *p, 1034 char *buf) 1035 { 1036 char arg_num_len_buf[12]; 1037 const char __user *tmp_p = p; 1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1040 size_t len, len_left, to_send; 1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1042 unsigned int i, has_cntl = 0, too_long = 0; 1043 int ret; 1044 1045 /* strnlen_user includes the null we don't want to send */ 1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1047 1048 /* 1049 * We just created this mm, if we can't find the strings 1050 * we just copied into it something is _very_ wrong. Similar 1051 * for strings that are too long, we should not have created 1052 * any. 1053 */ 1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1055 WARN_ON(1); 1056 send_sig(SIGKILL, current, 0); 1057 return -1; 1058 } 1059 1060 /* walk the whole argument looking for non-ascii chars */ 1061 do { 1062 if (len_left > MAX_EXECVE_AUDIT_LEN) 1063 to_send = MAX_EXECVE_AUDIT_LEN; 1064 else 1065 to_send = len_left; 1066 ret = copy_from_user(buf, tmp_p, to_send); 1067 /* 1068 * There is no reason for this copy to be short. We just 1069 * copied them here, and the mm hasn't been exposed to user- 1070 * space yet. 1071 */ 1072 if (ret) { 1073 WARN_ON(1); 1074 send_sig(SIGKILL, current, 0); 1075 return -1; 1076 } 1077 buf[to_send] = '\0'; 1078 has_cntl = audit_string_contains_control(buf, to_send); 1079 if (has_cntl) { 1080 /* 1081 * hex messages get logged as 2 bytes, so we can only 1082 * send half as much in each message 1083 */ 1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1085 break; 1086 } 1087 len_left -= to_send; 1088 tmp_p += to_send; 1089 } while (len_left > 0); 1090 1091 len_left = len; 1092 1093 if (len > max_execve_audit_len) 1094 too_long = 1; 1095 1096 /* rewalk the argument actually logging the message */ 1097 for (i = 0; len_left > 0; i++) { 1098 int room_left; 1099 1100 if (len_left > max_execve_audit_len) 1101 to_send = max_execve_audit_len; 1102 else 1103 to_send = len_left; 1104 1105 /* do we have space left to send this argument in this ab? */ 1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1107 if (has_cntl) 1108 room_left -= (to_send * 2); 1109 else 1110 room_left -= to_send; 1111 if (room_left < 0) { 1112 *len_sent = 0; 1113 audit_log_end(*ab); 1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1115 if (!*ab) 1116 return 0; 1117 } 1118 1119 /* 1120 * first record needs to say how long the original string was 1121 * so we can be sure nothing was lost. 1122 */ 1123 if ((i == 0) && (too_long)) 1124 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1125 has_cntl ? 2*len : len); 1126 1127 /* 1128 * normally arguments are small enough to fit and we already 1129 * filled buf above when we checked for control characters 1130 * so don't bother with another copy_from_user 1131 */ 1132 if (len >= max_execve_audit_len) 1133 ret = copy_from_user(buf, p, to_send); 1134 else 1135 ret = 0; 1136 if (ret) { 1137 WARN_ON(1); 1138 send_sig(SIGKILL, current, 0); 1139 return -1; 1140 } 1141 buf[to_send] = '\0'; 1142 1143 /* actually log it */ 1144 audit_log_format(*ab, " a%d", arg_num); 1145 if (too_long) 1146 audit_log_format(*ab, "[%d]", i); 1147 audit_log_format(*ab, "="); 1148 if (has_cntl) 1149 audit_log_n_hex(*ab, buf, to_send); 1150 else 1151 audit_log_string(*ab, buf); 1152 1153 p += to_send; 1154 len_left -= to_send; 1155 *len_sent += arg_num_len; 1156 if (has_cntl) 1157 *len_sent += to_send * 2; 1158 else 1159 *len_sent += to_send; 1160 } 1161 /* include the null we didn't log */ 1162 return len + 1; 1163 } 1164 1165 static void audit_log_execve_info(struct audit_context *context, 1166 struct audit_buffer **ab) 1167 { 1168 int i, len; 1169 size_t len_sent = 0; 1170 const char __user *p; 1171 char *buf; 1172 1173 p = (const char __user *)current->mm->arg_start; 1174 1175 audit_log_format(*ab, "argc=%d", context->execve.argc); 1176 1177 /* 1178 * we need some kernel buffer to hold the userspace args. Just 1179 * allocate one big one rather than allocating one of the right size 1180 * for every single argument inside audit_log_single_execve_arg() 1181 * should be <8k allocation so should be pretty safe. 1182 */ 1183 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1184 if (!buf) { 1185 audit_panic("out of memory for argv string"); 1186 return; 1187 } 1188 1189 for (i = 0; i < context->execve.argc; i++) { 1190 len = audit_log_single_execve_arg(context, ab, i, 1191 &len_sent, p, buf); 1192 if (len <= 0) 1193 break; 1194 p += len; 1195 } 1196 kfree(buf); 1197 } 1198 1199 static void show_special(struct audit_context *context, int *call_panic) 1200 { 1201 struct audit_buffer *ab; 1202 int i; 1203 1204 ab = audit_log_start(context, GFP_KERNEL, context->type); 1205 if (!ab) 1206 return; 1207 1208 switch (context->type) { 1209 case AUDIT_SOCKETCALL: { 1210 int nargs = context->socketcall.nargs; 1211 audit_log_format(ab, "nargs=%d", nargs); 1212 for (i = 0; i < nargs; i++) 1213 audit_log_format(ab, " a%d=%lx", i, 1214 context->socketcall.args[i]); 1215 break; } 1216 case AUDIT_IPC: { 1217 u32 osid = context->ipc.osid; 1218 1219 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1220 from_kuid(&init_user_ns, context->ipc.uid), 1221 from_kgid(&init_user_ns, context->ipc.gid), 1222 context->ipc.mode); 1223 if (osid) { 1224 char *ctx = NULL; 1225 u32 len; 1226 if (security_secid_to_secctx(osid, &ctx, &len)) { 1227 audit_log_format(ab, " osid=%u", osid); 1228 *call_panic = 1; 1229 } else { 1230 