xref: /openbmc/linux/kernel/auditfilter.c (revision f35e839a)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/security.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		LSM rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /* Audit filter lists, defined in <linux/audit.h> */
48 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
49 	LIST_HEAD_INIT(audit_filter_list[0]),
50 	LIST_HEAD_INIT(audit_filter_list[1]),
51 	LIST_HEAD_INIT(audit_filter_list[2]),
52 	LIST_HEAD_INIT(audit_filter_list[3]),
53 	LIST_HEAD_INIT(audit_filter_list[4]),
54 	LIST_HEAD_INIT(audit_filter_list[5]),
55 #if AUDIT_NR_FILTERS != 6
56 #error Fix audit_filter_list initialiser
57 #endif
58 };
59 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
60 	LIST_HEAD_INIT(audit_rules_list[0]),
61 	LIST_HEAD_INIT(audit_rules_list[1]),
62 	LIST_HEAD_INIT(audit_rules_list[2]),
63 	LIST_HEAD_INIT(audit_rules_list[3]),
64 	LIST_HEAD_INIT(audit_rules_list[4]),
65 	LIST_HEAD_INIT(audit_rules_list[5]),
66 };
67 
68 DEFINE_MUTEX(audit_filter_mutex);
69 
70 static inline void audit_free_rule(struct audit_entry *e)
71 {
72 	int i;
73 	struct audit_krule *erule = &e->rule;
74 
75 	/* some rules don't have associated watches */
76 	if (erule->watch)
77 		audit_put_watch(erule->watch);
78 	if (erule->fields)
79 		for (i = 0; i < erule->field_count; i++) {
80 			struct audit_field *f = &erule->fields[i];
81 			kfree(f->lsm_str);
82 			security_audit_rule_free(f->lsm_rule);
83 		}
84 	kfree(erule->fields);
85 	kfree(erule->filterkey);
86 	kfree(e);
87 }
88 
89 void audit_free_rule_rcu(struct rcu_head *head)
90 {
91 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
92 	audit_free_rule(e);
93 }
94 
95 /* Initialize an audit filterlist entry. */
96 static inline struct audit_entry *audit_init_entry(u32 field_count)
97 {
98 	struct audit_entry *entry;
99 	struct audit_field *fields;
100 
101 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 	if (unlikely(!entry))
103 		return NULL;
104 
105 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
106 	if (unlikely(!fields)) {
107 		kfree(entry);
108 		return NULL;
109 	}
110 	entry->rule.fields = fields;
111 
112 	return entry;
113 }
114 
115 /* Unpack a filter field's string representation from user-space
116  * buffer. */
117 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
118 {
119 	char *str;
120 
121 	if (!*bufp || (len == 0) || (len > *remain))
122 		return ERR_PTR(-EINVAL);
123 
124 	/* Of the currently implemented string fields, PATH_MAX
125 	 * defines the longest valid length.
126 	 */
127 	if (len > PATH_MAX)
128 		return ERR_PTR(-ENAMETOOLONG);
129 
130 	str = kmalloc(len + 1, GFP_KERNEL);
131 	if (unlikely(!str))
132 		return ERR_PTR(-ENOMEM);
133 
134 	memcpy(str, *bufp, len);
135 	str[len] = 0;
136 	*bufp += len;
137 	*remain -= len;
138 
139 	return str;
140 }
141 
142 /* Translate an inode field to kernel respresentation. */
143 static inline int audit_to_inode(struct audit_krule *krule,
144 				 struct audit_field *f)
145 {
146 	if (krule->listnr != AUDIT_FILTER_EXIT ||
147 	    krule->watch || krule->inode_f || krule->tree ||
148 	    (f->op != Audit_equal && f->op != Audit_not_equal))
149 		return -EINVAL;
150 
151 	krule->inode_f = f;
152 	return 0;
153 }
154 
155 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
156 
157 int __init audit_register_class(int class, unsigned *list)
158 {
159 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
160 	if (!p)
161 		return -ENOMEM;
162 	while (*list != ~0U) {
163 		unsigned n = *list++;
164 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
165 			kfree(p);
166 			return -EINVAL;
167 		}
168 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
169 	}
170 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
171 		kfree(p);
172 		return -EINVAL;
173 	}
174 	classes[class] = p;
175 	return 0;
176 }
177 
178 int audit_match_class(int class, unsigned syscall)
179 {
180 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
181 		return 0;
182 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
183 		return 0;
184 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
185 }
186 
187 #ifdef CONFIG_AUDITSYSCALL
188 static inline int audit_match_class_bits(int class, u32 *mask)
189 {
190 	int i;
191 
192 	if (classes[class]) {
193 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
194 			if (mask[i] & classes[class][i])
195 				return 0;
196 	}
197 	return 1;
198 }
199 
200 static int audit_match_signal(struct audit_entry *entry)
201 {
202 	struct audit_field *arch = entry->rule.arch_f;
203 
204 	if (!arch) {
205 		/* When arch is unspecified, we must check both masks on biarch
206 		 * as syscall number alone is ambiguous. */
207 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
