xref: /openbmc/linux/kernel/auditsc.c (revision 04c71976)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 
69 #include "audit.h"
70 
71 extern struct list_head audit_filter_list[];
72 
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74  * for saving names from getname(). */
75 #define AUDIT_NAMES    20
76 
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
79 
80 /* number of audit rules */
81 int audit_n_rules;
82 
83 /* determines whether we collect data for signals sent */
84 int audit_signals;
85 
86 /* When fs/namei.c:getname() is called, we store the pointer in name and
87  * we don't let putname() free it (instead we free all of the saved
88  * pointers at syscall exit time).
89  *
90  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
91 struct audit_names {
92 	const char	*name;
93 	int		name_len;	/* number of name's characters to log */
94 	unsigned	name_put;	/* call __putname() for this name */
95 	unsigned long	ino;
96 	dev_t		dev;
97 	umode_t		mode;
98 	uid_t		uid;
99 	gid_t		gid;
100 	dev_t		rdev;
101 	u32		osid;
102 };
103 
104 struct audit_aux_data {
105 	struct audit_aux_data	*next;
106 	int			type;
107 };
108 
109 #define AUDIT_AUX_IPCPERM	0
110 
111 /* Number of target pids per aux struct. */
112 #define AUDIT_AUX_PIDS	16
113 
114 struct audit_aux_data_mq_open {
115 	struct audit_aux_data	d;
116 	int			oflag;
117 	mode_t			mode;
118 	struct mq_attr		attr;
119 };
120 
121 struct audit_aux_data_mq_sendrecv {
122 	struct audit_aux_data	d;
123 	mqd_t			mqdes;
124 	size_t			msg_len;
125 	unsigned int		msg_prio;
126 	struct timespec		abs_timeout;
127 };
128 
129 struct audit_aux_data_mq_notify {
130 	struct audit_aux_data	d;
131 	mqd_t			mqdes;
132 	struct sigevent 	notification;
133 };
134 
135 struct audit_aux_data_mq_getsetattr {
136 	struct audit_aux_data	d;
137 	mqd_t			mqdes;
138 	struct mq_attr 		mqstat;
139 };
140 
141 struct audit_aux_data_ipcctl {
142 	struct audit_aux_data	d;
143 	struct ipc_perm		p;
144 	unsigned long		qbytes;
145 	uid_t			uid;
146 	gid_t			gid;
147 	mode_t			mode;
148 	u32			osid;
149 };
150 
151 struct audit_aux_data_execve {
152 	struct audit_aux_data	d;
153 	int argc;
154 	int envc;
155 	struct mm_struct *mm;
156 };
157 
158 struct audit_aux_data_socketcall {
159 	struct audit_aux_data	d;
160 	int			nargs;
161 	unsigned long		args[0];
162 };
163 
164 struct audit_aux_data_sockaddr {
165 	struct audit_aux_data	d;
166 	int			len;
167 	char			a[0];
168 };
169 
170 struct audit_aux_data_fd_pair {
171 	struct	audit_aux_data d;
172 	int	fd[2];
173 };
174 
175 struct audit_aux_data_pids {
176 	struct audit_aux_data	d;
177 	pid_t			target_pid[AUDIT_AUX_PIDS];
178 	u32			target_sid[AUDIT_AUX_PIDS];
179 	int			pid_count;
180 };
181 
182 /* The per-task audit context. */
183 struct audit_context {
184 	int		    dummy;	/* must be the first element */
185 	int		    in_syscall;	/* 1 if task is in a syscall */
186 	enum audit_state    state;
187 	unsigned int	    serial;     /* serial number for record */
188 	struct timespec	    ctime;      /* time of syscall entry */
189 	uid_t		    loginuid;   /* login uid (identity) */
190 	int		    major;      /* syscall number */
191 	unsigned long	    argv[4];    /* syscall arguments */
192 	int		    return_valid; /* return code is valid */
193 	long		    return_code;/* syscall return code */
194 	int		    auditable;  /* 1 if record should be written */
195 	int		    name_count;
196 	struct audit_names  names[AUDIT_NAMES];
197 	char *		    filterkey;	/* key for rule that triggered record */
198 	struct dentry *	    pwd;
199 	struct vfsmount *   pwdmnt;
200 	struct audit_context *previous; /* For nested syscalls */
201 	struct audit_aux_data *aux;
202 	struct audit_aux_data *aux_pids;
203 
204 				/* Save things to print about task_struct */
205 	pid_t		    pid, ppid;
206 	uid_t		    uid, euid, suid, fsuid;
207 	gid_t		    gid, egid, sgid, fsgid;
208 	unsigned long	    personality;
209 	int		    arch;
210 
211 	pid_t		    target_pid;
212 	u32		    target_sid;
213 
214 #if AUDIT_DEBUG
215 	int		    put_count;
216 	int		    ino_count;
217 #endif
218 };
219 
220 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
221 static inline int open_arg(int flags, int mask)
222 {
223 	int n = ACC_MODE(flags);
224 	if (flags & (O_TRUNC | O_CREAT))
225 		n |= AUDIT_PERM_WRITE;
226 	return n & mask;
227 }
228 
229 static int audit_match_perm(struct audit_context *ctx, int mask)
230 {
231 	unsigned n = ctx->major;
232 	switch (audit_classify_syscall(ctx->arch, n)) {
233 	case 0:	/* native */
234 		if ((mask & AUDIT_PERM_WRITE) &&
235 		     audit_match_class(AUDIT_CLASS_WRITE, n))
236 			return 1;
237 		if ((mask & AUDIT_PERM_READ) &&
238 		     audit_match_class(AUDIT_CLASS_READ, n))
239 			return 1;
240 		if ((mask & AUDIT_PERM_ATTR) &&
241 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
242 			return 1;
243 		return 0;
244 	case 1: /* 32bit on biarch */
245 		if ((mask & AUDIT_PERM_WRITE) &&
246 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
247 			return 1;
248 		if ((mask & AUDIT_PERM_READ) &&
249 		     audit_match_class(AUDIT_CLASS_READ_32, n))
250 			return 1;
251 		if ((mask & AUDIT_PERM_ATTR) &&
252 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
253 			return 1;
254 		return 0;
255 	case 2: /* open */
256 		return mask & ACC_MODE(ctx->argv[1]);
257 	case 3: /* openat */
258 		return mask & ACC_MODE(ctx->argv[2]);
259 	case 4: /* socketcall */
260 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
261 	case 5: /* execve */
262 		return mask & AUDIT_PERM_EXEC;
263 	default:
264 		return 0;
265 	}
266 }
267 
268 /* Determine if any context name data matches a rule's watch data */
269 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
270  * otherwise. */
271 static int audit_filter_rules(struct task_struct *tsk,
272 			      struct audit_krule *rule,
273 			      struct audit_context *ctx,
274 			      struct audit_names *name,
275 			      enum audit_state *state)
276 {
277 	int i, j, need_sid = 1;
278 	u32 sid;
279 
280 	for (i = 0; i < rule->field_count; i++) {
281 		struct audit_field *f = &rule->fields[i];
282 		int result = 0;
283 
284 		switch (f->type) {
285 		case AUDIT_PID:
286 			result = audit_comparator(tsk->pid, f->op, f->val);
287 			break;
288 		case AUDIT_PPID:
289 			if (ctx) {
290 				if (!ctx->ppid)
291 					ctx->ppid = sys_getppid();
292 				result = audit_comparator(ctx->ppid, f->op, f->val);
293 			}
294 			break;
295 		case AUDIT_UID:
296 			result = audit_comparator(tsk->uid, f->op, f->val);
297 			break;
298 		case AUDIT_EUID:
299 			result = audit_comparator(tsk->euid, f->op, f->val);
300 			break;
301 		case AUDIT_SUID:
302 			result = audit_comparator(tsk->suid, f->op, f->val);
303 			break;
304 		case AUDIT_FSUID:
305 			result = audit_comparator(tsk->fsuid, f->op, f->val);
306 			break;
