1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <linux/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 #include <linux/compat.h> 71 72 #include "audit.h" 73 74 /* flags stating the success for a syscall */ 75 #define AUDITSC_INVALID 0 76 #define AUDITSC_SUCCESS 1 77 #define AUDITSC_FAILURE 2 78 79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 80 * for saving names from getname(). If we get more names we will allocate 81 * a name dynamically and also add those to the list anchored by names_list. */ 82 #define AUDIT_NAMES 5 83 84 /* no execve audit message should be longer than this (userspace limits) */ 85 #define MAX_EXECVE_AUDIT_LEN 7500 86 87 /* number of audit rules */ 88 int audit_n_rules; 89 90 /* determines whether we collect data for signals sent */ 91 int audit_signals; 92 93 struct audit_cap_data { 94 kernel_cap_t permitted; 95 kernel_cap_t inheritable; 96 union { 97 unsigned int fE; /* effective bit of a file capability */ 98 kernel_cap_t effective; /* effective set of a process */ 99 }; 100 }; 101 102 /* When fs/namei.c:getname() is called, we store the pointer in name and 103 * we don't let putname() free it (instead we free all of the saved 104 * pointers at syscall exit time). 105 * 106 * Further, in fs/namei.c:path_lookup() we store the inode and device. 107 */ 108 struct audit_names { 109 struct list_head list; /* audit_context->names_list */ 110 struct filename *name; 111 unsigned long ino; 112 dev_t dev; 113 umode_t mode; 114 kuid_t uid; 115 kgid_t gid; 116 dev_t rdev; 117 u32 osid; 118 struct audit_cap_data fcap; 119 unsigned int fcap_ver; 120 int name_len; /* number of name's characters to log */ 121 unsigned char type; /* record type */ 122 bool name_put; /* call __putname() for this name */ 123 /* 124 * This was an allocated audit_names and not from the array of 125 * names allocated in the task audit context. Thus this name 126 * should be freed on syscall exit 127 */ 128 bool should_free; 129 }; 130 131 struct audit_aux_data { 132 struct audit_aux_data *next; 133 int type; 134 }; 135 136 #define AUDIT_AUX_IPCPERM 0 137 138 /* Number of target pids per aux struct. */ 139 #define AUDIT_AUX_PIDS 16 140 141 struct audit_aux_data_execve { 142 struct audit_aux_data d; 143 int argc; 144 int envc; 145 struct mm_struct *mm; 146 }; 147 148 struct audit_aux_data_pids { 149 struct audit_aux_data d; 150 pid_t target_pid[AUDIT_AUX_PIDS]; 151 kuid_t target_auid[AUDIT_AUX_PIDS]; 152 kuid_t target_uid[AUDIT_AUX_PIDS]; 153 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 154 u32 target_sid[AUDIT_AUX_PIDS]; 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 156 int pid_count; 157 }; 158 159 struct audit_aux_data_bprm_fcaps { 160 struct audit_aux_data d; 161 struct audit_cap_data fcap; 162 unsigned int fcap_ver; 163 struct audit_cap_data old_pcap; 164 struct audit_cap_data new_pcap; 165 }; 166 167 struct audit_aux_data_capset { 168 struct audit_aux_data d; 169 pid_t pid; 170 struct audit_cap_data cap; 171 }; 172 173 struct audit_tree_refs { 174 struct audit_tree_refs *next; 175 struct audit_chunk *c[31]; 176 }; 177 178 /* The per-task audit context. */ 179 struct audit_context { 180 int dummy; /* must be the first element */ 181 int in_syscall; /* 1 if task is in a syscall */ 182 enum audit_state state, current_state; 183 unsigned int serial; /* serial number for record */ 184 int major; /* syscall number */ 185 struct timespec ctime; /* time of syscall entry */ 186 unsigned long argv[4]; /* syscall arguments */ 187 long return_code;/* syscall return code */ 188 u64 prio; 189 int return_valid; /* return code is valid */ 190 /* 191 * The names_list is the list of all audit_names collected during this 192 * syscall. The first AUDIT_NAMES entries in the names_list will 193 * actually be from the preallocated_names array for performance 194 * reasons. Except during allocation they should never be referenced 195 * through the preallocated_names array and should only be found/used 196 * by running the names_list. 197 */ 198 struct audit_names preallocated_names[AUDIT_NAMES]; 199 int name_count; /* total records in names_list */ 200 struct list_head names_list; /* anchor for struct audit_names->list */ 201 char * filterkey; /* key for rule that triggered record */ 202 struct path pwd; 203 struct audit_context *previous; /* For nested syscalls */ 204 struct audit_aux_data *aux; 205 struct audit_aux_data *aux_pids; 206 struct sockaddr_storage *sockaddr; 207 size_t sockaddr_len; 208 /* Save things to print about task_struct */ 209 pid_t pid, ppid; 210 kuid_t uid, euid, suid, fsuid; 211 kgid_t gid, egid, sgid, fsgid; 212 unsigned long personality; 213 int arch; 214 215 pid_t target_pid; 216 kuid_t target_auid; 217 kuid_t target_uid; 218 unsigned int target_sessionid; 219 u32 target_sid; 220 char target_comm[TASK_COMM_LEN]; 221 222 struct audit_tree_refs *trees, *first_trees; 223 struct list_head killed_trees; 224 int tree_count; 225 226 int type; 227 union { 228 struct { 229 int nargs; 230 long args[6]; 231 } socketcall; 232 struct { 233 kuid_t uid; 234 kgid_t gid; 235 umode_t mode; 236 u32 osid; 237 int has_perm; 238 uid_t perm_uid; 239 gid_t perm_gid; 240 umode_t perm_mode; 241 unsigned long qbytes; 242 } ipc; 243 struct { 244 mqd_t mqdes; 245 struct mq_attr mqstat; 246 } mq_getsetattr; 247 struct { 248 mqd_t mqdes; 249 int sigev_signo; 250 } mq_notify; 251 struct { 252 mqd_t mqdes; 253 size_t msg_len; 254 unsigned int msg_prio; 255 struct timespec abs_timeout; 256 } mq_sendrecv; 257 struct { 258 int oflag; 259 umode_t mode; 260 struct mq_attr attr; 261 } mq_open; 262 struct { 263 pid_t pid; 264 struct audit_cap_data cap; 265 } capset; 266 struct { 267 int fd; 268 int flags; 269 } mmap; 270 }; 271 int fds[2]; 272 273 #if AUDIT_DEBUG 274 int put_count; 275 int ino_count; 276 #endif 277 }; 278 279 static inline int open_arg(int flags, int mask) 280 { 281 int n = ACC_MODE(flags); 282 if (flags & (O_TRUNC | O_CREAT)) 283 n |= AUDIT_PERM_WRITE; 284 return n & mask; 285 } 286 287 static int audit_match_perm(struct audit_context *ctx, int mask) 288 { 289 unsigned n; 290 if (unlikely(!ctx)) 291 return 0; 292 n = ctx->major; 293 294 switch (audit_classify_syscall(ctx->arch, n)) { 295 case 0: /* native */ 296 if ((mask & AUDIT_PERM_WRITE) && 297 audit_match_class(AUDIT_CLASS_WRITE, n)) 298 return 1; 299 if ((mask & AUDIT_PERM_READ) && 300 audit_match_class(AUDIT_CLASS_READ, n)) 301 return 1; 302 if ((mask & AUDIT_PERM_ATTR) && 303 audit_match_class(AUDIT_CLASS_CHATTR, n)) 304 return 1; 305 return 0; 306 case 1: /* 32bit on biarch */ 307 if ((mask & AUDIT_PERM_WRITE) && 308 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 309 return 1; 310 if ((mask & AUDIT_PERM_READ) && 311 audit_match_class(AUDIT_CLASS_READ_32, n)) 312 return 1; 313 if ((mask & AUDIT_PERM_ATTR) && 314 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 315 return 1; 316 return 0; 317 case 2: /* open */ 318 return mask & ACC_MODE(ctx->argv[1]); 319 case 3: /* openat */ 320 return mask & ACC_MODE(ctx->argv[2]); 321 case 4: /* socketcall */ 322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 323 case 5: /* execve */ 324 return mask & AUDIT_PERM_EXEC; 325 default: 326 return 0; 327 } 328 } 329 330 static int audit_match_filetype(struct audit_context *ctx, int val) 331 { 332 struct audit_names *n; 333 umode_t mode = (umode_t)val; 334 335 if (unlikely(!ctx)) 336 return 0; 337 338 list_for_each_entry(n, &ctx->names_list, list) { 339 if ((n->ino != -1) && 340 ((n->mode & S_IFMT) == mode)) 341 return 1; 342 } 343 344 return 0; 345 } 346 347 /* 348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 349 * ->first_trees points to its beginning, ->trees - to the current end of data. 350 * ->tree_count is the number of free entries in array pointed to by ->trees. 351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 353 * it's going to remain 1-element for almost any setup) until we free context itself. 354 * References in it _are_ dropped - at the same time we free/drop aux stuff. 355 */ 356 357 #ifdef CONFIG_AUDIT_TREE 358 static void audit_set_auditable(struct audit_context *ctx) 359 { 360 if (!ctx->prio) { 361 ctx->prio = 1; 362 ctx->current_state = AUDIT_RECORD_CONTEXT; 363 } 364 } 365 366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 367 { 368 struct audit_tree_refs *p = ctx->trees; 369 int left = ctx->tree_count; 370 if (likely(left)) { 371 p->c[--left] = chunk; 372 ctx->tree_count = left; 373 return 1; 374 } 375 if (!p) 376 return 0; 377 p = p->next; 378 if (p) { 379 p->c[30] = chunk; 380 ctx->trees = p; 381 ctx->tree_count = 30; 382 return 1; 383 } 384 return 0; 385 } 386 387 static int grow_tree_refs(struct audit_context *ctx) 388 { 389 struct audit_tree_refs *p = ctx->trees; 390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 391 if (!ctx->trees) { 392 ctx->trees = p; 393 return 0; 394 } 395 if (p) 396 p->next = ctx->trees; 397 else 398 ctx->first_trees = ctx->trees; 399 ctx->tree_count = 31; 400 return 1; 401 } 402 #endif 403 404 static void unroll_tree_refs(struct audit_context *ctx, 405 struct audit_tree_refs *p, int count) 406 { 407 #ifdef CONFIG_AUDIT_TREE 408 struct audit_tree_refs *q; 409 int n; 410 if (!p) { 411 /* we started with empty chain */ 412 p = ctx->first_trees; 413 count = 31; 414 /* if the very first allocation has failed, nothing to do */ 415 if (!p) 416 return; 417 } 418 n = count; 419 for (q = p; q != ctx->trees; q = q->next, n = 31) { 420 while (n--) { 421 audit_put_chunk(q->c[n]); 422 q->c[n] = NULL; 423 } 424 } 425 while (n-- > ctx->tree_count) { 426 audit_put_chunk(q->c[n]); 427 q->c[n] = NULL; 428 } 429 ctx->trees = p; 430 ctx->tree_count = count; 431 #endif 432 } 433 434 static void free_tree_refs(struct audit_context *ctx) 435 { 436 struct audit_tree_refs *p, *q; 437 for (p = ctx->first_trees; p; p = q) { 438 q = p->next; 439 kfree(p); 440 } 441 } 442 443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 444 { 445 #ifdef CONFIG_AUDIT_TREE 446 struct audit_tree_refs *p; 447 int n; 448 if (!tree) 449 return 0; 450 /* full ones */ 451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 452 for (n = 0; n < 31; n++) 453 if (audit_tree_match(p->c[n], tree)) 454 return 1; 455 } 456 /* partial */ 457 if (p) { 458 for (n = ctx->tree_count; n < 31; n++) 459 if (audit_tree_match(p->c[n], tree)) 460 return 1; 461 } 462 #endif 463 return 0; 464 } 465 466 static int audit_compare_uid(kuid_t uid, 467 struct audit_names *name, 468 struct audit_field *f, 469 struct audit_context *ctx) 470 { 471 struct audit_names *n; 472 int rc; 473 474 if (name) { 475 rc = audit_uid_comparator(uid, f->op, name->uid); 476 if (rc) 477 return rc; 478 } 479 480 if (ctx) { 481 list_for_each_entry(n, &ctx->names_list, list) { 482 rc = audit_uid_comparator(uid, f->op, n->uid); 483 if (rc) 484 return rc; 485 } 486 } 487 return 0; 488 } 489 490 static int audit_compare_gid(kgid_t gid, 491 struct audit_names *name, 492 struct audit_field *f, 493 struct audit_context *ctx) 494 { 495 struct audit_names *n; 496 int rc; 497 498 if (name) { 499 rc = audit_gid_comparator(gid, f->op, name->gid); 500 if (rc) 501 return rc; 502 } 503 504 if (ctx) { 505 list_for_each_entry(n, &ctx->names_list, list) { 506 rc = audit_gid_comparator(gid, f->op, n->gid); 507 if (rc) 508 return rc; 509 } 510 } 511 return 0; 512 } 513 514 static int audit_field_compare(struct task_struct *tsk, 515 const struct cred *cred, 516 struct audit_field *f, 517 struct audit_context *ctx, 518 struct audit_names *name) 519 { 520 switch (f->val) { 521 /* process to file object comparisons */ 522 case AUDIT_COMPARE_UID_TO_OBJ_UID: 523 return audit_compare_uid(cred->uid, name, f, ctx); 524 case AUDIT_COMPARE_GID_TO_OBJ_GID: 525 return audit_compare_gid(cred->gid, name, f, ctx); 526 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 527 return audit_compare_uid(cred->euid, name, f, ctx); 528 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 529 return audit_compare_gid(cred->egid, name, f, ctx); 530 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 531 return audit_compare_uid(tsk->loginuid, name, f, ctx); 532 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 533 return audit_compare_uid(cred->suid, name, f, ctx); 534 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 535 return audit_compare_gid(cred->sgid, name, f, ctx); 536 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 537 return audit_compare_uid(cred->fsuid, name, f, ctx); 538 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 539 return audit_compare_gid(cred->fsgid, name, f, ctx); 540 /* uid comparisons */ 541 case AUDIT_COMPARE_UID_TO_AUID: 542 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 543 case AUDIT_COMPARE_UID_TO_EUID: 544 return audit_uid_comparator(cred->uid, f->op, cred->euid); 545 case AUDIT_COMPARE_UID_TO_SUID: 546 return audit_uid_comparator(cred->uid, f->op, cred->suid); 547 case AUDIT_COMPARE_UID_TO_FSUID: 548 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 549 /* auid comparisons */ 550 case AUDIT_COMPARE_AUID_TO_EUID: 551 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 552 case AUDIT_COMPARE_AUID_TO_SUID: 553 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 554 case AUDIT_COMPARE_AUID_TO_FSUID: 555 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 556 /* euid comparisons */ 557 case AUDIT_COMPARE_EUID_TO_SUID: 558 return audit_uid_comparator(cred->euid, f->op, cred->suid); 559 case AUDIT_COMPARE_EUID_TO_FSUID: 560 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 561 /* suid comparisons */ 562 case AUDIT_COMPARE_SUID_TO_FSUID: 563 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 564 /* gid comparisons */ 565 case AUDIT_COMPARE_GID_TO_EGID: 566 return audit_gid_comparator(cred->gid, f->op, cred->egid); 567 case AUDIT_COMPARE_GID_TO_SGID: 568 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 569 case AUDIT_COMPARE_GID_TO_FSGID: 570 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 571 /* egid comparisons */ 572 case AUDIT_COMPARE_EGID_TO_SGID: 573 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 574 case AUDIT_COMPARE_EGID_TO_FSGID: 575 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 576 /* sgid comparison */ 577 case AUDIT_COMPARE_SGID_TO_FSGID: 578 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 579 default: 580 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 581 return 0; 582 } 583 return 0; 584 } 585 586 /* Determine if any context name data matches a rule's watch data */ 587 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 588 * otherwise. 589 * 590 * If task_creation is true, this is an explicit indication that we are 591 * filtering a task rule at task creation time. This and tsk == current are 592 * the only situations where tsk->cred may be accessed without an rcu read lock. 593 */ 594 static int audit_filter_rules(struct task_struct *tsk, 595 struct audit_krule *rule, 596 struct audit_context *ctx, 597 struct audit_names *name, 598 enum audit_state *state, 599 bool task_creation) 600 { 601 const struct cred *cred; 602 int i, need_sid = 1; 603 u32 sid; 604 605 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 606 607 for (i = 0; i < rule->field_count; i++) { 608 struct audit_field *f = &rule->fields[i]; 609 struct audit_names *n; 610 int result = 0; 611 612 switch (f->type) { 613 case AUDIT_PID: 614 result = audit_comparator(tsk->pid, f->op, f->val); 615 break; 616 case AUDIT_PPID: 617 if (ctx) { 618 if (!ctx->ppid) 619 ctx->ppid = sys_getppid(); 620 result = audit_comparator(ctx->ppid, f->op, f->val); 621 } 622 break; 623 case AUDIT_UID: 624 result = audit_uid_comparator(cred->uid, f->op, f->uid); 625 break; 626 case AUDIT_EUID: 627 result = audit_uid_comparator(cred->euid, f->op, f->uid); 628 break; 629 case AUDIT_SUID: 630 result = audit_uid_comparator(cred->suid, f->op, f->uid); 631 break; 632 case AUDIT_FSUID: 633 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 634 break; 635 case AUDIT_GID: 636 result = audit_gid_comparator(cred->gid, f->op, f->gid); 637 break; 638 case AUDIT_EGID: 639 result = audit_gid_comparator(cred->egid, f->op, f->gid); 640 break; 641 case AUDIT_SGID: 642 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 643 break; 644 case AUDIT_FSGID: 645 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 646 break; 647 case AUDIT_PERS: 648 result = audit_comparator(tsk->personality, f->op, f->val); 649 break; 650 case AUDIT_ARCH: 651 if (ctx) 652 result = audit_comparator(ctx->arch, f->op, f->val); 653 break; 654 655 case AUDIT_EXIT: 656 if (ctx && ctx->return_valid) 657 result = audit_comparator(ctx->return_code, f->op, f->val); 658 break; 659 case AUDIT_SUCCESS: 660 if (ctx && ctx->return_valid) { 661 if (f->val) 662 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 663 else 664 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 665 } 666 break; 667 case AUDIT_DEVMAJOR: 668 if (name) { 669 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 670 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 671 ++result; 672 } else if (ctx) { 673 list_for_each_entry(n, &ctx->names_list, list) { 674 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 675 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 676 ++result; 677 break; 678 } 679 } 680 } 681 break; 682 case AUDIT_DEVMINOR: 683 if (name) { 684 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 685 audit_comparator(MINOR(name->rdev), f->op, f->val)) 686 ++result; 687 } else if (ctx) { 688 list_for_each_entry(n, &ctx->names_list, list) { 689 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 690 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 691 ++result; 692 break; 693 } 694 } 695 } 696 break; 697 case AUDIT_INODE: 698 if (name) 699 result = (name->ino == f->val); 700 else if (ctx) { 701 list_for_each_entry(n, &ctx->names_list, list) { 702 if (audit_comparator(n->ino, f->op, f->val)) { 703 ++result; 704 break; 705 } 706 } 707 } 708 break; 709 case AUDIT_OBJ_UID: 710 if (name) { 711 result = audit_uid_comparator(name->uid, f->op, f->uid); 712 } else if (ctx) { 713 list_for_each_entry(n, &ctx->names_list, list) { 714 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 715 ++result; 716 break; 717 } 718 } 719 } 720 break; 721 case AUDIT_OBJ_GID: 722 if (name) { 723 result = audit_gid_comparator(name->gid, f->op, f->gid); 724 } else if (ctx) { 725 list_for_each_entry(n, &ctx->names_list, list) { 726 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 727 ++result; 728 break; 729 } 730 } 731 } 732 break; 733 case AUDIT_WATCH: 734 if (name) 735 result = audit_watch_compare(rule->watch, name->ino, name->dev); 736 break; 737 case AUDIT_DIR: 738 if (ctx) 739 result = match_tree_refs(ctx, rule->tree); 740 break; 741 case AUDIT_LOGINUID: 742 result = 0; 743 if (ctx) 744 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 745 break; 746 case AUDIT_SUBJ_USER: 747 case AUDIT_SUBJ_ROLE: 748 case AUDIT_SUBJ_TYPE: 749 case AUDIT_SUBJ_SEN: 750 case AUDIT_SUBJ_CLR: 751 /* NOTE: this may return negative values indicating 752 a temporary error. We simply treat this as a 753 match for now to avoid losing information that 754 may be wanted. An error message will also be 755 logged upon error */ 756 if (f->lsm_rule) { 757 if (need_sid) { 758 security_task_getsecid(tsk, &sid); 759 need_sid = 0; 760 } 761 result = security_audit_rule_match(sid, f->type, 762 f->op, 763 f->lsm_rule, 764 ctx); 765 } 766 break; 767 case AUDIT_OBJ_USER: 768 case AUDIT_OBJ_ROLE: 769 case AUDIT_OBJ_TYPE: 770 case AUDIT_OBJ_LEV_LOW: 771 case AUDIT_OBJ_LEV_HIGH: 772 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 773 also applies here */ 774 if (f->lsm_rule) { 775 /* Find files that match */ 776 if (name) { 777 result = security_audit_rule_match( 778 