208 					       entry->rule.mask) &&
209 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
210 					       entry->rule.mask));
211 	}
212 
213 	switch(audit_classify_arch(arch->val)) {
214 	case 0: /* native */
215 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 					       entry->rule.mask));
217 	case 1: /* 32bit on biarch */
218 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
219 					       entry->rule.mask));
220 	default:
221 		return 1;
222 	}
223 }
224 #endif
225 
226 /* Common user-space to kernel rule translation. */
227 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
228 {
229 	unsigned listnr;
230 	struct audit_entry *entry;
231 	int i, err;
232 
233 	err = -EINVAL;
234 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
235 	switch(listnr) {
236 	default:
237 		goto exit_err;
238 #ifdef CONFIG_AUDITSYSCALL
239 	case AUDIT_FILTER_ENTRY:
240 		if (rule->action == AUDIT_ALWAYS)
241 			goto exit_err;
242 	case AUDIT_FILTER_EXIT:
243 	case AUDIT_FILTER_TASK:
244 #endif
245 	case AUDIT_FILTER_USER:
246 	case AUDIT_FILTER_TYPE:
247 		;
248 	}
249 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
250 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
251 		goto exit_err;
252 	}
253 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
254 		goto exit_err;
255 	if (rule->field_count > AUDIT_MAX_FIELDS)
256 		goto exit_err;
257 
258 	err = -ENOMEM;
259 	entry = audit_init_entry(rule->field_count);
260 	if (!entry)
261 		goto exit_err;
262 
263 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
264 	entry->rule.listnr = listnr;
265 	entry->rule.action = rule->action;
266 	entry->rule.field_count = rule->field_count;
267 
268 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
269 		entry->rule.mask[i] = rule->mask[i];
270 
271 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
272 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
273 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
274 		__u32 *class;
275 
276 		if (!(*p & AUDIT_BIT(bit)))
277 			continue;
278 		*p &= ~AUDIT_BIT(bit);
279 		class = classes[i];
280 		if (class) {
281 			int j;
282 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
283 				entry->rule.mask[j] |= class[j];
284 		}
285 	}
286 
287 	return entry;
288 
289 exit_err:
290 	return ERR_PTR(err);
291 }
292 
293 static u32 audit_ops[] =
294 {
295 	[Audit_equal] = AUDIT_EQUAL,
296 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
297 	[Audit_bitmask] = AUDIT_BIT_MASK,
298 	[Audit_bittest] = AUDIT_BIT_TEST,
299 	[Audit_lt] = AUDIT_LESS_THAN,
300 	[Audit_gt] = AUDIT_GREATER_THAN,
301 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
302 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
303 };
304 
305 static u32 audit_to_op(u32 op)
306 {
307 	u32 n;
308 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
309 		;
310 	return n;
311 }
312 
313 /* check if an audit field is valid */
314 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
315 {
316 	switch(f->type) {
317 	case AUDIT_MSGTYPE:
318 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
319 		    entry->rule.listnr != AUDIT_FILTER_USER)
320 			return -EINVAL;
321 		break;
322 	};
323 
324 	switch(f->type) {
325 	default:
326 		return -EINVAL;
327 	case AUDIT_UID:
328 	case AUDIT_EUID:
329 	case AUDIT_SUID:
330 	case AUDIT_FSUID:
331 	case AUDIT_LOGINUID:
332 	case AUDIT_OBJ_UID:
333 	case AUDIT_GID:
334 	case AUDIT_EGID:
335 	case AUDIT_SGID:
336 	case AUDIT_FSGID:
337 	case AUDIT_OBJ_GID:
338 	case AUDIT_PID:
339 	case AUDIT_PERS:
340 	case AUDIT_MSGTYPE:
341 	case AUDIT_PPID:
342 	case AUDIT_DEVMAJOR:
343 	case AUDIT_DEVMINOR:
344 	case AUDIT_EXIT:
345 	case AUDIT_SUCCESS:
346 		/* bit ops are only useful on syscall args */
347 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
348 			return -EINVAL;
349 		break;
350 	case AUDIT_ARG0:
351 	case AUDIT_ARG1:
352 	case AUDIT_ARG2:
353 	case AUDIT_ARG3:
354 	case AUDIT_SUBJ_USER:
355 	case AUDIT_SUBJ_ROLE:
356 	case AUDIT_SUBJ_TYPE:
357 	case AUDIT_SUBJ_SEN:
358 	case AUDIT_SUBJ_CLR:
359 	case AUDIT_OBJ_USER:
360 	case AUDIT_OBJ_ROLE:
361 	case AUDIT_OBJ_TYPE:
362 	case AUDIT_OBJ_LEV_LOW:
363 	case AUDIT_OBJ_LEV_HIGH:
364 	case AUDIT_WATCH:
365 	case AUDIT_DIR:
366 	case AUDIT_FILTERKEY:
367 		break;
368 	case AUDIT_LOGINUID_SET:
369 		if ((f->val != 0) && (f->val != 1))
370 			return -EINVAL;
371 	/* FALL THROUGH */
372 	case AUDIT_ARCH:
373 		if (f->op != Audit_not_equal && f->op != Audit_equal)
374 			return -EINVAL;
375 		break;
376 	case AUDIT_PERM:
377 		if (f->val & ~15)
378 			return -EINVAL;
379 		break;
380 	case AUDIT_FILETYPE:
381 		if (f->val & ~S_IFMT)
382 			return -EINVAL;
383 		break;
384 	case AUDIT_FIELD_COMPARE:
385 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
386 			return -EINVAL;
387 		break;
388 	};
389 	return 0;
390 }
391 
392 /* Translate struct audit_rule_data to kernel's rule respresentation. */
393 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
394 					       size_t datasz)
395 {
396 	int err = 0;
397 	struct audit_entry *entry;
398 	void *bufp;
399 	size_t remain = datasz - sizeof(struct audit_rule_data);
400 	int i;
401 	char *str;
402 
403 	entry = audit_to_entry_common((struct audit_rule *)data);
404 	if (IS_ERR(entry))
405 		goto exit_nofree;
406 
407 	bufp = data->buf;
408 	entry->rule.vers_ops = 2;
409 	for (i = 0; i < data->field_count; i++) {
410 		struct audit_field *f = &entry->rule.fields[i];
411 
412 		err = -EINVAL;
413 
414 		f->op = audit_to_op(data->fieldflags[i]);
415 		if (f->op == Audit_bad)
416 			goto exit_free;
417 
418 		f->type = data->fields[i];
419 		f->val = data->values[i];
420 		f->uid = INVALID_UID;
421 		f->gid = INVALID_GID;
422 		f->lsm_str = NULL;
423 		f->lsm_rule = NULL;
424 
425 		/* Support legacy tests for a valid loginuid */
426 		if ((f->type == AUDIT_LOGINUID) && (f->val == 4294967295)) {
427 			f->type = AUDIT_LOGINUID_SET;
428 			f->val = 0;
429 		}
430 
431 		err = audit_field_valid(entry, f);
432 		if (err)
433 			goto exit_free;
434 
435 		err = -EINVAL;
436 		switch (f->type) {
437 		case AUDIT_LOGINUID:
438 		case AUDIT_UID:
439 		case AUDIT_EUID:
440 		case AUDIT_SUID:
441 		case AUDIT_FSUID:
442 		case AUDIT_OBJ_UID:
443 			f->uid = make_kuid(current_user_ns(), f->val);
444 			if (!uid_valid(f->uid))
445 				goto exit_free;
446 			break;
447 		case AUDIT_GID:
448 		case AUDIT_EGID:
449 		case AUDIT_SGID:
450 		case AUDIT_FSGID:
451 		case AUDIT_OBJ_GID:
452 			f->gid = make_kgid(current_user_ns(), f->val);
453 			if (!gid_valid(f->gid))
454 				goto exit_free;
455 			break;
456 		case AUDIT_ARCH:
457 			entry->rule.arch_f = f;
458 			break;
459 		case AUDIT_SUBJ_USER:
460 		case AUDIT_SUBJ_ROLE:
461 		case AUDIT_SUBJ_TYPE:
462 		case AUDIT_SUBJ_SEN:
463 		case AUDIT_SUBJ_CLR:
464 		case AUDIT_OBJ_USER:
465 		case AUDIT_OBJ_ROLE:
466 		case AUDIT_OBJ_TYPE:
467 		case AUDIT_OBJ_LEV_LOW:
468 		case AUDIT_OBJ_LEV_HIGH:
469 			str = audit_unpack_string(&bufp, &remain, f->val);
470 			if (IS_ERR(str))
471 				goto exit_free;
472 			entry->rule.buflen += f->val;
473 
474 			err = security_audit_rule_init(f->type, f->op, str,
475 						       (void **)&f->lsm_rule);
476 			/* Keep currently invalid fields around in case they
477 			 * become valid after a policy reload. */
478 			if (err == -EINVAL) {
479 				printk(KERN_WARNING "audit rule for LSM "
480 				       "\'%s\' is invalid\n",  str);
481 				err = 0;
482 			}
483 			if (err) {
484 				kfree(str);
485 				goto exit_free;
486 			} else
487 				f->lsm_str = str;
488 			break;
489 		case AUDIT_WATCH:
490 			str = audit_unpack_string(&bufp, &remain, f->val);
491 			if (IS_ERR(str))
492 				goto exit_free;
493 			entry->rule.buflen += f->val;
494 
495 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
496 			if (err) {
497 				kfree(str);
498 				goto exit_free;
499 			}
500 			break;
501 		case AUDIT_DIR:
502 			str = audit_unpack_string(&bufp, &remain, f->val);
503 			if (IS_ERR(str))
504 				goto exit_free;
505 			entry->rule.buflen += f->val;
506 
507 			err = audit_make_tree(&entry->rule, str, f->op);
508 			kfree(str);
509 			if (err)
510 				goto exit_free;
511 			break;
512 		case AUDIT_INODE:
513 			err = audit_to_inode(&entry->rule, f);
514 			if (err)
515 				goto exit_free;
516 			break;
517 		case AUDIT_FILTERKEY:
518 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
519 				goto exit_free;
520 			str = audit_unpack_string(&bufp, &remain, f->val);
521 			if (IS_ERR(str))
522 				goto exit_free;
523 			entry->rule.buflen += f->val;
524 			entry->rule.filterkey = str;
525 			break;
526 		}
527 	}
528 
529 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
530 		entry->rule.inode_f = NULL;
531 
532 exit_nofree:
533 	return entry;
534 
535 exit_free:
536 	if (entry->rule.watch)
537 		audit_put_watch(entry->rule.watch); /* matches initial get */
538 	if (entry->rule.tree)
539 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
540 	audit_free_rule(entry);
541 	return ERR_PTR(err);
542 }
543 
544 /* Pack a filter field's string representation into data block. */
545 static inline size_t audit_pack_string(void **bufp, const char *str)
546 {
547 	size_t len = strlen(str);
548 
549 	memcpy(*bufp, str, len);
550 	*bufp += len;
551 
552 	return len;
553 }
554 
555 /* Translate kernel rule respresentation to struct audit_rule_data. */
556 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
557 {