audit_log_format(ab, " obj=%s", ctx); 1231 security_release_secctx(ctx, len); 1232 } 1233 } 1234 if (context->ipc.has_perm) { 1235 audit_log_end(ab); 1236 ab = audit_log_start(context, GFP_KERNEL, 1237 AUDIT_IPC_SET_PERM); 1238 if (unlikely(!ab)) 1239 return; 1240 audit_log_format(ab, 1241 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1242 context->ipc.qbytes, 1243 context->ipc.perm_uid, 1244 context->ipc.perm_gid, 1245 context->ipc.perm_mode); 1246 } 1247 break; } 1248 case AUDIT_MQ_OPEN: { 1249 audit_log_format(ab, 1250 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1251 "mq_msgsize=%ld mq_curmsgs=%ld", 1252 context->mq_open.oflag, context->mq_open.mode, 1253 context->mq_open.attr.mq_flags, 1254 context->mq_open.attr.mq_maxmsg, 1255 context->mq_open.attr.mq_msgsize, 1256 context->mq_open.attr.mq_curmsgs); 1257 break; } 1258 case AUDIT_MQ_SENDRECV: { 1259 audit_log_format(ab, 1260 "mqdes=%d msg_len=%zd msg_prio=%u " 1261 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1262 context->mq_sendrecv.mqdes, 1263 context->mq_sendrecv.msg_len, 1264 context->mq_sendrecv.msg_prio, 1265 context->mq_sendrecv.abs_timeout.tv_sec, 1266 context->mq_sendrecv.abs_timeout.tv_nsec); 1267 break; } 1268 case AUDIT_MQ_NOTIFY: { 1269 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1270 context->mq_notify.mqdes, 1271 context->mq_notify.sigev_signo); 1272 break; } 1273 case AUDIT_MQ_GETSETATTR: { 1274 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1275 audit_log_format(ab, 1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1277 "mq_curmsgs=%ld ", 1278 context->mq_getsetattr.mqdes, 1279 attr->mq_flags, attr->mq_maxmsg, 1280 attr->mq_msgsize, attr->mq_curmsgs); 1281 break; } 1282 case AUDIT_CAPSET: { 1283 audit_log_format(ab, "pid=%d", context->capset.pid); 1284 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1285 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1286 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1287 break; } 1288 case AUDIT_MMAP: { 1289 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1290 context->mmap.flags); 1291 break; } 1292 case AUDIT_EXECVE: { 1293 audit_log_execve_info(context, &ab); 1294 break; } 1295 } 1296 audit_log_end(ab); 1297 } 1298 1299 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1300 { 1301 char *end = proctitle + len - 1; 1302 while (end > proctitle && !isprint(*end)) 1303 end--; 1304 1305 /* catch the case where proctitle is only 1 non-print character */ 1306 len = end - proctitle + 1; 1307 len -= isprint(proctitle[len-1]) == 0; 1308 return len; 1309 } 1310 1311 static void audit_log_proctitle(struct task_struct *tsk, 1312 struct audit_context *context) 1313 { 1314 int res; 1315 char *buf; 1316 char *msg = "(null)"; 1317 int len = strlen(msg); 1318 struct audit_buffer *ab; 1319 1320 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1321 if (!ab) 1322 return; /* audit_panic or being filtered */ 1323 1324 audit_log_format(ab, "proctitle="); 1325 1326 /* Not cached */ 1327 if (!context->proctitle.value) { 1328 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1329 if (!buf) 1330 goto out; 1331 /* Historically called this from procfs naming */ 1332 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1333 if (res == 0) { 1334 kfree(buf); 1335 goto out; 1336 } 1337 res = audit_proctitle_rtrim(buf, res); 1338 if (res == 0) { 1339 kfree(buf); 1340 goto out; 1341 } 1342 context->proctitle.value = buf; 1343 context->proctitle.len = res; 1344 } 1345 msg = context->proctitle.value; 1346 len = context->proctitle.len; 1347 out: 1348 audit_log_n_untrustedstring(ab, msg, len); 1349 audit_log_end(ab); 1350 } 1351 1352 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1353 { 1354 int i, call_panic = 0; 1355 struct audit_buffer *ab; 1356 struct audit_aux_data *aux; 1357 struct audit_names *n; 1358 1359 /* tsk == current */ 1360 context->personality = tsk->personality; 1361 1362 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1363 if (!ab) 1364 return; /* audit_panic has been called */ 1365 audit_log_format(ab, "arch=%x syscall=%d", 1366 context->arch, context->major); 1367 if (context->personality != PER_LINUX) 1368 audit_log_format(ab, " per=%lx", context->personality); 1369 if (context->return_valid) 1370 audit_log_format(ab, " success=%s exit=%ld", 1371 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1372 context->return_code); 1373 1374 audit_log_format(ab, 1375 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1376 context->argv[0], 1377 context->argv[1], 1378 context->argv[2], 1379 context->argv[3], 1380 context->name_count); 1381 1382 audit_log_task_info(ab, tsk); 1383 audit_log_key(ab, context->filterkey); 1384 audit_log_end(ab); 1385 1386 for (aux = context->aux; aux; aux = aux->next) { 1387 1388 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1389 if (!ab) 1390 continue; /* audit_panic has been called */ 1391 1392 switch (aux->type) { 1393 1394 case AUDIT_BPRM_FCAPS: { 1395 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1396 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1397 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1398 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1399 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1400 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1401 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1402 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1403 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1404 