name->osid, f->type, f->op, 779 f->lsm_rule, ctx); 780 } else if (ctx) { 781 list_for_each_entry(n, &ctx->names_list, list) { 782 if (security_audit_rule_match(n->osid, f->type, 783 f->op, f->lsm_rule, 784 ctx)) { 785 ++result; 786 break; 787 } 788 } 789 } 790 /* Find ipc objects that match */ 791 if (!ctx || ctx->type != AUDIT_IPC) 792 break; 793 if (security_audit_rule_match(ctx->ipc.osid, 794 f->type, f->op, 795 f->lsm_rule, ctx)) 796 ++result; 797 } 798 break; 799 case AUDIT_ARG0: 800 case AUDIT_ARG1: 801 case AUDIT_ARG2: 802 case AUDIT_ARG3: 803 if (ctx) 804 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 805 break; 806 case AUDIT_FILTERKEY: 807 /* ignore this field for filtering */ 808 result = 1; 809 break; 810 case AUDIT_PERM: 811 result = audit_match_perm(ctx, f->val); 812 break; 813 case AUDIT_FILETYPE: 814 result = audit_match_filetype(ctx, f->val); 815 break; 816 case AUDIT_FIELD_COMPARE: 817 result = audit_field_compare(tsk, cred, f, ctx, name); 818 break; 819 } 820 if (!result) 821 return 0; 822 } 823 824 if (ctx) { 825 if (rule->prio <= ctx->prio) 826 return 0; 827 if (rule->filterkey) { 828 kfree(ctx->filterkey); 829 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 830 } 831 ctx->prio = rule->prio; 832 } 833 switch (rule->action) { 834 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 835 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 836 } 837 return 1; 838 } 839 840 /* At process creation time, we can determine if system-call auditing is 841 * completely disabled for this task. Since we only have the task 842 * structure at this point, we can only check uid and gid. 843 */ 844 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 845 { 846 struct audit_entry *e; 847 enum audit_state state; 848 849 rcu_read_lock(); 850 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 851 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 852 &state, true)) { 853 if (state == AUDIT_RECORD_CONTEXT) 854 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 855 rcu_read_unlock(); 856 return state; 857 } 858 } 859 rcu_read_unlock(); 860 return AUDIT_BUILD_CONTEXT; 861 } 862 863 /* At syscall entry and exit time, this filter is called if the 864 * audit_state is not low enough that auditing cannot take place, but is 865 * also not high enough that we already know we have to write an audit 866 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 867 */ 868 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 869 struct audit_context *ctx, 870 struct list_head *list) 871 { 872 struct audit_entry *e; 873 enum audit_state state; 874 875 if (audit_pid && tsk->tgid == audit_pid) 876 return AUDIT_DISABLED; 877 878 rcu_read_lock(); 879 if (!list_empty(list)) { 880 int word = AUDIT_WORD(ctx->major); 881 int bit = AUDIT_BIT(ctx->major); 882 883 list_for_each_entry_rcu(e, list, list) { 884 if ((e->rule.mask[word] & bit) == bit && 885 audit_filter_rules(tsk, &e->rule, ctx, NULL, 886 &state, false)) { 887 rcu_read_unlock(); 888 ctx->current_state = state; 889 return state; 890 } 891 } 892 } 893 rcu_read_unlock(); 894 return AUDIT_BUILD_CONTEXT; 895 } 896 897 /* 898 * Given an audit_name check the inode hash table to see if they match. 899 * Called holding the rcu read lock to protect the use of audit_inode_hash 900 */ 901 static int audit_filter_inode_name(struct task_struct *tsk, 902 struct audit_names *n, 903 struct audit_context *ctx) { 904 int word, bit; 905 int h = audit_hash_ino((u32)n->ino); 906 struct list_head *list = &audit_inode_hash[h]; 907 struct audit_entry *e; 908 enum audit_state state; 909 910 word = AUDIT_WORD(ctx->major); 911 bit = AUDIT_BIT(ctx->major); 912 913 if (list_empty(list)) 914 return 0; 915 916 list_for_each_entry_rcu(e, list, list) { 917 if ((e->rule.mask[word] & bit) == bit && 918 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 919 ctx->current_state = state; 920 return 1; 921 } 922 } 923 924 return 0; 925 } 926 927 /* At syscall exit time, this filter is called if any audit_names have been 928 * collected during syscall processing. We only check rules in sublists at hash 929 * buckets applicable to the inode numbers in audit_names. 930 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 931 */ 932 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 933 { 934 struct audit_names *n; 935 936 if (audit_pid && tsk->tgid == audit_pid) 937 return; 938 939 rcu_read_lock(); 940 941 list_for_each_entry(n, &ctx->names_list, list) { 942 if (audit_filter_inode_name(tsk, n, ctx)) 943 break; 944 } 945 rcu_read_unlock(); 946 } 947 948 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 949 int return_valid, 950 long return_code) 951 { 952 struct audit_context *context = tsk->audit_context; 953 954 if (!context) 955 return NULL; 956 context->return_valid = return_valid; 957 958 /* 959 * we need to fix up the return code in the audit logs if the actual 960 * return codes are later going to be fixed up by the arch specific 961 * signal handlers 962 * 963 * This is actually a test for: 964 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 965 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 966 * 967 * but is faster than a bunch of || 968 */ 969 if (unlikely(return_code <= -ERESTARTSYS) && 970 (return_code >= -ERESTART_RESTARTBLOCK) && 971 (return_code != -ENOIOCTLCMD)) 972 context->return_code = -EINTR; 973 else 974 context->return_code = return_code; 975 976 if (context->in_syscall && !context->dummy) { 977 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 978 audit_filter_inodes(tsk, context); 979 } 980 981 tsk->audit_context = NULL; 982 return context; 983 } 984 985 static inline void audit_free_names(struct audit_context *context) 986 { 987 struct audit_names *n, *next; 988 989 #if AUDIT_DEBUG == 2 990 if (context->put_count + context->ino_count != context->name_count) { 991 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 992 " name_count=%d put_count=%d" 993 " ino_count=%d [NOT freeing]\n", 994 __FILE__, __LINE__, 995 context->serial, context->major, context->in_syscall, 996 context->name_count, context->put_count, 997 context->ino_count); 998 list_for_each_entry(n, &context->names_list, list) { 999 printk(KERN_ERR "names[%d] = %p = %s\n", i, 1000 n->name, n->name->name ?: "(null)"); 1001 } 1002 dump_stack(); 1003 return; 1004 } 1005 #endif 1006 #if AUDIT_DEBUG 1007 context->put_count = 0; 1008 context->ino_count = 0; 1009 #endif 1010 1011 list_for_each_entry_safe(n, next, &context->names_list, list) { 1012 list_del(&n->list); 1013 if (n->name && n->name_put) 1014 __putname(n->name); 1015 if (n->should_free) 1016 kfree(n); 1017 } 1018 context->name_count = 0; 1019 path_put(&context->pwd); 1020 context->pwd.dentry = NULL; 1021 context->pwd.mnt = NULL; 1022 } 1023 1024 static inline void audit_free_aux(struct audit_context *context) 1025 { 1026 struct audit_aux_data *aux; 1027 1028 while ((aux = context->aux)) { 1029 context->aux = aux->next; 1030 kfree(aux); 1031 } 1032 while ((aux = context->aux_pids)) { 1033 context->aux_pids = aux->next; 1034 kfree(aux); 1035 } 1036 } 1037 1038 static inline void audit_zero_context(struct audit_context *context, 1039 enum audit_state state) 1040 { 1041 memset(context, 0, sizeof(*context)); 1042 context->state = state; 1043 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1044 } 1045 1046 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1047 { 1048 struct audit_context *context; 1049 1050 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 1051 return NULL; 1052 audit_zero_context(context, state); 1053 INIT_LIST_HEAD(&context->killed_trees); 1054 INIT_LIST_HEAD(&context->names_list); 1055 return context; 1056 } 1057 1058 /** 1059 * audit_alloc - allocate an audit context block for a task 1060 * @tsk: task 1061 * 1062 * Filter on the task information and allocate a per-task audit context 1063 * if necessary. Doing so turns on system call auditing for the 1064 * specified task. This is called from copy_process, so no lock is 1065 * needed. 1066 */ 1067 int audit_alloc(struct task_struct *tsk) 1068 { 1069 struct audit_context *context; 1070 enum audit_state state; 1071 char *key = NULL; 1072 1073 if (likely(!audit_ever_enabled)) 1074 return 0; /* Return if not auditing. */ 1075 1076 state = audit_filter_task(tsk, &key); 1077 if (state == AUDIT_DISABLED) 1078 return 0; 1079 1080 if (!(context = audit_alloc_context(state))) { 1081 kfree(key); 1082 audit_log_lost("out of memory in audit_alloc"); 1083 return -ENOMEM; 1084 } 1085 context->filterkey = key; 1086 1087 tsk->audit_context = context; 1088 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 1089 return 0; 1090 } 1091 1092 static inline void audit_free_context(struct audit_context *context) 1093 { 1094 struct audit_context *previous; 1095 int count = 0; 1096 1097 do { 1098 previous = context->previous; 1099 if (previous || (count && count < 10)) { 1100 ++count; 1101 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 1102 " freeing multiple contexts (%d)\n", 1103 context->serial, context->major, 1104 context->name_count, count); 1105 } 1106 audit_free_names(context); 1107 unroll_tree_refs(context, NULL, 0); 1108 free_tree_refs(context); 1109 audit_free_aux(context); 1110 kfree(context->filterkey); 1111 kfree(context->sockaddr); 1112 kfree(context); 1113 context = previous; 1114 } while (context); 1115 if (count >= 10) 1116 printk(KERN_ERR "audit: freed %d contexts\n", count); 1117 } 1118 1119 void audit_log_task_context(struct audit_buffer *ab) 1120 { 1121 char *ctx = NULL; 1122 unsigned len; 1123 int error; 1124 u32 sid; 1125 1126 security_task_getsecid(current, &sid); 1127 if (!sid) 1128 return; 1129 1130 error = security_secid_to_secctx(sid, &ctx, &len); 1131 if (error) { 1132 if (error != -EINVAL) 1133 goto error_path; 1134 return; 1135 } 1136 1137 audit_log_format(ab, " subj=%s", ctx); 1138 security_release_secctx(ctx, len); 