1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditfilter.c -- filtering of audit events 3 * 4 * Copyright 2003-2004 Red Hat, Inc. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright 2005 IBM Corporation 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/audit.h> 13 #include <linux/kthread.h> 14 #include <linux/mutex.h> 15 #include <linux/fs.h> 16 #include <linux/namei.h> 17 #include <linux/netlink.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/security.h> 21 #include <net/net_namespace.h> 22 #include <net/sock.h> 23 #include "audit.h" 24 25 /* 26 * Locking model: 27 * 28 * audit_filter_mutex: 29 * Synchronizes writes and blocking reads of audit's filterlist 30 * data. Rcu is used to traverse the filterlist and access 31 * contents of structs audit_entry, audit_watch and opaque 32 * LSM rules during filtering. If modified, these structures 33 * must be copied and replace their counterparts in the filterlist. 34 * An audit_parent struct is not accessed during filtering, so may 35 * be written directly provided audit_filter_mutex is held. 36 */ 37 38 /* Audit filter lists, defined in <linux/audit.h> */ 39 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { 40 LIST_HEAD_INIT(audit_filter_list[0]), 41 LIST_HEAD_INIT(audit_filter_list[1]), 42 LIST_HEAD_INIT(audit_filter_list[2]), 43 LIST_HEAD_INIT(audit_filter_list[3]), 44 LIST_HEAD_INIT(audit_filter_list[4]), 45 LIST_HEAD_INIT(audit_filter_list[5]), 46 LIST_HEAD_INIT(audit_filter_list[6]), 47 #if AUDIT_NR_FILTERS != 7 48 #error Fix audit_filter_list initialiser 49 #endif 50 }; 51 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { 52 LIST_HEAD_INIT(audit_rules_list[0]), 53 LIST_HEAD_INIT(audit_rules_list[1]), 54 LIST_HEAD_INIT(audit_rules_list[2]), 55 LIST_HEAD_INIT(audit_rules_list[3]), 56 LIST_HEAD_INIT(audit_rules_list[4]), 57 LIST_HEAD_INIT(audit_rules_list[5]), 58 LIST_HEAD_INIT(audit_rules_list[6]), 59 }; 60 61 DEFINE_MUTEX(audit_filter_mutex); 62 63 static void audit_free_lsm_field(struct audit_field *f) 64 { 65 switch (f->type) { 66 case AUDIT_SUBJ_USER: 67 case AUDIT_SUBJ_ROLE: 68 case AUDIT_SUBJ_TYPE: 69 case AUDIT_SUBJ_SEN: 70 case AUDIT_SUBJ_CLR: 71 case AUDIT_OBJ_USER: 72 case AUDIT_OBJ_ROLE: 73 case AUDIT_OBJ_TYPE: 74 case AUDIT_OBJ_LEV_LOW: 75 case AUDIT_OBJ_LEV_HIGH: 76 kfree(f->lsm_str); 77 security_audit_rule_free(f->lsm_rule); 78 } 79 } 80 81 static inline void audit_free_rule(struct audit_entry *e) 82 { 83 int i; 84 struct audit_krule *erule = &e->rule; 85 86 /* some rules don't have associated watches */ 87 if (erule->watch) 88 audit_put_watch(erule->watch); 89 if (erule->fields) 90 for (i = 0; i < erule->field_count; i++) 91 audit_free_lsm_field(&erule->fields[i]); 92 kfree(erule->fields); 93 kfree(erule->filterkey); 94 kfree(e); 95 } 96 97 void audit_free_rule_rcu(struct rcu_head *head) 98 { 99 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 100 audit_free_rule(e); 101 } 102 103 /* Initialize an audit filterlist entry. */ 104 static inline struct audit_entry *audit_init_entry(u32 field_count) 105 { 106 struct audit_entry *entry; 107 struct audit_field *fields; 108 109 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 110 if (unlikely(!entry)) 111 return NULL; 112 113 fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL); 114 if (unlikely(!fields)) { 115 kfree(entry); 116 return NULL; 117 } 118 entry->rule.fields = fields; 119 120 return entry; 121 } 122 123 /* Unpack a filter field's string representation from user-space 124 * buffer. */ 125 char *audit_unpack_string(void **bufp, size_t *remain, size_t len) 126 { 127 char *str; 128 129 if (!*bufp || (len == 0) || (len > *remain)) 130 return ERR_PTR(-EINVAL); 131 132 /* Of the currently implemented string fields, PATH_MAX 133 * defines the longest valid length. 134 */ 135 if (len > PATH_MAX) 136 return ERR_PTR(-ENAMETOOLONG); 137 138 str = kmalloc(len + 1, GFP_KERNEL); 139 if (unlikely(!str)) 140 return ERR_PTR(-ENOMEM); 141 142 memcpy(str, *bufp, len); 143 str[len] = 0; 144 *bufp += len; 145 *remain -= len; 146 147 return str; 148 } 149 150 /* Translate an inode field to kernel representation. */ 151 static inline int audit_to_inode(struct audit_krule *krule, 152 struct audit_field *f) 153 { 154 if (krule->listnr != AUDIT_FILTER_EXIT || 155 krule->inode_f || krule->watch || krule->tree || 156 (f->op != Audit_equal && f->op != Audit_not_equal)) 157 return -EINVAL; 158 159 krule->inode_f = f; 160 return 0; 161 } 162 163 static __u32 *classes[AUDIT_SYSCALL_CLASSES]; 164 165 int __init audit_register_class(int class, unsigned *list) 166 { 167 __u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL); 168 if (!p) 169 return -ENOMEM; 170 while (*list != ~0U) { 171 unsigned n = *list++; 172 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { 173 kfree(p); 174 return -EINVAL; 175 } 176 p[AUDIT_WORD(n)] |= AUDIT_BIT(n); 177 } 178 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { 179 kfree(p); 180 return -EINVAL; 181 } 182 classes[class] = p; 183 return 0; 184 } 185 186 int audit_match_class(int class, unsigned syscall) 187 { 188 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) 189 return 0; 190 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) 191 return 0; 192 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); 193 } 194 195 #ifdef CONFIG_AUDITSYSCALL 196 static inline int audit_match_class_bits(int class, u32 *mask) 197 { 198 int i; 199 200 if (classes[class]) { 201 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 202 if (mask[i] & classes[class][i]) 203 return 0; 204 } 205 return 1; 206 } 207 208 static int audit_match_signal(struct audit_entry *entry) 209 { 210 struct audit_field *arch = entry->rule.arch_f; 211 212 if (!arch) { 213 /* When arch is unspecified, we must check both masks on biarch 214 * as syscall number alone is ambiguous. */ 215 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 216 entry->rule.mask) && 217 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 218 entry->rule.mask)); 219 } 220 221 switch(audit_classify_arch(arch->val)) { 222 case 0: /* native */ 223 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 224 entry->rule.mask)); 225 case 1: /* 32bit on biarch */ 226 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 227 entry->rule.mask)); 228 default: 229 return 1; 230 } 231 } 232 #endif 233 234 /* Common user-space to kernel rule translation. */ 235 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule) 236 { 237 unsigned listnr; 238 struct audit_entry *entry; 239 int i, err; 240 241 err = -EINVAL; 242 listnr = rule->flags & ~AUDIT_FILTER_PREPEND; 243 switch(listnr) { 244 default: 245 goto exit_err; 246 #ifdef CONFIG_AUDITSYSCALL 247 case AUDIT_FILTER_ENTRY: 248 pr_err("AUDIT_FILTER_ENTRY is deprecated\n"); 249 goto exit_err; 250 case AUDIT_FILTER_EXIT: 251 case AUDIT_FILTER_TASK: 252 #endif 253 case AUDIT_FILTER_USER: 254 case AUDIT_FILTER_EXCLUDE: 255 case AUDIT_FILTER_FS: 256 ; 257 } 258 if (unlikely(rule->action == AUDIT_POSSIBLE)) { 259 pr_err("AUDIT_POSSIBLE is deprecated\n"); 260 goto exit_err; 261 } 262 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) 263 goto exit_err; 264 if (rule->field_count > AUDIT_MAX_FIELDS) 265 goto exit_err; 266 267 err = -ENOMEM; 268 entry = audit_init_entry(rule->field_count); 269 if (!entry) 270 goto exit_err; 271 272 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; 273 entry->rule.listnr = listnr; 274 entry->rule.action = rule->action; 275 entry->rule.field_count = rule->field_count; 276 277 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 278 entry->rule.mask[i] = rule->mask[i]; 279 280 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { 281 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; 282 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; 283 __u32 *class; 284 285 if (!(*p & AUDIT_BIT(bit))) 286 continue; 287 *p &= ~AUDIT_BIT(bit); 288 class = classes[i]; 289 if (class) { 290 int j; 291 for (j = 0; j < AUDIT_BITMASK_SIZE; j++) 292 entry->rule.mask[j] |= class[j]; 293 } 294 } 295 296 return entry; 297 298 exit_err: 299 return ERR_PTR(err); 300 } 301 302 static u32 audit_ops[] = 303 { 304 [Audit_equal] = AUDIT_EQUAL, 305 [Audit_not_equal] = AUDIT_NOT_EQUAL, 306 [Audit_bitmask] = AUDIT_BIT_MASK, 307 [Audit_bittest] = AUDIT_BIT_TEST, 308 [Audit_lt] = AUDIT_LESS_THAN, 309 [Audit_gt] = AUDIT_GREATER_THAN, 310 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, 311 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, 312 }; 313 314 static u32 audit_to_op(u32 op) 315 { 316 u32 n; 317 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) 318 ; 319 return n; 320 } 321 322 /* check if an audit field is valid */ 323 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f) 324 { 325 switch (f->type) { 326 case AUDIT_MSGTYPE: 327 if (entry->rule.listnr != AUDIT_FILTER_EXCLUDE && 328 entry->rule.listnr != AUDIT_FILTER_USER) 329 return -EINVAL; 330 break; 331 case AUDIT_FSTYPE: 332 if (entry->rule.listnr != AUDIT_FILTER_FS) 333 return -EINVAL; 334 break; 335 } 336 337 switch (entry->rule.listnr) { 338 case AUDIT_FILTER_FS: 339 switch(f->type) { 340 case AUDIT_FSTYPE: 341 case AUDIT_FILTERKEY: 342 break; 343 default: 344 return -EINVAL; 345 } 346 } 347 348 /* Check for valid field type and op */ 349 switch (f->type) { 350 case AUDIT_ARG0: 351 case AUDIT_ARG1: 352 case AUDIT_ARG2: 353 case AUDIT_ARG3: 354 case AUDIT_PERS: /* <uapi/linux/personality.h> */ 355 case AUDIT_DEVMINOR: 356 /* all ops are valid */ 357 break; 358 case AUDIT_UID: 359 case AUDIT_EUID: 360 case AUDIT_SUID: 