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1405 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1406 break; } 1407 1408 } 1409 audit_log_end(ab); 1410 } 1411 1412 if (context->type) 1413 show_special(context, &call_panic); 1414 1415 if (context->fds[0] >= 0) { 1416 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1417 if (ab) { 1418 audit_log_format(ab, "fd0=%d fd1=%d", 1419 context->fds[0], context->fds[1]); 1420 audit_log_end(ab); 1421 } 1422 } 1423 1424 if (context->sockaddr_len) { 1425 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1426 if (ab) { 1427 audit_log_format(ab, "saddr="); 1428 audit_log_n_hex(ab, (void *)context->sockaddr, 1429 context->sockaddr_len); 1430 audit_log_end(ab); 1431 } 1432 } 1433 1434 for (aux = context->aux_pids; aux; aux = aux->next) { 1435 struct audit_aux_data_pids *axs = (void *)aux; 1436 1437 for (i = 0; i < axs->pid_count; i++) 1438 if (audit_log_pid_context(context, axs->target_pid[i], 1439 axs->target_auid[i], 1440 axs->target_uid[i], 1441 axs->target_sessionid[i], 1442 axs->target_sid[i], 1443 axs->target_comm[i])) 1444 call_panic = 1; 1445 } 1446 1447 if (context->target_pid && 1448 audit_log_pid_context(context, context->target_pid, 1449 context->target_auid, context->target_uid, 1450 context->target_sessionid, 1451 context->target_sid, context->target_comm)) 1452 call_panic = 1; 1453 1454 if (context->pwd.dentry && context->pwd.mnt) { 1455 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1456 if (ab) { 1457 audit_log_d_path(ab, " cwd=", &context->pwd); 1458 audit_log_end(ab); 1459 } 1460 } 1461 1462 i = 0; 1463 list_for_each_entry(n, &context->names_list, list) { 1464 if (n->hidden) 1465 continue; 1466 audit_log_name(context, n, NULL, i++, &call_panic); 1467 } 1468 1469 audit_log_proctitle(tsk, context); 1470 1471 /* Send end of event record to help user space know we are finished */ 1472 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1473 if (ab) 1474 audit_log_end(ab); 1475 if (call_panic) 1476 audit_panic("error converting sid to string"); 1477 } 1478 1479 /** 1480 * audit_free - free a per-task audit context 1481 * @tsk: task whose audit context block to free 1482 * 1483 * Called from copy_process and do_exit 1484 */ 1485 void __audit_free(struct task_struct *tsk) 1486 { 1487 struct audit_context *context; 1488 1489 context = audit_take_context(tsk, 0, 0); 1490 if (!context) 1491 return; 1492 1493 /* Check for system calls that do not go through the exit 1494 * function (e.g., exit_group), then free context block. 1495 * We use GFP_ATOMIC here because we might be doing this 1496 * in the context of the idle thread */ 1497 /* that can happen only if we are called from do_exit() */ 1498 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1499 audit_log_exit(context, tsk); 1500 if (!list_empty(&context->killed_trees)) 1501 audit_kill_trees(&context->killed_trees); 1502 1503 audit_free_context(context); 1504 } 1505 1506 /** 1507 * audit_syscall_entry - fill in an audit record at syscall entry 1508 * @arch: architecture type 1509 * @major: major syscall type (function) 1510 * @a1: additional syscall register 1 1511 * @a2: additional syscall register 2 1512 * @a3: additional syscall register 3 1513 * @a4: additional syscall register 4 1514 * 1515 * Fill in audit context at syscall entry. This only happens if the 1516 * audit context was created when the task was created and the state or 1517 * filters demand the audit context be built. If the state from the 1518 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1519 * then the record will be written at syscall exit time (otherwise, it 1520 * will only be written if another part of the kernel requests that it 1521 * be written). 1522 */ 1523 void __audit_syscall_entry(int arch, int major, 1524 unsigned long a1, unsigned long a2, 1525 unsigned long a3, unsigned long a4) 1526 { 1527 struct task_struct *tsk = current; 1528 struct audit_context *context = tsk->audit_context; 1529 enum audit_state state; 1530 1531 if (!context) 1532 return; 1533 1534 BUG_ON(context->in_syscall || context->name_count); 1535 1536 if (!audit_enabled) 1537 return; 1538 1539 context->arch = arch; 1540 context->major = major; 1541 context->argv[0] = a1; 1542 context->argv[1] = a2; 1543 context->argv[2] = a3; 1544 context->argv[3] = a4; 1545 1546 state = context->state; 1547 context->dummy = !audit_n_rules; 1548 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1549 context->prio = 0; 1550 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1551 } 1552 if (state == AUDIT_DISABLED) 1553 return; 1554 1555 context->serial = 0; 1556 context->ctime = CURRENT_TIME; 1557 context->in_syscall = 1; 1558 context->current_state = state; 1559 context->ppid = 0; 1560 } 1561 1562 /** 1563 * audit_syscall_exit - deallocate audit context after a system call 1564 * @success: success value of the syscall 1565 * @return_code: return value of the syscall 1566 * 1567 * Tear down after system call. If the audit context has been marked as 1568 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1569 * filtering, or because some other part of the kernel wrote an audit 1570 * message), then write out the syscall information. In call cases, 1571 * free the names stored from getname(). 