xref: /openbmc/linux/kernel/auditsc.c (revision 05bcf503)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71 
72 #include "audit.h"
73 
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78 
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80  * for saving names from getname().  If we get more names we will allocate
81  * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES	5
83 
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86 
87 /* number of audit rules */
88 int audit_n_rules;
89 
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92 
93 struct audit_cap_data {
94 	kernel_cap_t		permitted;
95 	kernel_cap_t		inheritable;
96 	union {
97 		unsigned int	fE;		/* effective bit of a file capability */
98 		kernel_cap_t	effective;	/* effective set of a process */
99 	};
100 };
101 
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103  * we don't let putname() free it (instead we free all of the saved
104  * pointers at syscall exit time).
105  *
106  * Further, in fs/namei.c:path_lookup() we store the inode and device.
107  */
108 struct audit_names {
109 	struct list_head	list;		/* audit_context->names_list */
110 	struct filename	*name;
111 	unsigned long		ino;
112 	dev_t			dev;
113 	umode_t			mode;
114 	kuid_t			uid;
115 	kgid_t			gid;
116 	dev_t			rdev;
117 	u32			osid;
118 	struct audit_cap_data	 fcap;
119 	unsigned int		fcap_ver;
120 	int			name_len;	/* number of name's characters to log */
121 	unsigned char		type;		/* record type */
122 	bool			name_put;	/* call __putname() for this name */
123 	/*
124 	 * This was an allocated audit_names and not from the array of
125 	 * names allocated in the task audit context.  Thus this name
126 	 * should be freed on syscall exit
127 	 */
128 	bool			should_free;
129 };
130 
131 struct audit_aux_data {
132 	struct audit_aux_data	*next;
133 	int			type;
134 };
135 
136 #define AUDIT_AUX_IPCPERM	0
137 
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS	16
140 
141 struct audit_aux_data_execve {
142 	struct audit_aux_data	d;
143 	int argc;
144 	int envc;
145 	struct mm_struct *mm;
146 };
147 
148 struct audit_aux_data_pids {
149 	struct audit_aux_data	d;
150 	pid_t			target_pid[AUDIT_AUX_PIDS];
151 	kuid_t			target_auid[AUDIT_AUX_PIDS];
152 	kuid_t			target_uid[AUDIT_AUX_PIDS];
153 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
154 	u32			target_sid[AUDIT_AUX_PIDS];
155 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 	int			pid_count;
157 };
158 
159 struct audit_aux_data_bprm_fcaps {
160 	struct audit_aux_data	d;
161 	struct audit_cap_data	fcap;
162 	unsigned int		fcap_ver;
163 	struct audit_cap_data	old_pcap;
164 	struct audit_cap_data	new_pcap;
165 };
166 
167 struct audit_aux_data_capset {
168 	struct audit_aux_data	d;
169 	pid_t			pid;
170 	struct audit_cap_data	cap;
171 };
172 
173 struct audit_tree_refs {
174 	struct audit_tree_refs *next;
175 	struct audit_chunk *c[31];
176 };
177 
178 /* The per-task audit context. */
179 struct audit_context {
180 	int		    dummy;	/* must be the first element */
181 	int		    in_syscall;	/* 1 if task is in a syscall */
182 	enum audit_state    state, current_state;
183 	unsigned int	    serial;     /* serial number for record */
184 	int		    major;      /* syscall number */
185 	struct timespec	    ctime;      /* time of syscall entry */
186 	unsigned long	    argv[4];    /* syscall arguments */
187 	long		    return_code;/* syscall return code */
188 	u64		    prio;
189 	int		    return_valid; /* return code is valid */
190 	/*
191 	 * The names_list is the list of all audit_names collected during this
192 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
193 	 * actually be from the preallocated_names array for performance
194 	 * reasons.  Except during allocation they should never be referenced
195 	 * through the preallocated_names array and should only be found/used
196 	 * by running the names_list.
197 	 */
198 	struct audit_names  preallocated_names[AUDIT_NAMES];
199 	int		    name_count; /* total records in names_list */
200 	struct list_head    names_list;	/* anchor for struct audit_names->list */
201 	char *		    filterkey;	/* key for rule that triggered record */
202 	struct path	    pwd;
203 	struct audit_context *previous; /* For nested syscalls */
204 	struct audit_aux_data *aux;
205 	struct audit_aux_data *aux_pids;
206 	struct sockaddr_storage *sockaddr;
207 	size_t sockaddr_len;
208 				/* Save things to print about task_struct */
209 	pid_t		    pid, ppid;
210 	kuid_t		    uid, euid, suid, fsuid;
211 	kgid_t		    gid, egid, sgid, fsgid;
212 	unsigned long	    personality;
213 	int		    arch;
214 
215 	pid_t		    target_pid;
216 	kuid_t		    target_auid;
217 	kuid_t		    target_uid;
218 	unsigned int	    target_sessionid;
219 	u32		    target_sid;
220 	char		    target_comm[TASK_COMM_LEN];
221 
222 	struct audit_tree_refs *trees, *first_trees;
223 	struct list_head killed_trees;
224 	int tree_count;
225 
226 	int type;
227 	union {
228 		struct {
229 			int nargs;
230 			long args[6];
231 		} socketcall;
232 		struct {
233 			kuid_t			uid;
234 			kgid_t			gid;
235 			umode_t			mode;
236 			u32			osid;
237 			int			has_perm;
238 			uid_t			perm_uid;
239 			gid_t			perm_gid;
240 			umode_t			perm_mode;
241 			unsigned long		qbytes;
242 		} ipc;
243 		struct {
244 			mqd_t			mqdes;
245 			struct mq_attr 		mqstat;
246 		} mq_getsetattr;
247 		struct {
248 			mqd_t			mqdes;
249 			int			sigev_signo;
250 		} mq_notify;
251 		struct {
252 			mqd_t			mqdes;
253 			size_t			msg_len;
254 			unsigned int		msg_prio;
255 			struct timespec		abs_timeout;
256 		} mq_sendrecv;
257 		struct {
258 			int			oflag;
259 			umode_t			mode;
260 			struct mq_attr		attr;
261 		} mq_open;
262 		struct {
263 			pid_t			pid;
264 			struct audit_cap_data	cap;
265 		} capset;
266 		struct {
267 			int			fd;
268 			int			flags;
269 		} mmap;
270 	};
271 	int fds[2];
272 
273 #if AUDIT_DEBUG
274 	int		    put_count;
275 	int		    ino_count;
276 #endif
277 };
278 
279 static inline int open_arg(int flags, int mask)
280 {
281 	int n = ACC_MODE(flags);
282 	if (flags & (O_TRUNC | O_CREAT))
283 		n |= AUDIT_PERM_WRITE;
284 	return n & mask;
285 }
286 
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 	unsigned n;
290 	if (unlikely(!ctx))
291 		return 0;
292 	n = ctx->major;
293 
294 	switch (audit_classify_syscall(ctx->arch, n)) {
295 	case 0:	/* native */
296 		if ((mask & AUDIT_PERM_WRITE) &&
297 		     audit_match_class(AUDIT_CLASS_WRITE, n))
298 			return 1;
299 		if ((mask & AUDIT_PERM_READ) &&
300 		     audit_match_class(AUDIT_CLASS_READ, n))
301 			return 1;
302 		if ((mask & AUDIT_PERM_ATTR) &&
303 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
304 			return 1;
305 		return 0;
306 	case 1: /* 32bit on biarch */
307 		if ((mask & AUDIT_PERM_WRITE) &&
308 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 			return 1;
310 		if ((mask & AUDIT_PERM_READ) &&
311 		     audit_match_class(AUDIT_CLASS_READ_32, n))
312 			return 1;
313 		if ((mask & AUDIT_PERM_ATTR) &&
314 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 			return 1;
316 		return 0;
317 	case 2: /* open */
318 		return mask & ACC_MODE(ctx->argv[1]);
319 	case 3: /* openat */
320 		return mask & ACC_MODE(ctx->argv[2]);
321 	case 4: /* socketcall */
322 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 	case 5: /* execve */
324 		return mask & AUDIT_PERM_EXEC;
325 	default:
326 		return 0;
327 	}
328 }
329 
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 	struct audit_names *n;
333 	umode_t mode = (umode_t)val;
334 
335 	if (unlikely(!ctx))
336 		return 0;
337 
338 	list_for_each_entry(n, &ctx->names_list, list) {
339 		if ((n->ino != -1) &&
340 		    ((n->mode & S_IFMT) == mode))
341 			return 1;
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349  * ->first_trees points to its beginning, ->trees - to the current end of data.
350  * ->tree_count is the number of free entries in array pointed to by ->trees.
351  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
353  * it's going to remain 1-element for almost any setup) until we free context itself.
354  * References in it _are_ dropped - at the same time we free/drop aux stuff.
