xref: /openbmc/linux/kernel/auditsc.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79 
80 #include "audit.h"
81 
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86 
87 /* no execve audit message should be longer than this (userspace limits),
88  * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90 
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93 
94 /* number of audit rules */
95 int audit_n_rules;
96 
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99 
100 struct audit_aux_data {
101 	struct audit_aux_data	*next;
102 	int			type;
103 };
104 
105 #define AUDIT_AUX_IPCPERM	0
106 
107 /* Number of target pids per aux struct. */
108 #define AUDIT_AUX_PIDS	16
109 
110 struct audit_aux_data_pids {
111 	struct audit_aux_data	d;
112 	pid_t			target_pid[AUDIT_AUX_PIDS];
113 	kuid_t			target_auid[AUDIT_AUX_PIDS];
114 	kuid_t			target_uid[AUDIT_AUX_PIDS];
115 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
116 	u32			target_sid[AUDIT_AUX_PIDS];
117 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
118 	int			pid_count;
119 };
120 
121 struct audit_aux_data_bprm_fcaps {
122 	struct audit_aux_data	d;
123 	struct audit_cap_data	fcap;
124 	unsigned int		fcap_ver;
125 	struct audit_cap_data	old_pcap;
126 	struct audit_cap_data	new_pcap;
127 };
128 
129 struct audit_tree_refs {
130 	struct audit_tree_refs *next;
131 	struct audit_chunk *c[31];
132 };
133 
134 struct audit_nfcfgop_tab {
135 	enum audit_nfcfgop	op;
136 	const char		*s;
137 };
138 
139 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
140 	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
141 	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
142 	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
143 	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
144 	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
145 	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
146 	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
147 	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
148 	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
149 	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
150 	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
151 	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
152 	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
153 	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
154 	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
155 	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
156 	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
157 	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
158 	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
159 	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
160 };
161 
162 static int audit_match_perm(struct audit_context *ctx, int mask)
163 {
164 	unsigned n;
165 	if (unlikely(!ctx))
166 		return 0;
167 	n = ctx->major;
168 
169 	switch (audit_classify_syscall(ctx->arch, n)) {
170 	case 0:	/* native */
171 		if ((mask & AUDIT_PERM_WRITE) &&
172 		     audit_match_class(AUDIT_CLASS_WRITE, n))
173 			return 1;
174 		if ((mask & AUDIT_PERM_READ) &&
175 		     audit_match_class(AUDIT_CLASS_READ, n))
176 			return 1;
177 		if ((mask & AUDIT_PERM_ATTR) &&
178 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
179 			return 1;
180 		return 0;
181 	case 1: /* 32bit on biarch */
182 		if ((mask & AUDIT_PERM_WRITE) &&
183 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
184 			return 1;
185 		if ((mask & AUDIT_PERM_READ) &&
186 		     audit_match_class(AUDIT_CLASS_READ_32, n))
187 			return 1;
188 		if ((mask & AUDIT_PERM_ATTR) &&
189 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
190 			return 1;
191 		return 0;
192 	case 2: /* open */
193 		return mask & ACC_MODE(ctx->argv[1]);
194 	case 3: /* openat */
195 		return mask & ACC_MODE(ctx->argv[2]);
196 	case 4: /* socketcall */
197 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
198 	case 5: /* execve */
199 		return mask & AUDIT_PERM_EXEC;
200 	default:
201 		return 0;
202 	}
203 }
204 
205 static int audit_match_filetype(struct audit_context *ctx, int val)
206 {
207 	struct audit_names *n;
208 	umode_t mode = (umode_t)val;
209 
210 	if (unlikely(!ctx))
211 		return 0;
212 
213 	list_for_each_entry(n, &ctx->names_list, list) {
214 		if ((n->ino != AUDIT_INO_UNSET) &&
215 		    ((n->mode & S_IFMT) == mode))
216 			return 1;
217 	}
218 
219 	return 0;
220 }
221 
222 /*
223  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
224  * ->first_trees points to its beginning, ->trees - to the current end of data.
225  * ->tree_count is the number of free entries in array pointed to by ->trees.
226  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
227  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
228  * it's going to remain 1-element for almost any setup) until we free context itself.
229  * References in it _are_ dropped - at the same time we free/drop aux stuff.
230  */
231 
232 static void audit_set_auditable(struct audit_context *ctx)
233 {
234 	if (!ctx->prio) {
235 		ctx->prio = 1;
236 		ctx->current_state = AUDIT_RECORD_CONTEXT;
237 	}
238 }
239 
240 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
241 {
242 	struct audit_tree_refs *p = ctx->trees;
243 	int left = ctx->tree_count;
244 	if (likely(left)) {
245 		p->c[--left] = chunk;
246 		ctx->tree_count = left;
247 		return 1;
248 	}
249 	if (!p)
250 		return 0;
251 	p = p->next;
252 	if (p) {
253 		p->c[30] = chunk;
254 		ctx->trees = p;
255 		ctx->tree_count = 30;
256 		return 1;
257 	}
258 	return 0;
259 }
260 
261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 	struct audit_tree_refs *p = ctx->trees;
264 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
265 	if (!ctx->trees) {
266 		ctx->trees = p;
267 		return 0;
268 	}
269 	if (p)
270 		p->next = ctx->trees;
271 	else
272 		ctx->first_trees = ctx->trees;
273 	ctx->tree_count = 31;
274 	return 1;
275 }
276 
277 static void unroll_tree_refs(struct audit_context *ctx,
278 		      struct audit_tree_refs *p, int count)
279 {
280 	struct audit_tree_refs *q;
281 	int n;
282 	if (!p) {
283 		/* we started with empty chain */
284 		p = ctx->first_trees;
285 		count = 31;
286 		/* if the very first allocation has failed, nothing to do */
287 		if (!p)
288 			return;
289 	}
290 	n = count;
291 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
292 		while (n--) {
293 			audit_put_chunk(q->c[n]);
294 			q->c[n] = NULL;
295 		}
296 	}
297 	while (n-- > ctx->tree_count) {
298 		audit_put_chunk(q->c[n]);
299 		q->c[n] = NULL;
300 	}
301 	ctx->trees = p;
302 	ctx->tree_count = count;
303 }
304 
305 static void free_tree_refs(struct audit_context *ctx)
306 {
307 	struct audit_tree_refs *p, *q;
308 	for (p = ctx->first_trees; p; p = q) {
309 		q = p->next;
310 		kfree(p);
311 	}
312 }
313 
314 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
315 {
316 	struct audit_tree_refs *p;
317 	int n;
318 	if (!tree)
319 		return 0;
320 	/* full ones */
321 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
322 		for (n = 0; n < 31; n++)
323 			if (audit_tree_match(p->c[n], tree))
324 				return 1;
325 	}
326 	/* partial */
327 	if (p) {
328 		for (n = ctx->tree_count; n < 31; n++)
329 			if (audit_tree_match(p->c[n], tree))
330 				return 1;
331 	}
332 	return 0;
333 }
334 
335 static int audit_compare_uid(kuid_t uid,
336 			     struct audit_names *name,
337 			     struct audit_field *f,
338 			     struct audit_context *ctx)
339 {
340 	struct audit_names *n;
341 	int rc;
342 
343 	if (name) {
344 		rc = audit_uid_comparator(uid, f->op, name->uid);
345 		if (rc)
346 			return rc;
347 	}
348 
349 	if (ctx) {
350 		list_for_each_entry(n, &ctx->names_list, list) {
351 			rc = audit_uid_comparator(uid, f->op, n->uid);
352 			if (rc)
353 				return rc;
354 		}
355 	}
356 	return 0;
357 }
358 
359 static int audit_compare_gid(kgid_t gid,
360 			     struct audit_names *name,
361 			     struct audit_field *f,
362 			     struct audit_context *ctx)
363 {
364 	struct audit_names *n;
365 	int rc;
366 
367 	if (name) {
368 		rc = audit_gid_comparator(gid, f->op, name->gid);
369 		if (rc)
370 			return rc;
371 	}
372 
373 	if (ctx) {
374 		list_for_each_entry(n, &ctx->names_list, list) {
375 			rc = audit_gid_comparator(gid, f->op, n->gid);
376 			if (rc)
377 				return rc;
378 		}
379 	}
380 	return 0;
381 }
382 
383 static int audit_field_compare(struct task_struct *tsk,
384 			       const struct cred *cred,
385 			       struct audit_field *f,
386 			       struct audit_context *ctx,
387 			       struct audit_names *name)
388 {
389 	switch (f->val) {
390 	/* process to file object comparisons */
391 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
392 		return audit_compare_uid(cred->uid, name, f, ctx);
393 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
394 		return audit_compare_gid(cred->gid, name, f, ctx);
395 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
396 		return audit_compare_uid(cred->euid, name, f, ctx);
397 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
398 		return audit_compare_gid(cred->egid, name, f, ctx);
399 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
400 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
401 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
402 		return audit_compare_uid(cred->suid, name, f, ctx);
403 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
404 		return audit_compare_gid(cred->sgid, name, f, ctx);
405 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
406 		return audit_compare_uid(cred->fsuid, name, f, ctx);
407 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
408 		return audit_compare_gid(cred->fsgid, name, f, ctx);
409 	/* uid comparisons */
410 	case AUDIT_COMPARE_UID_TO_AUID:
411 		return audit_uid_comparator(cred->uid, f->op,
412 					    audit_get_loginuid(tsk));
413 	case AUDIT_COMPARE_UID_TO_EUID:
414 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
415 	case AUDIT_COMPARE_UID_TO_SUID:
416 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
417 	case AUDIT_COMPARE_UID_TO_FSUID:
418 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
419 	/* auid comparisons */
420 	case AUDIT_COMPARE_AUID_TO_EUID:
421 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 					    cred->euid);
423 	case AUDIT_COMPARE_AUID_TO_SUID:
424 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 					    cred->suid);
426 	case AUDIT_COMPARE_AUID_TO_FSUID:
427 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
428 					    cred->fsuid);
429 	/* euid comparisons */
430 	case AUDIT_COMPARE_EUID_TO_SUID:
431 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
432 	case AUDIT_COMPARE_EUID_TO_FSUID:
433 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
434 	/* suid comparisons */
435 	case AUDIT_COMPARE_SUID_TO_FSUID:
436 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
437 	/* gid comparisons */
438 	case AUDIT_COMPARE_GID_TO_EGID:
439 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
440 	case AUDIT_COMPARE_GID_TO_SGID:
441 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
442 	case AUDIT_COMPARE_GID_TO_FSGID:
443 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
444 	/* egid comparisons */
445 	case AUDIT_COMPARE_EGID_TO_SGID:
446 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
447 	case AUDIT_COMPARE_EGID_TO_FSGID:
448 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
449 	/* sgid comparison */
450 	case AUDIT_COMPARE_SGID_TO_FSGID:
451 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
452 	default:
453 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
454 		return 0;
455 	}
456 	return 0;
457 }
458 
459 /* Determine if any context name data matches a rule's watch data */
460 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
461  * otherwise.