1572 */ 1573 void __audit_syscall_exit(int success, long return_code) 1574 { 1575 struct task_struct *tsk = current; 1576 struct audit_context *context; 1577 1578 if (success) 1579 success = AUDITSC_SUCCESS; 1580 else 1581 success = AUDITSC_FAILURE; 1582 1583 context = audit_take_context(tsk, success, return_code); 1584 if (!context) 1585 return; 1586 1587 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1588 audit_log_exit(context, tsk); 1589 1590 context->in_syscall = 0; 1591 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1592 1593 if (!list_empty(&context->killed_trees)) 1594 audit_kill_trees(&context->killed_trees); 1595 1596 audit_free_names(context); 1597 unroll_tree_refs(context, NULL, 0); 1598 audit_free_aux(context); 1599 context->aux = NULL; 1600 context->aux_pids = NULL; 1601 context->target_pid = 0; 1602 context->target_sid = 0; 1603 context->sockaddr_len = 0; 1604 context->type = 0; 1605 context->fds[0] = -1; 1606 if (context->state != AUDIT_RECORD_CONTEXT) { 1607 kfree(context->filterkey); 1608 context->filterkey = NULL; 1609 } 1610 tsk->audit_context = context; 1611 } 1612 1613 static inline void handle_one(const struct inode *inode) 1614 { 1615 #ifdef CONFIG_AUDIT_TREE 1616 struct audit_context *context; 1617 struct audit_tree_refs *p; 1618 struct audit_chunk *chunk; 1619 int count; 1620 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1621 return; 1622 context = current->audit_context; 1623 p = context->trees; 1624 count = context->tree_count; 1625 rcu_read_lock(); 1626 chunk = audit_tree_lookup(inode); 1627 rcu_read_unlock(); 1628 if (!chunk) 1629 return; 1630 if (likely(put_tree_ref(context, chunk))) 1631 return; 1632 if (unlikely(!grow_tree_refs(context))) { 1633 pr_warn("out of memory, audit has lost a tree reference\n"); 1634 audit_set_auditable(context); 1635 audit_put_chunk(chunk); 1636 unroll_tree_refs(context, p, count); 1637 return; 1638 } 1639 put_tree_ref(context, chunk); 1640 #endif 1641 } 1642 1643 static void handle_path(const struct dentry *dentry) 1644 { 1645 #ifdef CONFIG_AUDIT_TREE 1646 struct audit_context *context; 1647 struct audit_tree_refs *p; 1648 const struct dentry *d, *parent; 1649 struct audit_chunk *drop; 1650 unsigned long seq; 1651 int count; 1652 1653 context = current->audit_context; 1654 p = context->trees; 1655 count = context->tree_count; 1656 retry: 1657 drop = NULL; 1658 d = dentry; 1659 rcu_read_lock(); 1660 seq = read_seqbegin(&rename_lock); 1661 for(;;) { 1662 struct inode *inode = d->d_inode; 1663 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1664 struct audit_chunk *chunk; 1665 chunk = audit_tree_lookup(inode); 1666 if (chunk) { 1667 if (unlikely(!put_tree_ref(context, chunk))) { 1668 drop = chunk; 1669 break; 1670 } 1671 } 1672 } 1673 parent = d->d_parent; 1674 if (parent == d) 1675 break; 1676 d = parent; 1677 } 1678 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1679 rcu_read_unlock(); 1680 if (!drop) { 1681 /* just a race with rename */ 1682 unroll_tree_refs(context, p, count); 1683 goto retry; 1684 } 1685 audit_put_chunk(drop); 1686 if (grow_tree_refs(context)) { 1687 /* OK, got more space */ 1688 unroll_tree_refs(context, p, count); 1689 goto retry; 1690 } 1691 /* too bad */ 1692 pr_warn("out of memory, audit has lost a tree reference\n"); 1693 unroll_tree_refs(context, p, count); 1694 audit_set_auditable(context); 1695 return; 1696 } 1697 rcu_read_unlock(); 1698 #endif 1699 } 1700 1701 static struct audit_names *audit_alloc_name(struct audit_context *context, 1702 unsigned char type) 1703 { 1704 struct audit_names *aname; 1705 1706 if (context->name_count < AUDIT_NAMES) { 1707 aname = &context->preallocated_names[context->name_count]; 1708 memset(aname, 0, sizeof(*aname)); 1709 } else { 1710 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1711 if (!aname) 1712 return NULL; 1713 aname->should_free = true; 1714 } 1715 1716 aname->ino = (unsigned long)-1; 1717 aname->type = type; 1718 list_add_tail(&aname->list, &context->names_list); 1719 1720 context->name_count++; 1721 #if AUDIT_DEBUG 1722 context->ino_count++; 1723 #endif 1724 return aname; 1725 } 1726 1727 /** 1728 * audit_reusename - fill out filename with info from existing entry 1729 * @uptr: userland ptr to pathname 1730 * 1731 * Search the audit_names list for the current audit context. If there is an 1732 * existing entry with a matching "uptr" then return the filename 1733 * associated with that audit_name. If not, return NULL. 1734 */ 1735 struct filename * 1736 __audit_reusename(const __user char *uptr) 1737 { 1738 struct audit_context *context = current->audit_context; 1739 struct audit_names *n; 1740 1741 list_for_each_entry(n, &context->names_list, list) { 1742 if (!n->name) 1743 continue; 1744 if (n->name->uptr == uptr) 1745 return n->name; 1746 } 1747 return NULL; 1748 } 1749 1750 /** 1751 * audit_getname - add a name to the list 1752 * @name: name to add 1753 * 1754 * Add a name to the list of audit names for this context. 1755 * Called from fs/namei.c:getname(). 1756 */ 1757 void __audit_getname(struct filename *name) 1758 { 1759 struct audit_context *context = current->audit_context; 1760 struct audit_names *n; 1761 1762 if (!context->in_syscall) { 1763 #if AUDIT_DEBUG == 2 1764 pr_err("%s:%d(:%d): ignoring getname(%p)\n", 1765 __FILE__, __LINE__, context->serial, name); 1766 dump_stack(); 1767 #endif 1768 return; 1769 } 1770 1771 #if AUDIT_DEBUG 1772 /* The filename _must_ have a populated ->name */ 1773 BUG_ON(!name->name); 1774 #endif 1775 1776 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1777 if (!n) 1778 return; 1779 1780 n->name = name; 1781 n->name_len = AUDIT_NAME_FULL; 1782 n->name_put = true; 1783 name->aname = n; 1784 1785 if (!context->pwd.dentry) 1786 get_fs_pwd(current->fs, &context->pwd); 1787 } 1788 1789 /* audit_putname - intercept a putname request 1790 * @name: name to intercept and delay for putname 1791 * 1792 * If we have stored the name from getname in the audit context, 1793 * then we delay the putname until syscall exit. 1794 * Called from include/linux/fs.h:putname(). 