355  */
356 
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 	if (!ctx->prio) {
361 		ctx->prio = 1;
362 		ctx->current_state = AUDIT_RECORD_CONTEXT;
363 	}
364 }
365 
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 	struct audit_tree_refs *p = ctx->trees;
369 	int left = ctx->tree_count;
370 	if (likely(left)) {
371 		p->c[--left] = chunk;
372 		ctx->tree_count = left;
373 		return 1;
374 	}
375 	if (!p)
376 		return 0;
377 	p = p->next;
378 	if (p) {
379 		p->c[30] = chunk;
380 		ctx->trees = p;
381 		ctx->tree_count = 30;
382 		return 1;
383 	}
384 	return 0;
385 }
386 
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 	struct audit_tree_refs *p = ctx->trees;
390 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 	if (!ctx->trees) {
392 		ctx->trees = p;
393 		return 0;
394 	}
395 	if (p)
396 		p->next = ctx->trees;
397 	else
398 		ctx->first_trees = ctx->trees;
399 	ctx->tree_count = 31;
400 	return 1;
401 }
402 #endif
403 
404 static void unroll_tree_refs(struct audit_context *ctx,
405 		      struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 	struct audit_tree_refs *q;
409 	int n;
410 	if (!p) {
411 		/* we started with empty chain */
412 		p = ctx->first_trees;
413 		count = 31;
414 		/* if the very first allocation has failed, nothing to do */
415 		if (!p)
416 			return;
417 	}
418 	n = count;
419 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 		while (n--) {
421 			audit_put_chunk(q->c[n]);
422 			q->c[n] = NULL;
423 		}
424 	}
425 	while (n-- > ctx->tree_count) {
426 		audit_put_chunk(q->c[n]);
427 		q->c[n] = NULL;
428 	}
429 	ctx->trees = p;
430 	ctx->tree_count = count;
431 #endif
432 }
433 
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 	struct audit_tree_refs *p, *q;
437 	for (p = ctx->first_trees; p; p = q) {
438 		q = p->next;
439 		kfree(p);
440 	}
441 }
442 
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 	struct audit_tree_refs *p;
447 	int n;
448 	if (!tree)
449 		return 0;
450 	/* full ones */
451 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 		for (n = 0; n < 31; n++)
453 			if (audit_tree_match(p->c[n], tree))
454 				return 1;
455 	}
456 	/* partial */
457 	if (p) {
458 		for (n = ctx->tree_count; n < 31; n++)
459 			if (audit_tree_match(p->c[n], tree))
460 				return 1;
461 	}
462 #endif
463 	return 0;
464 }
465 
466 static int audit_compare_uid(kuid_t uid,
467 			     struct audit_names *name,
468 			     struct audit_field *f,
469 			     struct audit_context *ctx)
470 {
471 	struct audit_names *n;
472 	int rc;
473 
474 	if (name) {
475 		rc = audit_uid_comparator(uid, f->op, name->uid);
476 		if (rc)
477 			return rc;
478 	}
479 
480 	if (ctx) {
481 		list_for_each_entry(n, &ctx->names_list, list) {
482 			rc = audit_uid_comparator(uid, f->op, n->uid);
483 			if (rc)
484 				return rc;
485 		}
486 	}
487 	return 0;
488 }
489 
490 static int audit_compare_gid(kgid_t gid,
491 			     struct audit_names *name,
492 			     struct audit_field *f,
493 			     struct audit_context *ctx)
494 {
495 	struct audit_names *n;
496 	int rc;
497 
498 	if (name) {
499 		rc = audit_gid_comparator(gid, f->op, name->gid);
500 		if (rc)
501 			return rc;
502 	}
503 
504 	if (ctx) {
505 		list_for_each_entry(n, &ctx->names_list, list) {
506 			rc = audit_gid_comparator(gid, f->op, n->gid);
507 			if (rc)
508 				return rc;
509 		}
510 	}
511 	return 0;
512 }
513 
514 static int audit_field_compare(struct task_struct *tsk,
515 			       const struct cred *cred,
516 			       struct audit_field *f,
517 			       struct audit_context *ctx,
518 			       struct audit_names *name)
519 {
520 	switch (f->val) {
521 	/* process to file object comparisons */
522 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
523 		return audit_compare_uid(cred->uid, name, f, ctx);
524 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
525 		return audit_compare_gid(cred->gid, name, f, ctx);
526 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
527 		return audit_compare_uid(cred->euid, name, f, ctx);
528 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
529 		return audit_compare_gid(cred->egid, name, f, ctx);
530 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
531 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
532 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 		return audit_compare_uid(cred->suid, name, f, ctx);
534 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
535 		return audit_compare_gid(cred->sgid, name, f, ctx);
536 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
537 		return audit_compare_uid(cred->fsuid, name, f, ctx);
538 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
539 		return audit_compare_gid(cred->fsgid, name, f, ctx);
540 	/* uid comparisons */
541 	case AUDIT_COMPARE_UID_TO_AUID:
542 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
543 	case AUDIT_COMPARE_UID_TO_EUID:
544 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
545 	case AUDIT_COMPARE_UID_TO_SUID:
546 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
547 	case AUDIT_COMPARE_UID_TO_FSUID:
548 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
549 	/* auid comparisons */
550 	case AUDIT_COMPARE_AUID_TO_EUID:
551 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
552 	case AUDIT_COMPARE_AUID_TO_SUID:
553 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
554 	case AUDIT_COMPARE_AUID_TO_FSUID:
555 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
556 	/* euid comparisons */
557 	case AUDIT_COMPARE_EUID_TO_SUID:
558 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
559 	case AUDIT_COMPARE_EUID_TO_FSUID:
560 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
561 	/* suid comparisons */
562 	case AUDIT_COMPARE_SUID_TO_FSUID:
563 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
564 	/* gid comparisons */
565 	case AUDIT_COMPARE_GID_TO_EGID:
566 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
567 	case AUDIT_COMPARE_GID_TO_SGID:
568 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
569 	case AUDIT_COMPARE_GID_TO_FSGID:
570 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
571 	/* egid comparisons */
572 	case AUDIT_COMPARE_EGID_TO_SGID:
573 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
574 	case AUDIT_COMPARE_EGID_TO_FSGID:
575 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
576 	/* sgid comparison */
577 	case AUDIT_COMPARE_SGID_TO_FSGID:
578 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
579 	default:
580 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
581 		return 0;
582 	}
583 	return 0;
584 }
585 
586 /* Determine if any context name data matches a rule's watch data */
587 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
588  * otherwise.
589  *
590  * If task_creation is true, this is an explicit indication that we are
591  * filtering a task rule at task creation time.  This and tsk == current are
592  * the only situations where tsk->cred may be accessed without an rcu read lock.
593  */
594 static int audit_filter_rules(struct task_struct *tsk,
595 			      struct audit_krule *rule,
596 			      struct audit_context *ctx,
597 			      struct audit_names *name,
598 			      enum audit_state *state,
599 			      bool task_creation)
600 {
601 	const struct cred *cred;
602 	int i, need_sid = 1;
603 	u32 sid;
604 
605 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
606 
607 	for (i = 0; i < rule->field_count; i++) {
608 		struct audit_field *f = &rule->fields[i];
609 		struct audit_names *n;
610 		int result = 0;
611 
612 		switch (f->type) {
613 		case AUDIT_PID:
614 			result = audit_comparator(tsk->pid, f->op, f->val);
615 			break;
616 		case AUDIT_PPID:
617 			if (ctx) {
618 				if (!ctx->ppid)
619 					ctx->ppid = sys_getppid();
620 				result = audit_comparator(ctx->ppid, f->op, f->val);
621 			}
622 			break;
623 		case AUDIT_UID:
624 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
625 			break;
626 		case AUDIT_EUID:
627 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
628 			break;
629 		case AUDIT_SUID:
630 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
631 			break;
632 		case AUDIT_FSUID:
633 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
634 			break;
635 		case AUDIT_GID:
636 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
637 			break;
638 		case AUDIT_EGID:
639 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
640 			break;
641 		case AUDIT_SGID:
642 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
643 			break;
644 		case AUDIT_FSGID:
645 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
646 			break;
647 		case AUDIT_PERS:
648 			result = audit_comparator(tsk->personality, f->op, f->val);
649 			break;
650 		case AUDIT_ARCH:
651 			if (ctx)
652 				result = audit_comparator(ctx->arch, f->op, f->val);
653 			break;
654 
655 		case AUDIT_EXIT:
656 			if (ctx && ctx->return_valid)
657 				result = audit_comparator(ctx->return_code, f->op, f->val);
658 			break;
659 		case AUDIT_SUCCESS:
660 			if (ctx && ctx->return_valid) {
661 				if (f->val)
662 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
663 				else
664 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
665 			}
666 			break;
667 		case AUDIT_DEVMAJOR:
668 			if (name) {
669 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
670 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
671 					++result;
672 			} else if (ctx) {
673 				list_for_each_entry(n, &ctx->names_list, list) {
674 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
675 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
676 						++result;
677 						break;
678 					}
679 				}
680 			}
681 			break;
682 		case AUDIT_DEVMINOR:
683 			if (name) {
684 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
685 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
686 					++result;
687 			} else if (ctx) {
688 				list_for_each_entry(n, &ctx->names_list, list) {
689 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
690 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
691 						++result;
692 						break;
693 					}
694 				}
695 			}
696 			break;
697 		case AUDIT_INODE:
698 			if (name)
699 				result = (name->ino == f->val);
700 			else if (ctx) {
701 				list_for_each_entry(n, &ctx->names_list, list) {
702 					if (audit_comparator(n->ino, f->op, f->val)) {
703 						++result;
704 						break;
705 					}
706 				}
707 			}
708 			break;
709 		case AUDIT_OBJ_UID:
710 			if (name) {
711 				result = audit_uid_comparator(name->uid, f->op, f->uid);
712 			} else if (ctx) {
713 				list_for_each_entry(n, &ctx->names_list, list) {
714 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
715 						++result;
716 						break;
717 					}
718 				}
719 			}
720 			break;
721 		case AUDIT_OBJ_GID:
722 			if (name) {
723 				result = audit_gid_comparator(name->gid, f->op, f->gid);
724 			} else if (ctx) {
725 				list_for_each_entry(n, &ctx->names_list, list) {
726 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
727 						++result;
728 						break;
729 					}
730 				}
731 			}
732 			break;
733 		case AUDIT_WATCH:
734 			if (name)
735 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
736 			break;
737 		case AUDIT_DIR:
738 			if (ctx)
739 				result = match_tree_refs(ctx, rule->tree);
740 			break;
741 		case AUDIT_LOGINUID:
742 			result = 0;
743 			if (ctx)
744 				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
745 			break;
746 		case AUDIT_SUBJ_USER:
747 		case AUDIT_SUBJ_ROLE:
748 		case AUDIT_SUBJ_TYPE:
749 		case AUDIT_SUBJ_SEN:
750 		case AUDIT_SUBJ_CLR:
751 			/* NOTE: this may return negative values indicating
752 			   a temporary error.  We simply treat this as a
753 			   match for now to avoid losing information that
754 			   may be wanted.   An error message will also be
755 			   logged upon error */
756 			if (f->lsm_rule) {
757 				if (need_sid) {
758 					security_task_getsecid(tsk, &sid);
759 					need_sid = 0;
760 				}
761 				result = security_audit_rule_match(sid, f->type,
762 				                                  f->op,
763 				                                  f->lsm_rule,
764 				                                  ctx);
765 			}
766 			break;
767 		case AUDIT_OBJ_USER:
768 		case AUDIT_OBJ_ROLE:
769 		case AUDIT_OBJ_TYPE:
770 		case AUDIT_OBJ_LEV_LOW:
771 		case AUDIT_OBJ_LEV_HIGH:
772 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
773 			   also applies here */
774 			if (f->lsm_rule) {
775 				/* Find files that match */
776 				if (name) {
777 					result = security_audit_rule_match(
778 					           name->osid, f->type, f->op,
779 					           f->lsm_rule, ctx);
780 				} else if (ctx) {
781 					list_for_each_entry(n, &ctx->names_list, list) {
782 						if (security_audit_rule_match(n->osid, f->type,
783 									      f->op, f->lsm_rule,
784 									      ctx)) {
785 							++result;
786 							break;
787 						}
788 					}
789 				}
790 				/* Find ipc objects that match */
791 				if (!ctx || ctx->type != AUDIT_IPC)
792 					break;
793 				if (security_audit_rule_match(ctx->ipc.osid,
794 							      f->type, f->op,
795 							      f->lsm_rule, ctx))
796 					++result;
797 			}
798 			break;
799 		case AUDIT_ARG0:
800 		case AUDIT_ARG1:
801 		case AUDIT_ARG2:
802 		case AUDIT_ARG3:
803 			if (ctx)
804 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
805 			break;
806 		case AUDIT_FILTERKEY:
807 			/* ignore this field for filtering */
808 			result = 1;
809 			break;
810 		case AUDIT_PERM:
811 			result = audit_match_perm(ctx, f->val);
812 			break;
813 		case AUDIT_FILETYPE:
814 			result = audit_match_filetype(ctx, f->val);
815 			break;
816 		case AUDIT_FIELD_COMPARE:
817 			result = audit_field_compare(tsk, cred, f, ctx, name);
818 			break;
819 		}
820 		if (!result)
821 			return 0;
822 	}
823 
824 	if (ctx) {
825 		if (rule->prio <= ctx->prio)
826 			return 0;
827 		if (rule->filterkey) {
828 			kfree(ctx->filterkey);
829 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
830 		}
831 		ctx->prio = rule->prio;
832 	}
833 	switch (rule->action) {
834 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
835 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
836 	}
837 	return 1;
838 }
839 
840 /* At process creation time, we can determine if system-call auditing is
841  * completely disabled for this task.  Since we only have the task
842  * structure at this point, we can only check uid and gid.