462  *
463  * If task_creation is true, this is an explicit indication that we are
464  * filtering a task rule at task creation time.  This and tsk == current are
465  * the only situations where tsk->cred may be accessed without an rcu read lock.
466  */
467 static int audit_filter_rules(struct task_struct *tsk,
468 			      struct audit_krule *rule,
469 			      struct audit_context *ctx,
470 			      struct audit_names *name,
471 			      enum audit_state *state,
472 			      bool task_creation)
473 {
474 	const struct cred *cred;
475 	int i, need_sid = 1;
476 	u32 sid;
477 	unsigned int sessionid;
478 
479 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480 
481 	for (i = 0; i < rule->field_count; i++) {
482 		struct audit_field *f = &rule->fields[i];
483 		struct audit_names *n;
484 		int result = 0;
485 		pid_t pid;
486 
487 		switch (f->type) {
488 		case AUDIT_PID:
489 			pid = task_tgid_nr(tsk);
490 			result = audit_comparator(pid, f->op, f->val);
491 			break;
492 		case AUDIT_PPID:
493 			if (ctx) {
494 				if (!ctx->ppid)
495 					ctx->ppid = task_ppid_nr(tsk);
496 				result = audit_comparator(ctx->ppid, f->op, f->val);
497 			}
498 			break;
499 		case AUDIT_EXE:
500 			result = audit_exe_compare(tsk, rule->exe);
501 			if (f->op == Audit_not_equal)
502 				result = !result;
503 			break;
504 		case AUDIT_UID:
505 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 			break;
507 		case AUDIT_EUID:
508 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 			break;
510 		case AUDIT_SUID:
511 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 			break;
513 		case AUDIT_FSUID:
514 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 			break;
516 		case AUDIT_GID:
517 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 			if (f->op == Audit_equal) {
519 				if (!result)
520 					result = groups_search(cred->group_info, f->gid);
521 			} else if (f->op == Audit_not_equal) {
522 				if (result)
523 					result = !groups_search(cred->group_info, f->gid);
524 			}
525 			break;
526 		case AUDIT_EGID:
527 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 			if (f->op == Audit_equal) {
529 				if (!result)
530 					result = groups_search(cred->group_info, f->gid);
531 			} else if (f->op == Audit_not_equal) {
532 				if (result)
533 					result = !groups_search(cred->group_info, f->gid);
534 			}
535 			break;
536 		case AUDIT_SGID:
537 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 			break;
539 		case AUDIT_FSGID:
540 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 			break;
542 		case AUDIT_SESSIONID:
543 			sessionid = audit_get_sessionid(tsk);
544 			result = audit_comparator(sessionid, f->op, f->val);
545 			break;
546 		case AUDIT_PERS:
547 			result = audit_comparator(tsk->personality, f->op, f->val);
548 			break;
549 		case AUDIT_ARCH:
550 			if (ctx)
551 				result = audit_comparator(ctx->arch, f->op, f->val);
552 			break;
553 
554 		case AUDIT_EXIT:
555 			if (ctx && ctx->return_valid)
556 				result = audit_comparator(ctx->return_code, f->op, f->val);
557 			break;
558 		case AUDIT_SUCCESS:
559 			if (ctx && ctx->return_valid) {
560 				if (f->val)
561 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 				else
563 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 			}
565 			break;
566 		case AUDIT_DEVMAJOR:
567 			if (name) {
568 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 					++result;
571 			} else if (ctx) {
572 				list_for_each_entry(n, &ctx->names_list, list) {
573 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 						++result;
576 						break;
577 					}
578 				}
579 			}
580 			break;
581 		case AUDIT_DEVMINOR:
582 			if (name) {
583 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
585 					++result;
586 			} else if (ctx) {
587 				list_for_each_entry(n, &ctx->names_list, list) {
588 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 						++result;
591 						break;
592 					}
593 				}
594 			}
595 			break;
596 		case AUDIT_INODE:
597 			if (name)
598 				result = audit_comparator(name->ino, f->op, f->val);
599 			else if (ctx) {
600 				list_for_each_entry(n, &ctx->names_list, list) {
601 					if (audit_comparator(n->ino, f->op, f->val)) {
602 						++result;
603 						break;
604 					}
605 				}
606 			}
607 			break;
608 		case AUDIT_OBJ_UID:
609 			if (name) {
610 				result = audit_uid_comparator(name->uid, f->op, f->uid);
611 			} else if (ctx) {
612 				list_for_each_entry(n, &ctx->names_list, list) {
613 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 						++result;
615 						break;
616 					}
617 				}
618 			}
619 			break;
620 		case AUDIT_OBJ_GID:
621 			if (name) {
622 				result = audit_gid_comparator(name->gid, f->op, f->gid);
623 			} else if (ctx) {
624 				list_for_each_entry(n, &ctx->names_list, list) {
625 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 						++result;
627 						break;
628 					}
629 				}
630 			}
631 			break;
632 		case AUDIT_WATCH:
633 			if (name) {
634 				result = audit_watch_compare(rule->watch,
635 							     name->ino,
636 							     name->dev);
637 				if (f->op == Audit_not_equal)
638 					result = !result;
639 			}
640 			break;
641 		case AUDIT_DIR:
642 			if (ctx) {
643 				result = match_tree_refs(ctx, rule->tree);
644 				if (f->op == Audit_not_equal)
645 					result = !result;
646 			}
647 			break;
648 		case AUDIT_LOGINUID:
649 			result = audit_uid_comparator(audit_get_loginuid(tsk),
650 						      f->op, f->uid);
651 			break;
652 		case AUDIT_LOGINUID_SET:
653 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 			break;
655 		case AUDIT_SADDR_FAM:
656 			if (ctx->sockaddr)
657 				result = audit_comparator(ctx->sockaddr->ss_family,
658 							  f->op, f->val);
659 			break;
660 		case AUDIT_SUBJ_USER:
661 		case AUDIT_SUBJ_ROLE:
662 		case AUDIT_SUBJ_TYPE:
663 		case AUDIT_SUBJ_SEN:
664 		case AUDIT_SUBJ_CLR:
665 			/* NOTE: this may return negative values indicating
666 			   a temporary error.  We simply treat this as a
667 			   match for now to avoid losing information that
668 			   may be wanted.   An error message will also be
669 			   logged upon error */
670 			if (f->lsm_rule) {
671 				if (need_sid) {
672 					security_task_getsecid(tsk, &sid);
673 					need_sid = 0;
674 				}
675 				result = security_audit_rule_match(sid, f->type,
676 								   f->op,
677 								   f->lsm_rule);
678 			}
679 			break;
680 		case AUDIT_OBJ_USER:
681 		case AUDIT_OBJ_ROLE:
682 		case AUDIT_OBJ_TYPE:
683 		case AUDIT_OBJ_LEV_LOW:
684 		case AUDIT_OBJ_LEV_HIGH:
685 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
686 			   also applies here */
687 			if (f->lsm_rule) {
688 				/* Find files that match */
689 				if (name) {
690 					result = security_audit_rule_match(
691 								name->osid,
692 								f->type,
693 								f->op,
694 								f->lsm_rule);
695 				} else if (ctx) {
696 					list_for_each_entry(n, &ctx->names_list, list) {
697 						if (security_audit_rule_match(
698 								n->osid,
699 								f->type,
700 								f->op,
701 								f->lsm_rule)) {
702 							++result;
703 							break;
704 						}
705 					}
706 				}
707 				/* Find ipc objects that match */
708 				if (!ctx || ctx->type != AUDIT_IPC)
709 					break;
710 				if (security_audit_rule_match(ctx->ipc.osid,
711 							      f->type, f->op,
712 							      f->lsm_rule))
713 					++result;
714 			}
715 			break;
716 		case AUDIT_ARG0:
717 		case AUDIT_ARG1:
718 		case AUDIT_ARG2:
719 		case AUDIT_ARG3:
720 			if (ctx)
721 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
722 			break;
723 		case AUDIT_FILTERKEY:
724 			/* ignore this field for filtering */
725 			result = 1;
726 			break;
727 		case AUDIT_PERM:
728 			result = audit_match_perm(ctx, f->val);
729 			if (f->op == Audit_not_equal)
730 				result = !result;
731 			break;
732 		case AUDIT_FILETYPE:
733 			result = audit_match_filetype(ctx, f->val);
734 			if (f->op == Audit_not_equal)
735 				result = !result;
736 			break;
737 		case AUDIT_FIELD_COMPARE:
738 			result = audit_field_compare(tsk, cred, f, ctx, name);
739 			break;
740 		}
741 		if (!result)
742 			return 0;
743 	}
744 
745 	if (ctx) {
746 		if (rule->prio <= ctx->prio)
747 			return 0;
748 		if (rule->filterkey) {
749 			kfree(ctx->filterkey);
750 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
751 		}
752 		ctx->prio = rule->prio;
753 	}
754 	switch (rule->action) {
755 	case AUDIT_NEVER:
756 		*state = AUDIT_DISABLED;
757 		break;
758 	case AUDIT_ALWAYS:
759 		*state = AUDIT_RECORD_CONTEXT;
760 		break;
761 	}
762 	return 1;
763 }
764 
765 /* At process creation time, we can determine if system-call auditing is
766  * completely disabled for this task.  Since we only have the task
767  * structure at this point, we can only check uid and gid.