558 	struct audit_rule_data *data;
559 	void *bufp;
560 	int i;
561 
562 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
563 	if (unlikely(!data))
564 		return NULL;
565 	memset(data, 0, sizeof(*data));
566 
567 	data->flags = krule->flags | krule->listnr;
568 	data->action = krule->action;
569 	data->field_count = krule->field_count;
570 	bufp = data->buf;
571 	for (i = 0; i < data->field_count; i++) {
572 		struct audit_field *f = &krule->fields[i];
573 
574 		data->fields[i] = f->type;
575 		data->fieldflags[i] = audit_ops[f->op];
576 		switch(f->type) {
577 		case AUDIT_SUBJ_USER:
578 		case AUDIT_SUBJ_ROLE:
579 		case AUDIT_SUBJ_TYPE:
580 		case AUDIT_SUBJ_SEN:
581 		case AUDIT_SUBJ_CLR:
582 		case AUDIT_OBJ_USER:
583 		case AUDIT_OBJ_ROLE:
584 		case AUDIT_OBJ_TYPE:
585 		case AUDIT_OBJ_LEV_LOW:
586 		case AUDIT_OBJ_LEV_HIGH:
587 			data->buflen += data->values[i] =
588 				audit_pack_string(&bufp, f->lsm_str);
589 			break;
590 		case AUDIT_WATCH:
591 			data->buflen += data->values[i] =
592 				audit_pack_string(&bufp,
593 						  audit_watch_path(krule->watch));
594 			break;
595 		case AUDIT_DIR:
596 			data->buflen += data->values[i] =
597 				audit_pack_string(&bufp,
598 						  audit_tree_path(krule->tree));
599 			break;
600 		case AUDIT_FILTERKEY:
601 			data->buflen += data->values[i] =
602 				audit_pack_string(&bufp, krule->filterkey);
603 			break;
604 		default:
605 			data->values[i] = f->val;
606 		}
607 	}
608 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
609 
610 	return data;
611 }
612 
613 /* Compare two rules in kernel format.  Considered success if rules
614  * don't match. */
615 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
616 {
617 	int i;
618 
619 	if (a->flags != b->flags ||
620 	    a->listnr != b->listnr ||
621 	    a->action != b->action ||
622 	    a->field_count != b->field_count)
623 		return 1;
624 
625 	for (i = 0; i < a->field_count; i++) {
626 		if (a->fields[i].type != b->fields[i].type ||
627 		    a->fields[i].op != b->fields[i].op)
628 			return 1;
629 
630 		switch(a->fields[i].type) {
631 		case AUDIT_SUBJ_USER:
632 		case AUDIT_SUBJ_ROLE:
633 		case AUDIT_SUBJ_TYPE:
634 		case AUDIT_SUBJ_SEN:
635 		case AUDIT_SUBJ_CLR:
636 		case AUDIT_OBJ_USER:
637 		case AUDIT_OBJ_ROLE:
638 		case AUDIT_OBJ_TYPE:
639 		case AUDIT_OBJ_LEV_LOW:
640 		case AUDIT_OBJ_LEV_HIGH:
641 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
642 				return 1;
643 			break;
644 		case AUDIT_WATCH:
645 			if (strcmp(audit_watch_path(a->watch),
646 				   audit_watch_path(b->watch)))
647 				return 1;
648 			break;
649 		case AUDIT_DIR:
650 			if (strcmp(audit_tree_path(a->tree),
651 				   audit_tree_path(b->tree)))
652 				return 1;
653 			break;
654 		case AUDIT_FILTERKEY:
655 			/* both filterkeys exist based on above type compare */
656 			if (strcmp(a->filterkey, b->filterkey))
657 				return 1;
658 			break;
659 		case AUDIT_UID:
660 		case AUDIT_EUID:
661 		case AUDIT_SUID:
662 		case AUDIT_FSUID:
663 		case AUDIT_LOGINUID:
664 		case AUDIT_OBJ_UID:
665 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
666 				return 1;
667 			break;
668 		case AUDIT_GID:
669 		case AUDIT_EGID:
670 		case AUDIT_SGID:
671 		case AUDIT_FSGID:
672 		case AUDIT_OBJ_GID:
673 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
674 				return 1;
675 			break;
676 		default:
677 			if (a->fields[i].val != b->fields[i].val)
678 				return 1;
679 		}
680 	}
681 
682 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
683 		if (a->mask[i] != b->mask[i])
684 			return 1;
685 
686 	return 0;
687 }
688 
689 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
690  * re-initialized. */
691 static inline int audit_dupe_lsm_field(struct audit_field *df,
692 					   struct audit_field *sf)
693 {
694 	int ret = 0;
695 	char *lsm_str;
696 
697 	/* our own copy of lsm_str */
698 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
699 	if (unlikely(!lsm_str))
700 		return -ENOMEM;
701 	df->lsm_str = lsm_str;
702 
703 	/* our own (refreshed) copy of lsm_rule */
704 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
705 				       (void **)&df->lsm_rule);
706 	/* Keep currently invalid fields around in case they
707 	 * become valid after a policy reload. */
708 	if (ret == -EINVAL) {
709 		printk(KERN_WARNING "audit rule for LSM \'%s\' is "
710 		       "invalid\n", df->lsm_str);
711 		ret = 0;
712 	}
713 
714 	return ret;
715 }
716 
717 /* Duplicate an audit rule.  This will be a deep copy with the exception
718  * of the watch - that pointer is carried over.  The LSM specific fields
719  * will be updated in the copy.  The point is to be able to replace the old
720  * rule with the new rule in the filterlist, then free the old rule.