843  */
844 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
845 {
846 	struct audit_entry *e;
847 	enum audit_state   state;
848 
849 	rcu_read_lock();
850 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
851 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
852 				       &state, true)) {
853 			if (state == AUDIT_RECORD_CONTEXT)
854 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
855 			rcu_read_unlock();
856 			return state;
857 		}
858 	}
859 	rcu_read_unlock();
860 	return AUDIT_BUILD_CONTEXT;
861 }
862 
863 /* At syscall entry and exit time, this filter is called if the
864  * audit_state is not low enough that auditing cannot take place, but is
865  * also not high enough that we already know we have to write an audit
866  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
867  */
868 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
869 					     struct audit_context *ctx,
870 					     struct list_head *list)
871 {
872 	struct audit_entry *e;
873 	enum audit_state state;
874 
875 	if (audit_pid && tsk->tgid == audit_pid)
876 		return AUDIT_DISABLED;
877 
878 	rcu_read_lock();
879 	if (!list_empty(list)) {
880 		int word = AUDIT_WORD(ctx->major);
881 		int bit  = AUDIT_BIT(ctx->major);
882 
883 		list_for_each_entry_rcu(e, list, list) {
884 			if ((e->rule.mask[word] & bit) == bit &&
885 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
886 					       &state, false)) {
887 				rcu_read_unlock();
888 				ctx->current_state = state;
889 				return state;
890 			}
891 		}
892 	}
893 	rcu_read_unlock();
894 	return AUDIT_BUILD_CONTEXT;
895 }
896 
897 /*
898  * Given an audit_name check the inode hash table to see if they match.
899  * Called holding the rcu read lock to protect the use of audit_inode_hash
900  */
901 static int audit_filter_inode_name(struct task_struct *tsk,
902 				   struct audit_names *n,
903 				   struct audit_context *ctx) {
904 	int word, bit;
905 	int h = audit_hash_ino((u32)n->ino);
906 	struct list_head *list = &audit_inode_hash[h];
907 	struct audit_entry *e;
908 	enum audit_state state;
909 
910 	word = AUDIT_WORD(ctx->major);
911 	bit  = AUDIT_BIT(ctx->major);
912 
913 	if (list_empty(list))
914 		return 0;
915 
916 	list_for_each_entry_rcu(e, list, list) {
917 		if ((e->rule.mask[word] & bit) == bit &&
918 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
919 			ctx->current_state = state;
920 			return 1;
921 		}
922 	}
923 
924 	return 0;
925 }
926 
927 /* At syscall exit time, this filter is called if any audit_names have been
928  * collected during syscall processing.  We only check rules in sublists at hash
929  * buckets applicable to the inode numbers in audit_names.
930  * Regarding audit_state, same rules apply as for audit_filter_syscall().
931  */
932 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
933 {
934 	struct audit_names *n;
935 
936 	if (audit_pid && tsk->tgid == audit_pid)
937 		return;
938 
939 	rcu_read_lock();
940 
941 	list_for_each_entry(n, &ctx->names_list, list) {
942 		if (audit_filter_inode_name(tsk, n, ctx))
943 			break;
944 	}
945 	rcu_read_unlock();
946 }
947 
948 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
949 						      int return_valid,
950 						      long return_code)
951 {
952 	struct audit_context *context = tsk->audit_context;
953 
954 	if (!context)
955 		return NULL;
956 	context->return_valid = return_valid;
957 
958 	/*
959 	 * we need to fix up the return code in the audit logs if the actual
960 	 * return codes are later going to be fixed up by the arch specific
961 	 * signal handlers
962 	 *
963 	 * This is actually a test for:
964 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
965 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
966 	 *
967 	 * but is faster than a bunch of ||
968 	 */
969 	if (unlikely(return_code <= -ERESTARTSYS) &&
970 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
971 	    (return_code != -ENOIOCTLCMD))
972 		context->return_code = -EINTR;
973 	else
974 		context->return_code  = return_code;
975 
976 	if (context->in_syscall && !context->dummy) {
977 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
978 		audit_filter_inodes(tsk, context);
979 	}
980 
981 	tsk->audit_context = NULL;
982 	return context;
983 }
984 
985 static inline void audit_free_names(struct audit_context *context)
986 {
987 	struct audit_names *n, *next;
988 
989 #if AUDIT_DEBUG == 2
990 	if (context->put_count + context->ino_count != context->name_count) {
991 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
992 		       " name_count=%d put_count=%d"
993 		       " ino_count=%d [NOT freeing]\n",
994 		       __FILE__, __LINE__,
995 		       context->serial, context->major, context->in_syscall,
996 		       context->name_count, context->put_count,
997 		       context->ino_count);
998 		list_for_each_entry(n, &context->names_list, list) {
999 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1000 			       n->name, n->name->name ?: "(null)");
1001 		}
1002 		dump_stack();
1003 		return;
1004 	}
1005 #endif
1006 #if AUDIT_DEBUG
1007 	context->put_count  = 0;
1008 	context->ino_count  = 0;
1009 #endif
1010 
1011 	list_for_each_entry_safe(n, next, &context->names_list, list) {
1012 		list_del(&n->list);
1013 		if (n->name && n->name_put)
1014 			__putname(n->name);
1015 		if (n->should_free)
1016 			kfree(n);
1017 	}
1018 	context->name_count = 0;
1019 	path_put(&context->pwd);
1020 	context->pwd.dentry = NULL;
1021 	context->pwd.mnt = NULL;
1022 }
1023 
1024 static inline void audit_free_aux(struct audit_context *context)
1025 {
1026 	struct audit_aux_data *aux;
1027 
1028 	while ((aux = context->aux)) {
1029 		context->aux = aux->next;
1030 		kfree(aux);
1031 	}
1032 	while ((aux = context->aux_pids)) {
1033 		context->aux_pids = aux->next;
1034 		kfree(aux);
1035 	}
1036 }
1037 
1038 static inline void audit_zero_context(struct audit_context *context,
1039 				      enum audit_state state)
1040 {
1041 	memset(context, 0, sizeof(*context));
1042 	context->state      = state;
1043 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1044 }
1045 
1046 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1047 {
1048 	struct audit_context *context;
1049 
1050 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1051 		return NULL;
1052 	audit_zero_context(context, state);
1053 	INIT_LIST_HEAD(&context->killed_trees);
1054 	INIT_LIST_HEAD(&context->names_list);
1055 	return context;
1056 }
1057 
1058 /**
1059  * audit_alloc - allocate an audit context block for a task
1060  * @tsk: task
1061  *
1062  * Filter on the task information and allocate a per-task audit context
1063  * if necessary.  Doing so turns on system call auditing for the
1064  * specified task.  This is called from copy_process, so no lock is
1065  * needed.
1066  */
1067 int audit_alloc(struct task_struct *tsk)
1068 {
1069 	struct audit_context *context;
1070 	enum audit_state     state;
1071 	char *key = NULL;
1072 
1073 	if (likely(!audit_ever_enabled))
1074 		return 0; /* Return if not auditing. */
1075 
1076 	state = audit_filter_task(tsk, &key);
1077 	if (state == AUDIT_DISABLED)
1078 		return 0;
1079 
1080 	if (!(context = audit_alloc_context(state))) {
1081 		kfree(key);
1082 		audit_log_lost("out of memory in audit_alloc");
1083 		return -ENOMEM;
1084 	}
1085 	context->filterkey = key;
1086 
1087 	tsk->audit_context  = context;
1088 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1089 	return 0;
1090 }
1091 
1092 static inline void audit_free_context(struct audit_context *context)
1093 {
1094 	struct audit_context *previous;
1095 	int		     count = 0;
1096 
1097 	do {
1098 		previous = context->previous;
1099 		if (previous || (count &&  count < 10)) {
1100 			++count;
1101 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1102 			       " freeing multiple contexts (%d)\n",
1103 			       context->serial, context->major,
1104 			       context->name_count, count);
1105 		}
1106 		audit_free_names(context);
1107 		unroll_tree_refs(context, NULL, 0);
1108 		free_tree_refs(context);
1109 		audit_free_aux(context);
1110 		kfree(context->filterkey);
1111 		kfree(context->sockaddr);
1112 		kfree(context);
1113 		context  = previous;
1114 	} while (context);
1115 	if (count >= 10)
1116 		printk(KERN_ERR "audit: freed %d contexts\n", count);
1117 }
1118 
1119 void audit_log_task_context(struct audit_buffer *ab)
1120 {
1121 	char *ctx = NULL;
1122 	unsigned len;
1123 	int error;
1124 	u32 sid;
1125 
1126 	security_task_getsecid(current, &sid);
1127 	if (!sid)
1128 		return;
1129 
1130 	error = security_secid_to_secctx(sid, &ctx, &len);
1131 	if (error) {
1132 		if (error != -EINVAL)
1133 			goto error_path;
1134 		return;
1135 	}
1136 
1137 	audit_log_format(ab, " subj=%s", ctx);
1138 	security_release_secctx(ctx, len);
1139 	return;
1140 
1141 error_path:
1142 	audit_panic("error in audit_log_task_context");
1143 	return;
1144 }
1145 
1146 EXPORT_SYMBOL(audit_log_task_context);
1147 
1148 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1149 {
1150 	const struct cred *cred;
1151 	char name[sizeof(tsk->comm)];
1152 	struct mm_struct *mm = tsk->mm;
1153 	char *tty;
1154 
1155 	if (!ab)
1156 		return;
1157 
1158 	/* tsk == current */
1159 	cred = current_cred();
1160 
1161 	spin_lock_irq(&tsk->sighand->siglock);
1162 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1163 		tty = tsk->signal->tty->name;
1164 	else
1165 		tty = "(none)";
1166 	spin_unlock_irq(&tsk->sighand->siglock);
1167 
1168 
1169 	audit_log_format(ab,
1170 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1171 			 " euid=%u suid=%u fsuid=%u"
1172 			 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1173 			 sys_getppid(),
1174 			 tsk->pid,
1175 			 from_kuid(&init_user_ns, tsk->loginuid),
1176 			 from_kuid(&init_user_ns, cred->uid),
1177 			 from_kgid(&init_user_ns, cred->gid),
1178 			 from_kuid(&init_user_ns, cred->euid),
1179 			 from_kuid(&init_user_ns, cred->suid),
1180 			 from_kuid(&init_user_ns, cred->fsuid),
1181 			 from_kgid(&init_user_ns, cred->egid),
1182 			 from_kgid(&init_user_ns, cred->sgid),
1183 			 from_kgid(&init_user_ns, cred->fsgid),
1184 			 tsk->sessionid, tty);
1185 
1186 	get_task_comm(name, tsk);
1187 	audit_log_format(ab, " comm=");
1188 	audit_log_untrustedstring(ab, name);
1189 
1190 	if (mm) {
1191 		down_read(&mm->mmap_sem);
1192 		if (mm->exe_file)
1193 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1194 		up_read(&mm->mmap_sem);
1195 	}
1196 	audit_log_task_context(ab);
1197 }
1198 
1199 EXPORT_SYMBOL(audit_log_task_info);
1200 
1201 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1202 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1203 				 u32 sid, char *comm)
1204 {
1205 	struct audit_buffer *ab;
1206 	char *ctx = NULL;
1207 	u32 len;
1208 	int rc = 0;
1209 
1210 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1211 	if (!ab)
1212 		return rc;
1213 
1214 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1215 			 from_kuid(&init_user_ns, auid),
1216 			 from_kuid(&init_user_ns, uid), sessionid);
1217 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1218 		audit_log_format(ab, " obj=(none)");
1219 		rc = 1;
1220 	} else {
1221 		audit_log_format(ab, " obj=%s", ctx);
1222 		security_release_secctx(ctx, len);
1223 	}
1224 	audit_log_format(ab, " ocomm=");
1225 	audit_log_untrustedstring(ab, comm);
1226 	audit_log_end(ab);
1227 
1228 	return rc;
1229 }
1230 
1231 /*
1232  * to_send and len_sent accounting are very loose estimates.  We aren't
1233  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1234  * within about 500 bytes (next page boundary)
1235  *
1236  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1237  * logging that a[%d]= was going to be 16 characters long we would be wasting
1238  * space in every audit message.  In one 7500 byte message we can log up to
1239  * about 1000 min size arguments.  That comes down to about 50% waste of space
1240  * if we didn't do the snprintf to find out how long arg_num_len was.