1795 */ 1796 void audit_putname(struct filename *name) 1797 { 1798 struct audit_context *context = current->audit_context; 1799 1800 BUG_ON(!context); 1801 if (!name->aname || !context->in_syscall) { 1802 #if AUDIT_DEBUG == 2 1803 pr_err("%s:%d(:%d): final_putname(%p)\n", 1804 __FILE__, __LINE__, context->serial, name); 1805 if (context->name_count) { 1806 struct audit_names *n; 1807 int i = 0; 1808 1809 list_for_each_entry(n, &context->names_list, list) 1810 pr_err("name[%d] = %p = %s\n", i++, n->name, 1811 n->name->name ?: "(null)"); 1812 } 1813 #endif 1814 final_putname(name); 1815 } 1816 #if AUDIT_DEBUG 1817 else { 1818 ++context->put_count; 1819 if (context->put_count > context->name_count) { 1820 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)" 1821 " name_count=%d put_count=%d\n", 1822 __FILE__, __LINE__, 1823 context->serial, context->major, 1824 context->in_syscall, name->name, 1825 context->name_count, context->put_count); 1826 dump_stack(); 1827 } 1828 } 1829 #endif 1830 } 1831 1832 /** 1833 * __audit_inode - store the inode and device from a lookup 1834 * @name: name being audited 1835 * @dentry: dentry being audited 1836 * @flags: attributes for this particular entry 1837 */ 1838 void __audit_inode(struct filename *name, const struct dentry *dentry, 1839 unsigned int flags) 1840 { 1841 struct audit_context *context = current->audit_context; 1842 const struct inode *inode = dentry->d_inode; 1843 struct audit_names *n; 1844 bool parent = flags & AUDIT_INODE_PARENT; 1845 1846 if (!context->in_syscall) 1847 return; 1848 1849 if (!name) 1850 goto out_alloc; 1851 1852 #if AUDIT_DEBUG 1853 /* The struct filename _must_ have a populated ->name */ 1854 BUG_ON(!name->name); 1855 #endif 1856 /* 1857 * If we have a pointer to an audit_names entry already, then we can 1858 * just use it directly if the type is correct. 1859 */ 1860 n = name->aname; 1861 if (n) { 1862 if (parent) { 1863 if (n->type == AUDIT_TYPE_PARENT || 1864 n->type == AUDIT_TYPE_UNKNOWN) 1865 goto out; 1866 } else { 1867 if (n->type != AUDIT_TYPE_PARENT) 1868 goto out; 1869 } 1870 } 1871 1872 list_for_each_entry_reverse(n, &context->names_list, list) { 1873 /* does the name pointer match? */ 1874 if (!n->name || n->name->name != name->name) 1875 continue; 1876 1877 /* match the correct record type */ 1878 if (parent) { 1879 if (n->type == AUDIT_TYPE_PARENT || 1880 n->type == AUDIT_TYPE_UNKNOWN) 1881 goto out; 1882 } else { 1883 if (n->type != AUDIT_TYPE_PARENT) 1884 goto out; 1885 } 1886 } 1887 1888 out_alloc: 1889 /* unable to find the name from a previous getname(). Allocate a new 1890 * anonymous entry. 1891 */ 1892 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL); 1893 if (!n) 1894 return; 1895 out: 1896 if (parent) { 1897 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1898 n->type = AUDIT_TYPE_PARENT; 1899 if (flags & AUDIT_INODE_HIDDEN) 1900 n->hidden = true; 1901 } else { 1902 n->name_len = AUDIT_NAME_FULL; 1903 n->type = AUDIT_TYPE_NORMAL; 1904 } 1905 handle_path(dentry); 1906 audit_copy_inode(n, dentry, inode); 1907 } 1908 1909 /** 1910 * __audit_inode_child - collect inode info for created/removed objects 1911 * @parent: inode of dentry parent 1912 * @dentry: dentry being audited 1913 * @type: AUDIT_TYPE_* value that we're looking for 1914 * 1915 * For syscalls that create or remove filesystem objects, audit_inode 1916 * can only collect information for the filesystem object's parent. 1917 * This call updates the audit context with the child's information. 1918 * Syscalls that create a new filesystem object must be hooked after 1919 * the object is created. Syscalls that remove a filesystem object 1920 * must be hooked prior, in order to capture the target inode during 1921 * unsuccessful attempts. 1922 */ 1923 void __audit_inode_child(const struct inode *parent, 1924 const struct dentry *dentry, 1925 const unsigned char type) 1926 { 1927 struct audit_context *context = current->audit_context; 1928 const struct inode *inode = dentry->d_inode; 1929 const char *dname = dentry->d_name.name; 1930 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1931 1932 if (!context->in_syscall) 1933 return; 1934 1935 if (inode) 1936 handle_one(inode); 1937 1938 /* look for a parent entry first */ 1939 list_for_each_entry(n, &context->names_list, list) { 1940 if (!n->name || n->type != AUDIT_TYPE_PARENT) 1941 continue; 1942 1943 if (n->ino == parent->i_ino && 1944 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 1945 found_parent = n; 1946 break; 1947 } 1948 } 1949 1950 /* is there a matching child entry? */ 1951 list_for_each_entry(n, &context->names_list, list) { 1952 /* can only match entries that have a name */ 1953 if (!n->name || n->type != type) 1954 continue; 1955 1956 /* if we found a parent, make sure this one is a child of it */ 1957 if (found_parent && (n->name != found_parent->name)) 1958 continue; 1959 1960 if (!strcmp(dname, n->name->name) || 1961 !audit_compare_dname_path(dname, n->name->name, 1962 found_parent ? 