361 case AUDIT_FSUID: 362 case AUDIT_LOGINUID: 363 case AUDIT_OBJ_UID: 364 case AUDIT_GID: 365 case AUDIT_EGID: 366 case AUDIT_SGID: 367 case AUDIT_FSGID: 368 case AUDIT_OBJ_GID: 369 case AUDIT_PID: 370 case AUDIT_MSGTYPE: 371 case AUDIT_PPID: 372 case AUDIT_DEVMAJOR: 373 case AUDIT_EXIT: 374 case AUDIT_SUCCESS: 375 case AUDIT_INODE: 376 case AUDIT_SESSIONID: 377 case AUDIT_SUBJ_SEN: 378 case AUDIT_SUBJ_CLR: 379 case AUDIT_OBJ_LEV_LOW: 380 case AUDIT_OBJ_LEV_HIGH: 381 case AUDIT_SADDR_FAM: 382 /* bit ops are only useful on syscall args */ 383 if (f->op == Audit_bitmask || f->op == Audit_bittest) 384 return -EINVAL; 385 break; 386 case AUDIT_SUBJ_USER: 387 case AUDIT_SUBJ_ROLE: 388 case AUDIT_SUBJ_TYPE: 389 case AUDIT_OBJ_USER: 390 case AUDIT_OBJ_ROLE: 391 case AUDIT_OBJ_TYPE: 392 case AUDIT_WATCH: 393 case AUDIT_DIR: 394 case AUDIT_FILTERKEY: 395 case AUDIT_LOGINUID_SET: 396 case AUDIT_ARCH: 397 case AUDIT_FSTYPE: 398 case AUDIT_PERM: 399 case AUDIT_FILETYPE: 400 case AUDIT_FIELD_COMPARE: 401 case AUDIT_EXE: 402 /* only equal and not equal valid ops */ 403 if (f->op != Audit_not_equal && f->op != Audit_equal) 404 return -EINVAL; 405 break; 406 default: 407 /* field not recognized */ 408 return -EINVAL; 409 } 410 411 /* Check for select valid field values */ 412 switch (f->type) { 413 case AUDIT_LOGINUID_SET: 414 if ((f->val != 0) && (f->val != 1)) 415 return -EINVAL; 416 break; 417 case AUDIT_PERM: 418 if (f->val & ~15) 419 return -EINVAL; 420 break; 421 case AUDIT_FILETYPE: 422 if (f->val & ~S_IFMT) 423 return -EINVAL; 424 break; 425 case AUDIT_FIELD_COMPARE: 426 if (f->val > AUDIT_MAX_FIELD_COMPARE) 427 return -EINVAL; 428 break; 429 case AUDIT_SADDR_FAM: 430 if (f->val >= AF_MAX) 431 return -EINVAL; 432 break; 433 default: 434 break; 435 } 436 437 return 0; 438 } 439 440 /* Translate struct audit_rule_data to kernel's rule representation. */ 441 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, 442 size_t datasz) 443 { 444 int err = 0; 445 struct audit_entry *entry; 446 void *bufp; 447 size_t remain = datasz - sizeof(struct audit_rule_data); 448 int i; 449 char *str; 450 struct audit_fsnotify_mark *audit_mark; 451 452 entry = audit_to_entry_common(data); 453 if (IS_ERR(entry)) 454 goto exit_nofree; 455 456 bufp = data->buf; 457 for (i = 0; i < data->field_count; i++) { 458 struct audit_field *f = &entry->rule.fields[i]; 459 460 err = -EINVAL; 461 462 f->op = audit_to_op(data->fieldflags[i]); 463 if (f->op == Audit_bad) 464 goto exit_free; 465 466 f->type = data->fields[i]; 467 f->val = data->values[i]; 468 469 /* Support legacy tests for a valid loginuid */ 470 if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) { 471 f->type = AUDIT_LOGINUID_SET; 472 f->val = 0; 473 entry->rule.pflags |= AUDIT_LOGINUID_LEGACY; 474 } 475 476 err = audit_field_valid(entry, f); 477 if (err) 478 goto exit_free; 479 480 err = -EINVAL; 481 switch (f->type) { 482 case AUDIT_LOGINUID: 483 case AUDIT_UID: 484 case AUDIT_EUID: 485 case AUDIT_SUID: 486 case AUDIT_FSUID: 487 case AUDIT_OBJ_UID: 488 f->uid = make_kuid(current_user_ns(), f->val); 489 if (!uid_valid(f->uid)) 490 goto exit_free; 491 break; 492 case AUDIT_GID: 493 case AUDIT_EGID: 494 case AUDIT_SGID: 495 case AUDIT_FSGID: 496 case AUDIT_OBJ_GID: 497 f->gid = make_kgid(current_user_ns(), f->val); 498 if (!gid_valid(f->gid)) 499 goto exit_free; 500 break; 501 case AUDIT_ARCH: 502 entry->rule.arch_f = f; 503 break; 504 case AUDIT_SUBJ_USER: 505 case AUDIT_SUBJ_ROLE: 506 case AUDIT_SUBJ_TYPE: 507 case AUDIT_SUBJ_SEN: 508 case AUDIT_SUBJ_CLR: 509 case AUDIT_OBJ_USER: 510 case AUDIT_OBJ_ROLE: 511 case AUDIT_OBJ_TYPE: 512 case AUDIT_OBJ_LEV_LOW: 513 case AUDIT_OBJ_LEV_HIGH: 514 str = audit_unpack_string(&bufp, &remain, f->val); 515 if (IS_ERR(str)) 516 goto exit_free; 517 entry->rule.buflen += f->val; 518 519 err = security_audit_rule_init(f->type, f->op, str, 520 (void **)&f->lsm_rule); 521 /* Keep currently invalid fields around in case they 522 * become valid after a policy reload. */ 523 if (err == -EINVAL) { 524 pr_warn("audit rule for LSM \'%s\' is invalid\n", 525 str); 526 err = 0; 527 } 528 if (err) { 529 kfree(str); 530 goto exit_free; 531 } else 532 f->lsm_str = str; 533 break; 534 case AUDIT_WATCH: 535 str = audit_unpack_string(&bufp, &remain, f->val); 536 if (IS_ERR(str)) 537 goto exit_free; 538 entry->rule.buflen += f->val; 539 540 err = audit_to_watch(&entry->rule, str, f->val, f->op); 541 if (err) { 542 kfree(str); 543 goto exit_free; 544 } 545 break; 546 case AUDIT_DIR: 547 str = audit_unpack_string(&bufp, &remain, f->val); 548 if (IS_ERR(str)) 549 goto exit_free; 550 entry->rule.buflen += f->val; 551 552 err = audit_make_tree(&entry->rule, str, f->op); 553 kfree(str); 554 if (err) 555 goto exit_free; 556 break; 557 case