768  */
769 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
770 {
771 	struct audit_entry *e;
772 	enum audit_state   state;
773 
774 	rcu_read_lock();
775 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
776 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
777 				       &state, true)) {
778 			if (state == AUDIT_RECORD_CONTEXT)
779 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
780 			rcu_read_unlock();
781 			return state;
782 		}
783 	}
784 	rcu_read_unlock();
785 	return AUDIT_BUILD_CONTEXT;
786 }
787 
788 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
789 {
790 	int word, bit;
791 
792 	if (val > 0xffffffff)
793 		return false;
794 
795 	word = AUDIT_WORD(val);
796 	if (word >= AUDIT_BITMASK_SIZE)
797 		return false;
798 
799 	bit = AUDIT_BIT(val);
800 
801 	return rule->mask[word] & bit;
802 }
803 
804 /* At syscall entry and exit time, this filter is called if the
805  * audit_state is not low enough that auditing cannot take place, but is
806  * also not high enough that we already know we have to write an audit
807  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
808  */
809 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
810 					     struct audit_context *ctx,
811 					     struct list_head *list)
812 {
813 	struct audit_entry *e;
814 	enum audit_state state;
815 
816 	if (auditd_test_task(tsk))
817 		return AUDIT_DISABLED;
818 
819 	rcu_read_lock();
820 	list_for_each_entry_rcu(e, list, list) {
821 		if (audit_in_mask(&e->rule, ctx->major) &&
822 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
823 				       &state, false)) {
824 			rcu_read_unlock();
825 			ctx->current_state = state;
826 			return state;
827 		}
828 	}
829 	rcu_read_unlock();
830 	return AUDIT_BUILD_CONTEXT;
831 }
832 
833 /*
834  * Given an audit_name check the inode hash table to see if they match.
835  * Called holding the rcu read lock to protect the use of audit_inode_hash
836  */
837 static int audit_filter_inode_name(struct task_struct *tsk,
838 				   struct audit_names *n,
839 				   struct audit_context *ctx) {
840 	int h = audit_hash_ino((u32)n->ino);
841 	struct list_head *list = &audit_inode_hash[h];
842 	struct audit_entry *e;
843 	enum audit_state state;
844 
845 	list_for_each_entry_rcu(e, list, list) {
846 		if (audit_in_mask(&e->rule, ctx->major) &&
847 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
848 			ctx->current_state = state;
849 			return 1;
850 		}
851 	}
852 	return 0;
853 }
854 
855 /* At syscall exit time, this filter is called if any audit_names have been
856  * collected during syscall processing.  We only check rules in sublists at hash
857  * buckets applicable to the inode numbers in audit_names.
858  * Regarding audit_state, same rules apply as for audit_filter_syscall().
859  */
860 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
861 {
862 	struct audit_names *n;
863 
864 	if (auditd_test_task(tsk))
865 		return;
866 
867 	rcu_read_lock();
868 
869 	list_for_each_entry(n, &ctx->names_list, list) {
870 		if (audit_filter_inode_name(tsk, n, ctx))
871 			break;
872 	}
873 	rcu_read_unlock();
874 }
875 
876 static inline void audit_proctitle_free(struct audit_context *context)
877 {
878 	kfree(context->proctitle.value);
879 	context->proctitle.value = NULL;
880 	context->proctitle.len = 0;
881 }
882 
883 static inline void audit_free_module(struct audit_context *context)
884 {
885 	if (context->type == AUDIT_KERN_MODULE) {
886 		kfree(context->module.name);
887 		context->module.name = NULL;
888 	}
889 }
890 static inline void audit_free_names(struct audit_context *context)
891 {
892 	struct audit_names *n, *next;
893 
894 	list_for_each_entry_safe(n, next, &context->names_list, list) {
895 		list_del(&n->list);
896 		if (n->name)
897 			putname(n->name);
898 		if (n->should_free)
899 			kfree(n);
900 	}
901 	context->name_count = 0;
902 	path_put(&context->pwd);
903 	context->pwd.dentry = NULL;
904 	context->pwd.mnt = NULL;
905 }
906 
907 static inline void audit_free_aux(struct audit_context *context)
908 {
909 	struct audit_aux_data *aux;
910 
911 	while ((aux = context->aux)) {
912 		context->aux = aux->next;
913 		kfree(aux);
914 	}
915 	while ((aux = context->aux_pids)) {
916 		context->aux_pids = aux->next;
917 		kfree(aux);
918 	}
919 }
920 
921 static inline struct audit_context *audit_alloc_context(enum audit_state state)
922 {
923 	struct audit_context *context;
924 
925 	context = kzalloc(sizeof(*context), GFP_KERNEL);
926 	if (!context)
927 		return NULL;
928 	context->state = state;
929 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
930 	INIT_LIST_HEAD(&context->killed_trees);
931 	INIT_LIST_HEAD(&context->names_list);
932 	return context;
933 }
934 
935 /**
936  * audit_alloc - allocate an audit context block for a task
937  * @tsk: task
938  *
939  * Filter on the task information and allocate a per-task audit context
940  * if necessary.  Doing so turns on system call auditing for the
941  * specified task.  This is called from copy_process, so no lock is
942  * needed.
943  */
944 int audit_alloc(struct task_struct *tsk)
945 {
946 	struct audit_context *context;
947 	enum audit_state     state;
948 	char *key = NULL;
949 
950 	if (likely(!audit_ever_enabled))
951 		return 0; /* Return if not auditing. */
952 
953 	state = audit_filter_task(tsk, &key);
954 	if (state == AUDIT_DISABLED) {
955 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 		return 0;
957 	}
958 
959 	if (!(context = audit_alloc_context(state))) {
960 		kfree(key);
961 		audit_log_lost("out of memory in audit_alloc");
962 		return -ENOMEM;
963 	}
964 	context->filterkey = key;
965 
966 	audit_set_context(tsk, context);
967 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
968 	return 0;
969 }
970 
971 static inline void audit_free_context(struct audit_context *context)
972 {
973 	audit_free_module(context);
974 	audit_free_names(context);
975 	unroll_tree_refs(context, NULL, 0);
976 	free_tree_refs(context);
977 	audit_free_aux(context);
978 	kfree(context->filterkey);
979 	kfree(context->sockaddr);
980 	audit_proctitle_free(context);
981 	kfree(context);
982 }
983 
984 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 				 u32 sid, char *comm)
987 {
988 	struct audit_buffer *ab;
989 	char *ctx = NULL;
990 	u32 len;
991 	int rc = 0;
992 
993 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 	if (!ab)
995 		return rc;
996 
997 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 			 from_kuid(&init_user_ns, auid),
999 			 from_kuid(&init_user_ns, uid), sessionid);
1000 	if (sid) {
1001 		if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 			audit_log_format(ab, " obj=(none)");
1003 			rc = 1;
1004 		} else {
1005 			audit_log_format(ab, " obj=%s", ctx);
1006 			security_release_secctx(ctx, len);
1007 		}
1008 	}
1009 	audit_log_format(ab, " ocomm=");
1010 	audit_log_untrustedstring(ab, comm);
1011 	audit_log_end(ab);
1012 
1013 	return rc;
1014 }
1015 
1016 static void audit_log_execve_info(struct audit_context *context,
1017 				  struct audit_buffer **ab)
1018 {
1019 	long len_max;
1020 	long len_rem;
1021 	long len_full;
1022 	long len_buf;
1023 	long len_abuf = 0;
1024 	long len_tmp;
1025 	bool require_data;
1026 	bool encode;
1027 	unsigned int iter;
1028 	unsigned int arg;
1029 	char *buf_head;
1030 	char *buf;
1031 	const char __user *p = (const char __user *)current->mm->arg_start;
1032 
1033 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 	 *       data we put in the audit record for this argument (see the
1035 	 *       code below) ... at this point in time 96 is plenty */
1036 	char abuf[96];
1037 
1038 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 	 *       current value of 7500 is not as important as the fact that it
1040 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 	 *       room if we go over a little bit in the logging below */
1042 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 	len_max = MAX_EXECVE_AUDIT_LEN;
1044 
1045 	/* scratch buffer to hold the userspace args */
1046 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 	if (!buf_head) {
1048 		audit_panic("out of memory for argv string");
1049 		return;
1050 	}
1051 	buf = buf_head;
1052 
1053 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1054 
1055 	len_rem = len_max;
1056 	len_buf = 0;
1057 	len_full = 0;
1058 	require_data = true;
1059 	encode = false;
1060 	iter = 0;
1061 	arg = 0;
1062 	do {
1063 		/* NOTE: we don't ever want to trust this value for anything
1064 		 *       serious, but the audit record format insists we
1065 		 *       provide an argument length for really long arguments,
1066 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 		 *       to use strncpy_from_user() to obtain this value for
1068 		 *       recording in the log, although we don't use it
1069 		 *       anywhere here to avoid a double-fetch problem */
1070 		if (len_full == 0)
1071 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072 
1073 		/* read more data from userspace */
1074 		if (require_data) {
1075 			/* can we make more room in the buffer? */
1076 			if (buf != buf_head) {
1077 				memmove(buf_head, buf, len_buf);
1078 				buf = buf_head;
1079 			}
1080 
1081 			/* fetch as much as we can of the argument */
1082 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 						    len_max - len_buf);
1084 			if (len_tmp == -EFAULT) {
1085 				/* unable to copy from userspace */
1086 				send_sig(SIGKILL, current, 0);
1087 				goto out;
1088 			} else if (len_tmp == (len_max - len_buf)) {
1089 				/* buffer is not large enough */
1090 				require_data = true;
1091 				/* NOTE: if we are going to span multiple
1092 				 *       buffers force the encoding so we stand
1093 				 *       a chance at a sane len_full value and
1094 				 *       consistent record encoding */
1095 				encode = true;
1096 				len_full = len_full * 2;
1097 				p += len_tmp;
1098 			} else {
1099 				require_data = false;
1100 				if (!encode)
1101 					encode = audit_string_contains_control(
1102 								buf, len_tmp);
1103 				/* try to use a trusted value for len_full */
1104 				if (len_full < len_max)
1105 					len_full = (encode ?