721  * The rlist element is undefined; list manipulations are handled apart from
722  * the initial copy. */
723 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
724 {
725 	u32 fcount = old->field_count;
726 	struct audit_entry *entry;
727 	struct audit_krule *new;
728 	char *fk;
729 	int i, err = 0;
730 
731 	entry = audit_init_entry(fcount);
732 	if (unlikely(!entry))
733 		return ERR_PTR(-ENOMEM);
734 
735 	new = &entry->rule;
736 	new->vers_ops = old->vers_ops;
737 	new->flags = old->flags;
738 	new->listnr = old->listnr;
739 	new->action = old->action;
740 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
741 		new->mask[i] = old->mask[i];
742 	new->prio = old->prio;
743 	new->buflen = old->buflen;
744 	new->inode_f = old->inode_f;
745 	new->field_count = old->field_count;
746 
747 	/*
748 	 * note that we are OK with not refcounting here; audit_match_tree()
749 	 * never dereferences tree and we can't get false positives there
750 	 * since we'd have to have rule gone from the list *and* removed
751 	 * before the chunks found by lookup had been allocated, i.e. before
752 	 * the beginning of list scan.
753 	 */
754 	new->tree = old->tree;
755 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
756 
757 	/* deep copy this information, updating the lsm_rule fields, because
758 	 * the originals will all be freed when the old rule is freed. */
759 	for (i = 0; i < fcount; i++) {
760 		switch (new->fields[i].type) {
761 		case AUDIT_SUBJ_USER:
762 		case AUDIT_SUBJ_ROLE:
763 		case AUDIT_SUBJ_TYPE:
764 		case AUDIT_SUBJ_SEN:
765 		case AUDIT_SUBJ_CLR:
766 		case AUDIT_OBJ_USER:
767 		case AUDIT_OBJ_ROLE:
768 		case AUDIT_OBJ_TYPE:
769 		case AUDIT_OBJ_LEV_LOW:
770 		case AUDIT_OBJ_LEV_HIGH:
771 			err = audit_dupe_lsm_field(&new->fields[i],
772 						       &old->fields[i]);
773 			break;
774 		case AUDIT_FILTERKEY:
775 			fk = kstrdup(old->filterkey, GFP_KERNEL);
776 			if (unlikely(!fk))
777 				err = -ENOMEM;
778 			else
779 				new->filterkey = fk;
780 		}
781 		if (err) {
782 			audit_free_rule(entry);
783 			return ERR_PTR(err);
784 		}
785 	}
786 
787 	if (old->watch) {
788 		audit_get_watch(old->watch);
789 		new->watch = old->watch;
790 	}
791 
792 	return entry;
793 }
794 
795 /* Find an existing audit rule.
796  * Caller must hold audit_filter_mutex to prevent stale rule data. */
797 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
798 					   struct list_head **p)
799 {
800 	struct audit_entry *e, *found = NULL;
801 	struct list_head *list;
802 	int h;
803 
804 	if (entry->rule.inode_f) {
805 		h = audit_hash_ino(entry->rule.inode_f->val);
806 		*p = list = &audit_inode_hash[h];
807 	} else if (entry->rule.watch) {
808 		/* we don't know the inode number, so must walk entire hash */
809 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
810 			list = &audit_inode_hash[h];
811 			list_for_each_entry(e, list, list)
812 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
813 					found = e;
814 					goto out;
815 				}
816 		}
817 		goto out;
818 	} else {
819 		*p = list = &audit_filter_list[entry->rule.listnr];
820 	}
821 
822 	list_for_each_entry(e, list, list)
823 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
824 			found = e;
825 			goto out;
826 		}
827 
828 out:
829 	return found;
830 }
831 
832 static u64 prio_low = ~0ULL/2;
833 static u64 prio_high = ~0ULL/2 - 1;
834 
835 /* Add rule to given filterlist if not a duplicate. */
836 static inline int audit_add_rule(struct audit_entry *entry)
837 {
838 	struct audit_entry *e;
839 	struct audit_watch *watch = entry->rule.watch;
840 	struct audit_tree *tree = entry->rule.tree;
841 	struct list_head *list;
842 	int err;
843 #ifdef CONFIG_AUDITSYSCALL
844 	int dont_count = 0;
845 
846 	/* If either of these, don't count towards total */
847 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
848 		entry->rule.listnr == AUDIT_FILTER_TYPE)
849 		dont_count = 1;
850 #endif
851 
852 	mutex_lock(&audit_filter_mutex);
853 	e = audit_find_rule(entry, &list);
854 	if (e) {
855 		mutex_unlock(&audit_filter_mutex);
856 		err = -EEXIST;
857 		/* normally audit_add_tree_rule() will free it on failure */
858 		if (tree)
859 			audit_put_tree(tree);
860 		goto error;
861 	}
862 
863 	if (watch) {
864 		/* audit_filter_mutex is dropped and re-taken during this call */
865 		err = audit_add_watch(&entry->rule, &list);
866 		if (err) {
867 			mutex_unlock(&audit_filter_mutex);
868 			goto error;
869 		}
870 	}
871 	if (tree) {