307 		case AUDIT_GID:
308 			result = audit_comparator(tsk->gid, f->op, f->val);
309 			break;
310 		case AUDIT_EGID:
311 			result = audit_comparator(tsk->egid, f->op, f->val);
312 			break;
313 		case AUDIT_SGID:
314 			result = audit_comparator(tsk->sgid, f->op, f->val);
315 			break;
316 		case AUDIT_FSGID:
317 			result = audit_comparator(tsk->fsgid, f->op, f->val);
318 			break;
319 		case AUDIT_PERS:
320 			result = audit_comparator(tsk->personality, f->op, f->val);
321 			break;
322 		case AUDIT_ARCH:
323  			if (ctx)
324 				result = audit_comparator(ctx->arch, f->op, f->val);
325 			break;
326 
327 		case AUDIT_EXIT:
328 			if (ctx && ctx->return_valid)
329 				result = audit_comparator(ctx->return_code, f->op, f->val);
330 			break;
331 		case AUDIT_SUCCESS:
332 			if (ctx && ctx->return_valid) {
333 				if (f->val)
334 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
335 				else
336 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
337 			}
338 			break;
339 		case AUDIT_DEVMAJOR:
340 			if (name)
341 				result = audit_comparator(MAJOR(name->dev),
342 							  f->op, f->val);
343 			else if (ctx) {
344 				for (j = 0; j < ctx->name_count; j++) {
345 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
346 						++result;
347 						break;
348 					}
349 				}
350 			}
351 			break;
352 		case AUDIT_DEVMINOR:
353 			if (name)
354 				result = audit_comparator(MINOR(name->dev),
355 							  f->op, f->val);
356 			else if (ctx) {
357 				for (j = 0; j < ctx->name_count; j++) {
358 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
359 						++result;
360 						break;
361 					}
362 				}
363 			}
364 			break;
365 		case AUDIT_INODE:
366 			if (name)
367 				result = (name->ino == f->val);
368 			else if (ctx) {
369 				for (j = 0; j < ctx->name_count; j++) {
370 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
371 						++result;
372 						break;
373 					}
374 				}
375 			}
376 			break;
377 		case AUDIT_WATCH:
378 			if (name && rule->watch->ino != (unsigned long)-1)
379 				result = (name->dev == rule->watch->dev &&
380 					  name->ino == rule->watch->ino);
381 			break;
382 		case AUDIT_LOGINUID:
383 			result = 0;
384 			if (ctx)
385 				result = audit_comparator(ctx->loginuid, f->op, f->val);
386 			break;
387 		case AUDIT_SUBJ_USER:
388 		case AUDIT_SUBJ_ROLE:
389 		case AUDIT_SUBJ_TYPE:
390 		case AUDIT_SUBJ_SEN:
391 		case AUDIT_SUBJ_CLR:
392 			/* NOTE: this may return negative values indicating
393 			   a temporary error.  We simply treat this as a
394 			   match for now to avoid losing information that
395 			   may be wanted.   An error message will also be
396 			   logged upon error */
397 			if (f->se_rule) {
398 				if (need_sid) {
399 					selinux_get_task_sid(tsk, &sid);
400 					need_sid = 0;
401 				}
402 				result = selinux_audit_rule_match(sid, f->type,
403 				                                  f->op,
404 				                                  f->se_rule,
405 				                                  ctx);
406 			}
407 			break;
408 		case AUDIT_OBJ_USER:
409 		case AUDIT_OBJ_ROLE:
410 		case AUDIT_OBJ_TYPE:
411 		case AUDIT_OBJ_LEV_LOW:
412 		case AUDIT_OBJ_LEV_HIGH:
413 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
414 			   also applies here */
415 			if (f->se_rule) {
416 				/* Find files that match */
417 				if (name) {
418 					result = selinux_audit_rule_match(
419 					           name->osid, f->type, f->op,
420 					           f->se_rule, ctx);
421 				} else if (ctx) {
422 					for (j = 0; j < ctx->name_count; j++) {
423 						if (selinux_audit_rule_match(
424 						      ctx->names[j].osid,
425 						      f->type, f->op,
426 						      f->se_rule, ctx)) {
427 							++result;
428 							break;
429 						}
430 					}
431 				}
432 				/* Find ipc objects that match */
433 				if (ctx) {
434 					struct audit_aux_data *aux;
435 					for (aux = ctx->aux; aux;
436 					     aux = aux->next) {
437 						if (aux->type == AUDIT_IPC) {
438 							struct audit_aux_data_ipcctl *axi = (void *)aux;
439 							if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
440 								++result;
441 								break;
442 							}
443 						}
444 					}
445 				}
446 			}
447 			break;
448 		case AUDIT_ARG0:
449 		case AUDIT_ARG1:
450 		case AUDIT_ARG2:
451 		case AUDIT_ARG3:
452 			if (ctx)
453 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
454 			break;
455 		case AUDIT_FILTERKEY:
456 			/* ignore this field for filtering */
457 			result = 1;
458 			break;
459 		case AUDIT_PERM:
460 			result = audit_match_perm(ctx, f->val);
461 			break;
462 		}
463 
464 		if (!result)
465 			return 0;
466 	}
467 	if (rule->filterkey)
468 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
469 	switch (rule->action) {
470 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
471 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
472 	}
473 	return 1;
474 }
475 
476 /* At process creation time, we can determine if system-call auditing is
477  * completely disabled for this task.  Since we only have the task
478  * structure at this point, we can only check uid and gid.
479  */
480 static enum audit_state audit_filter_task(struct task_struct *tsk)
481 {
482 	struct audit_entry *e;
483 	enum audit_state   state;
484 
485 	rcu_read_lock();
486 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
487 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
488 			rcu_read_unlock();
489 			return state;
490 		}
491 	}
492 	rcu_read_unlock();
493 	return AUDIT_BUILD_CONTEXT;
494 }
495 
496 /* At syscall entry and exit time, this filter is called if the
497  * audit_state is not low enough that auditing cannot take place, but is
498  * also not high enough that we already know we have to write an audit
499  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
500  */
501 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
502 					     struct audit_context *ctx,
503 					     struct list_head *list)
504 {
505 	struct audit_entry *e;
506 	enum audit_state state;
507 
508 	if (audit_pid && tsk->tgid == audit_pid)
509 		return AUDIT_DISABLED;
510 
511 	rcu_read_lock();
512 	if (!list_empty(list)) {
513 		int word = AUDIT_WORD(ctx->major);
514 		int bit  = AUDIT_BIT(ctx->major);
515 
516 		list_for_each_entry_rcu(e, list, list) {
517 			if ((e->rule.mask[word] & bit) == bit &&
518 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
519 					       &state)) {
520 				rcu_read_unlock();
521 				return state;
522 			}
523 		}
524 	}
525 	rcu_read_unlock();
526 	return AUDIT_BUILD_CONTEXT;
527 }
528 
529 /* At syscall exit time, this filter is called if any audit_names[] have been
530  * collected during syscall processing.  We only check rules in sublists at hash
531  * buckets applicable to the inode numbers in audit_names[].
532  * Regarding audit_state, same rules apply as for audit_filter_syscall().