1241  */
1242 static int audit_log_single_execve_arg(struct audit_context *context,
1243 					struct audit_buffer **ab,
1244 					int arg_num,
1245 					size_t *len_sent,
1246 					const char __user *p,
1247 					char *buf)
1248 {
1249 	char arg_num_len_buf[12];
1250 	const char __user *tmp_p = p;
1251 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1252 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1253 	size_t len, len_left, to_send;
1254 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1255 	unsigned int i, has_cntl = 0, too_long = 0;
1256 	int ret;
1257 
1258 	/* strnlen_user includes the null we don't want to send */
1259 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1260 
1261 	/*
1262 	 * We just created this mm, if we can't find the strings
1263 	 * we just copied into it something is _very_ wrong. Similar
1264 	 * for strings that are too long, we should not have created
1265 	 * any.
1266 	 */
1267 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1268 		WARN_ON(1);
1269 		send_sig(SIGKILL, current, 0);
1270 		return -1;
1271 	}
1272 
1273 	/* walk the whole argument looking for non-ascii chars */
1274 	do {
1275 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1276 			to_send = MAX_EXECVE_AUDIT_LEN;
1277 		else
1278 			to_send = len_left;
1279 		ret = copy_from_user(buf, tmp_p, to_send);
1280 		/*
1281 		 * There is no reason for this copy to be short. We just
1282 		 * copied them here, and the mm hasn't been exposed to user-
1283 		 * space yet.
1284 		 */
1285 		if (ret) {
1286 			WARN_ON(1);
1287 			send_sig(SIGKILL, current, 0);
1288 			return -1;
1289 		}
1290 		buf[to_send] = '\0';
1291 		has_cntl = audit_string_contains_control(buf, to_send);
1292 		if (has_cntl) {
1293 			/*
1294 			 * hex messages get logged as 2 bytes, so we can only
1295 			 * send half as much in each message
1296 			 */
1297 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1298 			break;
1299 		}
1300 		len_left -= to_send;
1301 		tmp_p += to_send;
1302 	} while (len_left > 0);
1303 
1304 	len_left = len;
1305 
1306 	if (len > max_execve_audit_len)
1307 		too_long = 1;
1308 
1309 	/* rewalk the argument actually logging the message */
1310 	for (i = 0; len_left > 0; i++) {
1311 		int room_left;
1312 
1313 		if (len_left > max_execve_audit_len)
1314 			to_send = max_execve_audit_len;
1315 		else
1316 			to_send = len_left;
1317 
1318 		/* do we have space left to send this argument in this ab? */
1319 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1320 		if (has_cntl)
1321 			room_left -= (to_send * 2);
1322 		else
1323 			room_left -= to_send;
1324 		if (room_left < 0) {
1325 			*len_sent = 0;
1326 			audit_log_end(*ab);
1327 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1328 			if (!*ab)
1329 				return 0;
1330 		}
1331 
1332 		/*
1333 		 * first record needs to say how long the original string was
1334 		 * so we can be sure nothing was lost.
1335 		 */
1336 		if ((i == 0) && (too_long))
1337 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1338 					 has_cntl ? 2*len : len);
1339 
1340 		/*
1341 		 * normally arguments are small enough to fit and we already
1342 		 * filled buf above when we checked for control characters
1343 		 * so don't bother with another copy_from_user
1344 		 */
1345 		if (len >= max_execve_audit_len)
1346 			ret = copy_from_user(buf, p, to_send);
1347 		else
1348 			ret = 0;
1349 		if (ret) {
1350 			WARN_ON(1);
1351 			send_sig(SIGKILL, current, 0);
1352 			return -1;
1353 		}
1354 		buf[to_send] = '\0';
1355 
1356 		/* actually log it */
1357 		audit_log_format(*ab, " a%d", arg_num);
1358 		if (too_long)
1359 			audit_log_format(*ab, "[%d]", i);
1360 		audit_log_format(*ab, "=");
1361 		if (has_cntl)
1362 			audit_log_n_hex(*ab, buf, to_send);
1363 		else
1364 			audit_log_string(*ab, buf);
1365 
1366 		p += to_send;
1367 		len_left -= to_send;
1368 		*len_sent += arg_num_len;
1369 		if (has_cntl)
1370 			*len_sent += to_send * 2;
1371 		else
1372 			*len_sent += to_send;
1373 	}
1374 	/* include the null we didn't log */
1375 	return len + 1;
1376 }
1377 
1378 static void audit_log_execve_info(struct audit_context *context,
1379 				  struct audit_buffer **ab,
1380 				  struct audit_aux_data_execve *axi)
1381 {
1382 	int i, len;
1383 	size_t len_sent = 0;
1384 	const char __user *p;
1385 	char *buf;
1386 
1387 	if (axi->mm != current->mm)
1388 		return; /* execve failed, no additional info */
1389 
1390 	p = (const char __user *)axi->mm->arg_start;
1391 
1392 	audit_log_format(*ab, "argc=%d", axi->argc);
1393 
1394 	/*
1395 	 * we need some kernel buffer to hold the userspace args.  Just
1396 	 * allocate one big one rather than allocating one of the right size
1397 	 * for every single argument inside audit_log_single_execve_arg()
1398 	 * should be <8k allocation so should be pretty safe.