1963 found_parent->name_len : 1964 AUDIT_NAME_FULL)) { 1965 found_child = n; 1966 break; 1967 } 1968 } 1969 1970 if (!found_parent) { 1971 /* create a new, "anonymous" parent record */ 1972 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1973 if (!n) 1974 return; 1975 audit_copy_inode(n, NULL, parent); 1976 } 1977 1978 if (!found_child) { 1979 found_child = audit_alloc_name(context, type); 1980 if (!found_child) 1981 return; 1982 1983 /* Re-use the name belonging to the slot for a matching parent 1984 * directory. All names for this context are relinquished in 1985 * audit_free_names() */ 1986 if (found_parent) { 1987 found_child->name = found_parent->name; 1988 found_child->name_len = AUDIT_NAME_FULL; 1989 /* don't call __putname() */ 1990 found_child->name_put = false; 1991 } 1992 } 1993 if (inode) 1994 audit_copy_inode(found_child, dentry, inode); 1995 else 1996 found_child->ino = (unsigned long)-1; 1997 } 1998 EXPORT_SYMBOL_GPL(__audit_inode_child); 1999 2000 /** 2001 * auditsc_get_stamp - get local copies of audit_context values 2002 * @ctx: audit_context for the task 2003 * @t: timespec to store time recorded in the audit_context 2004 * @serial: serial value that is recorded in the audit_context 2005 * 2006 * Also sets the context as auditable. 2007 */ 2008 int auditsc_get_stamp(struct audit_context *ctx, 2009 struct timespec *t, unsigned int *serial) 2010 { 2011 if (!ctx->in_syscall) 2012 return 0; 2013 if (!ctx->serial) 2014 ctx->serial = audit_serial(); 2015 t->tv_sec = ctx->ctime.tv_sec; 2016 t->tv_nsec = ctx->ctime.tv_nsec; 2017 *serial = ctx->serial; 2018 if (!ctx->prio) { 2019 ctx->prio = 1; 2020 ctx->current_state = AUDIT_RECORD_CONTEXT; 2021 } 2022 return 1; 2023 } 2024 2025 /* global counter which is incremented every time something logs in */ 2026 static atomic_t session_id = ATOMIC_INIT(0); 2027 2028 static int audit_set_loginuid_perm(kuid_t loginuid) 2029 { 2030 /* if we are unset, we don't need privs */ 2031 if (!audit_loginuid_set(current)) 2032 return 0; 2033 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2034 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2035 return -EPERM; 2036 /* it is set, you need permission */ 2037 if (!capable(CAP_AUDIT_CONTROL)) 2038 return -EPERM; 2039 /* reject if this is not an unset and we don't allow that */ 2040 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2041 return -EPERM; 2042 return 0; 2043 } 2044 2045 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2046 unsigned int oldsessionid, unsigned int sessionid, 2047 int rc) 2048 { 2049 struct audit_buffer *ab; 2050 uid_t uid, oldloginuid, loginuid; 2051 2052 if (!audit_enabled) 2053 return; 2054 2055 uid = from_kuid(&init_user_ns, task_uid(current)); 2056 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2057 loginuid = from_kuid(&init_user_ns, kloginuid), 2058 2059 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2060 if (!ab) 2061 return; 2062 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 2063 audit_log_task_context(ab); 2064 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 2065 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 2066 audit_log_end(ab); 2067 } 2068 2069 /** 2070 * audit_set_loginuid - set current task's audit_context loginuid 2071 * @loginuid: loginuid value 2072 * 2073 * Returns 0. 2074 * 2075 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2076 */ 2077 int audit_set_loginuid(kuid_t loginuid) 2078 { 2079 struct task_struct *task = current; 2080 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2081 kuid_t oldloginuid; 2082 int rc; 2083 2084 oldloginuid = audit_get_loginuid(current); 2085 oldsessionid = audit_get_sessionid(current); 2086 2087 rc = audit_set_loginuid_perm(loginuid); 2088 if (rc) 2089 goto out; 2090 2091 /* are we setting or clearing? */ 2092 if (uid_valid(loginuid)) 2093 sessionid = (unsigned int)atomic_inc_return(&session_id); 2094 2095 task->sessionid = sessionid; 2096 task->loginuid = loginuid; 2097 out: 2098 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2099 return rc; 2100 } 2101 2102 /** 2103 * __audit_mq_open - record audit data for a POSIX MQ open 2104 * @oflag: open flag 2105 * @mode: mode bits 2106 * @attr: queue attributes 2107 * 2108 */ 2109 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2110 { 2111 struct audit_context *context = current->audit_context; 2112 2113 if (attr) 2114 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2115 else 2116 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2117 2118 context->mq_open.oflag = oflag; 2119 context->mq_open.mode = mode; 2120 2121 context->type = AUDIT_MQ_OPEN; 2122 } 2123 2124 /** 2125 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2126 * @mqdes: MQ descriptor 2127 * @msg_len: Message length 2128 * @msg_prio: Message priority 2129 * @abs_timeout: Message timeout in absolute time 2130 * 2131 */ 2132 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2133 const struct timespec *abs_timeout) 2134 { 2135 struct audit_context *context = current->audit_context; 2136 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2137 2138 if (abs_timeout) 2139 memcpy(p, abs_timeout, sizeof(struct timespec)); 2140 else 2141 memset(p, 0, sizeof(struct timespec)); 2142 2143 context->mq_sendrecv.mqdes = mqdes; 2144 context->mq_sendrecv.msg_len = msg_len; 2145 context->mq_sendrecv.msg_prio = msg_prio; 2146 2147 context->type = AUDIT_MQ_SENDRECV; 2148 } 2149 2150 /** 2151 * __audit_mq_notify - record audit data for a POSIX