533  */
534 enum audit_state audit_filter_inodes(struct task_struct *tsk,
535 				     struct audit_context *ctx)
536 {
537 	int i;
538 	struct audit_entry *e;
539 	enum audit_state state;
540 
541 	if (audit_pid && tsk->tgid == audit_pid)
542 		return AUDIT_DISABLED;
543 
544 	rcu_read_lock();
545 	for (i = 0; i < ctx->name_count; i++) {
546 		int word = AUDIT_WORD(ctx->major);
547 		int bit  = AUDIT_BIT(ctx->major);
548 		struct audit_names *n = &ctx->names[i];
549 		int h = audit_hash_ino((u32)n->ino);
550 		struct list_head *list = &audit_inode_hash[h];
551 
552 		if (list_empty(list))
553 			continue;
554 
555 		list_for_each_entry_rcu(e, list, list) {
556 			if ((e->rule.mask[word] & bit) == bit &&
557 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
558 				rcu_read_unlock();
559 				return state;
560 			}
561 		}
562 	}
563 	rcu_read_unlock();
564 	return AUDIT_BUILD_CONTEXT;
565 }
566 
567 void audit_set_auditable(struct audit_context *ctx)
568 {
569 	ctx->auditable = 1;
570 }
571 
572 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
573 						      int return_valid,
574 						      int return_code)
575 {
576 	struct audit_context *context = tsk->audit_context;
577 
578 	if (likely(!context))
579 		return NULL;
580 	context->return_valid = return_valid;
581 	context->return_code  = return_code;
582 
583 	if (context->in_syscall && !context->dummy && !context->auditable) {
584 		enum audit_state state;
585 
586 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
587 		if (state == AUDIT_RECORD_CONTEXT) {
588 			context->auditable = 1;
589 			goto get_context;
590 		}
591 
592 		state = audit_filter_inodes(tsk, context);
593 		if (state == AUDIT_RECORD_CONTEXT)
594 			context->auditable = 1;
595 
596 	}
597 
598 get_context:
599 
600 	tsk->audit_context = NULL;
601 	return context;
602 }
603 
604 static inline void audit_free_names(struct audit_context *context)
605 {
606 	int i;
607 
608 #if AUDIT_DEBUG == 2
609 	if (context->auditable
610 	    ||context->put_count + context->ino_count != context->name_count) {
611 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
612 		       " name_count=%d put_count=%d"
613 		       " ino_count=%d [NOT freeing]\n",
614 		       __FILE__, __LINE__,
615 		       context->serial, context->major, context->in_syscall,
616 		       context->name_count, context->put_count,
617 		       context->ino_count);
618 		for (i = 0; i < context->name_count; i++) {
619 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
620 			       context->names[i].name,
621 			       context->names[i].name ?: "(null)");
622 		}
623 		dump_stack();
624 		return;
625 	}
626 #endif
627 #if AUDIT_DEBUG
628 	context->put_count  = 0;
629 	context->ino_count  = 0;
630 #endif
631 
632 	for (i = 0; i < context->name_count; i++) {
633 		if (context->names[i].name && context->names[i].name_put)
634 			__putname(context->names[i].name);
635 	}
636 	context->name_count = 0;
637 	if (context->pwd)
638 		dput(context->pwd);
639 	if (context->pwdmnt)
640 		mntput(context->pwdmnt);
641 	context->pwd = NULL;
642 	context->pwdmnt = NULL;
643 }
644 
645 static inline void audit_free_aux(struct audit_context *context)
646 {
647 	struct audit_aux_data *aux;
648 
649 	while ((aux = context->aux)) {
650 		context->aux = aux->next;
651 		kfree(aux);
652 	}
653 	while ((aux = context->aux_pids)) {
654 		context->aux_pids = aux->next;
655 		kfree(aux);
656 	}
657 }
658 
659 static inline void audit_zero_context(struct audit_context *context,
660 				      enum audit_state state)
661 {
662 	uid_t loginuid = context->loginuid;
663 
664 	memset(context, 0, sizeof(*context));
665 	context->state      = state;
666 	context->loginuid   = loginuid;
667 }
668 
669 static inline struct audit_context *audit_alloc_context(enum audit_state state)
670 {
671 	struct audit_context *context;
672 
673 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
674 		return NULL;
675 	audit_zero_context(context, state);
676 	return context;
677 }
678 
679 /**
680  * audit_alloc - allocate an audit context block for a task
681  * @tsk: task
682  *
683  * Filter on the task information and allocate a per-task audit context
684  * if necessary.  Doing so turns on system call auditing for the
685  * specified task.  This is called from copy_process, so no lock is
686  * needed.
687  */
688 int audit_alloc(struct task_struct *tsk)
689 {
690 	struct audit_context *context;
691 	enum audit_state     state;
692 
693 	if (likely(!audit_enabled))
694 		return 0; /* Return if not auditing. */
695 
696 	state = audit_filter_task(tsk);
697 	if (likely(state == AUDIT_DISABLED))
698 		return 0;
699 
700 	if (!(context = audit_alloc_context(state))) {
701 		audit_log_lost("out of memory in audit_alloc");
702 		return -ENOMEM;
703 	}
704 
705 				/* Preserve login uid */
706 	context->loginuid = -1;
707 	if (current->audit_context)
708 		context->loginuid = current->audit_context->loginuid;
709 
710 	tsk->audit_context  = context;
711 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
712 	return 0;
713 }
714 
715 static inline void audit_free_context(struct audit_context *context)
716 {
717 	struct audit_context *previous;
718 	int		     count = 0;
719 
720 	do {
721 		previous = context->previous;
722 		if (previous || (count &&  count < 10)) {
723 			++count;
724 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
725 			       " freeing multiple contexts (%d)\n",
726 			       context->serial, context->major,
727 			       context->name_count, count);
728 		}
729 		audit_free_names(context);
730 		audit_free_aux(context);
731 		kfree(context->filterkey);
732 		kfree(context);
733 		context  = previous;
734 	} while (context);
735 	if (count >= 10)
736 		printk(KERN_ERR "audit: freed %d contexts\n", count);
737 }
738 
739 void audit_log_task_context(struct audit_buffer *ab)
740 {
741 	char *ctx = NULL;
742 	unsigned len;
743 	int error;
744 	u32 sid;
745 
746 	selinux_get_task_sid(current, &sid);
747 	if (!sid)
748 		return;
749 
750 	error = selinux_sid_to_string(sid, &ctx, &len);
751 	if (error) {
752 		if (error != -EINVAL)
753 			goto error_path;
754 		return;
755 	}
756 
757 	audit_log_format(ab, " subj=%s", ctx);
758 	kfree(ctx);
759 	return;
760 
761 error_path:
762 	audit_panic("error in audit_log_task_context");
763 	return;
764 }
765 
766 EXPORT_SYMBOL(audit_log_task_context);
767 
768 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
769 {
770 	char name[sizeof(tsk->comm)];
771 	struct mm_struct *mm = tsk->mm;
772 	struct vm_area_struct *vma;
773 
774 	/* tsk == current */
775 
776 	get_task_comm(name, tsk);
777 	audit_log_format(ab, " comm=");
778 	audit_log_untrustedstring(ab, name);
779 
780 	if (mm) {
781 		down_read(&mm->mmap_sem);
782 		vma = mm->mmap;
783 		while (vma) {
784 			if ((vma->vm_flags & VM_EXECUTABLE) &&
785 			    vma->vm_file) {
786 				audit_log_d_path(ab, "exe=",
787 						 vma->vm_file->f_path.dentry,
788 						 vma->vm_file->f_path.mnt);
789 				break;
790 			}
791 			vma = vma->vm_next;
792 		}
793 		up_read(&mm->mmap_sem);
794 	}
795 	audit_log_task_context(ab);
796 }
797 
798 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
799 				 u32 sid)
800 {
801 	struct audit_buffer *ab;
802 	char *s = NULL;
803 	u32 len;
804 	int rc = 0;
805 
806 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
807 	if (!ab)
808 		return 1;
809 
810 	if (selinux_sid_to_string(sid, &s, &len)) {
811 		audit_log_format(ab, "opid=%d obj=(none)", pid);
812 		rc = 1;
813 	} else
814 		audit_log_format(ab, "opid=%d  obj=%s", pid, s);
815 	audit_log_end(ab);
816 	kfree(s);
817 
818 	return rc;
819 }
820 
821 static void audit_log_execve_info(struct audit_buffer *ab,
822 		struct audit_aux_data_execve *axi)
823 {
824 	int i;
825 	long len, ret;
826 	const char __user *p;
827 	char *buf;
828 
829 	if (axi->mm != current->mm)
830 		return; /* execve failed, no additional info */
831 
832 	p = (const char __user *)axi->mm->arg_start;
833 
834 	for (i = 0; i < axi->argc; i++, p += len) {
835 		len = strnlen_user(p, MAX_ARG_STRLEN);
836 		/*
837 		 * We just created this mm, if we can't find the strings
838 		 * we just copied into it something is _very_ wrong. Similar
839 		 * for strings that are too long, we should not have created
840 		 * any.