1399 	 */
1400 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1401 	if (!buf) {
1402 		audit_panic("out of memory for argv string\n");
1403 		return;
1404 	}
1405 
1406 	for (i = 0; i < axi->argc; i++) {
1407 		len = audit_log_single_execve_arg(context, ab, i,
1408 						  &len_sent, p, buf);
1409 		if (len <= 0)
1410 			break;
1411 		p += len;
1412 	}
1413 	kfree(buf);
1414 }
1415 
1416 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1417 {
1418 	int i;
1419 
1420 	audit_log_format(ab, " %s=", prefix);
1421 	CAP_FOR_EACH_U32(i) {
1422 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1423 	}
1424 }
1425 
1426 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1427 {
1428 	kernel_cap_t *perm = &name->fcap.permitted;
1429 	kernel_cap_t *inh = &name->fcap.inheritable;
1430 	int log = 0;
1431 
1432 	if (!cap_isclear(*perm)) {
1433 		audit_log_cap(ab, "cap_fp", perm);
1434 		log = 1;
1435 	}
1436 	if (!cap_isclear(*inh)) {
1437 		audit_log_cap(ab, "cap_fi", inh);
1438 		log = 1;
1439 	}
1440 
1441 	if (log)
1442 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1443 }
1444 
1445 static void show_special(struct audit_context *context, int *call_panic)
1446 {
1447 	struct audit_buffer *ab;
1448 	int i;
1449 
1450 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1451 	if (!ab)
1452 		return;
1453 
1454 	switch (context->type) {
1455 	case AUDIT_SOCKETCALL: {
1456 		int nargs = context->socketcall.nargs;
1457 		audit_log_format(ab, "nargs=%d", nargs);
1458 		for (i = 0; i < nargs; i++)
1459 			audit_log_format(ab, " a%d=%lx", i,
1460 				context->socketcall.args[i]);
1461 		break; }
1462 	case AUDIT_IPC: {
1463 		u32 osid = context->ipc.osid;
1464 
1465 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1466 				 from_kuid(&init_user_ns, context->ipc.uid),
1467 				 from_kgid(&init_user_ns, context->ipc.gid),
1468 				 context->ipc.mode);
1469 		if (osid) {
1470 			char *ctx = NULL;
1471 			u32 len;
1472 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1473 				audit_log_format(ab, " osid=%u", osid);
1474 				*call_panic = 1;
1475 			} else {
1476 				audit_log_format(ab, " obj=%s", ctx);
1477 				security_release_secctx(ctx, len);
1478 			}
1479 		}
1480 		if (context->ipc.has_perm) {
1481 			audit_log_end(ab);
1482 			ab = audit_log_start(context, GFP_KERNEL,
1483 					     AUDIT_IPC_SET_PERM);
1484 			audit_log_format(ab,
1485 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1486 				context->ipc.qbytes,
1487 				context->ipc.perm_uid,
1488 				context->ipc.perm_gid,
1489 				context->ipc.perm_mode);
1490 			if (!ab)
1491 				return;
1492 		}
1493 		break; }
1494 	case AUDIT_MQ_OPEN: {
1495 		audit_log_format(ab,
1496 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1497 			"mq_msgsize=%ld mq_curmsgs=%ld",
1498 			context->mq_open.oflag, context->mq_open.mode,
1499 			context->mq_open.attr.mq_flags,
1500 			context->mq_open.attr.mq_maxmsg,
1501 			context->mq_open.attr.mq_msgsize,
1502 			context->mq_open.attr.mq_curmsgs);
1503 		break; }
1504 	case AUDIT_MQ_SENDRECV: {
1505 		audit_log_format(ab,
1506 			"mqdes=%d msg_len=%zd msg_prio=%u "
1507 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1508 			context->mq_sendrecv.mqdes,
1509 			context->mq_sendrecv.msg_len,
1510 			context->mq_sendrecv.msg_prio,
1511 			context->mq_sendrecv.abs_timeout.tv_sec,
1512 			context->mq_sendrecv.abs_timeout.tv_nsec);
1513 		break; }
1514 	case AUDIT_MQ_NOTIFY: {
1515 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1516 				context->mq_notify.mqdes,
1517 				context->mq_notify.sigev_signo);
1518 		break; }
1519 	case AUDIT_MQ_GETSETATTR: {
1520 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1521 		audit_log_format(ab,
1522 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1523 			"mq_curmsgs=%ld ",
1524 			context->mq_getsetattr.mqdes,
1525 			attr->mq_flags, attr->mq_maxmsg,
1526 			attr->mq_msgsize, attr->mq_curmsgs);
1527 		break; }
1528 	case AUDIT_CAPSET: {
1529 		audit_log_format(ab, "pid=%d", context->capset.pid);
1530 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1531 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1532 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1533 		break; }
1534 	case AUDIT_MMAP: {
1535 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1536 				 context->mmap.flags);
1537 		break; }
1538 	}
1539 	audit_log_end(ab);
1540 }
1541 
1542 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1543 			   int record_num, int *call_panic)
1544 {
1545 	struct audit_buffer *ab;
1546 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1547 	if (!ab)
1548 		return; /* audit_panic has been called */
1549 
1550 	audit_log_format(ab, "item=%d", record_num);
1551 
1552 	if (n->name) {
1553 		switch (n->name_len) {
1554 		case AUDIT_NAME_FULL:
1555 			/* log the full path */
1556 			audit_log_format(ab, " name=");
1557 			audit_log_untrustedstring(ab, n->name->name);
1558 			break;
1559 		case 0:
1560 			/* name was specified as a relative path and the
1561 			 * directory component is the cwd */
1562 			audit_log_d_path(ab, " name=", &context->pwd);
1563 			break;
1564 		default:
1565 			/* log the name's directory component */
1566 			audit_log_format(ab, " name=");
1567 			audit_log_n_untrustedstring(ab, n->name->name,
1568 						    n->name_len);
1569 		}
1570 	} else
1571 		audit_log_format(ab, " name=(null)");
1572 
1573 	if (n->ino != (unsigned long)-1) {
1574 		audit_log_format(ab, " inode=%lu"
1575 				 " dev=%02x:%02x mode=%#ho"
1576 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1577 				 n->ino,
1578 				 MAJOR(n->dev),
1579 				 MINOR(n->dev),
1580 				 n->mode,
1581 				 from_kuid(&init_user_ns, n->uid),
1582 				 from_kgid(&init_user_ns, n->gid),
1583 				 MAJOR(n->rdev),
1584 				 MINOR(n->rdev));
1585 	}
1586 	if (n->osid != 0) {
1587 		char *ctx = NULL;
1588 		u32 len;
1589 		if (security_secid_to_secctx(
1590 			n->osid, &ctx, &len)) {
1591 			audit_log_format(ab, " osid=%u", n->osid);
1592 			*call_panic = 2;
1593 		} else {
1594 			audit_log_format(ab, " obj=%s", ctx);
1595 			security_release_secctx(ctx, len);
1596 		}
1597 	}
1598 
1599 	audit_log_fcaps(ab, n);
1600 
1601 	audit_log_end(ab);
1602 }
1603 
1604 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1605 {
1606 	int i, call_panic = 0;
1607 	struct audit_buffer *ab;
1608 	struct audit_aux_data *aux;
1609 	struct audit_names *n;
1610 
1611 	/* tsk == current */
1612 	context->personality = tsk->personality;
1613 
1614 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1615 	if (!ab)
1616 		return;		/* audit_panic has been called */
1617 	audit_log_format(ab, "arch=%x syscall=%d",
1618 			 context->arch, context->major);
1619 	if (context->personality != PER_LINUX)
1620 		audit_log_format(ab, " per=%lx", context->personality);
1621 	if (context->return_valid)
1622 		audit_log_format(ab, " success=%s exit=%ld",
1623 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1624 				 context->return_code);
1625 
1626 	audit_log_format(ab,
1627 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1628 			 context->argv[0],
1629 			 context->argv[1],
1630 			 context->argv[2],
1631 			 context->argv[3],
1632 			 context->name_count);
1633 
1634 	audit_log_task_info(ab, tsk);
1635 	audit_log_key(ab, context->filterkey);
1636 	audit_log_end(ab);
1637 
1638 	for (aux = context->aux; aux; aux = aux->next) {
1639 
1640 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1641 		if (!ab)
1642 			continue; /* audit_panic has been called */
1643 
1644 		switch (aux->type) {
1645 
1646 		case AUDIT_EXECVE: {
1647 			struct audit_aux_data_execve *axi = (void *)aux;
1648 			audit_log_execve_info(context, &ab, axi);
1649 			break; }
1650 
1651 		case AUDIT_BPRM_FCAPS: {
1652 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1653 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1654 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1655 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1656 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1657 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1658 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1659 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1660 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1661 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1662 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1663 			break; }
1664 
1665 		}
1666 		audit_log_end(ab);
1667 	}
1668 
1669 	if (context->type)
1670 		show_special(context, &call_panic);
1671 
1672 	if (context->fds[0] >= 0) {
1673 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1674 		if (ab) {
1675 			audit_log_format(ab, "fd0=%d fd1=%d",
1676 					context->fds[0], context->fds[1]);
1677 			audit_log_end(ab);
1678 		}
1679 	}
1680 
1681 	if (context->sockaddr_len) {
1682 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1683 		if (ab) {
1684 			audit_log_format(ab, "saddr=");
1685 			audit_log_n_hex(ab, (void *)context->sockaddr,
1686 					context->sockaddr_len);
1687 			audit_log_end(ab);
1688 		}
1689 	}
1690 
1691 	for (aux = context->aux_pids; aux; aux = aux->next) {
1692 		struct audit_aux_data_pids *axs = (void *)aux;
1693 
1694 		for (i = 0; i < axs->pid_count; i++)
1695 			if (audit_log_pid_context(context, axs->target_pid[i],
1696 						  axs->target_auid[i],
1697 						  axs->target_uid[i],
1698 						  axs->target_sessionid[i],
1699 						  axs->target_sid[i],
1700 						  axs->target_comm[i]))
1701 				call_panic = 1;
1702 	}
1703 
1704 	if (context->target_pid &&
1705 	    audit_log_pid_context(context, context->target_pid,
1706 				  context->target_auid, context->target_uid,
1707 				  context->target_sessionid,
1708 				  context->target_sid, context->target_comm))
1709 			call_panic = 1;
1710 
1711 	if (context->pwd.dentry && context->pwd.mnt) {
1712 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1713 		if (ab) {
1714 			audit_log_d_path(ab, " cwd=", &context->pwd);
1715 			audit_log_end(ab);
1716 		}
1717 	}
1718 
1719 	i = 0;
1720 	list_for_each_entry(n, &context->names_list, list)
1721 		audit_log_name(context, n, i++, &call_panic);
1722 
1723 	/* Send end of event record to help user space know we are finished */
1724 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1725 	if (ab)
1726 		audit_log_end(ab);
1727 	if (call_panic)
1728 		audit_panic("error converting sid to string");
1729 }
1730 
1731 /**
1732  * audit_free - free a per-task audit context
1733  * @tsk: task whose audit context block to free
1734  *
1735  * Called from copy_process and do_exit
1736  */
1737 void __audit_free(struct task_struct *tsk)
1738 {
1739 	struct audit_context *context;
1740 
1741 	context = audit_get_context(tsk, 0, 0);
1742 	if (!context)
1743 		return;
1744 
1745 	/* Check for system calls that do not go through the exit
1746 	 * function (e.g., exit_group), then free context block.
1747 	 * We use GFP_ATOMIC here because we might be doing this
1748 	 * in the context of the idle thread */
1749 	/* that can happen only if we are called from do_exit() */
1750 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1751 		audit_log_exit(context, tsk);
1752 	if (!list_empty(&context->killed_trees))
1753 		audit_kill_trees(&context->killed_trees);
1754 
1755 	audit_free_context(context);
1756 }
1757 
1758 /**
1759  * audit_syscall_entry - fill in an audit record at syscall entry
1760  * @arch: architecture type
1761  * @major: major syscall type (function)
1762  * @a1: additional syscall register 1
1763  * @a2: additional syscall register 2
1764  * @a3: additional syscall register 3
1765  * @a4: additional syscall register 4
1766  *
1767  * Fill in audit context at syscall entry.  This only happens if the
1768  * audit context was created when the task was created and the state or
1769  * filters demand the audit context be built.  If the state from the
1770  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1771  * then the record will be written at syscall exit time (otherwise, it
1772  * will only be written if another part of the kernel requests that it
1773  * be written).
1774  */
1775 void __audit_syscall_entry(int arch, int major,
1776 			 unsigned long a1, unsigned long a2,
1777 			 unsigned long a3, unsigned long a4)
1778 {
1779 	struct task_struct *tsk = current;
1780 	struct audit_context *context = tsk->audit_context;
1781 	enum audit_state     state;
1782 
1783 	if (!context)
1784 		return;
1785 
1786 	/*
1787 	 * This happens only on certain architectures that make system
1788 	 * calls in kernel_thread via the entry.S interface, instead of
1789 	 * with direct calls.  (If you are porting to a new
1790 	 * architecture, hitting this condition can indicate that you
1791 	 * got the _exit/_leave calls backward in entry.S.)
1792 	 *
1793 	 * i386     no
1794 	 * x86_64   no
1795 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1796 	 *
1797 	 * This also happens with vm86 emulation in a non-nested manner
1798 	 * (entries without exits), so this case must be caught.