1106 						    len_tmp * 2 : len_tmp);
1107 				p += len_tmp + 1;
1108 			}
1109 			len_buf += len_tmp;
1110 			buf_head[len_buf] = '\0';
1111 
1112 			/* length of the buffer in the audit record? */
1113 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 		}
1115 
1116 		/* write as much as we can to the audit log */
1117 		if (len_buf >= 0) {
1118 			/* NOTE: some magic numbers here - basically if we
1119 			 *       can't fit a reasonable amount of data into the
1120 			 *       existing audit buffer, flush it and start with
1121 			 *       a new buffer */
1122 			if ((sizeof(abuf) + 8) > len_rem) {
1123 				len_rem = len_max;
1124 				audit_log_end(*ab);
1125 				*ab = audit_log_start(context,
1126 						      GFP_KERNEL, AUDIT_EXECVE);
1127 				if (!*ab)
1128 					goto out;
1129 			}
1130 
1131 			/* create the non-arg portion of the arg record */
1132 			len_tmp = 0;
1133 			if (require_data || (iter > 0) ||
1134 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 				if (iter == 0) {
1136 					len_tmp += snprintf(&abuf[len_tmp],
1137 							sizeof(abuf) - len_tmp,
1138 							" a%d_len=%lu",
1139 							arg, len_full);
1140 				}
1141 				len_tmp += snprintf(&abuf[len_tmp],
1142 						    sizeof(abuf) - len_tmp,
1143 						    " a%d[%d]=", arg, iter++);
1144 			} else
1145 				len_tmp += snprintf(&abuf[len_tmp],
1146 						    sizeof(abuf) - len_tmp,
1147 						    " a%d=", arg);
1148 			WARN_ON(len_tmp >= sizeof(abuf));
1149 			abuf[sizeof(abuf) - 1] = '\0';
1150 
1151 			/* log the arg in the audit record */
1152 			audit_log_format(*ab, "%s", abuf);
1153 			len_rem -= len_tmp;
1154 			len_tmp = len_buf;
1155 			if (encode) {
1156 				if (len_abuf > len_rem)
1157 					len_tmp = len_rem / 2; /* encoding */
1158 				audit_log_n_hex(*ab, buf, len_tmp);
1159 				len_rem -= len_tmp * 2;
1160 				len_abuf -= len_tmp * 2;
1161 			} else {
1162 				if (len_abuf > len_rem)
1163 					len_tmp = len_rem - 2; /* quotes */
1164 				audit_log_n_string(*ab, buf, len_tmp);
1165 				len_rem -= len_tmp + 2;
1166 				/* don't subtract the "2" because we still need
1167 				 * to add quotes to the remaining string */
1168 				len_abuf -= len_tmp;
1169 			}
1170 			len_buf -= len_tmp;
1171 			buf += len_tmp;
1172 		}
1173 
1174 		/* ready to move to the next argument? */
1175 		if ((len_buf == 0) && !require_data) {
1176 			arg++;
1177 			iter = 0;
1178 			len_full = 0;
1179 			require_data = true;
1180 			encode = false;
1181 		}
1182 	} while (arg < context->execve.argc);
1183 
1184 	/* NOTE: the caller handles the final audit_log_end() call */
1185 
1186 out:
1187 	kfree(buf_head);
1188 }
1189 
1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 			  kernel_cap_t *cap)
1192 {
1193 	int i;
1194 
1195 	if (cap_isclear(*cap)) {
1196 		audit_log_format(ab, " %s=0", prefix);
1197 		return;
1198 	}
1199 	audit_log_format(ab, " %s=", prefix);
1200 	CAP_FOR_EACH_U32(i)
1201 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202 }
1203 
1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 {
1206 	if (name->fcap_ver == -1) {
1207 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 		return;
1209 	}
1210 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 			 name->fcap.fE, name->fcap_ver,
1214 			 from_kuid(&init_user_ns, name->fcap.rootid));
1215 }
1216 
1217 static void show_special(struct audit_context *context, int *call_panic)
1218 {
1219 	struct audit_buffer *ab;
1220 	int i;
1221 
1222 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 	if (!ab)
1224 		return;
1225 
1226 	switch (context->type) {
1227 	case AUDIT_SOCKETCALL: {
1228 		int nargs = context->socketcall.nargs;
1229 		audit_log_format(ab, "nargs=%d", nargs);
1230 		for (i = 0; i < nargs; i++)
1231 			audit_log_format(ab, " a%d=%lx", i,
1232 				context->socketcall.args[i]);
1233 		break; }
1234 	case AUDIT_IPC: {
1235 		u32 osid = context->ipc.osid;
1236 
1237 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 				 from_kuid(&init_user_ns, context->ipc.uid),
1239 				 from_kgid(&init_user_ns, context->ipc.gid),
1240 				 context->ipc.mode);
1241 		if (osid) {
1242 			char *ctx = NULL;
1243 			u32 len;
1244 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 				audit_log_format(ab, " osid=%u", osid);
1246 				*call_panic = 1;
1247 			} else {
1248 				audit_log_format(ab, " obj=%s", ctx);
1249 				security_release_secctx(ctx, len);
1250 			}
1251 		}
1252 		if (context->ipc.has_perm) {
1253 			audit_log_end(ab);
1254 			ab = audit_log_start(context, GFP_KERNEL,
1255 					     AUDIT_IPC_SET_PERM);
1256 			if (unlikely(!ab))
1257 				return;
1258 			audit_log_format(ab,
1259 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 				context->ipc.qbytes,
1261 				context->ipc.perm_uid,
1262 				context->ipc.perm_gid,
1263 				context->ipc.perm_mode);
1264 		}
1265 		break; }
1266 	case AUDIT_MQ_OPEN:
1267 		audit_log_format(ab,
1268 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 			"mq_msgsize=%ld mq_curmsgs=%ld",
1270 			context->mq_open.oflag, context->mq_open.mode,
1271 			context->mq_open.attr.mq_flags,
1272 			context->mq_open.attr.mq_maxmsg,
1273 			context->mq_open.attr.mq_msgsize,
1274 			context->mq_open.attr.mq_curmsgs);
1275 		break;
1276 	case AUDIT_MQ_SENDRECV:
1277 		audit_log_format(ab,
1278 			"mqdes=%d msg_len=%zd msg_prio=%u "
1279 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 			context->mq_sendrecv.mqdes,
1281 			context->mq_sendrecv.msg_len,
1282 			context->mq_sendrecv.msg_prio,
1283 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284 			context->mq_sendrecv.abs_timeout.tv_nsec);
1285 		break;
1286 	case AUDIT_MQ_NOTIFY:
1287 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288 				context->mq_notify.mqdes,
1289 				context->mq_notify.sigev_signo);
1290 		break;
1291 	case AUDIT_MQ_GETSETATTR: {
1292 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293 		audit_log_format(ab,
1294 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 			"mq_curmsgs=%ld ",
1296 			context->mq_getsetattr.mqdes,
1297 			attr->mq_flags, attr->mq_maxmsg,
1298 			attr->mq_msgsize, attr->mq_curmsgs);
1299 		break; }
1300 	case AUDIT_CAPSET:
1301 		audit_log_format(ab, "pid=%d", context->capset.pid);
1302 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306 		break;
1307 	case AUDIT_MMAP:
1308 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309 				 context->mmap.flags);
1310 		break;
1311 	case AUDIT_EXECVE:
1312 		audit_log_execve_info(context, &ab);
1313 		break;
1314 	case AUDIT_KERN_MODULE:
1315 		audit_log_format(ab, "name=");
1316 		if (context->module.name) {
1317 			audit_log_untrustedstring(ab, context->module.name);
1318 		} else
1319 			audit_log_format(ab, "(null)");
1320 
1321 		break;
1322 	}
1323 	audit_log_end(ab);
1324 }
1325 
1326 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327 {
1328 	char *end = proctitle + len - 1;
1329 	while (end > proctitle && !isprint(*end))
1330 		end--;
1331 
1332 	/* catch the case where proctitle is only 1 non-print character */
1333 	len = end - proctitle + 1;
1334 	len -= isprint(proctitle[len-1]) == 0;
1335 	return len;
1336 }
1337 
1338 /*
1339  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340  * @context: audit_context for the task
1341  * @n: audit_names structure with reportable details
1342  * @path: optional path to report instead of audit_names->name
1343  * @record_num: record number to report when handling a list of names
1344  * @call_panic: optional pointer to int that will be updated if secid fails
1345  */
1346 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347 		    const struct path *path, int record_num, int *call_panic)
1348 {
1349 	struct audit_buffer *ab;
1350 
1351 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352 	if (!ab)
1353 		return;
1354 
1355 	audit_log_format(ab, "item=%d", record_num);
1356 
1357 	if (path)
1358 		audit_log_d_path(ab, " name=", path);
1359 	else if (n->name) {
1360 		switch (n->name_len) {
1361 		case AUDIT_NAME_FULL:
1362 			/* log the full path */
1363 			audit_log_format(ab, " name=");
1364 			audit_log_untrustedstring(ab, n->name->name);
1365 			break;
1366 		case 0:
1367 			/* name was specified as a relative path and the
1368 			 * directory component is the cwd
1369 			 */
1370 			audit_log_d_path(ab, " name=", &context->pwd);
1371 			break;
1372 		default:
1373 			/* log the name's directory component */
1374 			audit_log_format(ab, " name=");
1375 			audit_log_n_untrustedstring(ab, n->name->name,
1376 						    n->name_len);
1377 		}
1378 	} else
1379 		audit_log_format(ab, " name=(null)");
1380 
1381 	if (n->ino != AUDIT_INO_UNSET)
1382 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383 				 n->ino,
1384 				 MAJOR(n->dev),
1385 				 MINOR(n->dev),
1386 				 n->mode,
1387 				 from_kuid(&init_user_ns, n->uid),
1388 				 from_kgid(&init_user_ns, n->gid),
1389 				 MAJOR(n->rdev),
1390 				 MINOR(n->rdev));
1391 	if (n->osid != 0) {
1392 		char *ctx = NULL;
1393 		u32 len;
1394 
1395 		if (security_secid_to_secctx(
1396 			n->osid, &ctx, &len)) {
1397 			audit_log_format(ab, " osid=%u", n->osid);