1139 return; 1140 1141 error_path: 1142 audit_panic("error in audit_log_task_context"); 1143 return; 1144 } 1145 1146 EXPORT_SYMBOL(audit_log_task_context); 1147 1148 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1149 { 1150 const struct cred *cred; 1151 char name[sizeof(tsk->comm)]; 1152 struct mm_struct *mm = tsk->mm; 1153 char *tty; 1154 1155 if (!ab) 1156 return; 1157 1158 /* tsk == current */ 1159 cred = current_cred(); 1160 1161 spin_lock_irq(&tsk->sighand->siglock); 1162 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1163 tty = tsk->signal->tty->name; 1164 else 1165 tty = "(none)"; 1166 spin_unlock_irq(&tsk->sighand->siglock); 1167 1168 1169 audit_log_format(ab, 1170 " ppid=%ld pid=%d auid=%u uid=%u gid=%u" 1171 " euid=%u suid=%u fsuid=%u" 1172 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s", 1173 sys_getppid(), 1174 tsk->pid, 1175 from_kuid(&init_user_ns, tsk->loginuid), 1176 from_kuid(&init_user_ns, cred->uid), 1177 from_kgid(&init_user_ns, cred->gid), 1178 from_kuid(&init_user_ns, cred->euid), 1179 from_kuid(&init_user_ns, cred->suid), 1180 from_kuid(&init_user_ns, cred->fsuid), 1181 from_kgid(&init_user_ns, cred->egid), 1182 from_kgid(&init_user_ns, cred->sgid), 1183 from_kgid(&init_user_ns, cred->fsgid), 1184 tsk->sessionid, tty); 1185 1186 get_task_comm(name, tsk); 1187 audit_log_format(ab, " comm="); 1188 audit_log_untrustedstring(ab, name); 1189 1190 if (mm) { 1191 down_read(&mm->mmap_sem); 1192 if (mm->exe_file) 1193 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1194 up_read(&mm->mmap_sem); 1195 } 1196 audit_log_task_context(ab); 1197 } 1198 1199 EXPORT_SYMBOL(audit_log_task_info); 1200 1201 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1202 kuid_t auid, kuid_t uid, unsigned int sessionid, 1203 u32 sid, char *comm) 1204 { 1205 struct audit_buffer *ab; 1206 char *ctx = NULL; 1207 u32 len; 1208 int rc = 0; 1209 1210 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1211 if (!ab) 1212 return rc; 1213 1214 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1215 from_kuid(&init_user_ns, auid), 1216 from_kuid(&init_user_ns, uid), sessionid); 1217 if (security_secid_to_secctx(sid, &ctx, &len)) { 1218 audit_log_format(ab, " obj=(none)"); 1219 rc = 1; 1220 } else { 1221 audit_log_format(ab, " obj=%s", ctx); 1222 security_release_secctx(ctx, len); 1223 } 1224 audit_log_format(ab, " ocomm="); 1225 audit_log_untrustedstring(ab, comm); 1226 audit_log_end(ab); 1227 1228 return rc; 1229 } 1230 1231 /* 1232 * to_send and len_sent accounting are very loose estimates. We aren't 1233 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1234 * within about 500 bytes (next page boundary) 1235 * 1236 * why snprintf? an int is up to 12 digits long. if we just assumed when 1237 * logging that a[%d]= was going to be 16 characters long we would be wasting 1238 * space in every audit message. In one 7500 byte message we can log up to 1239 * about 1000 min size arguments. That comes down to about 50% waste of space 1240 * if we didn't do the snprintf to find out how long arg_num_len was. 1241 */ 1242 static int audit_log_single_execve_arg(struct audit_context *context, 1243 struct audit_buffer **ab, 1244 int arg_num, 1245 size_t *len_sent, 1246 const char __user *p, 1247 char *buf) 1248 { 1249 char arg_num_len_buf[12]; 1250 const char __user *tmp_p = p; 1251 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1252 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1253 size_t len, len_left, to_send; 1254 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1255 unsigned int i, has_cntl = 0, too_long = 0; 1256 int ret; 1257 1258 /* strnlen_user includes the null we don't want to send */ 1259 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1260 1261 /* 1262 * We just created this mm, if we can't find the strings 1263 * we just copied into it something is _very_ wrong. Similar 1264 * for strings that are too long, we should not have created 1265 * any. 1266 */ 1267 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1268 WARN_ON(1); 1269 send_sig(SIGKILL, current, 0); 1270 return -1; 1271 } 1272 1273 /* walk the whole argument looking for non-ascii chars */ 1274 do { 1275 if (len_left > MAX_EXECVE_AUDIT_LEN) 1276 to_send = MAX_EXECVE_AUDIT_LEN; 1277 else 1278 to_send = len_left; 1279 ret = copy_from_user(buf, tmp_p, to_send); 1280 /* 1281 * There is no reason for this copy to be short. We just 1282 * copied them here, and the mm hasn't been exposed to user- 1283 * space yet. 1284 */ 1285 if (ret) { 1286 WARN_ON(1); 1287 send_sig(SIGKILL, current, 0); 1288 return -1; 1289 } 1290 buf[to_send] = '\0'; 1291 has_cntl = audit_string_contains_control(buf, to_send); 1292 if (has_cntl) { 1293 /* 1294 * hex messages get logged as 2 bytes, so we can only 1295 * send half as much in each message 1296 */ 1297 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1298 break; 1299 } 1300 len_left -= to_send; 1301 tmp_p += to_send; 1302 } while (len_left > 0); 1303 1304 len_left = len; 1305 1306 if (len > max_execve_audit_len) 1307 too_long = 1; 1308 1309 /* rewalk the argument actually logging the message */ 1310 for (i = 0; len_left > 0; i++) { 1311 int room_left; 1312 1313 if (len_left > max_execve_audit_len) 1314 to_send = max_execve_audit_len; 1315 else 1316 to_send = len_left; 1317 1318 /* do we have space left to send this argument in this ab? */ 1319 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1320 if (has_cntl) 1321 room_left -= (to_send * 2); 1322 else 1323 room_left -= to_send; 1324 if (room_left < 0) { 1325 *len_sent = 0; 1326 audit_log_end(*ab); 1327 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1328 if (!*ab) 1329 return 0; 1330 } 1331 1332 /* 1333 * first record needs to say how long the original string was 1334 * so we can be sure nothing was lost. 1335 */ 1336 if ((i == 0) && (too_long)) 1337 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1338 has_cntl ? 2*len : len); 1339 1340 /* 1341 * normally arguments are small enough to fit and we already 1342 * filled buf above when we checked for control characters 1343 * so don't bother with another copy_from_user 1344 */ 1345 if (len >= max_execve_audit_len) 1346 ret = copy_from_user(buf, p, to_send); 1347 else 1348 ret = 0; 1349 if (ret) { 1350 WARN_ON(1); 1351 send_sig(SIGKILL, current, 0); 1352 return -1; 1353 } 1354 buf[to_send] = '\0'; 1355 1356 /* actually log it */ 1357 audit_log_format(*ab, " a%d", arg_num); 1358 if (too_long) 1359 audit_log_format(*ab, "[%d]", i); 1360 audit_log_format(*ab, "="); 1361 if (has_cntl) 1362 audit_log_n_hex(*ab, buf, to_send); 1363 else 1364 audit_log_string(*ab, buf); 1365 1366 p += to_send; 1367 len_left -= to_send; 1368 *len_sent += arg_num_len; 1369 if (has_cntl) 1370 *len_sent += to_send * 2; 1371 else 1372 *len_sent += to_send; 1373 } 1374 /* include the null we didn't log */ 1375 return len + 1; 1376 } 1377 1378 static void audit_log_execve_info(struct audit_context *context, 1379 struct audit_buffer **ab, 1380 struct audit_aux_data_execve *axi) 1381 { 1382 int i, len; 1383 size_t len_sent = 0; 1384 const char __user *p; 1385 char *buf; 1386 1387 if (axi->mm != current->mm) 1388 return; /* execve failed, no additional info */ 1389 1390 p = (const char __user *)axi->mm->arg_start; 1391 1392 audit_log_format(*ab, "argc=%d", axi->argc); 1393 1394 /* 1395 * we need some kernel buffer to hold the userspace args. Just 1396 * allocate one big one rather than allocating one of the right size 1397 * for every single argument inside audit_log_single_execve_arg() 1398 * should be <8k allocation so should be pretty safe. 1399 */ 1400 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1401 if (!buf) { 1402 audit_panic("out of memory for argv string\n"); 1403 return; 1404 } 1405 1406 for (i = 0; i < axi->argc; i++) { 1407 len = audit_log_single_execve_arg(context, ab, i, 1408 &len_sent, p, buf); 1409 if (len <= 0) 1410 break; 1411 p += len; 1412 } 1413 kfree(buf); 1414 } 1415 1416 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1417 { 1418 int i; 1419 1420 audit_log_format(ab, " %s=", prefix); 1421 CAP_FOR_EACH_U32(i) { 1422 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1423 } 1424 } 1425 1426 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1427 { 1428 kernel_cap_t *perm = &name->fcap.permitted; 1429 kernel_cap_t *inh = &name->fcap.inheritable; 1430 int log = 0; 1431 1432 if (!cap_isclear(*perm)) { 1433 audit_log_cap(ab, "cap_fp", perm); 1434 log = 1; 1435 } 1436 if (!cap_isclear(*inh)) { 1437 audit_log_cap(ab, "cap_fi", inh); 1438 log = 1; 1439 } 1440 1441 if (log) 1442 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1443 } 1444 1445 static void show_special(struct audit_context *context, int *call_panic) 1446 { 1447 struct audit_buffer *ab; 1448 int i; 1449 1450 ab = audit_log_start(context, GFP_KERNEL, context->type); 1451 if (!ab) 1452 return; 1453 1454 switch (context->type) { 1455 case AUDIT_SOCKETCALL: { 1456 int nargs = context->socketcall.nargs; 1457 audit_log_format(ab, "nargs=%d", nargs); 1458 for (i = 0; i < nargs; i++) 1459 audit_log_format(ab, " a%d=%lx", i, 1460 context->socketcall.args[i]); 1461 break; } 1462 case AUDIT_IPC: { 1463 u32 osid = context->ipc.osid; 1464 1465 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1466 from_kuid(&init_user_ns, context->ipc.uid), 1467 from_kgid(&init_user_ns, context->ipc.gid), 1468 context->ipc.mode); 1469 if (osid) { 1470 char *ctx = NULL; 1471 u32 len; 1472 if (security_secid_to_secctx(osid, &ctx, &len)) { 1473 audit_log_format(ab, " osid=%u", osid); 1474 *call_panic = 1; 1475 } else { 1476 audit_log_format(ab, " obj=%s", ctx); 1477 security_release_secctx(ctx, len); 1478 } 1479 } 1480 if (context->ipc.has_perm) { 1481 audit_log_end(ab); 1482 ab = audit_log_start(context, GFP_KERNEL, 1483 AUDIT_IPC_SET_PERM); 1484 audit_log_format(ab, 1485 