1799 	 */
1800 	if (context->in_syscall) {
1801 		struct audit_context *newctx;
1802 
1803 #if AUDIT_DEBUG
1804 		printk(KERN_ERR
1805 		       "audit(:%d) pid=%d in syscall=%d;"
1806 		       " entering syscall=%d\n",
1807 		       context->serial, tsk->pid, context->major, major);
1808 #endif
1809 		newctx = audit_alloc_context(context->state);
1810 		if (newctx) {
1811 			newctx->previous   = context;
1812 			context		   = newctx;
1813 			tsk->audit_context = newctx;
1814 		} else	{
1815 			/* If we can't alloc a new context, the best we
1816 			 * can do is to leak memory (any pending putname
1817 			 * will be lost).  The only other alternative is
1818 			 * to abandon auditing. */
1819 			audit_zero_context(context, context->state);
1820 		}
1821 	}
1822 	BUG_ON(context->in_syscall || context->name_count);
1823 
1824 	if (!audit_enabled)
1825 		return;
1826 
1827 	context->arch	    = arch;
1828 	context->major      = major;
1829 	context->argv[0]    = a1;
1830 	context->argv[1]    = a2;
1831 	context->argv[2]    = a3;
1832 	context->argv[3]    = a4;
1833 
1834 	state = context->state;
1835 	context->dummy = !audit_n_rules;
1836 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1837 		context->prio = 0;
1838 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1839 	}
1840 	if (state == AUDIT_DISABLED)
1841 		return;
1842 
1843 	context->serial     = 0;
1844 	context->ctime      = CURRENT_TIME;
1845 	context->in_syscall = 1;
1846 	context->current_state  = state;
1847 	context->ppid       = 0;
1848 }
1849 
1850 /**
1851  * audit_syscall_exit - deallocate audit context after a system call
1852  * @success: success value of the syscall
1853  * @return_code: return value of the syscall
1854  *
1855  * Tear down after system call.  If the audit context has been marked as
1856  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1857  * filtering, or because some other part of the kernel wrote an audit
1858  * message), then write out the syscall information.  In call cases,
1859  * free the names stored from getname().
1860  */
1861 void __audit_syscall_exit(int success, long return_code)
1862 {
1863 	struct task_struct *tsk = current;
1864 	struct audit_context *context;
1865 
1866 	if (success)
1867 		success = AUDITSC_SUCCESS;
1868 	else
1869 		success = AUDITSC_FAILURE;
1870 
1871 	context = audit_get_context(tsk, success, return_code);
1872 	if (!context)
1873 		return;
1874 
1875 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1876 		audit_log_exit(context, tsk);
1877 
1878 	context->in_syscall = 0;
1879 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1880 
1881 	if (!list_empty(&context->killed_trees))
1882 		audit_kill_trees(&context->killed_trees);
1883 
1884 	if (context->previous) {
1885 		struct audit_context *new_context = context->previous;
1886 		context->previous  = NULL;
1887 		audit_free_context(context);
1888 		tsk->audit_context = new_context;
1889 	} else {
1890 		audit_free_names(context);
1891 		unroll_tree_refs(context, NULL, 0);
1892 		audit_free_aux(context);
1893 		context->aux = NULL;
1894 		context->aux_pids = NULL;
1895 		context->target_pid = 0;
1896 		context->target_sid = 0;
1897 		context->sockaddr_len = 0;
1898 		context->type = 0;
1899 		context->fds[0] = -1;
1900 		if (context->state != AUDIT_RECORD_CONTEXT) {
1901 			kfree(context->filterkey);
1902 			context->filterkey = NULL;
1903 		}
1904 		tsk->audit_context = context;
1905 	}
1906 }
1907 
1908 static inline void handle_one(const struct inode *inode)
1909 {
1910 #ifdef CONFIG_AUDIT_TREE
1911 	struct audit_context *context;
1912 	struct audit_tree_refs *p;
1913 	struct audit_chunk *chunk;
1914 	int count;
1915 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1916 		return;
1917 	context = current->audit_context;
1918 	p = context->trees;
1919 	count = context->tree_count;
1920 	rcu_read_lock();
1921 	chunk = audit_tree_lookup(inode);
1922 	rcu_read_unlock();
1923 	if (!chunk)
1924 		return;
1925 	if (likely(put_tree_ref(context, chunk)))
1926 		return;
1927 	if (unlikely(!grow_tree_refs(context))) {
1928 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1929 		audit_set_auditable(context);
1930 		audit_put_chunk(chunk);
1931 		unroll_tree_refs(context, p, count);
1932 		return;
1933 	}
1934 	put_tree_ref(context, chunk);
1935 #endif
1936 }
1937 
1938 static void handle_path(const struct dentry *dentry)
1939 {
1940 #ifdef CONFIG_AUDIT_TREE
1941 	struct audit_context *context;
1942 	struct audit_tree_refs *p;
1943 	const struct dentry *d, *parent;
1944 	struct audit_chunk *drop;
1945 	unsigned long seq;
1946 	int count;
1947 
1948 	context = current->audit_context;
1949 	p = context->trees;
1950 	count = context->tree_count;
1951 retry:
1952 	drop = NULL;
1953 	d = dentry;
1954 	rcu_read_lock();
1955 	seq = read_seqbegin(&rename_lock);
1956 	for(;;) {
1957 		struct inode *inode = d->d_inode;
1958 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1959 			struct audit_chunk *chunk;
1960 			chunk = audit_tree_lookup(inode);
1961 			if (chunk) {
1962 				if (unlikely(!put_tree_ref(context, chunk))) {
1963 					drop = chunk;
1964 					break;
1965 				}
1966 			}
1967 		}
1968 		parent = d->d_parent;
1969 		if (parent == d)
1970 			break;
1971 		d = parent;
1972 	}
1973 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1974 		rcu_read_unlock();
1975 		if (!drop) {
1976 			/* just a race with rename */
1977 			unroll_tree_refs(context, p, count);
1978 			goto retry;
1979 		}
1980 		audit_put_chunk(drop);
1981 		if (grow_tree_refs(context)) {
1982 			/* OK, got more space */
1983 			unroll_tree_refs(context, p, count);
1984 			goto retry;
1985 		}
1986 		/* too bad */
1987 		printk(KERN_WARNING
1988 			"out of memory, audit has lost a tree reference\n");
1989 		unroll_tree_refs(context, p, count);
1990 		audit_set_auditable(context);
1991 		return;
1992 	}
1993 	rcu_read_unlock();
1994 #endif
1995 }
1996 
1997 static struct audit_names *audit_alloc_name(struct audit_context *context,
1998 						unsigned char type)
1999 {
2000 	struct audit_names *aname;
2001 
2002 	if (context->name_count < AUDIT_NAMES) {
2003 		aname = &context->preallocated_names[context->name_count];
2004 		memset(aname, 0, sizeof(*aname));
2005 	} else {
2006 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2007 		if (!aname)
2008 			return NULL;
2009 		aname->should_free = true;
2010 	}
2011 
2012 	aname->ino = (unsigned long)-1;
2013 	aname->type = type;
2014 	list_add_tail(&aname->list, &context->names_list);
2015 
2016 	context->name_count++;
2017 #if AUDIT_DEBUG
2018 	context->ino_count++;
2019 #endif
2020 	return aname;
2021 }
2022 
2023 /**
2024  * audit_reusename - fill out filename with info from existing entry
2025  * @uptr: userland ptr to pathname
2026  *
2027  * Search the audit_names list for the current audit context. If there is an
2028  * existing entry with a matching "uptr" then return the filename
2029  * associated with that audit_name. If not, return NULL.
2030  */
2031 struct filename *
2032 __audit_reusename(const __user char *uptr)
2033 {
2034 	struct audit_context *context = current->audit_context;
2035 	struct audit_names *n;
2036 
2037 	list_for_each_entry(n, &context->names_list, list) {
2038 		if (!n->name)
2039 			continue;
2040 		if (n->name->uptr == uptr)
2041 			return n->name;
2042 	}
2043 	return NULL;
2044 }
2045 
2046 /**
2047  * audit_getname - add a name to the list
2048  * @name: name to add
2049  *
2050  * Add a name to the list of audit names for this context.
2051  * Called from fs/namei.c:getname().
2052  */
2053 void __audit_getname(struct filename *name)
2054 {
2055 	struct audit_context *context = current->audit_context;
2056 	struct audit_names *n;
2057 
2058 	if (!context->in_syscall) {
2059 #if AUDIT_DEBUG == 2
2060 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2061 		       __FILE__, __LINE__, context->serial, name);
2062 		dump_stack();
2063 #endif
2064 		return;
2065 	}
2066 
2067 #if AUDIT_DEBUG
2068 	/* The filename _must_ have a populated ->name */
2069 	BUG_ON(!name->name);
2070 #endif
2071 
2072 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2073 	if (!n)
2074 		return;
2075 
2076 	n->name = name;
2077 	n->name_len = AUDIT_NAME_FULL;
2078 	n->name_put = true;
2079 	name->aname = n;
2080 
2081 	if (!context->pwd.dentry)
2082 		get_fs_pwd(current->fs, &context->pwd);
2083 }
2084 
2085 /* audit_putname - intercept a putname request
2086  * @name: name to intercept and delay for putname
2087  *
2088  * If we have stored the name from getname in the audit context,
2089  * then we delay the putname until syscall exit.
2090  * Called from include/linux/fs.h:putname().
2091  */
2092 void audit_putname(struct filename *name)
2093 {
2094 	struct audit_context *context = current->audit_context;
2095 
2096 	BUG_ON(!context);
2097 	if (!context->in_syscall) {
2098 #if AUDIT_DEBUG == 2
2099 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2100 		       __FILE__, __LINE__, context->serial, name);
2101 		if (context->name_count) {
2102 			struct audit_names *n;
2103 			int i;
2104 
2105 			list_for_each_entry(n, &context->names_list, list)
2106 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2107 				       n->name, n->name->name ?: "(null)");
2108 			}
2109 #endif
2110 		__putname(name);
2111 	}
2112 #if AUDIT_DEBUG
2113 	else {
2114 		++context->put_count;
2115 		if (context->put_count > context->name_count) {
2116 			printk(KERN_ERR "%s:%d(:%d): major=%d"
2117 			       " in_syscall=%d putname(%p) name_count=%d"
2118 			       " put_count=%d\n",
2119 			       __FILE__, __LINE__,
2120 			       context->serial, context->major,
2121 			       context->in_syscall, name->name,
2122 			       context->name_count, context->put_count);
2123 			dump_stack();
2124 		}
2125 	}
2126 #endif
2127 }
2128 
2129 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2130 {
2131 	struct cpu_vfs_cap_data caps;
2132 	int rc;
2133 
2134 	if (!dentry)
2135 		return 0;
2136 
2137 	rc = get_vfs_caps_from_disk(dentry, &caps);
2138 	if (rc)
2139 		return rc;
2140 
2141 	name->fcap.permitted = caps.permitted;
2142 	name->fcap.inheritable = caps.inheritable;
2143 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2144 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2145 
2146 	return 0;
2147 }
2148 
2149 
2150 /* Copy inode data into an audit_names. */
2151 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2152 			     const struct inode *inode)
2153 {
2154 	name->ino   = inode->i_ino;
2155 	name->dev   = inode->i_sb->s_dev;
2156 	name->mode  = inode->i_mode;
2157 	name->uid   = inode->i_uid;
2158 	name->gid   = inode->i_gid;
2159 	name->rdev  = inode->i_rdev;
2160 	security_inode_getsecid(inode, &name->osid);
2161 	audit_copy_fcaps(name, dentry);
2162 }
2163 
2164 /**
2165  * __audit_inode - store the inode and device from a lookup
2166  * @name: name being audited
2167  * @dentry: dentry being audited
2168  * @parent: does this dentry represent the parent?