AUDIT_INODE: 558 err = audit_to_inode(&entry->rule, f); 559 if (err) 560 goto exit_free; 561 break; 562 case AUDIT_FILTERKEY: 563 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) 564 goto exit_free; 565 str = audit_unpack_string(&bufp, &remain, f->val); 566 if (IS_ERR(str)) 567 goto exit_free; 568 entry->rule.buflen += f->val; 569 entry->rule.filterkey = str; 570 break; 571 case AUDIT_EXE: 572 if (entry->rule.exe || f->val > PATH_MAX) 573 goto exit_free; 574 str = audit_unpack_string(&bufp, &remain, f->val); 575 if (IS_ERR(str)) { 576 err = PTR_ERR(str); 577 goto exit_free; 578 } 579 entry->rule.buflen += f->val; 580 581 audit_mark = audit_alloc_mark(&entry->rule, str, f->val); 582 if (IS_ERR(audit_mark)) { 583 kfree(str); 584 err = PTR_ERR(audit_mark); 585 goto exit_free; 586 } 587 entry->rule.exe = audit_mark; 588 break; 589 } 590 } 591 592 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 593 entry->rule.inode_f = NULL; 594 595 exit_nofree: 596 return entry; 597 598 exit_free: 599 if (entry->rule.tree) 600 audit_put_tree(entry->rule.tree); /* that's the temporary one */ 601 if (entry->rule.exe) 602 audit_remove_mark(entry->rule.exe); /* that's the template one */ 603 audit_free_rule(entry); 604 return ERR_PTR(err); 605 } 606 607 /* Pack a filter field's string representation into data block. */ 608 static inline size_t audit_pack_string(void **bufp, const char *str) 609 { 610 size_t len = strlen(str); 611 612 memcpy(*bufp, str, len); 613 *bufp += len; 614 615 return len; 616 } 617 618 /* Translate kernel rule representation to struct audit_rule_data. */ 619 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) 620 { 621 struct audit_rule_data *data; 622 void *bufp; 623 int i; 624 625 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); 626 if (unlikely(!data)) 627 return NULL; 628 memset(data, 0, sizeof(*data)); 629 630 data->flags = krule->flags | krule->listnr; 631 data->action = krule->action; 632 data->field_count = krule->field_count; 633 bufp = data->buf; 634 for (i = 0; i < data->field_count; i++) { 635 struct audit_field *f = &krule->fields[i]; 636 637 data->fields[i] = f->type; 638 data->fieldflags[i] = audit_ops[f->op]; 639 switch(f->type) { 640 case AUDIT_SUBJ_USER: 641 case AUDIT_SUBJ_ROLE: 642 case AUDIT_SUBJ_TYPE: 643 case AUDIT_SUBJ_SEN: 644 case AUDIT_SUBJ_CLR: 645 case AUDIT_OBJ_USER: 646 case AUDIT_OBJ_ROLE: 647 case AUDIT_OBJ_TYPE: 648 case AUDIT_OBJ_LEV_LOW: 649 case AUDIT_OBJ_LEV_HIGH: 650 data->buflen += data->values[i] = 651 audit_pack_string(&bufp, f->lsm_str); 652 break; 653 case AUDIT_WATCH: 654 data->buflen += data->values[i] = 655 audit_pack_string(&bufp, 656 audit_watch_path(krule->watch)); 657 break; 658 case AUDIT_DIR: 659 data->buflen += data->values[i] = 660 audit_pack_string(&bufp, 661 audit_tree_path(krule->tree)); 662 break; 663 case AUDIT_FILTERKEY: 664 data->buflen += data->values[i] = 665 audit_pack_string(&bufp, krule->filterkey); 666 break; 667 case AUDIT_EXE: 668 data->buflen += data->values[i] = 669 audit_pack_string(&bufp, audit_mark_path(krule->exe)); 670 break; 671 case AUDIT_LOGINUID_SET: 672 if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) { 673 data->fields[i] = AUDIT_LOGINUID; 674 data->values[i] = AUDIT_UID_UNSET; 675 break; 676 } 677 /* fall through - if set */ 678 default: 679 data->values[i] = f->val; 680 } 681 } 682 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; 683 684 return data; 685 } 686 687 /* Compare two rules in kernel format. Considered success if rules 688 * don't match. */ 689 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) 690 { 691 int i; 692 693 if (a->flags != b->flags || 694 a->pflags != b->pflags || 695 a->listnr != b->listnr || 696 a->action != b->action || 697 a->field_count != b->field_count) 698 return 1; 699 700 for (i = 0; i < a->field_count; i++) { 701 if (a->fields[i].type != b->fields[i].type || 702 a->fields[i].op != b->fields[i].op) 703 return 1; 704 705 switch(a->fields[i].type) { 706 case AUDIT_SUBJ_USER: 707 case AUDIT_SUBJ_ROLE: 708 case AUDIT_SUBJ_TYPE: 709 case AUDIT_SUBJ_SEN: 710 case AUDIT_SUBJ_CLR: 711 case AUDIT_OBJ_USER: 712 case AUDIT_OBJ_ROLE: 713 case AUDIT_OBJ_TYPE: 714 case AUDIT_OBJ_LEV_LOW: 715 case AUDIT_OBJ_LEV_HIGH: 716 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) 717 return 1; 718 break; 719 case AUDIT_WATCH: 720 if (strcmp(audit_watch_path(a->watch), 721 audit_watch_path(b->watch))) 722 return 1; 723 break; 724 case AUDIT_DIR: 725 if (strcmp(audit_tree_path(a->tree), 726 audit_tree_path(b->tree))) 727 return 1; 728 break; 729 case AUDIT_FILTERKEY: 730 /* both filterkeys exist based on above type compare */ 731 if (strcmp(a->filterkey, b->filterkey)) 732 return 1; 733 break; 734 case AUDIT_EXE: 735 /* both paths exist based on