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1486 context->ipc.qbytes, 1487 context->ipc.perm_uid, 1488 context->ipc.perm_gid, 1489 context->ipc.perm_mode); 1490 if (!ab) 1491 return; 1492 } 1493 break; } 1494 case AUDIT_MQ_OPEN: { 1495 audit_log_format(ab, 1496 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1497 "mq_msgsize=%ld mq_curmsgs=%ld", 1498 context->mq_open.oflag, context->mq_open.mode, 1499 context->mq_open.attr.mq_flags, 1500 context->mq_open.attr.mq_maxmsg, 1501 context->mq_open.attr.mq_msgsize, 1502 context->mq_open.attr.mq_curmsgs); 1503 break; } 1504 case AUDIT_MQ_SENDRECV: { 1505 audit_log_format(ab, 1506 "mqdes=%d msg_len=%zd msg_prio=%u " 1507 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1508 context->mq_sendrecv.mqdes, 1509 context->mq_sendrecv.msg_len, 1510 context->mq_sendrecv.msg_prio, 1511 context->mq_sendrecv.abs_timeout.tv_sec, 1512 context->mq_sendrecv.abs_timeout.tv_nsec); 1513 break; } 1514 case AUDIT_MQ_NOTIFY: { 1515 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1516 context->mq_notify.mqdes, 1517 context->mq_notify.sigev_signo); 1518 break; } 1519 case AUDIT_MQ_GETSETATTR: { 1520 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1521 audit_log_format(ab, 1522 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1523 "mq_curmsgs=%ld ", 1524 context->mq_getsetattr.mqdes, 1525 attr->mq_flags, attr->mq_maxmsg, 1526 attr->mq_msgsize, attr->mq_curmsgs); 1527 break; } 1528 case AUDIT_CAPSET: { 1529 audit_log_format(ab, "pid=%d", context->capset.pid); 1530 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1531 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1532 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1533 break; } 1534 case AUDIT_MMAP: { 1535 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1536 context->mmap.flags); 1537 break; } 1538 } 1539 audit_log_end(ab); 1540 } 1541 1542 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1543 int record_num, int *call_panic) 1544 { 1545 struct audit_buffer *ab; 1546 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1547 if (!ab) 1548 return; /* audit_panic has been called */ 1549 1550 audit_log_format(ab, "item=%d", record_num); 1551 1552 if (n->name) { 1553 switch (n->name_len) { 1554 case AUDIT_NAME_FULL: 1555 /* log the full path */ 1556 audit_log_format(ab, " name="); 1557 audit_log_untrustedstring(ab, n->name->name); 1558 break; 1559 case 0: 1560 /* name was specified as a relative path and the 1561 * directory component is the cwd */ 1562 audit_log_d_path(ab, " name=", &context->pwd); 1563 break; 1564 default: 1565 /* log the name's directory component */ 1566 audit_log_format(ab, " name="); 1567 audit_log_n_untrustedstring(ab, n->name->name, 1568 n->name_len); 1569 } 1570 } else 1571 audit_log_format(ab, " name=(null)"); 1572 1573 if (n->ino != (unsigned long)-1) { 1574 audit_log_format(ab, " inode=%lu" 1575 " dev=%02x:%02x mode=%#ho" 1576 " ouid=%u ogid=%u rdev=%02x:%02x", 1577 n->ino, 1578 MAJOR(n->dev), 1579 MINOR(n->dev), 1580 n->mode, 1581 from_kuid(&init_user_ns, n->uid), 1582 from_kgid(&init_user_ns, n->gid), 1583 MAJOR(n->rdev), 1584 MINOR(n->rdev)); 1585 } 1586 if (n->osid != 0) { 1587 char *ctx = NULL; 1588 u32 len; 1589 if (security_secid_to_secctx( 1590 n->osid, &ctx, &len)) { 1591 audit_log_format(ab, " osid=%u", n->osid); 1592 *call_panic = 2; 1593 } else { 1594 audit_log_format(ab, " obj=%s", ctx); 1595 security_release_secctx(ctx, len); 1596 } 1597 } 1598 1599 audit_log_fcaps(ab, n); 1600 1601 audit_log_end(ab); 1602 } 1603 1604 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1605 { 1606 int i, call_panic = 0; 1607 struct audit_buffer *ab; 1608 struct audit_aux_data *aux; 1609 struct audit_names *n; 1610 1611 /* tsk == current */ 1612 context->personality = tsk->personality; 1613 1614 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1615 if (!ab) 1616 return; /* audit_panic has been called */ 1617 audit_log_format(ab, "arch=%x syscall=%d", 1618 context->arch, context->major); 1619 if (context->personality != PER_LINUX) 1620 audit_log_format(ab, " per=%lx", context->personality); 1621 if (context->return_valid) 1622 audit_log_format(ab, " success=%s exit=%ld", 1623 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1624 context->return_code); 1625 1626 audit_log_format(ab, 1627 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1628 context->argv[0], 1629 context->argv[1], 1630 context->argv[2], 1631 context->argv[3], 1632 context->name_count); 1633 1634 audit_log_task_info(ab, tsk); 1635 audit_log_key(ab, context->filterkey); 1636 audit_log_end(ab); 1637 1638 for (aux = context->aux; aux; aux = aux->next) { 1639 1640 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1641 if (!ab) 1642 continue; /* audit_panic has been called */ 1643 1644 switch (aux->type) { 1645 1646 case AUDIT_EXECVE: { 1647 struct audit_aux_data_execve *axi = (void *)aux; 1648 audit_log_execve_info(context, &ab, axi); 1649 break; } 1650 1651 case AUDIT_BPRM_FCAPS: { 1652 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1653 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1654 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1655 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1656 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1657 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1658 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1659 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1660 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1661 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1662 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1663 break; } 1664 1665 } 1666 audit_log_end(ab); 1667 } 1668 1669 if (context->type) 1670 show_special(context, &call_panic); 1671 1672 if (context->fds[0] >= 0) { 1673 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1674 if (ab) { 1675 audit_log_format(ab, "fd0=%d fd1=%d", 1676 context->fds[0], context->fds[1]); 1677 audit_log_end(ab); 1678 } 1679 } 1680 1681 if (context->sockaddr_len) { 1682 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1683 if (ab) { 1684 audit_log_format(ab, "saddr="); 1685 audit_log_n_hex(ab, (void *)context->sockaddr, 1686 context->sockaddr_len); 1687 audit_log_end(ab); 1688 } 1689 } 1690 1691 for (aux = context->aux_pids; aux; aux = aux->next) { 1692 struct audit_aux_data_pids *axs = (void *)aux; 1693 1694 for (i = 0; i < axs->pid_count; i++) 1695 if (audit_log_pid_context(context, axs->target_pid[i], 1696 axs->target_auid[i], 1697 axs->target_uid[i], 1698 axs->target_sessionid[i], 1699 axs->target_sid[i], 1700 axs->target_comm[i])) 1701 call_panic = 1; 1702 } 1703 1704 if (context->target_pid && 1705 audit_log_pid_context(context, context->target_pid, 1706 context->target_auid, context->target_uid, 1707 context->target_sessionid, 1708 context->target_sid, context->target_comm)) 1709 call_panic = 1; 1710 1711 if (context->pwd.dentry && context->pwd.mnt) { 1712 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1713 if (ab) { 1714 audit_log_d_path(ab, " cwd=", &context->pwd); 1715 audit_log_end(ab); 1716 } 1717 } 1718 1719 i = 0; 1720 list_for_each_entry(n, &context->names_list, list) 1721 audit_log_name(context, n, i++, &call_panic); 1722 1723 /* Send end of event record to help user space know we are finished */ 1724 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1725 if (ab) 1726 audit_log_end(ab); 1727 if (call_panic) 1728 audit_panic("error converting sid to string"); 1729 } 1730 1731 /** 1732 * audit_free - free a per-task audit context 1733 * @tsk: task whose audit context block to free 1734 * 1735 * Called from copy_process and do_exit 1736 */ 1737 void __audit_free(struct task_struct *tsk) 1738 { 1739 struct audit_context *context; 1740 1741 context = audit_get_context(tsk, 0, 0); 1742 if (!context) 1743 return; 1744 1745 /* Check for system calls that do not go through the exit 1746 * function (e.g., exit_group), then free context block. 1747 * We use GFP_ATOMIC here because we might be doing this 1748 * in the context of the idle thread */ 1749 /* that can happen only if we are called from do_exit() */ 1750 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1751 audit_log_exit(context, tsk); 1752 if (!list_empty(&context->killed_trees)) 1753 audit_kill_trees(&context->killed_trees); 1754 1755 audit_free_context(context); 1756 } 1757 1758 /** 1759 * audit_syscall_entry - fill in an audit record at syscall entry 1760 * @arch: architecture type 1761 * @major: major syscall type (function) 1762 * @a1: additional syscall register 1 1763 * @a2: additional syscall register 2 1764 * @a3: additional syscall register 3 1765 * @a4: additional syscall register 4 1766 * 1767 * Fill in audit context at syscall entry. This only happens if the 1768 * audit context was created when the task was created and the state or 1769 * filters demand the audit context be built. If the state from the 1770 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1771 * then the record will be written at syscall exit time (otherwise, it 1772 * will only be written if another part of the kernel requests that it 1773 * be written). 1774 */ 1775 void __audit_syscall_entry(int arch, int major, 1776 unsigned long a1, unsigned long a2, 1777 unsigned long a3, unsigned long a4) 1778 { 1779 struct task_struct *tsk = current; 1780 struct audit_context *context = tsk->audit_context; 1781 enum audit_state state; 1782 1783 if (!context) 1784 return; 1785 1786 /* 1787 * This happens only on certain architectures that make system 1788 * calls in kernel_thread via the entry.S interface, instead of 1789 * with direct calls. (If you are porting to a new 1790 * architecture, hitting this condition can indicate that you 1791 * got the _exit/_leave calls backward in entry.S.) 1792 * 1793 * i386 no 1794 * x86_64 no 1795 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1796 * 1797 * This also happens with vm86 emulation in a non-nested manner 1798 * (entries without exits), so this case must be caught. 