2169  */
2170 void __audit_inode(struct filename *name, const struct dentry *dentry,
2171 		   unsigned int parent)
2172 {
2173 	struct audit_context *context = current->audit_context;
2174 	const struct inode *inode = dentry->d_inode;
2175 	struct audit_names *n;
2176 
2177 	if (!context->in_syscall)
2178 		return;
2179 
2180 	if (!name)
2181 		goto out_alloc;
2182 
2183 #if AUDIT_DEBUG
2184 	/* The struct filename _must_ have a populated ->name */
2185 	BUG_ON(!name->name);
2186 #endif
2187 	/*
2188 	 * If we have a pointer to an audit_names entry already, then we can
2189 	 * just use it directly if the type is correct.
2190 	 */
2191 	n = name->aname;
2192 	if (n) {
2193 		if (parent) {
2194 			if (n->type == AUDIT_TYPE_PARENT ||
2195 			    n->type == AUDIT_TYPE_UNKNOWN)
2196 				goto out;
2197 		} else {
2198 			if (n->type != AUDIT_TYPE_PARENT)
2199 				goto out;
2200 		}
2201 	}
2202 
2203 	list_for_each_entry_reverse(n, &context->names_list, list) {
2204 		/* does the name pointer match? */
2205 		if (!n->name || n->name->name != name->name)
2206 			continue;
2207 
2208 		/* match the correct record type */
2209 		if (parent) {
2210 			if (n->type == AUDIT_TYPE_PARENT ||
2211 			    n->type == AUDIT_TYPE_UNKNOWN)
2212 				goto out;
2213 		} else {
2214 			if (n->type != AUDIT_TYPE_PARENT)
2215 				goto out;
2216 		}
2217 	}
2218 
2219 out_alloc:
2220 	/* unable to find the name from a previous getname(). Allocate a new
2221 	 * anonymous entry.
2222 	 */
2223 	n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2224 	if (!n)
2225 		return;
2226 out:
2227 	if (parent) {
2228 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2229 		n->type = AUDIT_TYPE_PARENT;
2230 	} else {
2231 		n->name_len = AUDIT_NAME_FULL;
2232 		n->type = AUDIT_TYPE_NORMAL;
2233 	}
2234 	handle_path(dentry);
2235 	audit_copy_inode(n, dentry, inode);
2236 }
2237 
2238 /**
2239  * __audit_inode_child - collect inode info for created/removed objects
2240  * @parent: inode of dentry parent
2241  * @dentry: dentry being audited
2242  * @type:   AUDIT_TYPE_* value that we're looking for
2243  *
2244  * For syscalls that create or remove filesystem objects, audit_inode
2245  * can only collect information for the filesystem object's parent.
2246  * This call updates the audit context with the child's information.
2247  * Syscalls that create a new filesystem object must be hooked after
2248  * the object is created.  Syscalls that remove a filesystem object
2249  * must be hooked prior, in order to capture the target inode during
2250  * unsuccessful attempts.
2251  */
2252 void __audit_inode_child(const struct inode *parent,
2253 			 const struct dentry *dentry,
2254 			 const unsigned char type)
2255 {
2256 	struct audit_context *context = current->audit_context;
2257 	const struct inode *inode = dentry->d_inode;
2258 	const char *dname = dentry->d_name.name;
2259 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2260 
2261 	if (!context->in_syscall)
2262 		return;
2263 
2264 	if (inode)
2265 		handle_one(inode);
2266 
2267 	/* look for a parent entry first */
2268 	list_for_each_entry(n, &context->names_list, list) {
2269 		if (!n->name || n->type != AUDIT_TYPE_PARENT)
2270 			continue;
2271 
2272 		if (n->ino == parent->i_ino &&
2273 		    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2274 			found_parent = n;
2275 			break;
2276 		}
2277 	}
2278 
2279 	/* is there a matching child entry? */
2280 	list_for_each_entry(n, &context->names_list, list) {
2281 		/* can only match entries that have a name */
2282 		if (!n->name || n->type != type)
2283 			continue;
2284 
2285 		/* if we found a parent, make sure this one is a child of it */
2286 		if (found_parent && (n->name != found_parent->name))
2287 			continue;
2288 
2289 		if (!strcmp(dname, n->name->name) ||
2290 		    !audit_compare_dname_path(dname, n->name->name,
2291 						found_parent ?
2292 						found_parent->name_len :
2293 						AUDIT_NAME_FULL)) {
2294 			found_child = n;
2295 			break;
2296 		}
2297 	}
2298 
2299 	if (!found_parent) {
2300 		/* create a new, "anonymous" parent record */
2301 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2302 		if (!n)
2303 			return;
2304 		audit_copy_inode(n, NULL, parent);
2305 	}
2306 
2307 	if (!found_child) {
2308 		found_child = audit_alloc_name(context, type);
2309 		if (!found_child)
2310 			return;
2311 
2312 		/* Re-use the name belonging to the slot for a matching parent
2313 		 * directory. All names for this context are relinquished in
2314 		 * audit_free_names() */
2315 		if (found_parent) {
2316 			found_child->name = found_parent->name;
2317 			found_child->name_len = AUDIT_NAME_FULL;
2318 			/* don't call __putname() */
2319 			found_child->name_put = false;
2320 		}
2321 	}
2322 	if (inode)
2323 		audit_copy_inode(found_child, dentry, inode);
2324 	else
2325 		found_child->ino = (unsigned long)-1;
2326 }
2327 EXPORT_SYMBOL_GPL(__audit_inode_child);
2328 
2329 /**
2330  * auditsc_get_stamp - get local copies of audit_context values
2331  * @ctx: audit_context for the task
2332  * @t: timespec to store time recorded in the audit_context
2333  * @serial: serial value that is recorded in the audit_context
2334  *
2335  * Also sets the context as auditable.
2336  */
2337 int auditsc_get_stamp(struct audit_context *ctx,
2338 		       struct timespec *t, unsigned int *serial)
2339 {
2340 	if (!ctx->in_syscall)
2341 		return 0;
2342 	if (!ctx->serial)
2343 		ctx->serial = audit_serial();
2344 	t->tv_sec  = ctx->ctime.tv_sec;
2345 	t->tv_nsec = ctx->ctime.tv_nsec;
2346 	*serial    = ctx->serial;
2347 	if (!ctx->prio) {
2348 		ctx->prio = 1;
2349 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2350 	}
2351 	return 1;
2352 }
2353 
2354 /* global counter which is incremented every time something logs in */
2355 static atomic_t session_id = ATOMIC_INIT(0);
2356 
2357 /**
2358  * audit_set_loginuid - set current task's audit_context loginuid
2359  * @loginuid: loginuid value
2360  *
2361  * Returns 0.
2362  *
2363  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2364  */
2365 int audit_set_loginuid(kuid_t loginuid)
2366 {
2367 	struct task_struct *task = current;
2368 	struct audit_context *context = task->audit_context;
2369 	unsigned int sessionid;
2370 
2371 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2372 	if (uid_valid(task->loginuid))
2373 		return -EPERM;
2374 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2375 	if (!capable(CAP_AUDIT_CONTROL))
2376 		return -EPERM;
2377 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2378 
2379 	sessionid = atomic_inc_return(&session_id);
2380 	if (context && context->in_syscall) {
2381 		struct audit_buffer *ab;
2382 
2383 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2384 		if (ab) {
2385 			audit_log_format(ab, "login pid=%d uid=%u "
2386 				"old auid=%u new auid=%u"
2387 				" old ses=%u new ses=%u",
2388 				task->pid,
2389 				from_kuid(&init_user_ns, task_uid(task)),
2390 				from_kuid(&init_user_ns, task->loginuid),
2391 				from_kuid(&init_user_ns, loginuid),
2392 				task->sessionid, sessionid);
2393 			audit_log_end(ab);
2394 		}
2395 	}
2396 	task->sessionid = sessionid;
2397 	task->loginuid = loginuid;
2398 	return 0;
2399 }
2400 
2401 /**
2402  * __audit_mq_open - record audit data for a POSIX MQ open
2403  * @oflag: open flag
2404  * @mode: mode bits
2405  * @attr: queue attributes
2406  *
2407  */
2408 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2409 {
2410 	struct audit_context *context = current->audit_context;
2411 
2412 	if (attr)
2413 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2414 	else
2415 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2416 
2417 	context->mq_open.oflag = oflag;
2418 	context->mq_open.mode = mode;
2419 
2420 	context->type = AUDIT_MQ_OPEN;
2421 }
2422 
2423 /**
2424  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2425  * @mqdes: MQ descriptor
2426  * @msg_len: Message length
2427  * @msg_prio: Message priority
2428  * @abs_timeout: Message timeout in absolute time
2429  *
2430  */
2431 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2432 			const struct timespec *abs_timeout)
2433 {
2434 	struct audit_context *context = current->audit_context;
2435 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2436 
2437 	if (abs_timeout)
2438 		memcpy(p, abs_timeout, sizeof(struct timespec));
2439 	else
2440 		memset(p, 0, sizeof(struct timespec));
2441 
2442 	context->mq_sendrecv.mqdes = mqdes;
2443 	context->mq_sendrecv.msg_len = msg_len;
2444 	context->mq_sendrecv.msg_prio = msg_prio;
2445 
2446 	context->type = AUDIT_MQ_SENDRECV;
2447 }
2448 
2449 /**
2450  * __audit_mq_notify - record audit data for a POSIX MQ notify
2451  * @mqdes: MQ descriptor
2452  * @notification: Notification event
2453  *
2454  */
2455 
2456 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2457 {
2458 	struct audit_context *context = current->audit_context;
2459 
2460 	if (notification)
2461 		context->mq_notify.sigev_signo = notification->sigev_signo;
2462 	else
2463 		context->mq_notify.sigev_signo = 0;
2464 
2465 	context->mq_notify.mqdes = mqdes;
2466 	context->type = AUDIT_MQ_NOTIFY;
2467 }
2468 
2469 /**
2470  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2471  * @mqdes: MQ descriptor
2472  * @mqstat: MQ flags
2473  *
2474  */
2475 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2476 {
2477 	struct audit_context *context = current->audit_context;
2478 	context->mq_getsetattr.mqdes = mqdes;
2479 	context->mq_getsetattr.mqstat = *mqstat;
2480 	context->type = AUDIT_MQ_GETSETATTR;
2481 }
2482 
2483 /**
2484  * audit_ipc_obj - record audit data for ipc object
2485  * @ipcp: ipc permissions
2486  *
2487  */
2488 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2489 {
2490 	struct audit_context *context = current->audit_context;
2491 	context->ipc.uid = ipcp->uid;
2492 	context->ipc.gid = ipcp->gid;
2493 	context->ipc.mode = ipcp->mode;
2494 	context->ipc.has_perm = 0;
2495 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2496 	context->type = AUDIT_IPC;
2497 }
2498 
2499 /**
2500  * audit_ipc_set_perm - record audit data for new ipc permissions
2501  * @qbytes: msgq bytes
2502  * @uid: msgq user id
2503  * @gid: msgq group id
2504  * @mode: msgq mode (permissions)
2505  *
2506  * Called only after audit_ipc_obj().