872 		err = audit_add_tree_rule(&entry->rule);
873 		if (err) {
874 			mutex_unlock(&audit_filter_mutex);
875 			goto error;
876 		}
877 	}
878 
879 	entry->rule.prio = ~0ULL;
880 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
881 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
882 			entry->rule.prio = ++prio_high;
883 		else
884 			entry->rule.prio = --prio_low;
885 	}
886 
887 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
888 		list_add(&entry->rule.list,
889 			 &audit_rules_list[entry->rule.listnr]);
890 		list_add_rcu(&entry->list, list);
891 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
892 	} else {
893 		list_add_tail(&entry->rule.list,
894 			      &audit_rules_list[entry->rule.listnr]);
895 		list_add_tail_rcu(&entry->list, list);
896 	}
897 #ifdef CONFIG_AUDITSYSCALL
898 	if (!dont_count)
899 		audit_n_rules++;
900 
901 	if (!audit_match_signal(entry))
902 		audit_signals++;
903 #endif
904 	mutex_unlock(&audit_filter_mutex);
905 
906  	return 0;
907 
908 error:
909 	if (watch)
910 		audit_put_watch(watch); /* tmp watch, matches initial get */
911 	return err;
912 }
913 
914 /* Remove an existing rule from filterlist. */
915 static inline int audit_del_rule(struct audit_entry *entry)
916 {
917 	struct audit_entry  *e;
918 	struct audit_watch *watch = entry->rule.watch;
919 	struct audit_tree *tree = entry->rule.tree;
920 	struct list_head *list;
921 	int ret = 0;
922 #ifdef CONFIG_AUDITSYSCALL
923 	int dont_count = 0;
924 
925 	/* If either of these, don't count towards total */
926 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
927 		entry->rule.listnr == AUDIT_FILTER_TYPE)
928 		dont_count = 1;
929 #endif
930 
931 	mutex_lock(&audit_filter_mutex);
932 	e = audit_find_rule(entry, &list);
933 	if (!e) {
934 		mutex_unlock(&audit_filter_mutex);
935 		ret = -ENOENT;
936 		goto out;
937 	}
938 
939 	if (e->rule.watch)
940 		audit_remove_watch_rule(&e->rule);
941 
942 	if (e->rule.tree)
943 		audit_remove_tree_rule(&e->rule);
944 
945 	list_del_rcu(&e->list);
946 	list_del(&e->rule.list);
947 	call_rcu(&e->rcu, audit_free_rule_rcu);
948 
949 #ifdef CONFIG_AUDITSYSCALL
950 	if (!dont_count)
951 		audit_n_rules--;
952 
953 	if (!audit_match_signal(entry))
954 		audit_signals--;
955 #endif
956 	mutex_unlock(&audit_filter_mutex);
957 
958 out:
959 	if (watch)
960 		audit_put_watch(watch); /* match initial get */
961 	if (tree)
962 		audit_put_tree(tree);	/* that's the temporary one */
963 
964 	return ret;
965 }
966 
967 /* List rules using struct audit_rule_data. */
968 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
969 {
970 	struct sk_buff *skb;
971 	struct audit_krule *r;
972 	int i;
973 
974 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
975 	 * iterator to sync with list writers. */
976 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
977 		list_for_each_entry(r, &audit_rules_list[i], list) {
978 			struct audit_rule_data *data;
979 
980 			data = audit_krule_to_data(r);
981 			if (unlikely(!data))
982 				break;
983 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
984 					 data, sizeof(*data) + data->buflen);
985 			if (skb)
986 				skb_queue_tail(q, skb);
987 			kfree(data);
988 		}
989 	}
990 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
991 	if (skb)
992 		skb_queue_tail(q, skb);
993 }
994 
995 /* Log rule additions and removals */
996 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
997 {
998 	struct audit_buffer *ab;
999 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1000 	u32 sessionid = audit_get_sessionid(current);
1001 
1002 	if (!audit_enabled)
1003 		return;
1004 
1005 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1006 	if (!ab)
1007 		return;
1008 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1009 	audit_log_task_context(ab);
1010 	audit_log_format(ab, " op=");
1011 	audit_log_string(ab, action);
1012 	audit_log_key(ab, rule->filterkey);
1013 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1014 	audit_log_end(ab);
1015 }
1016 
1017 /**
1018  * audit_receive_filter - apply all rules to the specified message type
1019  * @type: audit message type
1020  * @pid: target pid for netlink audit messages
1021  * @seq: netlink audit message sequence (serial) number
1022  * @data: payload data
1023  * @datasz: size of payload data
1024  * @loginuid: loginuid of sender
1025  * @sessionid: sessionid for netlink audit message
1026  * @sid: SE Linux Security ID of sender
1027  */