1398 			if (call_panic)
1399 				*call_panic = 2;
1400 		} else {
1401 			audit_log_format(ab, " obj=%s", ctx);
1402 			security_release_secctx(ctx, len);
1403 		}
1404 	}
1405 
1406 	/* log the audit_names record type */
1407 	switch (n->type) {
1408 	case AUDIT_TYPE_NORMAL:
1409 		audit_log_format(ab, " nametype=NORMAL");
1410 		break;
1411 	case AUDIT_TYPE_PARENT:
1412 		audit_log_format(ab, " nametype=PARENT");
1413 		break;
1414 	case AUDIT_TYPE_CHILD_DELETE:
1415 		audit_log_format(ab, " nametype=DELETE");
1416 		break;
1417 	case AUDIT_TYPE_CHILD_CREATE:
1418 		audit_log_format(ab, " nametype=CREATE");
1419 		break;
1420 	default:
1421 		audit_log_format(ab, " nametype=UNKNOWN");
1422 		break;
1423 	}
1424 
1425 	audit_log_fcaps(ab, n);
1426 	audit_log_end(ab);
1427 }
1428 
1429 static void audit_log_proctitle(void)
1430 {
1431 	int res;
1432 	char *buf;
1433 	char *msg = "(null)";
1434 	int len = strlen(msg);
1435 	struct audit_context *context = audit_context();
1436 	struct audit_buffer *ab;
1437 
1438 	if (!context || context->dummy)
1439 		return;
1440 
1441 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 	if (!ab)
1443 		return;	/* audit_panic or being filtered */
1444 
1445 	audit_log_format(ab, "proctitle=");
1446 
1447 	/* Not  cached */
1448 	if (!context->proctitle.value) {
1449 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450 		if (!buf)
1451 			goto out;
1452 		/* Historically called this from procfs naming */
1453 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454 		if (res == 0) {
1455 			kfree(buf);
1456 			goto out;
1457 		}
1458 		res = audit_proctitle_rtrim(buf, res);
1459 		if (res == 0) {
1460 			kfree(buf);
1461 			goto out;
1462 		}
1463 		context->proctitle.value = buf;
1464 		context->proctitle.len = res;
1465 	}
1466 	msg = context->proctitle.value;
1467 	len = context->proctitle.len;
1468 out:
1469 	audit_log_n_untrustedstring(ab, msg, len);
1470 	audit_log_end(ab);
1471 }
1472 
1473 static void audit_log_exit(void)
1474 {
1475 	int i, call_panic = 0;
1476 	struct audit_context *context = audit_context();
1477 	struct audit_buffer *ab;
1478 	struct audit_aux_data *aux;
1479 	struct audit_names *n;
1480 
1481 	context->personality = current->personality;
1482 
1483 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 	if (!ab)
1485 		return;		/* audit_panic has been called */
1486 	audit_log_format(ab, "arch=%x syscall=%d",
1487 			 context->arch, context->major);
1488 	if (context->personality != PER_LINUX)
1489 		audit_log_format(ab, " per=%lx", context->personality);
1490 	if (context->return_valid)
1491 		audit_log_format(ab, " success=%s exit=%ld",
1492 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493 				 context->return_code);
1494 
1495 	audit_log_format(ab,
1496 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497 			 context->argv[0],
1498 			 context->argv[1],
1499 			 context->argv[2],
1500 			 context->argv[3],
1501 			 context->name_count);
1502 
1503 	audit_log_task_info(ab);
1504 	audit_log_key(ab, context->filterkey);
1505 	audit_log_end(ab);
1506 
1507 	for (aux = context->aux; aux; aux = aux->next) {
1508 
1509 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 		if (!ab)
1511 			continue; /* audit_panic has been called */
1512 
1513 		switch (aux->type) {
1514 
1515 		case AUDIT_BPRM_FCAPS: {
1516 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529 			audit_log_format(ab, " frootid=%d",
1530 					 from_kuid(&init_user_ns,
1531 						   axs->fcap.rootid));
1532 			break; }
1533 
1534 		}
1535 		audit_log_end(ab);
1536 	}
1537 
1538 	if (context->type)
1539 		show_special(context, &call_panic);
1540 
1541 	if (context->fds[0] >= 0) {
1542 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 		if (ab) {
1544 			audit_log_format(ab, "fd0=%d fd1=%d",
1545 					context->fds[0], context->fds[1]);
1546 			audit_log_end(ab);
1547 		}
1548 	}
1549 
1550 	if (context->sockaddr_len) {
1551 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 		if (ab) {
1553 			audit_log_format(ab, "saddr=");
1554 			audit_log_n_hex(ab, (void *)context->sockaddr,
1555 					context->sockaddr_len);
1556 			audit_log_end(ab);
1557 		}
1558 	}
1559 
1560 	for (aux = context->aux_pids; aux; aux = aux->next) {
1561 		struct audit_aux_data_pids *axs = (void *)aux;
1562 
1563 		for (i = 0; i < axs->pid_count; i++)
1564 			if (audit_log_pid_context(context, axs->target_pid[i],
1565 						  axs->target_auid[i],
1566 						  axs->target_uid[i],
1567 						  axs->target_sessionid[i],
1568 						  axs->target_sid[i],
1569 						  axs->target_comm[i]))
1570 				call_panic = 1;
1571 	}
1572 
1573 	if (context->target_pid &&
1574 	    audit_log_pid_context(context, context->target_pid,
1575 				  context->target_auid, context->target_uid,
1576 				  context->target_sessionid,
1577 				  context->target_sid, context->target_comm))
1578 			call_panic = 1;
1579 
1580 	if (context->pwd.dentry && context->pwd.mnt) {
1581 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 		if (ab) {
1583 			audit_log_d_path(ab, "cwd=", &context->pwd);
1584 			audit_log_end(ab);
1585 		}
1586 	}
1587 
1588 	i = 0;
1589 	list_for_each_entry(n, &context->names_list, list) {
1590 		if (n->hidden)
1591 			continue;
1592 		audit_log_name(context, n, NULL, i++, &call_panic);
1593 	}
1594 
1595 	audit_log_proctitle();
1596 
1597 	/* Send end of event record to help user space know we are finished */
1598 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599 	if (ab)
1600 		audit_log_end(ab);
1601 	if (call_panic)
1602 		audit_panic("error converting sid to string");
1603 }
1604 
1605 /**
1606  * __audit_free - free a per-task audit context
1607  * @tsk: task whose audit context block to free
1608  *
1609  * Called from copy_process and do_exit
1610  */
1611 void __audit_free(struct task_struct *tsk)
1612 {
1613 	struct audit_context *context = tsk->audit_context;
1614 
1615 	if (!context)
1616 		return;
1617 
1618 	if (!list_empty(&context->killed_trees))
1619 		audit_kill_trees(context);
1620 
1621 	/* We are called either by do_exit() or the fork() error handling code;
1622 	 * in the former case tsk == current and in the latter tsk is a
1623 	 * random task_struct that doesn't doesn't have any meaningful data we
1624 	 * need to log via audit_log_exit().
1625 	 */
1626 	if (tsk == current && !context->dummy && context->in_syscall) {
1627 		context->return_valid = 0;
1628 		context->return_code = 0;
1629 
1630 		audit_filter_syscall(tsk, context,
1631 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1632 		audit_filter_inodes(tsk, context);
1633 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1634 			audit_log_exit();
1635 	}
1636 
1637 	audit_set_context(tsk, NULL);
1638 	audit_free_context(context);
1639 }
1640 
1641 /**
1642  * __audit_syscall_entry - fill in an audit record at syscall entry
1643  * @major: major syscall type (function)
1644  * @a1: additional syscall register 1
1645  * @a2: additional syscall register 2
1646  * @a3: additional syscall register 3
1647  * @a4: additional syscall register 4
1648  *
1649  * Fill in audit context at syscall entry.  This only happens if the
1650  * audit context was created when the task was created and the state or
1651  * filters demand the audit context be built.  If the state from the
1652  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653  * then the record will be written at syscall exit time (otherwise, it
1654  * will only be written if another part of the kernel requests that it
1655  * be written).
1656  */
1657 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658 			   unsigned long a3, unsigned long a4)
1659 {
1660 	struct audit_context *context = audit_context();
1661 	enum audit_state     state;
1662 
1663 	if (!audit_enabled || !context)
1664 		return;
1665 
1666 	BUG_ON(context->in_syscall || context->name_count);
1667 
1668 	state = context->state;
1669 	if (state == AUDIT_DISABLED)
1670 		return;
1671 
1672 	context->dummy = !audit_n_rules;
1673 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674 		context->prio = 0;
1675 		if (auditd_test_task(current))
1676 			return;
1677 	}
1678 
1679 	context->arch	    = syscall_get_arch(current);
1680 	context->major      = major;
1681 	context->argv[0]    = a1;
1682 	context->argv[1]    = a2;
1683 	context->argv[2]    = a3;
1684 	context->argv[3]    = a4;
1685 	context->serial     = 0;
1686 	context->in_syscall = 1;
1687 	context->current_state  = state;
1688 	context->ppid       = 0;
1689 	ktime_get_coarse_real_ts64(&context->ctime);
1690 }
1691 
1692 /**
1693  * __audit_syscall_exit - deallocate audit context after a system call
1694  * @success: success value of the syscall
1695  * @return_code: return value of the syscall
1696  *
1697  * Tear down after system call.  If the audit context has been marked as
1698  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699  * filtering, or because some other part of the kernel wrote an audit
1700  * message), then write out the syscall information.  In call cases,
1701  * free the names stored from getname().