MQ notify 2152 * @mqdes: MQ descriptor 2153 * @notification: Notification event 2154 * 2155 */ 2156 2157 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2158 { 2159 struct audit_context *context = current->audit_context; 2160 2161 if (notification) 2162 context->mq_notify.sigev_signo = notification->sigev_signo; 2163 else 2164 context->mq_notify.sigev_signo = 0; 2165 2166 context->mq_notify.mqdes = mqdes; 2167 context->type = AUDIT_MQ_NOTIFY; 2168 } 2169 2170 /** 2171 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2172 * @mqdes: MQ descriptor 2173 * @mqstat: MQ flags 2174 * 2175 */ 2176 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2177 { 2178 struct audit_context *context = current->audit_context; 2179 context->mq_getsetattr.mqdes = mqdes; 2180 context->mq_getsetattr.mqstat = *mqstat; 2181 context->type = AUDIT_MQ_GETSETATTR; 2182 } 2183 2184 /** 2185 * audit_ipc_obj - record audit data for ipc object 2186 * @ipcp: ipc permissions 2187 * 2188 */ 2189 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2190 { 2191 struct audit_context *context = current->audit_context; 2192 context->ipc.uid = ipcp->uid; 2193 context->ipc.gid = ipcp->gid; 2194 context->ipc.mode = ipcp->mode; 2195 context->ipc.has_perm = 0; 2196 security_ipc_getsecid(ipcp, &context->ipc.osid); 2197 context->type = AUDIT_IPC; 2198 } 2199 2200 /** 2201 * audit_ipc_set_perm - record audit data for new ipc permissions 2202 * @qbytes: msgq bytes 2203 * @uid: msgq user id 2204 * @gid: msgq group id 2205 * @mode: msgq mode (permissions) 2206 * 2207 * Called only after audit_ipc_obj(). 2208 */ 2209 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2210 { 2211 struct audit_context *context = current->audit_context; 2212 2213 context->ipc.qbytes = qbytes; 2214 context->ipc.perm_uid = uid; 2215 context->ipc.perm_gid = gid; 2216 context->ipc.perm_mode = mode; 2217 context->ipc.has_perm = 1; 2218 } 2219 2220 void __audit_bprm(struct linux_binprm *bprm) 2221 { 2222 struct audit_context *context = current->audit_context; 2223 2224 context->type = AUDIT_EXECVE; 2225 context->execve.argc = bprm->argc; 2226 } 2227 2228 2229 /** 2230 * audit_socketcall - record audit data for sys_socketcall 2231 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2232 * @args: args array 2233 * 2234 */ 2235 int __audit_socketcall(int nargs, unsigned long *args) 2236 { 2237 struct audit_context *context = current->audit_context; 2238 2239 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2240 return -EINVAL; 2241 context->type = AUDIT_SOCKETCALL; 2242 context->socketcall.nargs = nargs; 2243 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2244 return 0; 2245 } 2246 2247 /** 2248 * __audit_fd_pair - record audit data for pipe and socketpair 2249 * @fd1: the first file descriptor 2250 * @fd2: the second file descriptor 2251 * 2252 */ 2253 void __audit_fd_pair(int fd1, int fd2) 2254 { 2255 struct audit_context *context = current->audit_context; 2256 context->fds[0] = fd1; 2257 context->fds[1] = fd2; 2258 } 2259 2260 /** 2261 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2262 * @len: data length in user space 2263 * @a: data address in kernel space 2264 * 2265 * Returns 0 for success or NULL context or < 0 on error. 2266 */ 2267 int __audit_sockaddr(int len, void *a) 2268 { 2269 struct audit_context *context = current->audit_context; 2270 2271 if (!context->sockaddr) { 2272 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2273 if (!p) 2274 return -ENOMEM; 2275 context->sockaddr = p; 2276 } 2277 2278 context->sockaddr_len = len; 2279 memcpy(context->sockaddr, a, len); 2280 return 0; 2281 } 2282 2283 void __audit_ptrace(struct task_struct *t) 2284 { 2285 struct audit_context *context = current->audit_context; 2286 2287 context->target_pid = task_pid_nr(t); 2288 context->target_auid = audit_get_loginuid(t); 2289 context->target_uid = task_uid(t); 2290 context->target_sessionid = audit_get_sessionid(t); 2291 security_task_getsecid(t, &context->target_sid); 2292 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2293 } 2294 2295 /** 2296 * audit_signal_info - record signal info for shutting down audit subsystem 2297 * @sig: signal value 2298 * @t: task being signaled 2299 * 2300 * If the audit subsystem is being terminated, record the task (pid) 2301 * and uid that is doing that. 2302 */ 2303 int __audit_signal_info(int sig, struct task_struct *t) 2304 { 2305 struct audit_aux_data_pids *axp; 2306 struct task_struct *tsk = current; 2307 struct audit_context *ctx = tsk->audit_context; 2308 kuid_t uid = current_uid(), t_uid = task_uid(t); 2309 2310 if (audit_pid && t->tgid == audit_pid) { 2311 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2312 audit_sig_pid = task_pid_nr(tsk); 2313 if (uid_valid(tsk->loginuid)) 2314 audit_sig_uid = tsk->loginuid; 2315 else 2316 audit_sig_uid = uid; 2317 security_task_getsecid(tsk, &audit_sig_sid); 2318 } 2319 if (!audit_signals || audit_dummy_context()) 2320 return 0; 2321 } 2322 2323 /* optimize the common case by putting first signal recipient directly 2324 * in audit_context */ 2325 if (!ctx->target_pid) { 2326 ctx->target_pid = task_tgid_nr(t); 2327 ctx->target_auid = audit_get_loginuid(t); 2328 ctx->target_uid = t_uid; 2329 ctx->target_sessionid = audit_get_sessionid(t); 2330 security_task_getsecid(t, &ctx->target_sid); 2331 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2332 return 0; 2333 } 2334 2335 axp = (void *)ctx->aux_pids; 2336 