841 		 */
842 		if (!len || len > MAX_ARG_STRLEN) {
843 			WARN_ON(1);
844 			send_sig(SIGKILL, current, 0);
845 		}
846 
847 		buf = kmalloc(len, GFP_KERNEL);
848 		if (!buf) {
849 			audit_panic("out of memory for argv string\n");
850 			break;
851 		}
852 
853 		ret = copy_from_user(buf, p, len);
854 		/*
855 		 * There is no reason for this copy to be short. We just
856 		 * copied them here, and the mm hasn't been exposed to user-
857 		 * space yet.
858 		 */
859 		if (ret) {
860 			WARN_ON(1);
861 			send_sig(SIGKILL, current, 0);
862 		}
863 
864 		audit_log_format(ab, "a%d=", i);
865 		audit_log_untrustedstring(ab, buf);
866 		audit_log_format(ab, "\n");
867 
868 		kfree(buf);
869 	}
870 }
871 
872 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
873 {
874 	int i, call_panic = 0;
875 	struct audit_buffer *ab;
876 	struct audit_aux_data *aux;
877 	const char *tty;
878 
879 	/* tsk == current */
880 	context->pid = tsk->pid;
881 	if (!context->ppid)
882 		context->ppid = sys_getppid();
883 	context->uid = tsk->uid;
884 	context->gid = tsk->gid;
885 	context->euid = tsk->euid;
886 	context->suid = tsk->suid;
887 	context->fsuid = tsk->fsuid;
888 	context->egid = tsk->egid;
889 	context->sgid = tsk->sgid;
890 	context->fsgid = tsk->fsgid;
891 	context->personality = tsk->personality;
892 
893 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
894 	if (!ab)
895 		return;		/* audit_panic has been called */
896 	audit_log_format(ab, "arch=%x syscall=%d",
897 			 context->arch, context->major);
898 	if (context->personality != PER_LINUX)
899 		audit_log_format(ab, " per=%lx", context->personality);
900 	if (context->return_valid)
901 		audit_log_format(ab, " success=%s exit=%ld",
902 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
903 				 context->return_code);
904 
905 	mutex_lock(&tty_mutex);
906 	read_lock(&tasklist_lock);
907 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
908 		tty = tsk->signal->tty->name;
909 	else
910 		tty = "(none)";
911 	read_unlock(&tasklist_lock);
912 	audit_log_format(ab,
913 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
914 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
915 		  " euid=%u suid=%u fsuid=%u"
916 		  " egid=%u sgid=%u fsgid=%u tty=%s",
917 		  context->argv[0],
918 		  context->argv[1],
919 		  context->argv[2],
920 		  context->argv[3],
921 		  context->name_count,
922 		  context->ppid,
923 		  context->pid,
924 		  context->loginuid,
925 		  context->uid,
926 		  context->gid,
927 		  context->euid, context->suid, context->fsuid,
928 		  context->egid, context->sgid, context->fsgid, tty);
929 
930 	mutex_unlock(&tty_mutex);
931 
932 	audit_log_task_info(ab, tsk);
933 	if (context->filterkey) {
934 		audit_log_format(ab, " key=");
935 		audit_log_untrustedstring(ab, context->filterkey);
936 	} else
937 		audit_log_format(ab, " key=(null)");
938 	audit_log_end(ab);
939 
940 	for (aux = context->aux; aux; aux = aux->next) {
941 
942 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
943 		if (!ab)
944 			continue; /* audit_panic has been called */
945 
946 		switch (aux->type) {
947 		case AUDIT_MQ_OPEN: {
948 			struct audit_aux_data_mq_open *axi = (void *)aux;
949 			audit_log_format(ab,
950 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
951 				"mq_msgsize=%ld mq_curmsgs=%ld",
952 				axi->oflag, axi->mode, axi->attr.mq_flags,
953 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
954 				axi->attr.mq_curmsgs);
955 			break; }
956 
957 		case AUDIT_MQ_SENDRECV: {
958 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
959 			audit_log_format(ab,
960 				"mqdes=%d msg_len=%zd msg_prio=%u "
961 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
962 				axi->mqdes, axi->msg_len, axi->msg_prio,
963 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
964 			break; }
965 
966 		case AUDIT_MQ_NOTIFY: {
967 			struct audit_aux_data_mq_notify *axi = (void *)aux;
968 			audit_log_format(ab,
969 				"mqdes=%d sigev_signo=%d",
970 				axi->mqdes,
971 				axi->notification.sigev_signo);
972 			break; }
973 
974 		case AUDIT_MQ_GETSETATTR: {
975 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
976 			audit_log_format(ab,
977 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
978 				"mq_curmsgs=%ld ",
979 				axi->mqdes,
980 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
981 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
982 			break; }
983 
984 		case AUDIT_IPC: {
985 			struct audit_aux_data_ipcctl *axi = (void *)aux;
986 			audit_log_format(ab,
987 				 "ouid=%u ogid=%u mode=%#o",
988 				 axi->uid, axi->gid, axi->mode);
989 			if (axi->osid != 0) {
990 				char *ctx = NULL;
991 				u32 len;
992 				if (selinux_sid_to_string(
993 						axi->osid, &ctx, &len)) {
994 					audit_log_format(ab, " osid=%u",
995 							axi->osid);
996 					call_panic = 1;
997 				} else
998 					audit_log_format(ab, " obj=%s", ctx);
999 				kfree(ctx);
1000 			}
1001 			break; }
1002 
1003 		case AUDIT_IPC_SET_PERM: {
1004 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1005 			audit_log_format(ab,
1006 				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1007 				axi->qbytes, axi->uid, axi->gid, axi->mode);
1008 			break; }
1009 
1010 		case AUDIT_EXECVE: {
1011 			struct audit_aux_data_execve *axi = (void *)aux;
1012 			audit_log_execve_info(ab, axi);
1013 			break; }
1014 
1015 		case AUDIT_SOCKETCALL: {
1016 			int i;
1017 			struct audit_aux_data_socketcall *axs = (void *)aux;
1018 			audit_log_format(ab, "nargs=%d", axs->nargs);
1019 			for (i=0; i<axs->nargs; i++)
1020 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1021 			break; }
1022 
1023 		case AUDIT_SOCKADDR: {
1024 			struct audit_aux_data_sockaddr *axs = (void *)aux;
1025 
1026 			audit_log_format(ab, "saddr=");
1027 			audit_log_hex(ab, axs->a, axs->len);
1028 			break; }
1029 
1030 		case AUDIT_FD_PAIR: {
1031 			struct audit_aux_data_fd_pair *axs = (void *)aux;
1032 			audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1033 			break; }
1034 
1035 		}
1036 		audit_log_end(ab);
1037 	}
1038 
1039 	for (aux = context->aux_pids; aux; aux = aux->next) {
1040 		struct audit_aux_data_pids *axs = (void *)aux;
1041 		int i;
1042 
1043 		for (i = 0; i < axs->pid_count; i++)
1044 			if (audit_log_pid_context(context, axs->target_pid[i],
1045 						  axs->target_sid[i]))
1046 				call_panic = 1;
1047 	}
1048 
1049 	if (context->target_pid &&
1050 	    audit_log_pid_context(context, context->target_pid,
1051 				  context->target_sid))
1052 			call_panic = 1;
1053 
1054 	if (context->pwd && context->pwdmnt) {
1055 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1056 		if (ab) {
1057 			audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1058 			audit_log_end(ab);
1059 		}
1060 	}
1061 	for (i = 0; i < context->name_count; i++) {
1062 		struct audit_names *n = &context->names[i];
1063 
1064 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1065 		if (!ab)
1066 			continue; /* audit_panic has been called */
1067 
1068 		audit_log_format(ab, "item=%d", i);
1069 
1070 		if (n->name) {
1071 			switch(n->name_len) {
1072 			case AUDIT_NAME_FULL:
1073 				/* log the full path */
1074 				audit_log_format(ab, " name=");
1075 				audit_log_untrustedstring(ab, n->name);
1076 				break;
1077 			case 0:
1078 				/* name was specified as a relative path and the
1079 				 * directory component is the cwd */
1080 				audit_log_d_path(ab, " name=", context->pwd,
1081 						 context->pwdmnt);
1082 				break;
1083 			default:
1084 				/* log the name's directory component */
1085 				audit_log_format(ab, " name=");
1086 				audit_log_n_untrustedstring(ab, n->name_len,
1087 							    n->name);
1088 			}
1089 		} else
1090 			audit_log_format(ab, " name=(null)");
1091 
1092 		if (n->ino != (unsigned long)-1) {
1093 			audit_log_format(ab, " inode=%lu"
1094 					 " dev=%02x:%02x mode=%#o"
1095 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1096 					 n->ino,
1097 					 MAJOR(n->dev),
1098 					 MINOR(n->dev),
1099 					 n->mode,
1100 					 n->uid,
1101 					 n->gid,
1102 					 MAJOR(n->rdev),
1103 					 MINOR(n->rdev));
1104 		}
1105 		if (n->osid != 0) {
1106 			char *ctx = NULL;
1107 			u32 len;
1108 			if (selinux_sid_to_string(
1109 				n->osid, &ctx, &len)) {
1110 				audit_log_format(ab, " osid=%u", n->osid);
1111 				call_panic = 2;
1112 			} else
1113 				audit_log_format(ab, " obj=%s", ctx);
1114 			kfree(ctx);
1115 		}
1116 
1117 		audit_log_end(ab);
1118 	}
1119 	if (call_panic)
1120 		audit_panic("error converting sid to string");
1121 }
1122 
1123 /**
1124  * audit_free - free a per-task audit context
1125  * @tsk: task whose audit context block to free
1126  *
1127  * Called from copy_process and do_exit
1128  */
1129 void audit_free(struct task_struct *tsk)
1130 {
1131 	struct audit_context *context;
1132 
1133 	context = audit_get_context(tsk, 0, 0);
1134 	if (likely(!context))
1135 		return;
1136 
1137 	/* Check for system calls that do not go through the exit
1138 	 * function (e.g., exit_group), then free context block.