1028 int audit_receive_filter(int type, int pid, int seq, void *data, size_t datasz)
1029 {
1030 	struct task_struct *tsk;
1031 	struct audit_netlink_list *dest;
1032 	int err = 0;
1033 	struct audit_entry *entry;
1034 
1035 	switch (type) {
1036 	case AUDIT_LIST_RULES:
1037 		/* We can't just spew out the rules here because we might fill
1038 		 * the available socket buffer space and deadlock waiting for
1039 		 * auditctl to read from it... which isn't ever going to
1040 		 * happen if we're actually running in the context of auditctl
1041 		 * trying to _send_ the stuff */
1042 
1043 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1044 		if (!dest)
1045 			return -ENOMEM;
1046 		dest->pid = pid;
1047 		skb_queue_head_init(&dest->q);
1048 
1049 		mutex_lock(&audit_filter_mutex);
1050 		audit_list_rules(pid, seq, &dest->q);
1051 		mutex_unlock(&audit_filter_mutex);
1052 
1053 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1054 		if (IS_ERR(tsk)) {
1055 			skb_queue_purge(&dest->q);
1056 			kfree(dest);
1057 			err = PTR_ERR(tsk);
1058 		}
1059 		break;
1060 	case AUDIT_ADD_RULE:
1061 		entry = audit_data_to_entry(data, datasz);
1062 		if (IS_ERR(entry))
1063 			return PTR_ERR(entry);
1064 
1065 		err = audit_add_rule(entry);
1066 		audit_log_rule_change("add rule", &entry->rule, !err);
1067 		if (err)
1068 			audit_free_rule(entry);
1069 		break;
1070 	case AUDIT_DEL_RULE:
1071 		entry = audit_data_to_entry(data, datasz);
1072 		if (IS_ERR(entry))
1073 			return PTR_ERR(entry);
1074 
1075 		err = audit_del_rule(entry);
1076 		audit_log_rule_change("remove rule", &entry->rule, !err);
1077 		audit_free_rule(entry);
1078 		break;
1079 	default:
1080 		return -EINVAL;
1081 	}
1082 
1083 	return err;
1084 }
1085 
1086 int audit_comparator(u32 left, u32 op, u32 right)
1087 {
1088 	switch (op) {
1089 	case Audit_equal:
1090 		return (left == right);
1091 	case Audit_not_equal:
1092 		return (left != right);
1093 	case Audit_lt:
1094 		return (left < right);
1095 	case Audit_le:
1096 		return (left <= right);
1097 	case Audit_gt:
1098 		return (left > right);
1099 	case Audit_ge:
1100 		return (left >= right);
1101 	case Audit_bitmask:
1102 		return (left & right);
1103 	case Audit_bittest:
1104 		return ((left & right) == right);
1105 	default:
1106 		BUG();
1107 		return 0;
1108 	}
1109 }
1110 
1111 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1112 {
1113 	switch (op) {
1114 	case Audit_equal:
1115 		return uid_eq(left, right);
1116 	case Audit_not_equal:
1117 		return !uid_eq(left, right);
1118 	case Audit_lt:
1119 		return uid_lt(left, right);
1120 	case Audit_le:
1121 		return uid_lte(left, right);
1122 	case Audit_gt:
1123 		return uid_gt(left, right);
1124 	case Audit_ge:
1125 		return uid_gte(left, right);
1126 	case Audit_bitmask:
1127 	case Audit_bittest:
1128 	default:
1129 		BUG();
1130 		return 0;
1131 	}
1132 }
1133 
1134 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1135 {
1136 	switch (op) {
1137 	case Audit_equal:
1138 		return gid_eq(left, right);
1139 	case Audit_not_equal:
1140 		return !gid_eq(left, right);
1141 	case Audit_lt:
1142 		return gid_lt(left, right);
1143 	case Audit_le:
1144 		return gid_lte(left, right);
1145 	case Audit_gt:
1146 		return gid_gt(left, right);
1147 	case Audit_ge:
1148 		return gid_gte(left, right);
1149 	case Audit_bitmask:
1150 	case Audit_bittest:
1151 	default:
1152 		BUG();
1153 		return 0;
1154 	}
1155 }
1156 
1157 /**
1158  * parent_len - find the length of the parent portion of a pathname
1159  * @path: pathname of which to determine length
1160  */
1161 int parent_len(const char *path)
1162 {
1163 	int plen;
1164 	const char *p;
1165 
1166 	plen = strlen(path);
1167 
1168 	if (plen == 0)
1169 		return plen;
1170 
1171 	/* disregard trailing slashes */
1172 	p = path + plen - 1;
1173 	while ((*p == '/') && (p > path))
1174 		p--;
1175 
1176 	/* walk backward until we find the next slash or hit beginning */
1177 	while ((*p != '/') && (p > path))
1178 		p--;
1179 
1180 	/* did we find a slash? Then increment to include it in path */
1181 	if (*p == '/')
1182 		p++;
1183 
1184 	return p - path;
1185 }
1186 
1187 /**
1188  * audit_compare_dname_path - compare given dentry name with last component in
1189  * 			      given path. Return of 0 indicates a match.
1190  * @dname:	dentry name that we're comparing
1191  * @path:	full pathname that we're comparing
1192  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1193  * 		here indicates that we must compute this value.