2507  */
2508 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2509 {
2510 	struct audit_context *context = current->audit_context;
2511 
2512 	context->ipc.qbytes = qbytes;
2513 	context->ipc.perm_uid = uid;
2514 	context->ipc.perm_gid = gid;
2515 	context->ipc.perm_mode = mode;
2516 	context->ipc.has_perm = 1;
2517 }
2518 
2519 int __audit_bprm(struct linux_binprm *bprm)
2520 {
2521 	struct audit_aux_data_execve *ax;
2522 	struct audit_context *context = current->audit_context;
2523 
2524 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2525 	if (!ax)
2526 		return -ENOMEM;
2527 
2528 	ax->argc = bprm->argc;
2529 	ax->envc = bprm->envc;
2530 	ax->mm = bprm->mm;
2531 	ax->d.type = AUDIT_EXECVE;
2532 	ax->d.next = context->aux;
2533 	context->aux = (void *)ax;
2534 	return 0;
2535 }
2536 
2537 
2538 /**
2539  * audit_socketcall - record audit data for sys_socketcall
2540  * @nargs: number of args
2541  * @args: args array
2542  *
2543  */
2544 void __audit_socketcall(int nargs, unsigned long *args)
2545 {
2546 	struct audit_context *context = current->audit_context;
2547 
2548 	context->type = AUDIT_SOCKETCALL;
2549 	context->socketcall.nargs = nargs;
2550 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2551 }
2552 
2553 /**
2554  * __audit_fd_pair - record audit data for pipe and socketpair
2555  * @fd1: the first file descriptor
2556  * @fd2: the second file descriptor
2557  *
2558  */
2559 void __audit_fd_pair(int fd1, int fd2)
2560 {
2561 	struct audit_context *context = current->audit_context;
2562 	context->fds[0] = fd1;
2563 	context->fds[1] = fd2;
2564 }
2565 
2566 /**
2567  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2568  * @len: data length in user space
2569  * @a: data address in kernel space
2570  *
2571  * Returns 0 for success or NULL context or < 0 on error.
2572  */
2573 int __audit_sockaddr(int len, void *a)
2574 {
2575 	struct audit_context *context = current->audit_context;
2576 
2577 	if (!context->sockaddr) {
2578 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2579 		if (!p)
2580 			return -ENOMEM;
2581 		context->sockaddr = p;
2582 	}
2583 
2584 	context->sockaddr_len = len;
2585 	memcpy(context->sockaddr, a, len);
2586 	return 0;
2587 }
2588 
2589 void __audit_ptrace(struct task_struct *t)
2590 {
2591 	struct audit_context *context = current->audit_context;
2592 
2593 	context->target_pid = t->pid;
2594 	context->target_auid = audit_get_loginuid(t);
2595 	context->target_uid = task_uid(t);
2596 	context->target_sessionid = audit_get_sessionid(t);
2597 	security_task_getsecid(t, &context->target_sid);
2598 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2599 }
2600 
2601 /**
2602  * audit_signal_info - record signal info for shutting down audit subsystem
2603  * @sig: signal value
2604  * @t: task being signaled
2605  *
2606  * If the audit subsystem is being terminated, record the task (pid)
2607  * and uid that is doing that.
2608  */
2609 int __audit_signal_info(int sig, struct task_struct *t)
2610 {
2611 	struct audit_aux_data_pids *axp;
2612 	struct task_struct *tsk = current;
2613 	struct audit_context *ctx = tsk->audit_context;
2614 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2615 
2616 	if (audit_pid && t->tgid == audit_pid) {
2617 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2618 			audit_sig_pid = tsk->pid;
2619 			if (uid_valid(tsk->loginuid))
2620 				audit_sig_uid = tsk->loginuid;
2621 			else
2622 				audit_sig_uid = uid;
2623 			security_task_getsecid(tsk, &audit_sig_sid);
2624 		}
2625 		if (!audit_signals || audit_dummy_context())
2626 			return 0;
2627 	}
2628 
2629 	/* optimize the common case by putting first signal recipient directly
2630 	 * in audit_context */
2631 	if (!ctx->target_pid) {
2632 		ctx->target_pid = t->tgid;
2633 		ctx->target_auid = audit_get_loginuid(t);
2634 		ctx->target_uid = t_uid;
2635 		ctx->target_sessionid = audit_get_sessionid(t);
2636 		security_task_getsecid(t, &ctx->target_sid);
2637 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2638 		return 0;
2639 	}
2640 
2641 	axp = (void *)ctx->aux_pids;
2642 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2643 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2644 		if (!axp)
2645 			return -ENOMEM;
2646 
2647 		axp->d.type = AUDIT_OBJ_PID;
2648 		axp->d.next = ctx->aux_pids;
2649 		ctx->aux_pids = (void *)axp;
2650 	}
2651 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2652 
2653 	axp->target_pid[axp->pid_count] = t->tgid;
2654 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2655 	axp->target_uid[axp->pid_count] = t_uid;
2656 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2657 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2658 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2659 	axp->pid_count++;
2660 
2661 	return 0;
2662 }
2663 
2664 /**
2665  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2666  * @bprm: pointer to the bprm being processed
2667  * @new: the proposed new credentials
2668  * @old: the old credentials
2669  *
2670  * Simply check if the proc already has the caps given by the file and if not
2671  * store the priv escalation info for later auditing at the end of the syscall
2672  *
2673  * -Eric
2674  */
2675 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2676 			   const struct cred *new, const struct cred *old)
2677 {
2678 	struct audit_aux_data_bprm_fcaps *ax;
2679 	struct audit_context *context = current->audit_context;
2680 	struct cpu_vfs_cap_data vcaps;
2681 	struct dentry *dentry;
2682 
2683 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2684 	if (!ax)
2685 		return -ENOMEM;
2686 
2687 	ax->d.type = AUDIT_BPRM_FCAPS;
2688 	ax->d.next = context->aux;
2689 	context->aux = (void *)ax;
2690 
2691 	dentry = dget(bprm->file->f_dentry);
2692 	get_vfs_caps_from_disk(dentry, &vcaps);
2693 	dput(dentry);
2694 
2695 	ax->fcap.permitted = vcaps.permitted;
2696 	ax->fcap.inheritable = vcaps.inheritable;
2697 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2698 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2699 
2700 	ax->old_pcap.permitted   = old->cap_permitted;
2701 	ax->old_pcap.inheritable = old->cap_inheritable;
2702 	ax->old_pcap.effective   = old->cap_effective;
2703 
2704 	ax->new_pcap.permitted   = new->cap_permitted;
2705 	ax->new_pcap.inheritable = new->cap_inheritable;
2706 	ax->new_pcap.effective   = new->cap_effective;
2707 	return 0;
2708 }
2709 
2710 /**
2711  * __audit_log_capset - store information about the arguments to the capset syscall
2712  * @pid: target pid of the capset call
2713  * @new: the new credentials
2714  * @old: the old (current) credentials
2715  *
2716  * Record the aguments userspace sent to sys_capset for later printing by the
2717  * audit system if applicable
2718  */
2719 void __audit_log_capset(pid_t pid,
2720 		       const struct cred *new, const struct cred *old)
2721 {
2722 	struct audit_context *context = current->audit_context;
2723 	context->capset.pid = pid;
2724 	context->capset.cap.effective   = new->cap_effective;
2725 	context->capset.cap.inheritable = new->cap_effective;
2726 	context->capset.cap.permitted   = new->cap_permitted;
2727 	context->type = AUDIT_CAPSET;
2728 }
2729 
2730 void __audit_mmap_fd(int fd, int flags)
2731 {
2732 	struct audit_context *context = current->audit_context;
2733 	context->mmap.fd = fd;
2734 	context->mmap.flags = flags;
2735 	context->type = AUDIT_MMAP;
2736 }
2737 
2738 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2739 {
2740 	kuid_t auid, uid;
2741 	kgid_t gid;
2742 	unsigned int sessionid;
2743 
2744 	auid = audit_get_loginuid(current);
2745 	sessionid = audit_get_sessionid(current);
2746 	current_uid_gid(&uid, &gid);
2747 
2748 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2749 			 from_kuid(&init_user_ns, auid),
2750 			 from_kuid(&init_user_ns, uid),
2751 			 from_kgid(&init_user_ns, gid),
2752 			 sessionid);
2753 	audit_log_task_context(ab);
2754 	audit_log_format(ab, " pid=%d comm=", current->pid);
2755 	audit_log_untrustedstring(ab, current->comm);
2756 	audit_log_format(ab, " reason=");
2757 	audit_log_string(ab, reason);
2758 	audit_log_format(ab, " sig=%ld", signr);
2759 }
2760 /**
2761  * audit_core_dumps - record information about processes that end abnormally
2762  * @signr: signal value
2763  *
2764  * If a process ends with a core dump, something fishy is going on and we
2765  * should record the event for investigation.
2766  */
2767 void audit_core_dumps(long signr)
2768 {
2769 	struct audit_buffer *ab;
2770 
2771 	if (!audit_enabled)
2772 		return;
2773 
2774 	if (signr == SIGQUIT)	/* don't care for those */
2775 		return;
2776 
2777 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2778 	audit_log_abend(ab, "memory violation", signr);
2779 	audit_log_end(ab);
2780 }
2781 
2782 void __audit_seccomp(unsigned long syscall, long signr, int code)
2783 {
2784 	struct audit_buffer *ab;
2785 
2786 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2787 	audit_log_abend(ab, "seccomp", signr);
2788 	audit_log_format(ab, " syscall=%ld", syscall);
2789 	audit_log_format(ab, " compat=%d", is_compat_task());
2790 	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2791 	audit_log_format(ab, " code=0x%x", code);
2792 	audit_log_end(ab);
2793 }
2794 
2795 struct list_head *audit_killed_trees(void)
2796 {
2797 	struct audit_context *ctx = current->audit_context;
2798 	if (likely(!ctx || !ctx->in_syscall))
2799 		return NULL;
2800 	return &ctx->killed_trees;
2801 }
2802