1702  */
1703 void __audit_syscall_exit(int success, long return_code)
1704 {
1705 	struct audit_context *context;
1706 
1707 	context = audit_context();
1708 	if (!context)
1709 		return;
1710 
1711 	if (!list_empty(&context->killed_trees))
1712 		audit_kill_trees(context);
1713 
1714 	if (!context->dummy && context->in_syscall) {
1715 		if (success)
1716 			context->return_valid = AUDITSC_SUCCESS;
1717 		else
1718 			context->return_valid = AUDITSC_FAILURE;
1719 
1720 		/*
1721 		 * we need to fix up the return code in the audit logs if the
1722 		 * actual return codes are later going to be fixed up by the
1723 		 * arch specific signal handlers
1724 		 *
1725 		 * This is actually a test for:
1726 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728 		 *
1729 		 * but is faster than a bunch of ||
1730 		 */
1731 		if (unlikely(return_code <= -ERESTARTSYS) &&
1732 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1733 		    (return_code != -ENOIOCTLCMD))
1734 			context->return_code = -EINTR;
1735 		else
1736 			context->return_code  = return_code;
1737 
1738 		audit_filter_syscall(current, context,
1739 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1740 		audit_filter_inodes(current, context);
1741 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 			audit_log_exit();
1743 	}
1744 
1745 	context->in_syscall = 0;
1746 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747 
1748 	audit_free_module(context);
1749 	audit_free_names(context);
1750 	unroll_tree_refs(context, NULL, 0);
1751 	audit_free_aux(context);
1752 	context->aux = NULL;
1753 	context->aux_pids = NULL;
1754 	context->target_pid = 0;
1755 	context->target_sid = 0;
1756 	context->sockaddr_len = 0;
1757 	context->type = 0;
1758 	context->fds[0] = -1;
1759 	if (context->state != AUDIT_RECORD_CONTEXT) {
1760 		kfree(context->filterkey);
1761 		context->filterkey = NULL;
1762 	}
1763 }
1764 
1765 static inline void handle_one(const struct inode *inode)
1766 {
1767 	struct audit_context *context;
1768 	struct audit_tree_refs *p;
1769 	struct audit_chunk *chunk;
1770 	int count;
1771 	if (likely(!inode->i_fsnotify_marks))
1772 		return;
1773 	context = audit_context();
1774 	p = context->trees;
1775 	count = context->tree_count;
1776 	rcu_read_lock();
1777 	chunk = audit_tree_lookup(inode);
1778 	rcu_read_unlock();
1779 	if (!chunk)
1780 		return;
1781 	if (likely(put_tree_ref(context, chunk)))
1782 		return;
1783 	if (unlikely(!grow_tree_refs(context))) {
1784 		pr_warn("out of memory, audit has lost a tree reference\n");
1785 		audit_set_auditable(context);
1786 		audit_put_chunk(chunk);
1787 		unroll_tree_refs(context, p, count);
1788 		return;
1789 	}
1790 	put_tree_ref(context, chunk);
1791 }
1792 
1793 static void handle_path(const struct dentry *dentry)
1794 {
1795 	struct audit_context *context;
1796 	struct audit_tree_refs *p;
1797 	const struct dentry *d, *parent;
1798 	struct audit_chunk *drop;
1799 	unsigned long seq;
1800 	int count;
1801 
1802 	context = audit_context();
1803 	p = context->trees;
1804 	count = context->tree_count;
1805 retry:
1806 	drop = NULL;
1807 	d = dentry;
1808 	rcu_read_lock();
1809 	seq = read_seqbegin(&rename_lock);
1810 	for(;;) {
1811 		struct inode *inode = d_backing_inode(d);
1812 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1813 			struct audit_chunk *chunk;
1814 			chunk = audit_tree_lookup(inode);
1815 			if (chunk) {
1816 				if (unlikely(!put_tree_ref(context, chunk))) {
1817 					drop = chunk;
1818 					break;
1819 				}
1820 			}
1821 		}
1822 		parent = d->d_parent;
1823 		if (parent == d)
1824 			break;
1825 		d = parent;
1826 	}
1827 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1828 		rcu_read_unlock();
1829 		if (!drop) {
1830 			/* just a race with rename */
1831 			unroll_tree_refs(context, p, count);
1832 			goto retry;
1833 		}
1834 		audit_put_chunk(drop);
1835 		if (grow_tree_refs(context)) {
1836 			/* OK, got more space */
1837 			unroll_tree_refs(context, p, count);
1838 			goto retry;
1839 		}
1840 		/* too bad */
1841 		pr_warn("out of memory, audit has lost a tree reference\n");
1842 		unroll_tree_refs(context, p, count);
1843 		audit_set_auditable(context);
1844 		return;
1845 	}
1846 	rcu_read_unlock();
1847 }
1848 
1849 static struct audit_names *audit_alloc_name(struct audit_context *context,
1850 						unsigned char type)
1851 {
1852 	struct audit_names *aname;
1853 
1854 	if (context->name_count < AUDIT_NAMES) {
1855 		aname = &context->preallocated_names[context->name_count];
1856 		memset(aname, 0, sizeof(*aname));
1857 	} else {
1858 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859 		if (!aname)
1860 			return NULL;
1861 		aname->should_free = true;
1862 	}
1863 
1864 	aname->ino = AUDIT_INO_UNSET;
1865 	aname->type = type;
1866 	list_add_tail(&aname->list, &context->names_list);
1867 
1868 	context->name_count++;
1869 	return aname;
1870 }
1871 
1872 /**
1873  * __audit_reusename - fill out filename with info from existing entry
1874  * @uptr: userland ptr to pathname
1875  *
1876  * Search the audit_names list for the current audit context. If there is an
1877  * existing entry with a matching "uptr" then return the filename
1878  * associated with that audit_name. If not, return NULL.
1879  */
1880 struct filename *
1881 __audit_reusename(const __user char *uptr)
1882 {
1883 	struct audit_context *context = audit_context();
1884 	struct audit_names *n;
1885 
1886 	list_for_each_entry(n, &context->names_list, list) {
1887 		if (!n->name)
1888 			continue;
1889 		if (n->name->uptr == uptr) {
1890 			n->name->refcnt++;
1891 			return n->name;
1892 		}
1893 	}
1894 	return NULL;
1895 }
1896 
1897 inline void _audit_getcwd(struct audit_context *context)
1898 {
1899 	if (!context->pwd.dentry)
1900 		get_fs_pwd(current->fs, &context->pwd);
1901 }
1902 
1903 void __audit_getcwd(void)
1904 {
1905 	struct audit_context *context = audit_context();
1906 
1907 	if (context->in_syscall)
1908 		_audit_getcwd(context);
1909 }
1910 
1911 /**
1912  * __audit_getname - add a name to the list
1913  * @name: name to add
1914  *
1915  * Add a name to the list of audit names for this context.
1916  * Called from fs/namei.c:getname().
1917  */
1918 void __audit_getname(struct filename *name)
1919 {
1920 	struct audit_context *context = audit_context();
1921 	struct audit_names *n;
1922 
1923 	if (!context->in_syscall)
1924 		return;
1925 
1926 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927 	if (!n)
1928 		return;
1929 
1930 	n->name = name;
1931 	n->name_len = AUDIT_NAME_FULL;
1932 	name->aname = n;
1933 	name->refcnt++;
1934 
1935 	_audit_getcwd(context);
1936 }
1937 
1938 static inline int audit_copy_fcaps(struct audit_names *name,
1939 				   const struct dentry *dentry)
1940 {
1941 	struct cpu_vfs_cap_data caps;
1942 	int rc;
1943 
1944 	if (!dentry)
1945 		return 0;
1946 
1947 	rc = get_vfs_caps_from_disk(dentry, &caps);
1948 	if (rc)
1949 		return rc;
1950 
1951 	name->fcap.permitted = caps.permitted;
1952 	name->fcap.inheritable = caps.inheritable;
1953 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954 	name->fcap.rootid = caps.rootid;
1955 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956 				VFS_CAP_REVISION_SHIFT;
1957 
1958 	return 0;
1959 }
1960 
1961 /* Copy inode data into an audit_names. */
1962 static void audit_copy_inode(struct audit_names *name,
1963 			     const struct dentry *dentry,
1964 			     struct inode *inode, unsigned int flags)
1965 {
1966 	name->ino   = inode->i_ino;
1967 	name->dev   = inode->i_sb->s_dev;
1968 	name->mode  = inode->i_mode;
1969 	name->uid   = inode->i_uid;
1970 	name->gid   = inode->i_gid;
1971 	name->rdev  = inode->i_rdev;
1972 	security_inode_getsecid(inode, &name->osid);
1973 	if (flags & AUDIT_INODE_NOEVAL) {
1974 		name->fcap_ver = -1;
1975 		return;
1976 	}
1977 	audit_copy_fcaps(name, dentry);
1978 }
1979 
1980 /**
1981  * __audit_inode - store the inode and device from a lookup
1982  * @name: name being audited
1983  * @dentry: dentry being audited
1984  * @flags: attributes for this particular entry
1985  */
1986 void __audit_inode(struct filename *name, const struct dentry *dentry,
1987 		   unsigned int flags)
1988 {
1989 	struct audit_context *context = audit_context();
1990 	struct inode *inode = d_backing_inode(dentry);
1991 	struct audit_names *n;
1992 	bool parent = flags & AUDIT_INODE_PARENT;
1993 	struct audit_entry *e;
1994 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995 	int i;
1996 
1997 	if (!context->in_syscall)
1998 		return;
1999 
2000 	rcu_read_lock();
2001 	list_for_each_entry_rcu(e, list, list) {
2002 		for (i = 0; i < e->rule.field_count; i++) {
2003 			struct audit_field *f = &e->rule.fields[i];
2004 
2005 			if (f->type == AUDIT_FSTYPE
2006 			    && audit_comparator(inode->i_sb->s_magic,
2007 						f->op, f->val)
2008 			    && e->rule.action == AUDIT_NEVER) {
2009 				rcu_read_unlock();
2010 				return;
2011 			}
2012 		}
2013 	}
2014 	rcu_read_unlock();
2015 
2016 	if (!name)
2017 		goto out_alloc;
2018 
2019 	/*
2020 	 * If we have a pointer to an audit_names entry already, then we can
2021 	 * just use it directly if the type is correct.
2022 	 */
2023 	n = name->aname;
2024 	if (n) {
2025 		if (parent) {
2026 			if (n->type == AUDIT_TYPE_PARENT ||
2027 			    n->type == AUDIT_TYPE_UNKNOWN)
2028 				goto out;
2029 		} else {
2030 			if (n->type != AUDIT_TYPE_PARENT)
2031 				goto out;
2032 		}
2033 	}
2034 
2035 	list_for_each_entry_reverse(n, &context->names_list, list) {
2036 		if (n->ino) {
2037 			/* valid inode number, use that for the comparison */
2038 			if (n->ino != inode->i_ino ||
2039 			    n->dev != inode->i_sb->s_dev)
2040 				continue;
2041 		} else if (n->name) {
2042 			/* inode number has not been set, check the name */
2043 			if (strcmp(n->name->name, name->name))
2044 				continue;
2045 		} else
2046 			/* no inode and no name (?!) ... this is odd ... */
2047 			continue;
2048 
2049 		/* match the correct record type */
2050 		if (parent) {
2051 			if (n->type == AUDIT_TYPE_PARENT ||
2052 			    n->type == AUDIT_TYPE_UNKNOWN)
2053 				goto out;
2054 		} else {
2055 			if (n->type != AUDIT_TYPE_PARENT)
2056 				goto out;
2057 		}
2058 	}
2059 
2060 out_alloc:
2061 	/* unable to find an entry with both a matching name and type */
2062 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063 	if (!n)
2064 		return;
2065 	if (name) {
2066 		n->name = name;
2067 		name->refcnt++;
2068 	}
2069 
2070 out:
2071 	if (parent) {
2072 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073 		n->type = AUDIT_TYPE_PARENT;
2074 		if (flags & AUDIT_INODE_HIDDEN)
2075 			n->hidden = true;
2076 	} else {
2077 		n->name_len = AUDIT_NAME_FULL;
2078 		n->type = AUDIT_TYPE_NORMAL;
2079 	}
2080 	handle_path(dentry);
2081 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082 }
2083 
2084 void __audit_file(const struct file *file)
2085 {
2086 	__audit_inode(NULL, file->f_path.dentry, 0);
2087 }
2088 
2089 /**
2090  * __audit_inode_child - collect inode info for created/removed objects
2091  * @parent: inode of dentry parent
2092  * @dentry: dentry being audited
2093  * @type:   AUDIT_TYPE_* value that we're looking for
2094  *
2095  * For syscalls that create or remove filesystem objects, audit_inode
2096  * can only collect information for the filesystem object's parent.