1139 	 * We use GFP_ATOMIC here because we might be doing this
1140 	 * in the context of the idle thread */
1141 	/* that can happen only if we are called from do_exit() */
1142 	if (context->in_syscall && context->auditable)
1143 		audit_log_exit(context, tsk);
1144 
1145 	audit_free_context(context);
1146 }
1147 
1148 /**
1149  * audit_syscall_entry - fill in an audit record at syscall entry
1150  * @tsk: task being audited
1151  * @arch: architecture type
1152  * @major: major syscall type (function)
1153  * @a1: additional syscall register 1
1154  * @a2: additional syscall register 2
1155  * @a3: additional syscall register 3
1156  * @a4: additional syscall register 4
1157  *
1158  * Fill in audit context at syscall entry.  This only happens if the
1159  * audit context was created when the task was created and the state or
1160  * filters demand the audit context be built.  If the state from the
1161  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1162  * then the record will be written at syscall exit time (otherwise, it
1163  * will only be written if another part of the kernel requests that it
1164  * be written).
1165  */
1166 void audit_syscall_entry(int arch, int major,
1167 			 unsigned long a1, unsigned long a2,
1168 			 unsigned long a3, unsigned long a4)
1169 {
1170 	struct task_struct *tsk = current;
1171 	struct audit_context *context = tsk->audit_context;
1172 	enum audit_state     state;
1173 
1174 	BUG_ON(!context);
1175 
1176 	/*
1177 	 * This happens only on certain architectures that make system
1178 	 * calls in kernel_thread via the entry.S interface, instead of
1179 	 * with direct calls.  (If you are porting to a new
1180 	 * architecture, hitting this condition can indicate that you
1181 	 * got the _exit/_leave calls backward in entry.S.)
1182 	 *
1183 	 * i386     no
1184 	 * x86_64   no
1185 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1186 	 *
1187 	 * This also happens with vm86 emulation in a non-nested manner
1188 	 * (entries without exits), so this case must be caught.
1189 	 */
1190 	if (context->in_syscall) {
1191 		struct audit_context *newctx;
1192 
1193 #if AUDIT_DEBUG
1194 		printk(KERN_ERR
1195 		       "audit(:%d) pid=%d in syscall=%d;"
1196 		       " entering syscall=%d\n",
1197 		       context->serial, tsk->pid, context->major, major);
1198 #endif
1199 		newctx = audit_alloc_context(context->state);
1200 		if (newctx) {
1201 			newctx->previous   = context;
1202 			context		   = newctx;
1203 			tsk->audit_context = newctx;
1204 		} else	{
1205 			/* If we can't alloc a new context, the best we
1206 			 * can do is to leak memory (any pending putname
1207 			 * will be lost).  The only other alternative is
1208 			 * to abandon auditing. */
1209 			audit_zero_context(context, context->state);
1210 		}
1211 	}
1212 	BUG_ON(context->in_syscall || context->name_count);
1213 
1214 	if (!audit_enabled)
1215 		return;
1216 
1217 	context->arch	    = arch;
1218 	context->major      = major;
1219 	context->argv[0]    = a1;
1220 	context->argv[1]    = a2;
1221 	context->argv[2]    = a3;
1222 	context->argv[3]    = a4;
1223 
1224 	state = context->state;
1225 	context->dummy = !audit_n_rules;
1226 	if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1227 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1228 	if (likely(state == AUDIT_DISABLED))
1229 		return;
1230 
1231 	context->serial     = 0;
1232 	context->ctime      = CURRENT_TIME;
1233 	context->in_syscall = 1;
1234 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1235 	context->ppid       = 0;
1236 }
1237 
1238 /**
1239  * audit_syscall_exit - deallocate audit context after a system call
1240  * @tsk: task being audited
1241  * @valid: success/failure flag
1242  * @return_code: syscall return value
1243  *
1244  * Tear down after system call.  If the audit context has been marked as
1245  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1246  * filtering, or because some other part of the kernel write an audit
1247  * message), then write out the syscall information.  In call cases,
1248  * free the names stored from getname().
1249  */
1250 void audit_syscall_exit(int valid, long return_code)
1251 {
1252 	struct task_struct *tsk = current;
1253 	struct audit_context *context;
1254 
1255 	context = audit_get_context(tsk, valid, return_code);
1256 
1257 	if (likely(!context))
1258 		return;
1259 
1260 	if (context->in_syscall && context->auditable)
1261 		audit_log_exit(context, tsk);
1262 
1263 	context->in_syscall = 0;
1264 	context->auditable  = 0;
1265 
1266 	if (context->previous) {
1267 		struct audit_context *new_context = context->previous;
1268 		context->previous  = NULL;
1269 		audit_free_context(context);
1270 		tsk->audit_context = new_context;
1271 	} else {
1272 		audit_free_names(context);
1273 		audit_free_aux(context);
1274 		context->aux = NULL;
1275 		context->aux_pids = NULL;
1276 		context->target_pid = 0;
1277 		context->target_sid = 0;
1278 		kfree(context->filterkey);
1279 		context->filterkey = NULL;
1280 		tsk->audit_context = context;
1281 	}
1282 }
1283 
1284 /**
1285  * audit_getname - add a name to the list
1286  * @name: name to add
1287  *
1288  * Add a name to the list of audit names for this context.
1289  * Called from fs/namei.c:getname().
1290  */
1291 void __audit_getname(const char *name)
1292 {
1293 	struct audit_context *context = current->audit_context;
1294 
1295 	if (IS_ERR(name) || !name)
1296 		return;
1297 
1298 	if (!context->in_syscall) {
1299 #if AUDIT_DEBUG == 2
1300 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1301 		       __FILE__, __LINE__, context->serial, name);
1302 		dump_stack();
1303 #endif
1304 		return;
1305 	}
1306 	BUG_ON(context->name_count >= AUDIT_NAMES);
1307 	context->names[context->name_count].name = name;
1308 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1309 	context->names[context->name_count].name_put = 1;
1310 	context->names[context->name_count].ino  = (unsigned long)-1;
1311 	context->names[context->name_count].osid = 0;
1312 	++context->name_count;
1313 	if (!context->pwd) {
1314 		read_lock(&current->fs->lock);
1315 		context->pwd = dget(current->fs->pwd);
1316 		context->pwdmnt = mntget(current->fs->pwdmnt);
1317 		read_unlock(&current->fs->lock);
1318 	}
1319 
1320 }
1321 
1322 /* audit_putname - intercept a putname request
1323  * @name: name to intercept and delay for putname
1324  *
1325  * If we have stored the name from getname in the audit context,
1326  * then we delay the putname until syscall exit.