above type compare */ 736 if (strcmp(audit_mark_path(a->exe), 737 audit_mark_path(b->exe))) 738 return 1; 739 break; 740 case AUDIT_UID: 741 case AUDIT_EUID: 742 case AUDIT_SUID: 743 case AUDIT_FSUID: 744 case AUDIT_LOGINUID: 745 case AUDIT_OBJ_UID: 746 if (!uid_eq(a->fields[i].uid, b->fields[i].uid)) 747 return 1; 748 break; 749 case AUDIT_GID: 750 case AUDIT_EGID: 751 case AUDIT_SGID: 752 case AUDIT_FSGID: 753 case AUDIT_OBJ_GID: 754 if (!gid_eq(a->fields[i].gid, b->fields[i].gid)) 755 return 1; 756 break; 757 default: 758 if (a->fields[i].val != b->fields[i].val) 759 return 1; 760 } 761 } 762 763 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 764 if (a->mask[i] != b->mask[i]) 765 return 1; 766 767 return 0; 768 } 769 770 /* Duplicate LSM field information. The lsm_rule is opaque, so must be 771 * re-initialized. */ 772 static inline int audit_dupe_lsm_field(struct audit_field *df, 773 struct audit_field *sf) 774 { 775 int ret = 0; 776 char *lsm_str; 777 778 /* our own copy of lsm_str */ 779 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); 780 if (unlikely(!lsm_str)) 781 return -ENOMEM; 782 df->lsm_str = lsm_str; 783 784 /* our own (refreshed) copy of lsm_rule */ 785 ret = security_audit_rule_init(df->type, df->op, df->lsm_str, 786 (void **)&df->lsm_rule); 787 /* Keep currently invalid fields around in case they 788 * become valid after a policy reload. */ 789 if (ret == -EINVAL) { 790 pr_warn("audit rule for LSM \'%s\' is invalid\n", 791 df->lsm_str); 792 ret = 0; 793 } 794 795 return ret; 796 } 797 798 /* Duplicate an audit rule. This will be a deep copy with the exception 799 * of the watch - that pointer is carried over. The LSM specific fields 800 * will be updated in the copy. The point is to be able to replace the old 801 * rule with the new rule in the filterlist, then free the old rule. 802 * The rlist element is undefined; list manipulations are handled apart from 803 * the initial copy. */ 804 struct audit_entry *audit_dupe_rule(struct audit_krule *old) 805 { 806 u32 fcount = old->field_count; 807 struct audit_entry *entry; 808 struct audit_krule *new; 809 char *fk; 810 int i, err = 0; 811 812 entry = audit_init_entry(fcount); 813 if (unlikely(!entry)) 814 return ERR_PTR(-ENOMEM); 815 816 new = &entry->rule; 817 new->flags = old->flags; 818 new->pflags = old->pflags; 819 new->listnr = old->listnr; 820 new->action = old->action; 821 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 822 new->mask[i] = old->mask[i]; 823 new->prio = old->prio; 824 new->buflen = old->buflen; 825 new->inode_f = old->inode_f; 826 new->field_count = old->field_count; 827 828 /* 829 * note that we are OK with not refcounting here; audit_match_tree() 830 * never dereferences tree and we can't get false positives there 831 * since we'd have to have rule gone from the list *and* removed 832 * before the chunks found by lookup had been allocated, i.e. before 833 * the beginning of list scan. 834 */ 835 new->tree = old->tree; 836 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); 837 838 /* deep copy this information, updating the lsm_rule fields, because 839 * the originals will all be freed when the old rule is freed. */ 840 for (i = 0; i < fcount; i++) { 841 switch (new->fields[i].type) { 842 case AUDIT_SUBJ_USER: 843 case AUDIT_SUBJ_ROLE: 844 case AUDIT_SUBJ_TYPE: 845 case AUDIT_SUBJ_SEN: 846 case AUDIT_SUBJ_CLR: 847 case AUDIT_OBJ_USER: 848 case AUDIT_OBJ_ROLE: 849 case AUDIT_OBJ_TYPE: 850 case AUDIT_OBJ_LEV_LOW: 851 case AUDIT_OBJ_LEV_HIGH: 852 err = audit_dupe_lsm_field(&new->fields[i], 853 &old->fields[i]); 854 break; 855 case AUDIT_FILTERKEY: 856 fk = kstrdup(old->filterkey, GFP_KERNEL); 857 if (unlikely(!fk)) 858 err = -ENOMEM; 859 else 860 new->filterkey = fk; 861 break; 862 case AUDIT_EXE: 863 err = audit_dupe_exe(new, old); 864 break; 865 } 866 if (err) { 867 if (new->exe) 868 audit_remove_mark(new->exe); 869 audit_free_rule(entry); 870 return ERR_PTR(err); 871 } 872 } 873 874 if (old->watch) { 875 audit_get_watch(old->watch); 876 new->watch = old->watch; 877 } 878 879 return entry; 880 } 881 882 /* Find an existing audit rule. 883 * Caller must hold audit_filter_mutex to prevent stale rule data. */ 884 static struct audit_entry *audit_find_rule(struct audit_entry *entry, 885 struct list_head **p) 886 { 887 struct audit_entry *e, *found = NULL; 888 struct list_head *list; 889 int h; 890 891 if (entry->rule.inode_f) { 892 h = audit_hash_ino(entry->rule.inode_f->val); 893 *p = list = &audit_inode_hash[h]; 894 } else if (entry->rule.watch) { 895 /* we don't know the inode number, so must walk entire hash */ 896 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { 897 list = &audit_inode_hash[h]; 898 list_for_each_entry(e, list, list) 899 if (!audit_compare_rule(&entry->rule, &e->rule)) { 