2097  * This call updates the audit context with the child's information.
2098  * Syscalls that create a new filesystem object must be hooked after
2099  * the object is created.  Syscalls that remove a filesystem object
2100  * must be hooked prior, in order to capture the target inode during
2101  * unsuccessful attempts.
2102  */
2103 void __audit_inode_child(struct inode *parent,
2104 			 const struct dentry *dentry,
2105 			 const unsigned char type)
2106 {
2107 	struct audit_context *context = audit_context();
2108 	struct inode *inode = d_backing_inode(dentry);
2109 	const struct qstr *dname = &dentry->d_name;
2110 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111 	struct audit_entry *e;
2112 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113 	int i;
2114 
2115 	if (!context->in_syscall)
2116 		return;
2117 
2118 	rcu_read_lock();
2119 	list_for_each_entry_rcu(e, list, list) {
2120 		for (i = 0; i < e->rule.field_count; i++) {
2121 			struct audit_field *f = &e->rule.fields[i];
2122 
2123 			if (f->type == AUDIT_FSTYPE
2124 			    && audit_comparator(parent->i_sb->s_magic,
2125 						f->op, f->val)
2126 			    && e->rule.action == AUDIT_NEVER) {
2127 				rcu_read_unlock();
2128 				return;
2129 			}
2130 		}
2131 	}
2132 	rcu_read_unlock();
2133 
2134 	if (inode)
2135 		handle_one(inode);
2136 
2137 	/* look for a parent entry first */
2138 	list_for_each_entry(n, &context->names_list, list) {
2139 		if (!n->name ||
2140 		    (n->type != AUDIT_TYPE_PARENT &&
2141 		     n->type != AUDIT_TYPE_UNKNOWN))
2142 			continue;
2143 
2144 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145 		    !audit_compare_dname_path(dname,
2146 					      n->name->name, n->name_len)) {
2147 			if (n->type == AUDIT_TYPE_UNKNOWN)
2148 				n->type = AUDIT_TYPE_PARENT;
2149 			found_parent = n;
2150 			break;
2151 		}
2152 	}
2153 
2154 	/* is there a matching child entry? */
2155 	list_for_each_entry(n, &context->names_list, list) {
2156 		/* can only match entries that have a name */
2157 		if (!n->name ||
2158 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159 			continue;
2160 
2161 		if (!strcmp(dname->name, n->name->name) ||
2162 		    !audit_compare_dname_path(dname, n->name->name,
2163 						found_parent ?
2164 						found_parent->name_len :
2165 						AUDIT_NAME_FULL)) {
2166 			if (n->type == AUDIT_TYPE_UNKNOWN)
2167 				n->type = type;
2168 			found_child = n;
2169 			break;
2170 		}
2171 	}
2172 
2173 	if (!found_parent) {
2174 		/* create a new, "anonymous" parent record */
2175 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176 		if (!n)
2177 			return;
2178 		audit_copy_inode(n, NULL, parent, 0);
2179 	}
2180 
2181 	if (!found_child) {
2182 		found_child = audit_alloc_name(context, type);
2183 		if (!found_child)
2184 			return;
2185 
2186 		/* Re-use the name belonging to the slot for a matching parent
2187 		 * directory. All names for this context are relinquished in
2188 		 * audit_free_names() */
2189 		if (found_parent) {
2190 			found_child->name = found_parent->name;
2191 			found_child->name_len = AUDIT_NAME_FULL;
2192 			found_child->name->refcnt++;
2193 		}
2194 	}
2195 
2196 	if (inode)
2197 		audit_copy_inode(found_child, dentry, inode, 0);
2198 	else
2199 		found_child->ino = AUDIT_INO_UNSET;
2200 }
2201 EXPORT_SYMBOL_GPL(__audit_inode_child);
2202 
2203 /**
2204  * auditsc_get_stamp - get local copies of audit_context values
2205  * @ctx: audit_context for the task
2206  * @t: timespec64 to store time recorded in the audit_context
2207  * @serial: serial value that is recorded in the audit_context
2208  *
2209  * Also sets the context as auditable.
2210  */
2211 int auditsc_get_stamp(struct audit_context *ctx,
2212 		       struct timespec64 *t, unsigned int *serial)
2213 {
2214 	if (!ctx->in_syscall)
2215 		return 0;
2216 	if (!ctx->serial)
2217 		ctx->serial = audit_serial();
2218 	t->tv_sec  = ctx->ctime.tv_sec;
2219 	t->tv_nsec = ctx->ctime.tv_nsec;
2220 	*serial    = ctx->serial;
2221 	if (!ctx->prio) {
2222 		ctx->prio = 1;
2223 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2224 	}
2225 	return 1;
2226 }
2227 
2228 /**
2229  * __audit_mq_open - record audit data for a POSIX MQ open
2230  * @oflag: open flag
2231  * @mode: mode bits
2232  * @attr: queue attributes
2233  *
2234  */
2235 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236 {
2237 	struct audit_context *context = audit_context();
2238 
2239 	if (attr)
2240 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241 	else
2242 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243 
2244 	context->mq_open.oflag = oflag;
2245 	context->mq_open.mode = mode;
2246 
2247 	context->type = AUDIT_MQ_OPEN;
2248 }
2249 
2250 /**
2251  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2252  * @mqdes: MQ descriptor
2253  * @msg_len: Message length
2254  * @msg_prio: Message priority
2255  * @abs_timeout: Message timeout in absolute time
2256  *
2257  */
2258 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259 			const struct timespec64 *abs_timeout)
2260 {
2261 	struct audit_context *context = audit_context();
2262 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263 
2264 	if (abs_timeout)
2265 		memcpy(p, abs_timeout, sizeof(*p));
2266 	else
2267 		memset(p, 0, sizeof(*p));
2268 
2269 	context->mq_sendrecv.mqdes = mqdes;
2270 	context->mq_sendrecv.msg_len = msg_len;
2271 	context->mq_sendrecv.msg_prio = msg_prio;
2272 
2273 	context->type = AUDIT_MQ_SENDRECV;
2274 }
2275 
2276 /**
2277  * __audit_mq_notify - record audit data for a POSIX MQ notify
2278  * @mqdes: MQ descriptor
2279  * @notification: Notification event
2280  *
2281  */
2282 
2283 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284 {
2285 	struct audit_context *context = audit_context();
2286 
2287 	if (notification)
2288 		context->mq_notify.sigev_signo = notification->sigev_signo;
2289 	else
2290 		context->mq_notify.sigev_signo = 0;
2291 
2292 	context->mq_notify.mqdes = mqdes;
2293 	context->type = AUDIT_MQ_NOTIFY;
2294 }
2295 
2296 /**
2297  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2298  * @mqdes: MQ descriptor
2299  * @mqstat: MQ flags
2300  *
2301  */
2302 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303 {
2304 	struct audit_context *context = audit_context();
2305 	context->mq_getsetattr.mqdes = mqdes;
2306 	context->mq_getsetattr.mqstat = *mqstat;
2307 	context->type = AUDIT_MQ_GETSETATTR;
2308 }
2309 
2310 /**
2311  * __audit_ipc_obj - record audit data for ipc object
2312  * @ipcp: ipc permissions
2313  *
2314  */
2315 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316 {
2317 	struct audit_context *context = audit_context();
2318 	context->ipc.uid = ipcp->uid;
2319 	context->ipc.gid = ipcp->gid;
2320 	context->ipc.mode = ipcp->mode;
2321 	context->ipc.has_perm = 0;
2322 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2323 	context->type = AUDIT_IPC;
2324 }
2325 
2326 /**
2327  * __audit_ipc_set_perm - record audit data for new ipc permissions
2328  * @qbytes: msgq bytes
2329  * @uid: msgq user id
2330  * @gid: msgq group id
2331  * @mode: msgq mode (permissions)
2332  *
2333  * Called only after audit_ipc_obj().
2334  */
2335 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336 {
2337 	struct audit_context *context = audit_context();
2338 
2339 	context->ipc.qbytes = qbytes;
2340 	context->ipc.perm_uid = uid;
2341 	context->ipc.perm_gid = gid;
2342 	context->ipc.perm_mode = mode;
2343 	context->ipc.has_perm = 1;
2344 }
2345 
2346 void __audit_bprm(struct linux_binprm *bprm)
2347 {
2348 	struct audit_context *context = audit_context();
2349 
2350 	context->type = AUDIT_EXECVE;
2351 	context->execve.argc = bprm->argc;
2352 }
2353 
2354 
2355 /**
2356  * __audit_socketcall - record audit data for sys_socketcall
2357  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2358  * @args: args array
2359  *
2360  */
2361 int __audit_socketcall(int nargs, unsigned long *args)
2362 {
2363 	struct audit_context *context = audit_context();
2364 
2365 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366 		return -EINVAL;
2367 	context->type = AUDIT_SOCKETCALL;
2368 	context->socketcall.nargs = nargs;
2369 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370 	return 0;
2371 }
2372 
2373 /**
2374  * __audit_fd_pair - record audit data for pipe and socketpair
2375  * @fd1: the first file descriptor
2376  * @fd2: the second file descriptor
2377  *
2378  */
2379 void __audit_fd_pair(int fd1, int fd2)
2380 {
2381 	struct audit_context *context = audit_context();
2382 	context->fds[0] = fd1;
2383 	context->fds[1] = fd2;
2384 }
2385 
2386 /**
2387  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388  * @len: data length in user space
2389  * @a: data address in kernel space
2390  *
2391  * Returns 0 for success or NULL context or < 0 on error.