1327  * Called from include/linux/fs.h:putname().
1328  */
1329 void audit_putname(const char *name)
1330 {
1331 	struct audit_context *context = current->audit_context;
1332 
1333 	BUG_ON(!context);
1334 	if (!context->in_syscall) {
1335 #if AUDIT_DEBUG == 2
1336 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1337 		       __FILE__, __LINE__, context->serial, name);
1338 		if (context->name_count) {
1339 			int i;
1340 			for (i = 0; i < context->name_count; i++)
1341 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1342 				       context->names[i].name,
1343 				       context->names[i].name ?: "(null)");
1344 		}
1345 #endif
1346 		__putname(name);
1347 	}
1348 #if AUDIT_DEBUG
1349 	else {
1350 		++context->put_count;
1351 		if (context->put_count > context->name_count) {
1352 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1353 			       " in_syscall=%d putname(%p) name_count=%d"
1354 			       " put_count=%d\n",
1355 			       __FILE__, __LINE__,
1356 			       context->serial, context->major,
1357 			       context->in_syscall, name, context->name_count,
1358 			       context->put_count);
1359 			dump_stack();
1360 		}
1361 	}
1362 #endif
1363 }
1364 
1365 static int audit_inc_name_count(struct audit_context *context,
1366 				const struct inode *inode)
1367 {
1368 	if (context->name_count >= AUDIT_NAMES) {
1369 		if (inode)
1370 			printk(KERN_DEBUG "name_count maxed, losing inode data: "
1371 			       "dev=%02x:%02x, inode=%lu",
1372 			       MAJOR(inode->i_sb->s_dev),
1373 			       MINOR(inode->i_sb->s_dev),
1374 			       inode->i_ino);
1375 
1376 		else
1377 			printk(KERN_DEBUG "name_count maxed, losing inode data");
1378 		return 1;
1379 	}
1380 	context->name_count++;
1381 #if AUDIT_DEBUG
1382 	context->ino_count++;
1383 #endif
1384 	return 0;
1385 }
1386 
1387 /* Copy inode data into an audit_names. */
1388 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1389 {
1390 	name->ino   = inode->i_ino;
1391 	name->dev   = inode->i_sb->s_dev;
1392 	name->mode  = inode->i_mode;
1393 	name->uid   = inode->i_uid;
1394 	name->gid   = inode->i_gid;
1395 	name->rdev  = inode->i_rdev;
1396 	selinux_get_inode_sid(inode, &name->osid);
1397 }
1398 
1399 /**
1400  * audit_inode - store the inode and device from a lookup
1401  * @name: name being audited
1402  * @inode: inode being audited
1403  *
1404  * Called from fs/namei.c:path_lookup().
1405  */
1406 void __audit_inode(const char *name, const struct inode *inode)
1407 {
1408 	int idx;
1409 	struct audit_context *context = current->audit_context;
1410 
1411 	if (!context->in_syscall)
1412 		return;
1413 	if (context->name_count
1414 	    && context->names[context->name_count-1].name
1415 	    && context->names[context->name_count-1].name == name)
1416 		idx = context->name_count - 1;
1417 	else if (context->name_count > 1
1418 		 && context->names[context->name_count-2].name
1419 		 && context->names[context->name_count-2].name == name)
1420 		idx = context->name_count - 2;
1421 	else {
1422 		/* FIXME: how much do we care about inodes that have no
1423 		 * associated name? */
1424 		if (audit_inc_name_count(context, inode))
1425 			return;
1426 		idx = context->name_count - 1;
1427 		context->names[idx].name = NULL;
1428 	}
1429 	audit_copy_inode(&context->names[idx], inode);
1430 }
1431 
1432 /**
1433  * audit_inode_child - collect inode info for created/removed objects
1434  * @dname: inode's dentry name
1435  * @inode: inode being audited
1436  * @parent: inode of dentry parent
1437  *
1438  * For syscalls that create or remove filesystem objects, audit_inode
1439  * can only collect information for the filesystem object's parent.
1440  * This call updates the audit context with the child's information.
1441  * Syscalls that create a new filesystem object must be hooked after
1442  * the object is created.  Syscalls that remove a filesystem object
1443  * must be hooked prior, in order to capture the target inode during
1444  * unsuccessful attempts.
1445  */
1446 void __audit_inode_child(const char *dname, const struct inode *inode,
1447 			 const struct inode *parent)
1448 {
1449 	int idx;
1450 	struct audit_context *context = current->audit_context;
1451 	const char *found_parent = NULL, *found_child = NULL;
1452 	int dirlen = 0;
1453 
1454 	if (!context->in_syscall)
1455 		return;
1456 
1457 	/* determine matching parent */
1458 	if (!dname)
1459 		goto add_names;
1460 
1461 	/* parent is more likely, look for it first */
1462 	for (idx = 0; idx < context->name_count; idx++) {
1463 		struct audit_names *n = &context->names[idx];
1464 
1465 		if (!n->name)
1466 			continue;
1467 
1468 		if (n->ino == parent->i_ino &&
1469 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
1470 			n->name_len = dirlen; /* update parent data in place */
1471 			found_parent = n->name;
1472 			goto add_names;
1473 		}
1474 	}
1475 
1476 	/* no matching parent, look for matching child */
1477 	for (idx = 0; idx < context->name_count; idx++) {
1478 		struct audit_names *n = &context->names[idx];
1479 
1480 		if (!n->name)
1481 			continue;
1482 
1483 		/* strcmp() is the more likely scenario */
1484 		if (!strcmp(dname, n->name) ||
1485 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
1486 			if (inode)
1487 				audit_copy_inode(n, inode);
1488 			else
1489 				n->ino = (unsigned long)-1;
1490 			found_child = n->name;
1491 			goto add_names;
1492 		}
1493 	}
1494 
1495 add_names:
1496 	if (!found_parent) {
1497 		if (audit_inc_name_count(context, parent))
1498 			return;
1499 		idx = context->name_count - 1;
1500 		context->names[idx].name = NULL;
1501 		audit_copy_inode(&context->names[idx], parent);
1502 	}
1503 
1504 	if (!found_child) {
1505 		if (audit_inc_name_count(context, inode))
1506 			return;
1507 		idx = context->name_count - 1;
1508 
1509 		/* Re-use the name belonging to the slot for a matching parent
1510 		 * directory. All names for this context are relinquished in
1511 		 * audit_free_names() */
1512 		if (found_parent) {
1513 			context->names[idx].name = found_parent;
1514 			context->names[idx].name_len = AUDIT_NAME_FULL;
1515 			/* don't call __putname() */
1516 			context->names[idx].name_put = 0;
1517 		} else {
1518 			context->names[idx].name = NULL;
1519 		}
1520 
1521 		if (inode)
1522 			audit_copy_inode(&context->names[idx], inode);
1523 		else
1524 			context->names[idx].ino = (unsigned long)-1;
1525 	}
1526 }
1527 EXPORT_SYMBOL_GPL(__audit_inode_child);
1528 
1529 /**
1530  * auditsc_get_stamp - get local copies of audit_context values
1531  * @ctx: audit_context for the task
1532  * @t: timespec to store time recorded in the audit_context
1533  * @serial: serial value that is recorded in the audit_context
1534  *
1535  * Also sets the context as auditable.
1536  */
1537 void auditsc_get_stamp(struct audit_context *ctx,
1538 		       struct timespec *t, unsigned int *serial)
1539 {
1540 	if (!ctx->serial)
1541 		ctx->serial = audit_serial();
1542 	t->tv_sec  = ctx->ctime.tv_sec;
1543 	t->tv_nsec = ctx->ctime.tv_nsec;
1544 	*serial    = ctx->serial;
1545 	ctx->auditable = 1;
1546 }
1547 
1548 /**
1549  * audit_set_loginuid - set a task's audit_context loginuid
1550  * @task: task whose audit context is being modified
1551  * @loginuid: loginuid value
1552  *
1553  * Returns 0.