1799 */ 1800 if (context->in_syscall) { 1801 struct audit_context *newctx; 1802 1803 #if AUDIT_DEBUG 1804 printk(KERN_ERR 1805 "audit(:%d) pid=%d in syscall=%d;" 1806 " entering syscall=%d\n", 1807 context->serial, tsk->pid, context->major, major); 1808 #endif 1809 newctx = audit_alloc_context(context->state); 1810 if (newctx) { 1811 newctx->previous = context; 1812 context = newctx; 1813 tsk->audit_context = newctx; 1814 } else { 1815 /* If we can't alloc a new context, the best we 1816 * can do is to leak memory (any pending putname 1817 * will be lost). The only other alternative is 1818 * to abandon auditing. */ 1819 audit_zero_context(context, context->state); 1820 } 1821 } 1822 BUG_ON(context->in_syscall || context->name_count); 1823 1824 if (!audit_enabled) 1825 return; 1826 1827 context->arch = arch; 1828 context->major = major; 1829 context->argv[0] = a1; 1830 context->argv[1] = a2; 1831 context->argv[2] = a3; 1832 context->argv[3] = a4; 1833 1834 state = context->state; 1835 context->dummy = !audit_n_rules; 1836 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1837 context->prio = 0; 1838 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1839 } 1840 if (state == AUDIT_DISABLED) 1841 return; 1842 1843 context->serial = 0; 1844 context->ctime = CURRENT_TIME; 1845 context->in_syscall = 1; 1846 context->current_state = state; 1847 context->ppid = 0; 1848 } 1849 1850 /** 1851 * audit_syscall_exit - deallocate audit context after a system call 1852 * @success: success value of the syscall 1853 * @return_code: return value of the syscall 1854 * 1855 * Tear down after system call. If the audit context has been marked as 1856 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1857 * filtering, or because some other part of the kernel wrote an audit 1858 * message), then write out the syscall information. In call cases, 1859 * free the names stored from getname(). 1860 */ 1861 void __audit_syscall_exit(int success, long return_code) 1862 { 1863 struct task_struct *tsk = current; 1864 struct audit_context *context; 1865 1866 if (success) 1867 success = AUDITSC_SUCCESS; 1868 else 1869 success = AUDITSC_FAILURE; 1870 1871 context = audit_get_context(tsk, success, return_code); 1872 if (!context) 1873 return; 1874 1875 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1876 audit_log_exit(context, tsk); 1877 1878 context->in_syscall = 0; 1879 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1880 1881 if (!list_empty(&context->killed_trees)) 1882 audit_kill_trees(&context->killed_trees); 1883 1884 if (context->previous) { 1885 struct audit_context *new_context = context->previous; 1886 context->previous = NULL; 1887 audit_free_context(context); 1888 tsk->audit_context = new_context; 1889 } else { 1890 audit_free_names(context); 1891 unroll_tree_refs(context, NULL, 0); 1892 audit_free_aux(context); 1893 context->aux = NULL; 1894 context->aux_pids = NULL; 1895 context->target_pid = 0; 1896 context->target_sid = 0; 1897 context->sockaddr_len = 0; 1898 context->type = 0; 1899 context->fds[0] = -1; 1900 if (context->state != AUDIT_RECORD_CONTEXT) { 1901 kfree(context->filterkey); 1902 context->filterkey = NULL; 1903 } 1904 tsk->audit_context = context; 1905 } 1906 } 1907 1908 static inline void handle_one(const struct inode *inode) 1909 { 1910 #ifdef CONFIG_AUDIT_TREE 1911 struct audit_context *context; 1912 struct audit_tree_refs *p; 1913 struct audit_chunk *chunk; 1914 int count; 1915 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1916 return; 1917 context = current->audit_context; 1918 p = context->trees; 1919 count = context->tree_count; 1920 rcu_read_lock(); 1921 chunk = audit_tree_lookup(inode); 1922 rcu_read_unlock(); 1923 if (!chunk) 1924 return; 1925 if (likely(put_tree_ref(context, chunk))) 1926 return; 1927 if (unlikely(!grow_tree_refs(context))) { 1928 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1929 audit_set_auditable(context); 1930 audit_put_chunk(chunk); 1931 unroll_tree_refs(context, p, count); 1932 return; 1933 } 1934 put_tree_ref(context, chunk); 1935 #endif 1936 } 1937 1938 static void handle_path(const struct dentry *dentry) 1939 { 1940 #ifdef CONFIG_AUDIT_TREE 1941 struct audit_context *context; 1942 struct audit_tree_refs *p; 1943 const struct dentry *d, *parent; 1944 struct audit_chunk *drop; 1945 unsigned long seq; 1946 int count; 1947 1948 context = current->audit_context; 1949 p = context->trees; 1950 count = context->tree_count; 1951 retry: 1952 drop = NULL; 1953 d = dentry; 1954 rcu_read_lock(); 1955 seq = read_seqbegin(&rename_lock); 1956 for(;;) { 1957 struct inode *inode = d->d_inode; 1958 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1959 struct audit_chunk *chunk; 1960 chunk = audit_tree_lookup(inode); 1961 if (chunk) { 1962 if (unlikely(!put_tree_ref(context, chunk))) { 1963 drop = chunk; 1964 break; 1965 } 1966 } 1967 } 1968 parent = d->d_parent; 1969 if (parent == d) 1970 break; 1971 d = parent; 1972 } 1973 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1974 rcu_read_unlock(); 1975 if (!drop) { 1976 /* just a race with rename */ 1977 unroll_tree_refs(context, p, count); 1978 goto retry; 1979 } 1980 audit_put_chunk(drop); 1981 if (grow_tree_refs(context)) { 1982 /* OK, got more space */ 1983 unroll_tree_refs(context, p, count); 1984 goto retry; 1985 } 1986 /* too bad */ 1987 printk(KERN_WARNING 1988 "out of memory, audit has lost a tree reference\n"); 1989 unroll_tree_refs(context, p, count); 1990 audit_set_auditable(context); 1991 return; 1992 } 1993 rcu_read_unlock(); 1994 #endif 1995 } 1996 1997 static struct audit_names *audit_alloc_name(struct audit_context *context, 1998 unsigned char type) 1999 { 2000 struct audit_names *aname; 2001 2002 if (context->name_count < AUDIT_NAMES) { 2003 aname = &context->preallocated_names[context->name_count]; 2004 memset(aname, 0, sizeof(*aname)); 2005 } else { 2006 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2007 if (!aname) 2008 return NULL; 2009 aname->should_free = true; 2010 } 2011 2012 aname->ino = (unsigned long)-1; 2013 aname->type = type; 2014 list_add_tail(&aname->list, &context->names_list); 2015 2016 context->name_count++; 2017 #if AUDIT_DEBUG 2018 context->ino_count++; 2019 #endif 2020 return aname; 2021 } 2022 2023 /** 2024 * audit_reusename - fill out filename with info from existing entry 2025 * @uptr: userland ptr to pathname 2026 * 2027 * Search the audit_names list for the current audit context. If there is an 2028 * existing entry with a matching "uptr" then return the filename 2029 * associated with that audit_name. If not, return NULL. 2030 */ 2031 struct filename * 2032 __audit_reusename(const __user char *uptr) 2033 { 2034 struct audit_context *context = current->audit_context; 2035 struct audit_names *n; 2036 2037 list_for_each_entry(n, &context->names_list, list) { 2038 if (!n->name) 2039 continue; 2040 if (n->name->uptr == uptr) 2041 return n->name; 2042 } 2043 return NULL; 2044 } 2045 2046 /** 2047 * audit_getname - add a name to the list 2048 * @name: name to add 2049 * 2050 * Add a name to the list of audit names for this context. 2051 * Called from fs/namei.c:getname(). 2052 */ 2053 void __audit_getname(struct filename *name) 2054 { 2055 struct audit_context *context = current->audit_context; 2056 struct audit_names *n; 2057 2058 if (!context->in_syscall) { 2059 #if AUDIT_DEBUG == 2 2060 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 2061 __FILE__, __LINE__, context->serial, name); 2062 dump_stack(); 2063 #endif 2064 return; 2065 } 2066 2067 #if AUDIT_DEBUG 2068 /* The filename _must_ have a populated ->name */ 2069 BUG_ON(!name->name); 2070 #endif 2071 2072 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2073 if (!n) 2074 return; 2075 2076 n->name = name; 2077 n->name_len = AUDIT_NAME_FULL; 2078 n->name_put = true; 2079 name->aname = n; 2080 2081 if (!context->pwd.dentry) 2082 get_fs_pwd(current->fs, &context->pwd); 2083 } 2084 2085 /* audit_putname - intercept a putname request 2086 * @name: name to intercept and delay for putname 2087 * 2088 * If we have stored the name from getname in the audit context, 2089 * then we delay the putname until syscall exit. 2090 * Called from include/linux/fs.h:putname(). 2091 */ 2092 void audit_putname(struct filename *name) 2093 { 2094 struct audit_context *context = current->audit_context; 2095 2096 BUG_ON(!context); 2097 if (!context->in_syscall) { 2098 #if AUDIT_DEBUG == 2 2099 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 2100 __FILE__, __LINE__, context->serial, name); 2101 if (context->name_count) { 2102 struct audit_names *n; 2103 int i; 2104 2105 list_for_each_entry(n, &context->names_list, list) 2106 printk(KERN_ERR "name[%d] = %p = %s\n", i, 2107 n->name, n->name->name ?: "(null)"); 2108 } 2109 #endif 2110 __putname(name); 2111 } 2112 #if AUDIT_DEBUG 2113 else { 2114 ++context->put_count; 2115 if (context->put_count > context->name_count) { 2116 printk(KERN_ERR "%s:%d(:%d): major=%d" 2117 " in_syscall=%d putname(%p) name_count=%d" 2118 " put_count=%d\n", 2119 __FILE__, __LINE__, 2120 context->serial, context->major, 2121 context->in_syscall, name->name, 2122 context->name_count, context->put_count); 2123 dump_stack(); 2124 } 2125 } 2126 #endif 2127 } 2128 2129 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 2130 { 2131 struct cpu_vfs_cap_data caps; 2132 int rc; 2133 2134 if (!dentry) 2135 return 0; 2136 2137 rc = get_vfs_caps_from_disk(dentry, &caps); 2138 if (rc) 2139 return rc; 2140 2141 name->fcap.permitted = caps.permitted; 2142 name->fcap.inheritable = caps.inheritable; 2143 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2144 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2145 2146 return 0; 2147 } 2148 2149 2150 /* Copy inode data into an audit_names. */ 2151 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2152 const struct inode *inode) 2153 { 2154 name->ino = inode->i_ino; 2155 name->dev = inode->i_sb->s_dev; 2156 name->mode = inode->i_mode; 2157 name->uid = inode->i_uid; 2158 name->gid = inode->i_gid; 2159 name->rdev = inode->i_rdev; 2160 security_inode_getsecid(inode, &name->osid); 2161 audit_copy_fcaps(name, dentry); 2162 } 2163 2164 /** 2165 * __audit_inode - store the inode and device from a lookup 2166 * @name: name being audited 2167 * @dentry: dentry being audited 2168 * @parent: does this dentry represent the parent? 