2392  */
2393 int __audit_sockaddr(int len, void *a)
2394 {
2395 	struct audit_context *context = audit_context();
2396 
2397 	if (!context->sockaddr) {
2398 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399 		if (!p)
2400 			return -ENOMEM;
2401 		context->sockaddr = p;
2402 	}
2403 
2404 	context->sockaddr_len = len;
2405 	memcpy(context->sockaddr, a, len);
2406 	return 0;
2407 }
2408 
2409 void __audit_ptrace(struct task_struct *t)
2410 {
2411 	struct audit_context *context = audit_context();
2412 
2413 	context->target_pid = task_tgid_nr(t);
2414 	context->target_auid = audit_get_loginuid(t);
2415 	context->target_uid = task_uid(t);
2416 	context->target_sessionid = audit_get_sessionid(t);
2417 	security_task_getsecid(t, &context->target_sid);
2418 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419 }
2420 
2421 /**
2422  * audit_signal_info_syscall - record signal info for syscalls
2423  * @t: task being signaled
2424  *
2425  * If the audit subsystem is being terminated, record the task (pid)
2426  * and uid that is doing that.
2427  */
2428 int audit_signal_info_syscall(struct task_struct *t)
2429 {
2430 	struct audit_aux_data_pids *axp;
2431 	struct audit_context *ctx = audit_context();
2432 	kuid_t t_uid = task_uid(t);
2433 
2434 	if (!audit_signals || audit_dummy_context())
2435 		return 0;
2436 
2437 	/* optimize the common case by putting first signal recipient directly
2438 	 * in audit_context */
2439 	if (!ctx->target_pid) {
2440 		ctx->target_pid = task_tgid_nr(t);
2441 		ctx->target_auid = audit_get_loginuid(t);
2442 		ctx->target_uid = t_uid;
2443 		ctx->target_sessionid = audit_get_sessionid(t);
2444 		security_task_getsecid(t, &ctx->target_sid);
2445 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446 		return 0;
2447 	}
2448 
2449 	axp = (void *)ctx->aux_pids;
2450 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452 		if (!axp)
2453 			return -ENOMEM;
2454 
2455 		axp->d.type = AUDIT_OBJ_PID;
2456 		axp->d.next = ctx->aux_pids;
2457 		ctx->aux_pids = (void *)axp;
2458 	}
2459 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460 
2461 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463 	axp->target_uid[axp->pid_count] = t_uid;
2464 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467 	axp->pid_count++;
2468 
2469 	return 0;
2470 }
2471 
2472 /**
2473  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2474  * @bprm: pointer to the bprm being processed
2475  * @new: the proposed new credentials
2476  * @old: the old credentials
2477  *
2478  * Simply check if the proc already has the caps given by the file and if not
2479  * store the priv escalation info for later auditing at the end of the syscall
2480  *
2481  * -Eric
2482  */
2483 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484 			   const struct cred *new, const struct cred *old)
2485 {
2486 	struct audit_aux_data_bprm_fcaps *ax;
2487 	struct audit_context *context = audit_context();
2488 	struct cpu_vfs_cap_data vcaps;
2489 
2490 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491 	if (!ax)
2492 		return -ENOMEM;
2493 
2494 	ax->d.type = AUDIT_BPRM_FCAPS;
2495 	ax->d.next = context->aux;
2496 	context->aux = (void *)ax;
2497 
2498 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2499 
2500 	ax->fcap.permitted = vcaps.permitted;
2501 	ax->fcap.inheritable = vcaps.inheritable;
2502 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503 	ax->fcap.rootid = vcaps.rootid;
2504 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505 
2506 	ax->old_pcap.permitted   = old->cap_permitted;
2507 	ax->old_pcap.inheritable = old->cap_inheritable;
2508 	ax->old_pcap.effective   = old->cap_effective;
2509 	ax->old_pcap.ambient     = old->cap_ambient;
2510 
2511 	ax->new_pcap.permitted   = new->cap_permitted;
2512 	ax->new_pcap.inheritable = new->cap_inheritable;
2513 	ax->new_pcap.effective   = new->cap_effective;
2514 	ax->new_pcap.ambient     = new->cap_ambient;
2515 	return 0;
2516 }
2517 
2518 /**
2519  * __audit_log_capset - store information about the arguments to the capset syscall
2520  * @new: the new credentials
2521  * @old: the old (current) credentials
2522  *
2523  * Record the arguments userspace sent to sys_capset for later printing by the
2524  * audit system if applicable
2525  */
2526 void __audit_log_capset(const struct cred *new, const struct cred *old)
2527 {
2528 	struct audit_context *context = audit_context();
2529 	context->capset.pid = task_tgid_nr(current);
2530 	context->capset.cap.effective   = new->cap_effective;
2531 	context->capset.cap.inheritable = new->cap_effective;
2532 	context->capset.cap.permitted   = new->cap_permitted;
2533 	context->capset.cap.ambient     = new->cap_ambient;
2534 	context->type = AUDIT_CAPSET;
2535 }
2536 
2537 void __audit_mmap_fd(int fd, int flags)
2538 {
2539 	struct audit_context *context = audit_context();
2540 	context->mmap.fd = fd;
2541 	context->mmap.flags = flags;
2542 	context->type = AUDIT_MMAP;
2543 }
2544 
2545 void __audit_log_kern_module(char *name)
2546 {
2547 	struct audit_context *context = audit_context();
2548 
2549 	context->module.name = kstrdup(name, GFP_KERNEL);
2550 	if (!context->module.name)
2551 		audit_log_lost("out of memory in __audit_log_kern_module");
2552 	context->type = AUDIT_KERN_MODULE;
2553 }
2554 
2555 void __audit_fanotify(unsigned int response)
2556 {
2557 	audit_log(audit_context(), GFP_KERNEL,
2558 		AUDIT_FANOTIFY,	"resp=%u", response);
2559 }
2560 
2561 void __audit_tk_injoffset(struct timespec64 offset)
2562 {
2563 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564 		  "sec=%lli nsec=%li",
2565 		  (long long)offset.tv_sec, offset.tv_nsec);
2566 }
2567 
2568 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569 			      const char *op, enum audit_ntp_type type)
2570 {
2571 	const struct audit_ntp_val *val = &ad->vals[type];
2572 
2573 	if (val->newval == val->oldval)
2574 		return;
2575 
2576 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578 }
2579 
2580 void __audit_ntp_log(const struct audit_ntp_data *ad)
2581 {
2582 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2583 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2584 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2585 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2586 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2587 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2588 }
2589 
2590 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591 		       enum audit_nfcfgop op, gfp_t gfp)
2592 {
2593 	struct audit_buffer *ab;
2594 	char comm[sizeof(current->comm)];
2595 
2596 	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597 	if (!ab)
2598 		return;
2599 	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600 			 name, af, nentries, audit_nfcfgs[op].s);
2601 
2602 	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603 	audit_log_task_context(ab); /* subj= */
2604 	audit_log_format(ab, " comm=");
2605 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606 	audit_log_end(ab);
2607 }
2608 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609 
2610 static void audit_log_task(struct audit_buffer *ab)
2611 {
2612 	kuid_t auid, uid;
2613 	kgid_t gid;
2614 	unsigned int sessionid;
2615 	char comm[sizeof(current->comm)];
2616 
2617 	auid = audit_get_loginuid(current);
2618 	sessionid = audit_get_sessionid(current);
2619 	current_uid_gid(&uid, &gid);
2620 
2621 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622 			 from_kuid(&init_user_ns, auid),
2623 			 from_kuid(&init_user_ns, uid),
2624 			 from_kgid(&init_user_ns, gid),
2625 			 sessionid);
2626 	audit_log_task_context(ab);
2627 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629 	audit_log_d_path_exe(ab, current->mm);
2630 }
2631 
2632 /**
2633  * audit_core_dumps - record information about processes that end abnormally
2634  * @signr: signal value
2635  *
2636  * If a process ends with a core dump, something fishy is going on and we
2637  * should record the event for investigation.
2638  */
2639 void audit_core_dumps(long signr)
2640 {
2641 	struct audit_buffer *ab;
2642 
2643 	if (!audit_enabled)
2644 		return;
2645 
2646 	if (signr == SIGQUIT)	/* don't care for those */
2647 		return;
2648 
2649 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650 	if (unlikely(!ab))
2651 		return;
2652 	audit_log_task(ab);
2653 	audit_log_format(ab, " sig=%ld res=1", signr);
2654 	audit_log_end(ab);
2655 }
2656 
2657 /**
2658  * audit_seccomp - record information about a seccomp action
2659  * @syscall: syscall number
2660  * @signr: signal value
2661  * @code: the seccomp action
2662  *
2663  * Record the information associated with a seccomp action. Event filtering for
2664  * seccomp actions that are not to be logged is done in seccomp_log().
2665  * Therefore, this function forces auditing independent of the audit_enabled
2666  * and dummy context state because seccomp actions should be logged even when
2667  * audit is not in use.
2668  */
2669 void audit_seccomp(unsigned long syscall, long signr, int code)
2670 {
2671 	struct audit_buffer *ab;
2672 
2673 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674 	if (unlikely(!ab))
2675 		return;
2676 	audit_log_task(ab);
2677 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678 			 signr, syscall_get_arch(current), syscall,
2679 			 in_compat_syscall(), KSTK_EIP(current), code);
2680 	audit_log_end(ab);
2681 }
2682 
2683 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684 				  int res)
2685 {
2686 	struct audit_buffer *ab;
2687 
2688 	if (!audit_enabled)
2689 		return;
2690 
2691 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2692 			     AUDIT_CONFIG_CHANGE);
2693 	if (unlikely(!ab))
2694 		return;
2695 
2696 	audit_log_format(ab,
2697 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698 			 names, old_names, res);
2699 	audit_log_end(ab);
2700 }
2701 
2702 struct list_head *audit_killed_trees(void)
2703 {
2704 	struct audit_context *ctx = audit_context();
2705 	if (likely(!ctx || !ctx->in_syscall))
2706 		return NULL;
2707 	return &ctx->killed_trees;
2708 }
2709