900 found = e; 901 goto out; 902 } 903 } 904 goto out; 905 } else { 906 *p = list = &audit_filter_list[entry->rule.listnr]; 907 } 908 909 list_for_each_entry(e, list, list) 910 if (!audit_compare_rule(&entry->rule, &e->rule)) { 911 found = e; 912 goto out; 913 } 914 915 out: 916 return found; 917 } 918 919 static u64 prio_low = ~0ULL/2; 920 static u64 prio_high = ~0ULL/2 - 1; 921 922 /* Add rule to given filterlist if not a duplicate. */ 923 static inline int audit_add_rule(struct audit_entry *entry) 924 { 925 struct audit_entry *e; 926 struct audit_watch *watch = entry->rule.watch; 927 struct audit_tree *tree = entry->rule.tree; 928 struct list_head *list; 929 int err = 0; 930 #ifdef CONFIG_AUDITSYSCALL 931 int dont_count = 0; 932 933 /* If any of these, don't count towards total */ 934 switch(entry->rule.listnr) { 935 case AUDIT_FILTER_USER: 936 case AUDIT_FILTER_EXCLUDE: 937 case AUDIT_FILTER_FS: 938 dont_count = 1; 939 } 940 #endif 941 942 mutex_lock(&audit_filter_mutex); 943 e = audit_find_rule(entry, &list); 944 if (e) { 945 mutex_unlock(&audit_filter_mutex); 946 err = -EEXIST; 947 /* normally audit_add_tree_rule() will free it on failure */ 948 if (tree) 949 audit_put_tree(tree); 950 return err; 951 } 952 953 if (watch) { 954 /* audit_filter_mutex is dropped and re-taken during this call */ 955 err = audit_add_watch(&entry->rule, &list); 956 if (err) { 957 mutex_unlock(&audit_filter_mutex); 958 /* 959 * normally audit_add_tree_rule() will free it 960 * on failure 961 */ 962 if (tree) 963 audit_put_tree(tree); 964 return err; 965 } 966 } 967 if (tree) { 968 err = audit_add_tree_rule(&entry->rule); 969 if (err) { 970 mutex_unlock(&audit_filter_mutex); 971 return err; 972 } 973 } 974 975 entry->rule.prio = ~0ULL; 976 if (entry->rule.listnr == AUDIT_FILTER_EXIT) { 977 if (entry->rule.flags & AUDIT_FILTER_PREPEND) 978 entry->rule.prio = ++prio_high; 979 else 980 entry->rule.prio = --prio_low; 981 } 982 983 if (entry->rule.flags & AUDIT_FILTER_PREPEND) { 984 list_add(&entry->rule.list, 985 &audit_rules_list[entry->rule.listnr]); 986 list_add_rcu(&entry->list, list); 987 entry->rule.flags &= ~AUDIT_FILTER_PREPEND; 988 } else { 989 list_add_tail(&entry->rule.list, 990 &audit_rules_list[entry->rule.listnr]); 991 list_add_tail_rcu(&entry->list, list); 992 } 993 #ifdef CONFIG_AUDITSYSCALL 994 if (!dont_count) 995 audit_n_rules++; 996 997 if (!audit_match_signal(entry)) 998 audit_signals++; 999 #endif 1000 mutex_unlock(&audit_filter_mutex); 1001 1002 return err; 1003 } 1004 1005 /* Remove an existing rule from filterlist. */ 1006 int audit_del_rule(struct audit_entry *entry) 1007 { 1008 struct audit_entry *e; 1009 struct audit_tree *tree = entry->rule.tree; 1010 struct list_head *list; 1011 int ret = 0; 1012 #ifdef CONFIG_AUDITSYSCALL 1013 int dont_count = 0; 1014 1015 /* If any of these, don't count towards total */ 1016 switch(entry->rule.listnr) { 1017 case AUDIT_FILTER_USER: 1018 case AUDIT_FILTER_EXCLUDE: 1019 case AUDIT_FILTER_FS: 1020 dont_count = 1; 1021 } 1022 #endif 1023 1024 mutex_lock(&audit_filter_mutex); 1025 e = audit_find_rule(entry, &list); 1026 if (!e) { 1027 ret = -ENOENT; 1028 goto out; 1029 } 1030 1031 if (e->rule.watch) 1032 audit_remove_watch_rule(&e->rule); 1033 1034 if (e->rule.tree) 1035 audit_remove_tree_rule(&e->rule); 1036 1037 if (e->rule.exe) 1038 audit_remove_mark_rule(&e->rule); 1039 1040 #ifdef CONFIG_AUDITSYSCALL 1041 if (!dont_count) 1042 audit_n_rules--; 1043 1044 if (!audit_match_signal(entry)) 1045 audit_signals--; 1046 #endif 1047 1048 list_del_rcu(&e->list); 1049 list_del(&e->rule.list); 1050 call_rcu(&e->rcu, audit_free_rule_rcu); 1051 1052 out: 1053 mutex_unlock(&audit_filter_mutex); 1054 1055 if (tree) 1056 audit_put_tree(tree); /* that's the temporary one */ 1057 1058 return ret; 1059 } 1060 1061 /* List rules using struct audit_rule_data. */ 1062 static void audit_list_rules(int seq, struct sk_buff_head *q) 1063 { 1064 struct sk_buff *skb; 1065 struct audit_krule *r; 1066 int i; 1067 1068 /* This is a blocking read, so use audit_filter_mutex instead of rcu 1069 * iterator to sync with list writers. */ 1070 for (i=0; i<AUDIT_NR_FILTERS; i++) { 1071 list_for_each_entry(r, &audit_rules_list[i], list) { 1072 struct audit_rule_data *data; 1073 1074 data = audit_krule_to_data(r); 1075 if (unlikely(!data)) 1076 break; 1077 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 0, 1, 1078 data, 1079 sizeof(*data) + data->buflen); 1080 if (skb) 1081 skb_queue_tail(q, skb); 1082 kfree(data); 1083 } 1084 } 1085 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); 1086 if (skb) 1087 skb_queue_tail(q, skb); 1088 } 1089 1090 /* Log rule additions and removals */ 1091 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res) 1092 { 1093 struct audit_buffer *ab; 1094 1095 if (!audit_enabled) 1096 return; 1097 1098 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 1099 if (!ab) 1100 return; 1101 audit_log_session_info(ab); 1102 audit_log_task_context(ab); 1103 audit_log_format(ab, " op=%s", action); 1104 audit_log_key(ab, rule->filterkey); 1105 audit_log_format(ab, " list=%d res=%d", rule->listnr, res); 1106 audit_log_end(ab); 1107 } 1108 1109 /** 1110 * audit_rule_change - apply all rules to the specified message type 1111 * @type: audit message type 1112 * @seq: netlink audit message sequence (serial) number 1113 * @data: payload data 1114 * @datasz: size of payload data 1115 */ 1116 int audit_rule_change(int type, int seq, void *data, size_t datasz) 1117 { 1118 int err = 0; 1119 struct audit_entry *entry; 1120 1121 switch (type) { 1122 case AUDIT_ADD_RULE: 1123 entry = audit_data_to_entry(data, datasz); 1124 if (IS_ERR(entry)) 1125 return PTR_ERR(entry); 1126 err = audit_add_rule(entry); 1127 audit_log_rule_change("add_rule", &entry->rule, !err); 1128 break; 1129 case AUDIT_DEL_RULE: 1130 entry = audit_data_to_entry(data, datasz); 1131 if (IS_ERR(entry)) 1132 return PTR_ERR(entry); 1133 err = audit_del_rule(entry); 1134 audit_log_rule_change("remove_rule", &entry->rule, !err); 1135 break; 1136 default: 1137 WARN_ON(1); 1138 return -EINVAL; 1139 } 1140 1141 if (err || type == AUDIT_DEL_RULE) { 1142 if (entry->rule.exe) 1143 audit_remove_mark(entry->rule.exe); 1144 audit_free_rule(entry); 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * audit_list_rules_send - list the audit rules 1152 * @request_skb: skb of request we are replying to (used to target the reply) 1153 * @seq: netlink audit message sequence (serial) number 1154 */ 1155 int audit_list_rules_send(struct sk_buff *request_skb, int seq) 1156 { 1157 u32 portid = NETLINK_CB(request_skb).portid; 1158 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 1159 struct task_struct *tsk; 1160 struct audit_netlink_list *dest; 1161 int err = 0; 1162 1163 /* We can't just spew out the rules here because we might fill 1164 * the available socket buffer space and deadlock waiting for 1165 * auditctl to read from it... which isn't ever going to 1166 * happen if we're actually running in the context of auditctl 1167 * trying to _send_ the stuff */ 1168 1169 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); 1170 if (!dest) 1171 return -ENOMEM; 1172 dest->net = get_net(net); 1173 dest->portid = portid; 1174 skb_queue_head_init(&dest->q); 1175 1176 mutex_lock(&audit_filter_mutex); 1177 audit_list_rules(seq, &dest->q); 1178 mutex_unlock(&audit_filter_mutex); 1179 1180 tsk = kthread_run(audit_send_list, dest, "audit_send_list"); 1181 if (IS_ERR(tsk)) { 1182 skb_queue_purge(&dest->q); 1183 kfree(dest); 1184 err = PTR_ERR(tsk); 1185 } 1186 1187 return err; 1188 } 1189 1190 int audit_comparator(u32 left, u32 op, u32 right) 1191 { 1192 switch (op) { 1193 case Audit_equal: 1194 return (left == right); 1195 case Audit_not_equal: 1196 return (left != right); 1197 case Audit_lt: 1198 return (left < right); 1199 case Audit_le: 1200 return (left <= right); 1201 case Audit_gt: 1202 return (left > right); 1203 case Audit_ge: 1204 return (left >= right); 1205 case Audit_bitmask: 1206 return (left & right); 1207 case Audit_bittest: 1208 return ((left & right) == right); 1209 default: 1210 return 0; 1211 } 1212 } 1213 1214 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right) 1215 { 1216 switch (op) { 1217 case Audit_equal: 1218 return uid_eq(left, right); 1219 case Audit_not_equal: 1220 return !uid_eq(left, right); 1221 case Audit_lt: 1222 return uid_lt(left, right); 1223 case Audit_le: 1224 return uid_lte(left, right); 1225 case Audit_gt: 1226 return uid_gt(left, right); 1227 case Audit_ge: 1228 return uid_gte(left, right); 1229 case Audit_bitmask: 1230 case Audit_bittest: 1231 default: 1232 return 0; 1233 } 1234 } 1235 1236 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right) 1237 { 1238 switch (op) { 1239 case Audit_equal: 1240 return gid_eq(left, right); 1241 case Audit_not_equal: 1242 return !gid_eq(left, right); 1243 case Audit_lt: 1244 return gid_lt(left, right); 1245 case Audit_le: 1246 return gid_lte(left, right); 1247 case Audit_gt: 1248 return gid_gt(left, right); 1249 case Audit_ge: 1250 return gid_gte(left, right); 1251 case Audit_bitmask: 1252 case Audit_bittest: 1253 default: 1254 return 0; 1255 } 1256 } 1257 1258 /** 1259 * parent_len - find the length of the parent portion of a pathname 1260 * @path: pathname of which to determine length 1261 */ 1262 int parent_len(const char *path) 1263 { 1264 int plen; 1265 const char *p; 1266 1267 plen = strlen(path); 1268 1269 if (plen == 0) 1270 return plen; 1271 1272 /* disregard trailing slashes */ 1273 p = path + plen - 1; 1274 while ((*p == '/') && (p > path)) 1275 p--; 1276 1277 /* walk backward until we find the next slash or hit beginning */ 1278 while ((*p != '/') && (p > path)) 1279 p--; 1280 1281 /* did we find a slash? Then increment to include it in path */ 1282 if (*p == '/') 1283 p++; 1284 1285 return p - path; 1286 } 1287 1288 /** 1289 * audit_compare_dname_path - compare given dentry name with last component in 1290 * given path. Return of 0 indicates a match. 