1554  *
1555  * Called (set) from fs/proc/base.c::proc_loginuid_write().
1556  */
1557 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1558 {
1559 	struct audit_context *context = task->audit_context;
1560 
1561 	if (context) {
1562 		/* Only log if audit is enabled */
1563 		if (context->in_syscall) {
1564 			struct audit_buffer *ab;
1565 
1566 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1567 			if (ab) {
1568 				audit_log_format(ab, "login pid=%d uid=%u "
1569 					"old auid=%u new auid=%u",
1570 					task->pid, task->uid,
1571 					context->loginuid, loginuid);
1572 				audit_log_end(ab);
1573 			}
1574 		}
1575 		context->loginuid = loginuid;
1576 	}
1577 	return 0;
1578 }
1579 
1580 /**
1581  * audit_get_loginuid - get the loginuid for an audit_context
1582  * @ctx: the audit_context
1583  *
1584  * Returns the context's loginuid or -1 if @ctx is NULL.
1585  */
1586 uid_t audit_get_loginuid(struct audit_context *ctx)
1587 {
1588 	return ctx ? ctx->loginuid : -1;
1589 }
1590 
1591 EXPORT_SYMBOL(audit_get_loginuid);
1592 
1593 /**
1594  * __audit_mq_open - record audit data for a POSIX MQ open
1595  * @oflag: open flag
1596  * @mode: mode bits
1597  * @u_attr: queue attributes
1598  *
1599  * Returns 0 for success or NULL context or < 0 on error.
1600  */
1601 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1602 {
1603 	struct audit_aux_data_mq_open *ax;
1604 	struct audit_context *context = current->audit_context;
1605 
1606 	if (!audit_enabled)
1607 		return 0;
1608 
1609 	if (likely(!context))
1610 		return 0;
1611 
1612 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1613 	if (!ax)
1614 		return -ENOMEM;
1615 
1616 	if (u_attr != NULL) {
1617 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1618 			kfree(ax);
1619 			return -EFAULT;
1620 		}
1621 	} else
1622 		memset(&ax->attr, 0, sizeof(ax->attr));
1623 
1624 	ax->oflag = oflag;
1625 	ax->mode = mode;
1626 
1627 	ax->d.type = AUDIT_MQ_OPEN;
1628 	ax->d.next = context->aux;
1629 	context->aux = (void *)ax;
1630 	return 0;
1631 }
1632 
1633 /**
1634  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1635  * @mqdes: MQ descriptor
1636  * @msg_len: Message length
1637  * @msg_prio: Message priority
1638  * @u_abs_timeout: Message timeout in absolute time
1639  *
1640  * Returns 0 for success or NULL context or < 0 on error.
1641  */
1642 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1643 			const struct timespec __user *u_abs_timeout)
1644 {
1645 	struct audit_aux_data_mq_sendrecv *ax;
1646 	struct audit_context *context = current->audit_context;
1647 
1648 	if (!audit_enabled)
1649 		return 0;
1650 
1651 	if (likely(!context))
1652 		return 0;
1653 
1654 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1655 	if (!ax)
1656 		return -ENOMEM;
1657 
1658 	if (u_abs_timeout != NULL) {
1659 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1660 			kfree(ax);
1661 			return -EFAULT;
1662 		}
1663 	} else
1664 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1665 
1666 	ax->mqdes = mqdes;
1667 	ax->msg_len = msg_len;
1668 	ax->msg_prio = msg_prio;
1669 
1670 	ax->d.type = AUDIT_MQ_SENDRECV;
1671 	ax->d.next = context->aux;
1672 	context->aux = (void *)ax;
1673 	return 0;
1674 }
1675 
1676 /**
1677  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1678  * @mqdes: MQ descriptor
1679  * @msg_len: Message length
1680  * @u_msg_prio: Message priority
1681  * @u_abs_timeout: Message timeout in absolute time
1682  *
1683  * Returns 0 for success or NULL context or < 0 on error.
1684  */
1685 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1686 				unsigned int __user *u_msg_prio,
1687 				const struct timespec __user *u_abs_timeout)
1688 {
1689 	struct audit_aux_data_mq_sendrecv *ax;
1690 	struct audit_context *context = current->audit_context;
1691 
1692 	if (!audit_enabled)
1693 		return 0;
1694 
1695 	if (likely(!context))
1696 		return 0;
1697 
1698 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1699 	if (!ax)
1700 		return -ENOMEM;
1701 
1702 	if (u_msg_prio != NULL) {
1703 		if (get_user(ax->msg_prio, u_msg_prio)) {
1704 			kfree(ax);
1705 			return -EFAULT;
1706 		}
1707 	} else
1708 		ax->msg_prio = 0;
1709 
1710 	if (u_abs_timeout != NULL) {
1711 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1712 			kfree(ax);
1713 			return -EFAULT;
1714 		}
1715 	} else
1716 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1717 
1718 	ax->mqdes = mqdes;
1719 	ax->msg_len = msg_len;
1720 
1721 	ax->d.type = AUDIT_MQ_SENDRECV;
1722 	ax->d.next = context->aux;
1723 	context->aux = (void *)ax;
1724 	return 0;
1725 }
1726 
1727 /**
1728  * __audit_mq_notify - record audit data for a POSIX MQ notify
1729  * @mqdes: MQ descriptor
1730  * @u_notification: Notification event
1731  *
1732  * Returns 0 for success or NULL context or < 0 on error.
1733  */
1734 
1735 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1736 {
1737 	struct audit_aux_data_mq_notify *ax;
1738 	struct audit_context *context = current->audit_context;
1739 
1740 	if (!audit_enabled)
1741 		return 0;
1742 
1743 	if (likely(!context))
1744 		return 0;
1745 
1746 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1747 	if (!ax)
1748 		return -ENOMEM;
1749 
1750 	if (u_notification != NULL) {
1751 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1752 			kfree(ax);
1753 			return -EFAULT;
1754 		}
1755 	} else
1756 		memset(&ax->notification, 0, sizeof(ax->notification));
1757 
1758 	ax->mqdes = mqdes;
1759 
1760 	ax->d.type = AUDIT_MQ_NOTIFY;
1761 	ax->d.next = context->aux;
1762 	context->aux = (void *)ax;
1763 	return 0;
1764 }
1765 
1766 /**
1767  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1768  * @mqdes: MQ descriptor
1769  * @mqstat: MQ flags
1770  *
1771  * Returns 0 for success or NULL context or < 0 on error.
1772  */
1773 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1774 {
1775 	struct audit_aux_data_mq_getsetattr *ax;
1776 	struct audit_context *context = current->audit_context;
1777 
1778 	if (!audit_enabled)
1779 		return 0;
1780 
1781 	if (likely(!context))
1782 		return 0;
1783 
1784 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1785 	if (!ax)
1786 		return -ENOMEM;
1787 
1788 	ax->mqdes = mqdes;
1789 	ax->mqstat = *mqstat;
1790 
1791 	ax->d.type = AUDIT_MQ_GETSETATTR;
1792 	ax->d.next = context->aux;
1793 	context->aux = (void *)ax;
1794 	return 0;
1795 }
1796 
1797 /**
1798  * audit_ipc_obj - record audit data for ipc object
1799  * @ipcp: ipc permissions
1800  *
1801  * Returns 0 for success or NULL context or < 0 on error.
1802  */
1803 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1804 {
1805 	struct audit_aux_data_ipcctl *ax;
1806 	struct audit_context *context = current->audit_context;
1807 
1808 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1809 	if (!ax)
1810 		return -ENOMEM;
1811 
1812 	ax->uid = ipcp->uid;
1813 	ax->gid = ipcp->gid;
1814 	ax->mode = ipcp->mode;
1815 	selinux_get_ipc_sid(ipcp, &ax->osid);
1816 
1817 	ax->d.type = AUDIT_IPC;
1818 	ax->d.next = context->aux;
1819 	context->aux = (void *)ax;
1820 	return 0;
1821 }
1822 
1823 /**
1824  * audit_ipc_set_perm - record audit data for new ipc permissions
1825  * @qbytes: msgq bytes
1826  * @uid: msgq user id
1827  * @gid: msgq group id
1828  * @mode: msgq mode (permissions)
1829  *
1830  * Returns 0 for success or NULL context or < 0 on error.