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2337 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2338 if (!axp) 2339 return -ENOMEM; 2340 2341 axp->d.type = AUDIT_OBJ_PID; 2342 axp->d.next = ctx->aux_pids; 2343 ctx->aux_pids = (void *)axp; 2344 } 2345 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2346 2347 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2348 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2349 axp->target_uid[axp->pid_count] = t_uid; 2350 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2351 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2352 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2353 axp->pid_count++; 2354 2355 return 0; 2356 } 2357 2358 /** 2359 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2360 * @bprm: pointer to the bprm being processed 2361 * @new: the proposed new credentials 2362 * @old: the old credentials 2363 * 2364 * Simply check if the proc already has the caps given by the file and if not 2365 * store the priv escalation info for later auditing at the end of the syscall 2366 * 2367 * -Eric 2368 */ 2369 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2370 const struct cred *new, const struct cred *old) 2371 { 2372 struct audit_aux_data_bprm_fcaps *ax; 2373 struct audit_context *context = current->audit_context; 2374 struct cpu_vfs_cap_data vcaps; 2375 struct dentry *dentry; 2376 2377 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2378 if (!ax) 2379 return -ENOMEM; 2380 2381 ax->d.type = AUDIT_BPRM_FCAPS; 2382 ax->d.next = context->aux; 2383 context->aux = (void *)ax; 2384 2385 dentry = dget(bprm->file->f_dentry); 2386 get_vfs_caps_from_disk(dentry, &vcaps); 2387 dput(dentry); 2388 2389 ax->fcap.permitted = vcaps.permitted; 2390 ax->fcap.inheritable = vcaps.inheritable; 2391 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2392 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2393 2394 ax->old_pcap.permitted = old->cap_permitted; 2395 ax->old_pcap.inheritable = old->cap_inheritable; 2396 ax->old_pcap.effective = old->cap_effective; 2397 2398 ax->new_pcap.permitted = new->cap_permitted; 2399 ax->new_pcap.inheritable = new->cap_inheritable; 2400 ax->new_pcap.effective = new->cap_effective; 2401 return 0; 2402 } 2403 2404 /** 2405 * __audit_log_capset - store information about the arguments to the capset syscall 2406 * @new: the new credentials 2407 * @old: the old (current) credentials 2408 * 2409 * Record the aguments userspace sent to sys_capset for later printing by the 2410 * audit system if applicable 2411 */ 2412 void __audit_log_capset(const struct cred *new, const struct cred *old) 2413 { 2414 struct audit_context *context = current->audit_context; 2415 context->capset.pid = task_pid_nr(current); 2416 context->capset.cap.effective = new->cap_effective; 2417 context->capset.cap.inheritable = new->cap_effective; 2418 context->capset.cap.permitted = new->cap_permitted; 2419 context->type = AUDIT_CAPSET; 2420 } 2421 2422 void __audit_mmap_fd(int fd, int flags) 2423 { 2424 struct audit_context *context = current->audit_context; 2425 context->mmap.fd = fd; 2426 context->mmap.flags = flags; 2427 context->type = AUDIT_MMAP; 2428 } 2429 2430 static void audit_log_task(struct audit_buffer *ab) 2431 { 2432 kuid_t auid, uid; 2433 kgid_t gid; 2434 unsigned int sessionid; 2435 struct mm_struct *mm = current->mm; 2436 2437 auid = audit_get_loginuid(current); 2438 sessionid = audit_get_sessionid(current); 2439 current_uid_gid(&uid, &gid); 2440 2441 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2442 from_kuid(&init_user_ns, auid), 2443 from_kuid(&init_user_ns, uid), 2444 from_kgid(&init_user_ns, gid), 2445 sessionid); 2446 audit_log_task_context(ab); 2447 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2448 audit_log_untrustedstring(ab, current->comm); 2449 if (mm) { 2450 down_read(&mm->mmap_sem); 2451 if (mm->exe_file) 2452 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 2453 up_read(&mm->mmap_sem); 2454 } else 2455 audit_log_format(ab, " exe=(null)"); 2456 } 2457 2458 /** 2459 * audit_core_dumps - record information about processes that end abnormally 2460 * @signr: signal value 2461 * 2462 * If a process ends with a core dump, something fishy is going on and we 2463 * should record the event for investigation. 2464 */ 2465 void audit_core_dumps(long signr) 2466 { 2467 struct audit_buffer *ab; 2468 2469 if (!audit_enabled) 2470 return; 2471 2472 if (signr == SIGQUIT) /* don't care for those */ 2473 return; 2474 2475 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2476 if (unlikely(!ab)) 2477 return; 2478 audit_log_task(ab); 2479 audit_log_format(ab, " sig=%ld", signr); 2480 audit_log_end(ab); 2481 } 2482 2483 void __audit_seccomp(unsigned long syscall, long signr, int code) 2484 { 2485 struct audit_buffer *ab; 2486 2487 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2488 if (unlikely(!ab)) 2489 return; 2490 audit_log_task(ab); 2491 audit_log_format(ab, " sig=%ld", signr); 2492 audit_log_format(ab, " syscall=%ld", syscall); 2493 audit_log_format(ab, " compat=%d", is_compat_task()); 2494 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current)); 2495 audit_log_format(ab, " code=0x%x", code); 2496 audit_log_end(ab); 2497 } 2498 2499 struct list_head *audit_killed_trees(void) 2500 { 2501 struct audit_context *ctx = current->audit_context; 2502 if (likely(!ctx || !ctx->in_syscall)) 2503 return NULL; 2504 return &ctx->killed_trees; 2505 } 2506