2169 */ 2170 void __audit_inode(struct filename *name, const struct dentry *dentry, 2171 unsigned int parent) 2172 { 2173 struct audit_context *context = current->audit_context; 2174 const struct inode *inode = dentry->d_inode; 2175 struct audit_names *n; 2176 2177 if (!context->in_syscall) 2178 return; 2179 2180 if (!name) 2181 goto out_alloc; 2182 2183 #if AUDIT_DEBUG 2184 /* The struct filename _must_ have a populated ->name */ 2185 BUG_ON(!name->name); 2186 #endif 2187 /* 2188 * If we have a pointer to an audit_names entry already, then we can 2189 * just use it directly if the type is correct. 2190 */ 2191 n = name->aname; 2192 if (n) { 2193 if (parent) { 2194 if (n->type == AUDIT_TYPE_PARENT || 2195 n->type == AUDIT_TYPE_UNKNOWN) 2196 goto out; 2197 } else { 2198 if (n->type != AUDIT_TYPE_PARENT) 2199 goto out; 2200 } 2201 } 2202 2203 list_for_each_entry_reverse(n, &context->names_list, list) { 2204 /* does the name pointer match? */ 2205 if (!n->name || n->name->name != name->name) 2206 continue; 2207 2208 /* match the correct record type */ 2209 if (parent) { 2210 if (n->type == AUDIT_TYPE_PARENT || 2211 n->type == AUDIT_TYPE_UNKNOWN) 2212 goto out; 2213 } else { 2214 if (n->type != AUDIT_TYPE_PARENT) 2215 goto out; 2216 } 2217 } 2218 2219 out_alloc: 2220 /* unable to find the name from a previous getname(). Allocate a new 2221 * anonymous entry. 2222 */ 2223 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL); 2224 if (!n) 2225 return; 2226 out: 2227 if (parent) { 2228 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2229 n->type = AUDIT_TYPE_PARENT; 2230 } else { 2231 n->name_len = AUDIT_NAME_FULL; 2232 n->type = AUDIT_TYPE_NORMAL; 2233 } 2234 handle_path(dentry); 2235 audit_copy_inode(n, dentry, inode); 2236 } 2237 2238 /** 2239 * __audit_inode_child - collect inode info for created/removed objects 2240 * @parent: inode of dentry parent 2241 * @dentry: dentry being audited 2242 * @type: AUDIT_TYPE_* value that we're looking for 2243 * 2244 * For syscalls that create or remove filesystem objects, audit_inode 2245 * can only collect information for the filesystem object's parent. 2246 * This call updates the audit context with the child's information. 2247 * Syscalls that create a new filesystem object must be hooked after 2248 * the object is created. Syscalls that remove a filesystem object 2249 * must be hooked prior, in order to capture the target inode during 2250 * unsuccessful attempts. 2251 */ 2252 void __audit_inode_child(const struct inode *parent, 2253 const struct dentry *dentry, 2254 const unsigned char type) 2255 { 2256 struct audit_context *context = current->audit_context; 2257 const struct inode *inode = dentry->d_inode; 2258 const char *dname = dentry->d_name.name; 2259 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2260 2261 if (!context->in_syscall) 2262 return; 2263 2264 if (inode) 2265 handle_one(inode); 2266 2267 /* look for a parent entry first */ 2268 list_for_each_entry(n, &context->names_list, list) { 2269 if (!n->name || n->type != AUDIT_TYPE_PARENT) 2270 continue; 2271 2272 if (n->ino == parent->i_ino && 2273 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 2274 found_parent = n; 2275 break; 2276 } 2277 } 2278 2279 /* is there a matching child entry? */ 2280 list_for_each_entry(n, &context->names_list, list) { 2281 /* can only match entries that have a name */ 2282 if (!n->name || n->type != type) 2283 continue; 2284 2285 /* if we found a parent, make sure this one is a child of it */ 2286 if (found_parent && (n->name != found_parent->name)) 2287 continue; 2288 2289 if (!strcmp(dname, n->name->name) || 2290 !audit_compare_dname_path(dname, n->name->name, 2291 found_parent ? 2292 found_parent->name_len : 2293 AUDIT_NAME_FULL)) { 2294 found_child = n; 2295 break; 2296 } 2297 } 2298 2299 if (!found_parent) { 2300 /* create a new, "anonymous" parent record */ 2301 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2302 if (!n) 2303 return; 2304 audit_copy_inode(n, NULL, parent); 2305 } 2306 2307 if (!found_child) { 2308 found_child = audit_alloc_name(context, type); 2309 if (!found_child) 2310 return; 2311 2312 /* Re-use the name belonging to the slot for a matching parent 2313 * directory. All names for this context are relinquished in 2314 * audit_free_names() */ 2315 if (found_parent) { 2316 found_child->name = found_parent->name; 2317 found_child->name_len = AUDIT_NAME_FULL; 2318 /* don't call __putname() */ 2319 found_child->name_put = false; 2320 } 2321 } 2322 if (inode) 2323 audit_copy_inode(found_child, dentry, inode); 2324 else 2325 found_child->ino = (unsigned long)-1; 2326 } 2327 EXPORT_SYMBOL_GPL(__audit_inode_child); 2328 2329 /** 2330 * auditsc_get_stamp - get local copies of audit_context values 2331 * @ctx: audit_context for the task 2332 * @t: timespec to store time recorded in the audit_context 2333 * @serial: serial value that is recorded in the audit_context 2334 * 2335 * Also sets the context as auditable. 2336 */ 2337 int auditsc_get_stamp(struct audit_context *ctx, 2338 struct timespec *t, unsigned int *serial) 2339 { 2340 if (!ctx->in_syscall) 2341 return 0; 2342 if (!ctx->serial) 2343 ctx->serial = audit_serial(); 2344 t->tv_sec = ctx->ctime.tv_sec; 2345 t->tv_nsec = ctx->ctime.tv_nsec; 2346 *serial = ctx->serial; 2347 if (!ctx->prio) { 2348 ctx->prio = 1; 2349 ctx->current_state = AUDIT_RECORD_CONTEXT; 2350 } 2351 return 1; 2352 } 2353 2354 /* global counter which is incremented every time something logs in */ 2355 static atomic_t session_id = ATOMIC_INIT(0); 2356 2357 /** 2358 * audit_set_loginuid - set current task's audit_context loginuid 2359 * @loginuid: loginuid value 2360 * 2361 * Returns 0. 2362 * 2363 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2364 */ 2365 int audit_set_loginuid(kuid_t loginuid) 2366 { 2367 struct task_struct *task = current; 2368 struct audit_context *context = task->audit_context; 2369 unsigned int sessionid; 2370 2371 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE 2372 if (uid_valid(task->loginuid)) 2373 return -EPERM; 2374 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 2375 if (!capable(CAP_AUDIT_CONTROL)) 2376 return -EPERM; 2377 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 2378 2379 sessionid = atomic_inc_return(&session_id); 2380 if (context && context->in_syscall) { 2381 struct audit_buffer *ab; 2382 2383 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2384 if (ab) { 2385 audit_log_format(ab, "login pid=%d uid=%u " 2386 "old auid=%u new auid=%u" 2387 " old ses=%u new ses=%u", 2388 task->pid, 2389 from_kuid(&init_user_ns, task_uid(task)), 2390 from_kuid(&init_user_ns, task->loginuid), 2391 from_kuid(&init_user_ns, loginuid), 2392 task->sessionid, sessionid); 2393 audit_log_end(ab); 2394 } 2395 } 2396 task->sessionid = sessionid; 2397 task->loginuid = loginuid; 2398 return 0; 2399 } 2400 2401 /** 2402 * __audit_mq_open - record audit data for a POSIX MQ open 2403 * @oflag: open flag 2404 * @mode: mode bits 2405 * @attr: queue attributes 2406 * 2407 */ 2408 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2409 { 2410 struct audit_context *context = current->audit_context; 2411 2412 if (attr) 2413 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2414 else 2415 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2416 2417 context->mq_open.oflag = oflag; 2418 context->mq_open.mode = mode; 2419 2420 context->type = AUDIT_MQ_OPEN; 2421 } 2422 2423 /** 2424 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2425 * @mqdes: MQ descriptor 2426 * @msg_len: Message length 2427 * @msg_prio: Message priority 2428 * @abs_timeout: Message timeout in absolute time 2429 * 2430 */ 2431 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2432 const struct timespec *abs_timeout) 2433 { 2434 struct audit_context *context = current->audit_context; 2435 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2436 2437 if (abs_timeout) 2438 memcpy(p, abs_timeout, sizeof(struct timespec)); 2439 else 2440 memset(p, 0, sizeof(struct timespec)); 2441 2442 context->mq_sendrecv.mqdes = mqdes; 2443 context->mq_sendrecv.msg_len = msg_len; 2444 context->mq_sendrecv.msg_prio = msg_prio; 2445 2446 context->type = AUDIT_MQ_SENDRECV; 2447 } 2448 2449 /** 2450 * __audit_mq_notify - record audit data for a POSIX MQ notify 2451 * @mqdes: MQ descriptor 2452 * @notification: Notification event 2453 * 2454 */ 2455 2456 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2457 { 2458 struct audit_context *context = current->audit_context; 2459 2460 if (notification) 2461 context->mq_notify.sigev_signo = notification->sigev_signo; 2462 else 2463 context->mq_notify.sigev_signo = 0; 2464 2465 context->mq_notify.mqdes = mqdes; 2466 context->type = AUDIT_MQ_NOTIFY; 2467 } 2468 2469 /** 2470 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2471 * @mqdes: MQ descriptor 2472 * @mqstat: MQ flags 2473 * 2474 */ 2475 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2476 { 2477 struct audit_context *context = current->audit_context; 2478 context->mq_getsetattr.mqdes = mqdes; 2479 context->mq_getsetattr.mqstat = *mqstat; 2480 context->type = AUDIT_MQ_GETSETATTR; 2481 } 2482 2483 /** 2484 * audit_ipc_obj - record audit data for ipc object 2485 * @ipcp: ipc permissions 2486 * 2487 */ 2488 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2489 { 2490 struct audit_context *context = current->audit_context; 2491 context->ipc.uid = ipcp->uid; 2492 context->ipc.gid = ipcp->gid; 2493 context->ipc.mode = ipcp->mode; 2494 context->ipc.has_perm = 0; 2495 security_ipc_getsecid(ipcp, &context->ipc.osid); 2496 context->type = AUDIT_IPC; 2497 } 2498 2499 /** 2500 * audit_ipc_set_perm - record audit data for new ipc permissions 2501 * @qbytes: msgq bytes 2502 * @uid: msgq user id 2503 * @gid: msgq group id 2504 * @mode: msgq mode (permissions) 2505 * 2506 * Called only after audit_ipc_obj(). 