1194  */
1195 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1196 {
1197 	int dlen, pathlen;
1198 	const char *p;
1199 
1200 	dlen = strlen(dname);
1201 	pathlen = strlen(path);
1202 	if (pathlen < dlen)
1203 		return 1;
1204 
1205 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1206 	if (pathlen - parentlen != dlen)
1207 		return 1;
1208 
1209 	p = path + parentlen;
1210 
1211 	return strncmp(p, dname, dlen);
1212 }
1213 
1214 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1215 				   enum audit_state *state)
1216 {
1217 	int i;
1218 
1219 	for (i = 0; i < rule->field_count; i++) {
1220 		struct audit_field *f = &rule->fields[i];
1221 		int result = 0;
1222 		u32 sid;
1223 
1224 		switch (f->type) {
1225 		case AUDIT_PID:
1226 			result = audit_comparator(task_pid_vnr(current), f->op, f->val);
1227 			break;
1228 		case AUDIT_UID:
1229 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1230 			break;
1231 		case AUDIT_GID:
1232 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1233 			break;
1234 		case AUDIT_LOGINUID:
1235 			result = audit_uid_comparator(audit_get_loginuid(current),
1236 						  f->op, f->uid);
1237 			break;
1238 		case AUDIT_LOGINUID_SET:
1239 			result = audit_comparator(audit_loginuid_set(current),
1240 						  f->op, f->val);
1241 			break;
1242 		case AUDIT_MSGTYPE:
1243 			result = audit_comparator(type, f->op, f->val);
1244 			break;
1245 		case AUDIT_SUBJ_USER:
1246 		case AUDIT_SUBJ_ROLE:
1247 		case AUDIT_SUBJ_TYPE:
1248 		case AUDIT_SUBJ_SEN:
1249 		case AUDIT_SUBJ_CLR:
1250 			if (f->lsm_rule) {
1251 				security_task_getsecid(current, &sid);
1252 				result = security_audit_rule_match(sid,
1253 								   f->type,
1254 								   f->op,
1255 								   f->lsm_rule,
1256 								   NULL);
1257 			}
1258 			break;
1259 		}
1260 
1261 		if (!result)
1262 			return 0;
1263 	}
1264 	switch (rule->action) {
1265 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1266 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1267 	}
1268 	return 1;
1269 }
1270 
1271 int audit_filter_user(int type)
1272 {
1273 	enum audit_state state = AUDIT_DISABLED;
1274 	struct audit_entry *e;
1275 	int ret = 1;
1276 
1277 	rcu_read_lock();
1278 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1279 		if (audit_filter_user_rules(&e->rule, type, &state)) {
1280 			if (state == AUDIT_DISABLED)
1281 				ret = 0;
1282 			break;
1283 		}
1284 	}
1285 	rcu_read_unlock();
1286 
1287 	return ret; /* Audit by default */
1288 }
1289 
1290 int audit_filter_type(int type)
1291 {
1292 	struct audit_entry *e;
1293 	int result = 0;
1294 
1295 	rcu_read_lock();
1296 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1297 		goto unlock_and_return;
1298 
1299 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1300 				list) {
1301 		int i;
1302 		for (i = 0; i < e->rule.field_count; i++) {
1303 			struct audit_field *f = &e->rule.fields[i];
1304 			if (f->type == AUDIT_MSGTYPE) {
1305 				result = audit_comparator(type, f->op, f->val);
1306 				if (!result)
1307 					break;
1308 			}
1309 		}
1310 		if (result)
1311 			goto unlock_and_return;
1312 	}
1313 unlock_and_return:
1314 	rcu_read_unlock();
1315 	return result;
1316 }
1317 
1318 static int update_lsm_rule(struct audit_krule *r)
1319 {
1320 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1321 	struct audit_entry *nentry;
1322 	int err = 0;
1323 
1324 	if (!security_audit_rule_known(r))
1325 		return 0;
1326 
1327 	nentry = audit_dupe_rule(r);
1328 	if (IS_ERR(nentry)) {
1329 		/* save the first error encountered for the
1330 		 * return value */
1331 		err = PTR_ERR(nentry);
1332 		audit_panic("error updating LSM filters");
1333 		if (r->watch)
1334 			list_del(&r->rlist);
1335 		list_del_rcu(&entry->list);
1336 		list_del(&r->list);
1337 	} else {
1338 		if (r->watch || r->tree)
1339 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1340 		list_replace_rcu(&entry->list, &nentry->list);
1341 		list_replace(&r->list, &nentry->rule.list);
1342 	}
1343 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1344 
1345 	return err;
1346 }
1347 
1348 /* This function will re-initialize the lsm_rule field of all applicable rules.
1349  * It will traverse the filter lists serarching for rules that contain LSM
1350  * specific filter fields.  When such a rule is found, it is copied, the
1351  * LSM field is re-initialized, and the old rule is replaced with the
1352  * updated rule. */
1353 int audit_update_lsm_rules(void)
1354 {
1355 	struct audit_krule *r, *n;
1356 	int i, err = 0;
1357 
1358 	/* audit_filter_mutex synchronizes the writers */
1359 	mutex_lock(&audit_filter_mutex);
1360 
1361 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1362 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1363 			int res = update_lsm_rule(r);
1364 			if (!err)
1365 				err = res;
1366 		}
1367 	}
1368 	mutex_unlock(&audit_filter_mutex);
1369 
1370 	return err;
1371 }
1372