1831  */
1832 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1833 {
1834 	struct audit_aux_data_ipcctl *ax;
1835 	struct audit_context *context = current->audit_context;
1836 
1837 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1838 	if (!ax)
1839 		return -ENOMEM;
1840 
1841 	ax->qbytes = qbytes;
1842 	ax->uid = uid;
1843 	ax->gid = gid;
1844 	ax->mode = mode;
1845 
1846 	ax->d.type = AUDIT_IPC_SET_PERM;
1847 	ax->d.next = context->aux;
1848 	context->aux = (void *)ax;
1849 	return 0;
1850 }
1851 
1852 int audit_argv_kb = 32;
1853 
1854 int audit_bprm(struct linux_binprm *bprm)
1855 {
1856 	struct audit_aux_data_execve *ax;
1857 	struct audit_context *context = current->audit_context;
1858 
1859 	if (likely(!audit_enabled || !context || context->dummy))
1860 		return 0;
1861 
1862 	/*
1863 	 * Even though the stack code doesn't limit the arg+env size any more,
1864 	 * the audit code requires that _all_ arguments be logged in a single
1865 	 * netlink skb. Hence cap it :-(
1866 	 */
1867 	if (bprm->argv_len > (audit_argv_kb << 10))
1868 		return -E2BIG;
1869 
1870 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1871 	if (!ax)
1872 		return -ENOMEM;
1873 
1874 	ax->argc = bprm->argc;
1875 	ax->envc = bprm->envc;
1876 	ax->mm = bprm->mm;
1877 	ax->d.type = AUDIT_EXECVE;
1878 	ax->d.next = context->aux;
1879 	context->aux = (void *)ax;
1880 	return 0;
1881 }
1882 
1883 
1884 /**
1885  * audit_socketcall - record audit data for sys_socketcall
1886  * @nargs: number of args
1887  * @args: args array
1888  *
1889  * Returns 0 for success or NULL context or < 0 on error.
1890  */
1891 int audit_socketcall(int nargs, unsigned long *args)
1892 {
1893 	struct audit_aux_data_socketcall *ax;
1894 	struct audit_context *context = current->audit_context;
1895 
1896 	if (likely(!context || context->dummy))
1897 		return 0;
1898 
1899 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1900 	if (!ax)
1901 		return -ENOMEM;
1902 
1903 	ax->nargs = nargs;
1904 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
1905 
1906 	ax->d.type = AUDIT_SOCKETCALL;
1907 	ax->d.next = context->aux;
1908 	context->aux = (void *)ax;
1909 	return 0;
1910 }
1911 
1912 /**
1913  * __audit_fd_pair - record audit data for pipe and socketpair
1914  * @fd1: the first file descriptor
1915  * @fd2: the second file descriptor
1916  *
1917  * Returns 0 for success or NULL context or < 0 on error.
1918  */
1919 int __audit_fd_pair(int fd1, int fd2)
1920 {
1921 	struct audit_context *context = current->audit_context;
1922 	struct audit_aux_data_fd_pair *ax;
1923 
1924 	if (likely(!context)) {
1925 		return 0;
1926 	}
1927 
1928 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1929 	if (!ax) {
1930 		return -ENOMEM;
1931 	}
1932 
1933 	ax->fd[0] = fd1;
1934 	ax->fd[1] = fd2;
1935 
1936 	ax->d.type = AUDIT_FD_PAIR;
1937 	ax->d.next = context->aux;
1938 	context->aux = (void *)ax;
1939 	return 0;
1940 }
1941 
1942 /**
1943  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1944  * @len: data length in user space
1945  * @a: data address in kernel space
1946  *
1947  * Returns 0 for success or NULL context or < 0 on error.
1948  */
1949 int audit_sockaddr(int len, void *a)
1950 {
1951 	struct audit_aux_data_sockaddr *ax;
1952 	struct audit_context *context = current->audit_context;
1953 
1954 	if (likely(!context || context->dummy))
1955 		return 0;
1956 
1957 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1958 	if (!ax)
1959 		return -ENOMEM;
1960 
1961 	ax->len = len;
1962 	memcpy(ax->a, a, len);
1963 
1964 	ax->d.type = AUDIT_SOCKADDR;
1965 	ax->d.next = context->aux;
1966 	context->aux = (void *)ax;
1967 	return 0;
1968 }
1969 
1970 void __audit_ptrace(struct task_struct *t)
1971 {
1972 	struct audit_context *context = current->audit_context;
1973 
1974 	context->target_pid = t->pid;
1975 	selinux_get_task_sid(t, &context->target_sid);
1976 }
1977 
1978 /**
1979  * audit_signal_info - record signal info for shutting down audit subsystem
1980  * @sig: signal value
1981  * @t: task being signaled
1982  *
1983  * If the audit subsystem is being terminated, record the task (pid)
1984  * and uid that is doing that.
1985  */
1986 int __audit_signal_info(int sig, struct task_struct *t)
1987 {
1988 	struct audit_aux_data_pids *axp;
1989 	struct task_struct *tsk = current;
1990 	struct audit_context *ctx = tsk->audit_context;
1991 	extern pid_t audit_sig_pid;
1992 	extern uid_t audit_sig_uid;
1993 	extern u32 audit_sig_sid;
1994 
1995 	if (audit_pid && t->tgid == audit_pid) {
1996 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1997 			audit_sig_pid = tsk->pid;
1998 			if (ctx)
1999 				audit_sig_uid = ctx->loginuid;
2000 			else
2001 				audit_sig_uid = tsk->uid;
2002 			selinux_get_task_sid(tsk, &audit_sig_sid);
2003 		}
2004 		if (!audit_signals || audit_dummy_context())
2005 			return 0;
2006 	}
2007 
2008 	/* optimize the common case by putting first signal recipient directly
2009 	 * in audit_context */
2010 	if (!ctx->target_pid) {
2011 		ctx->target_pid = t->tgid;
2012 		selinux_get_task_sid(t, &ctx->target_sid);
2013 		return 0;
2014 	}
2015 
2016 	axp = (void *)ctx->aux_pids;
2017 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2018 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2019 		if (!axp)
2020 			return -ENOMEM;
2021 
2022 		axp->d.type = AUDIT_OBJ_PID;
2023 		axp->d.next = ctx->aux_pids;
2024 		ctx->aux_pids = (void *)axp;
2025 	}
2026 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2027 
2028 	axp->target_pid[axp->pid_count] = t->tgid;
2029 	selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2030 	axp->pid_count++;
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * audit_core_dumps - record information about processes that end abnormally
2037  * @signr: signal value
2038  *
2039  * If a process ends with a core dump, something fishy is going on and we
2040  * should record the event for investigation.
2041  */
2042 void audit_core_dumps(long signr)
2043 {
2044 	struct audit_buffer *ab;
2045 	u32 sid;
2046 
2047 	if (!audit_enabled)
2048 		return;
2049 
2050 	if (signr == SIGQUIT)	/* don't care for those */
2051 		return;
2052 
2053 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2054 	audit_log_format(ab, "auid=%u uid=%u gid=%u",
2055 			audit_get_loginuid(current->audit_context),
2056 			current->uid, current->gid);
2057 	selinux_get_task_sid(current, &sid);
2058 	if (sid) {
2059 		char *ctx = NULL;
2060 		u32 len;
2061 
2062 		if (selinux_sid_to_string(sid, &ctx, &len))
2063 			audit_log_format(ab, " ssid=%u", sid);
2064 		else
2065 			audit_log_format(ab, " subj=%s", ctx);
2066 		kfree(ctx);
2067 	}
2068 	audit_log_format(ab, " pid=%d comm=", current->pid);
2069 	audit_log_untrustedstring(ab, current->comm);
2070 	audit_log_format(ab, " sig=%ld", signr);
2071 	audit_log_end(ab);
2072 }
2073