2507 */ 2508 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2509 { 2510 struct audit_context *context = current->audit_context; 2511 2512 context->ipc.qbytes = qbytes; 2513 context->ipc.perm_uid = uid; 2514 context->ipc.perm_gid = gid; 2515 context->ipc.perm_mode = mode; 2516 context->ipc.has_perm = 1; 2517 } 2518 2519 int __audit_bprm(struct linux_binprm *bprm) 2520 { 2521 struct audit_aux_data_execve *ax; 2522 struct audit_context *context = current->audit_context; 2523 2524 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2525 if (!ax) 2526 return -ENOMEM; 2527 2528 ax->argc = bprm->argc; 2529 ax->envc = bprm->envc; 2530 ax->mm = bprm->mm; 2531 ax->d.type = AUDIT_EXECVE; 2532 ax->d.next = context->aux; 2533 context->aux = (void *)ax; 2534 return 0; 2535 } 2536 2537 2538 /** 2539 * audit_socketcall - record audit data for sys_socketcall 2540 * @nargs: number of args 2541 * @args: args array 2542 * 2543 */ 2544 void __audit_socketcall(int nargs, unsigned long *args) 2545 { 2546 struct audit_context *context = current->audit_context; 2547 2548 context->type = AUDIT_SOCKETCALL; 2549 context->socketcall.nargs = nargs; 2550 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2551 } 2552 2553 /** 2554 * __audit_fd_pair - record audit data for pipe and socketpair 2555 * @fd1: the first file descriptor 2556 * @fd2: the second file descriptor 2557 * 2558 */ 2559 void __audit_fd_pair(int fd1, int fd2) 2560 { 2561 struct audit_context *context = current->audit_context; 2562 context->fds[0] = fd1; 2563 context->fds[1] = fd2; 2564 } 2565 2566 /** 2567 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2568 * @len: data length in user space 2569 * @a: data address in kernel space 2570 * 2571 * Returns 0 for success or NULL context or < 0 on error. 2572 */ 2573 int __audit_sockaddr(int len, void *a) 2574 { 2575 struct audit_context *context = current->audit_context; 2576 2577 if (!context->sockaddr) { 2578 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2579 if (!p) 2580 return -ENOMEM; 2581 context->sockaddr = p; 2582 } 2583 2584 context->sockaddr_len = len; 2585 memcpy(context->sockaddr, a, len); 2586 return 0; 2587 } 2588 2589 void __audit_ptrace(struct task_struct *t) 2590 { 2591 struct audit_context *context = current->audit_context; 2592 2593 context->target_pid = t->pid; 2594 context->target_auid = audit_get_loginuid(t); 2595 context->target_uid = task_uid(t); 2596 context->target_sessionid = audit_get_sessionid(t); 2597 security_task_getsecid(t, &context->target_sid); 2598 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2599 } 2600 2601 /** 2602 * audit_signal_info - record signal info for shutting down audit subsystem 2603 * @sig: signal value 2604 * @t: task being signaled 2605 * 2606 * If the audit subsystem is being terminated, record the task (pid) 2607 * and uid that is doing that. 2608 */ 2609 int __audit_signal_info(int sig, struct task_struct *t) 2610 { 2611 struct audit_aux_data_pids *axp; 2612 struct task_struct *tsk = current; 2613 struct audit_context *ctx = tsk->audit_context; 2614 kuid_t uid = current_uid(), t_uid = task_uid(t); 2615 2616 if (audit_pid && t->tgid == audit_pid) { 2617 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2618 audit_sig_pid = tsk->pid; 2619 if (uid_valid(tsk->loginuid)) 2620 audit_sig_uid = tsk->loginuid; 2621 else 2622 audit_sig_uid = uid; 2623 security_task_getsecid(tsk, &audit_sig_sid); 2624 } 2625 if (!audit_signals || audit_dummy_context()) 2626 return 0; 2627 } 2628 2629 /* optimize the common case by putting first signal recipient directly 2630 * in audit_context */ 2631 if (!ctx->target_pid) { 2632 ctx->target_pid = t->tgid; 2633 ctx->target_auid = audit_get_loginuid(t); 2634 ctx->target_uid = t_uid; 2635 ctx->target_sessionid = audit_get_sessionid(t); 2636 security_task_getsecid(t, &ctx->target_sid); 2637 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2638 return 0; 2639 } 2640 2641 axp = (void *)ctx->aux_pids; 2642 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2643 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2644 if (!axp) 2645 return -ENOMEM; 2646 2647 axp->d.type = AUDIT_OBJ_PID; 2648 axp->d.next = ctx->aux_pids; 2649 ctx->aux_pids = (void *)axp; 2650 } 2651 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2652 2653 axp->target_pid[axp->pid_count] = t->tgid; 2654 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2655 axp->target_uid[axp->pid_count] = t_uid; 2656 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2657 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2658 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2659 axp->pid_count++; 2660 2661 return 0; 2662 } 2663 2664 /** 2665 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2666 * @bprm: pointer to the bprm being processed 2667 * @new: the proposed new credentials 2668 * @old: the old credentials 2669 * 2670 * Simply check if the proc already has the caps given by the file and if not 2671 * store the priv escalation info for later auditing at the end of the syscall 2672 * 2673 * -Eric 2674 */ 2675 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2676 const struct cred *new, const struct cred *old) 2677 { 2678 struct audit_aux_data_bprm_fcaps *ax; 2679 struct audit_context *context = current->audit_context; 2680 struct cpu_vfs_cap_data vcaps; 2681 struct dentry *dentry; 2682 2683 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2684 if (!ax) 2685 return -ENOMEM; 2686 2687 ax->d.type = AUDIT_BPRM_FCAPS; 2688 ax->d.next = context->aux; 2689 context->aux = (void *)ax; 2690 2691 dentry = dget(bprm->file->f_dentry); 2692 get_vfs_caps_from_disk(dentry, &vcaps); 2693 dput(dentry); 2694 2695 ax->fcap.permitted = vcaps.permitted; 2696 ax->fcap.inheritable = vcaps.inheritable; 2697 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2698 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2699 2700 ax->old_pcap.permitted = old->cap_permitted; 2701 ax->old_pcap.inheritable = old->cap_inheritable; 2702 ax->old_pcap.effective = old->cap_effective; 2703 2704 ax->new_pcap.permitted = new->cap_permitted; 2705 ax->new_pcap.inheritable = new->cap_inheritable; 2706 ax->new_pcap.effective = new->cap_effective; 2707 return 0; 2708 } 2709 2710 /** 2711 * __audit_log_capset - store information about the arguments to the capset syscall 2712 * @pid: target pid of the capset call 2713 * @new: the new credentials 2714 * @old: the old (current) credentials 2715 * 2716 * Record the aguments userspace sent to sys_capset for later printing by the 2717 * audit system if applicable 2718 */ 2719 void __audit_log_capset(pid_t pid, 2720 const struct cred *new, const struct cred *old) 2721 { 2722 struct audit_context *context = current->audit_context; 2723 context->capset.pid = pid; 2724 context->capset.cap.effective = new->cap_effective; 2725 context->capset.cap.inheritable = new->cap_effective; 2726 context->capset.cap.permitted = new->cap_permitted; 2727 context->type = AUDIT_CAPSET; 2728 } 2729 2730 void __audit_mmap_fd(int fd, int flags) 2731 { 2732 struct audit_context *context = current->audit_context; 2733 context->mmap.fd = fd; 2734 context->mmap.flags = flags; 2735 context->type = AUDIT_MMAP; 2736 } 2737 2738 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr) 2739 { 2740 kuid_t auid, uid; 2741 kgid_t gid; 2742 unsigned int sessionid; 2743 2744 auid = audit_get_loginuid(current); 2745 sessionid = audit_get_sessionid(current); 2746 current_uid_gid(&uid, &gid); 2747 2748 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2749 from_kuid(&init_user_ns, auid), 2750 from_kuid(&init_user_ns, uid), 2751 from_kgid(&init_user_ns, gid), 2752 sessionid); 2753 audit_log_task_context(ab); 2754 audit_log_format(ab, " pid=%d comm=", current->pid); 2755 audit_log_untrustedstring(ab, current->comm); 2756 audit_log_format(ab, " reason="); 2757 audit_log_string(ab, reason); 2758 audit_log_format(ab, " sig=%ld", signr); 2759 } 2760 /** 2761 * audit_core_dumps - record information about processes that end abnormally 2762 * @signr: signal value 2763 * 2764 * If a process ends with a core dump, something fishy is going on and we 2765 * should record the event for investigation. 2766 */ 2767 void audit_core_dumps(long signr) 2768 { 2769 struct audit_buffer *ab; 2770 2771 if (!audit_enabled) 2772 return; 2773 2774 if (signr == SIGQUIT) /* don't care for those */ 2775 return; 2776 2777 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2778 audit_log_abend(ab, "memory violation", signr); 2779 audit_log_end(ab); 2780 } 2781 2782 void __audit_seccomp(unsigned long syscall, long signr, int code) 2783 { 2784 struct audit_buffer *ab; 2785 2786 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2787 audit_log_abend(ab, "seccomp", signr); 2788 audit_log_format(ab, " syscall=%ld", syscall); 2789 audit_log_format(ab, " compat=%d", is_compat_task()); 2790 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current)); 2791 audit_log_format(ab, " code=0x%x", code); 2792 audit_log_end(ab); 2793 } 2794 2795 struct list_head *audit_killed_trees(void) 2796 { 2797 struct audit_context *ctx = current->audit_context; 2798 if (likely(!ctx || !ctx->in_syscall)) 2799 return NULL; 2800 return &ctx->killed_trees; 2801 } 2802