1291 * @dname: dentry name that we're comparing 1292 * @path: full pathname that we're comparing 1293 * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL 1294 * here indicates that we must compute this value. 1295 */ 1296 int audit_compare_dname_path(const struct qstr *dname, const char *path, int parentlen) 1297 { 1298 int dlen, pathlen; 1299 const char *p; 1300 1301 dlen = dname->len; 1302 pathlen = strlen(path); 1303 if (pathlen < dlen) 1304 return 1; 1305 1306 parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen; 1307 if (pathlen - parentlen != dlen) 1308 return 1; 1309 1310 p = path + parentlen; 1311 1312 return strncmp(p, dname->name, dlen); 1313 } 1314 1315 int audit_filter(int msgtype, unsigned int listtype) 1316 { 1317 struct audit_entry *e; 1318 int ret = 1; /* Audit by default */ 1319 1320 rcu_read_lock(); 1321 list_for_each_entry_rcu(e, &audit_filter_list[listtype], list) { 1322 int i, result = 0; 1323 1324 for (i = 0; i < e->rule.field_count; i++) { 1325 struct audit_field *f = &e->rule.fields[i]; 1326 pid_t pid; 1327 u32 sid; 1328 1329 switch (f->type) { 1330 case AUDIT_PID: 1331 pid = task_pid_nr(current); 1332 result = audit_comparator(pid, f->op, f->val); 1333 break; 1334 case AUDIT_UID: 1335 result = audit_uid_comparator(current_uid(), f->op, f->uid); 1336 break; 1337 case AUDIT_GID: 1338 result = audit_gid_comparator(current_gid(), f->op, f->gid); 1339 break; 1340 case AUDIT_LOGINUID: 1341 result = audit_uid_comparator(audit_get_loginuid(current), 1342 f->op, f->uid); 1343 break; 1344 case AUDIT_LOGINUID_SET: 1345 result = audit_comparator(audit_loginuid_set(current), 1346 f->op, f->val); 1347 break; 1348 case AUDIT_MSGTYPE: 1349 result = audit_comparator(msgtype, f->op, f->val); 1350 break; 1351 case AUDIT_SUBJ_USER: 1352 case AUDIT_SUBJ_ROLE: 1353 case AUDIT_SUBJ_TYPE: 1354 case AUDIT_SUBJ_SEN: 1355 case AUDIT_SUBJ_CLR: 1356 if (f->lsm_rule) { 1357 security_task_getsecid(current, &sid); 1358 result = security_audit_rule_match(sid, 1359 f->type, f->op, f->lsm_rule); 1360 } 1361 break; 1362 case AUDIT_EXE: 1363 result = audit_exe_compare(current, e->rule.exe); 1364 if (f->op == Audit_not_equal) 1365 result = !result; 1366 break; 1367 default: 1368 goto unlock_and_return; 1369 } 1370 if (result < 0) /* error */ 1371 goto unlock_and_return; 1372 if (!result) 1373 break; 1374 } 1375 if (result > 0) { 1376 if (e->rule.action == AUDIT_NEVER || listtype == AUDIT_FILTER_EXCLUDE) 1377 ret = 0; 1378 break; 1379 } 1380 } 1381 unlock_and_return: 1382 rcu_read_unlock(); 1383 return ret; 1384 } 1385 1386 static int update_lsm_rule(struct audit_krule *r) 1387 { 1388 struct audit_entry *entry = container_of(r, struct audit_entry, rule); 1389 struct audit_entry *nentry; 1390 int err = 0; 1391 1392 if (!security_audit_rule_known(r)) 1393 return 0; 1394 1395 nentry = audit_dupe_rule(r); 1396 if (entry->rule.exe) 1397 audit_remove_mark(entry->rule.exe); 1398 if (IS_ERR(nentry)) { 1399 /* save the first error encountered for the 1400 * return value */ 1401 err = PTR_ERR(nentry); 1402 audit_panic("error updating LSM filters"); 1403 if (r->watch) 1404 list_del(&r->rlist); 1405 list_del_rcu(&entry->list); 1406 list_del(&r->list); 1407 } else { 1408 if (r->watch || r->tree) 1409 list_replace_init(&r->rlist, &nentry->rule.rlist); 1410 list_replace_rcu(&entry->list, &nentry->list); 1411 list_replace(&r->list, &nentry->rule.list); 1412 } 1413 call_rcu(&entry->rcu, audit_free_rule_rcu); 1414 1415 return err; 1416 } 1417 1418 /* This function will re-initialize the lsm_rule field of all applicable rules. 1419 * It will traverse the filter lists serarching for rules that contain LSM 1420 * specific filter fields. When such a rule is found, it is copied, the 1421 * LSM field is re-initialized, and the old rule is replaced with the 1422 * updated rule. */ 1423 int audit_update_lsm_rules(void) 1424 { 1425 struct audit_krule *r, *n; 1426 int i, err = 0; 1427 1428 /* audit_filter_mutex synchronizes the writers */ 1429 mutex_lock(&audit_filter_mutex); 1430 1431 for (i = 0; i < AUDIT_NR_FILTERS; i++) { 1432 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { 1433 int res = update_lsm_rule(r); 1434 if (!err) 1435 err = res; 1436 } 1437 } 1438 mutex_unlock(&audit_filter_mutex); 1439 1440 return err; 1441 } 1442