xref: /openbmc/linux/kernel/auditfilter.c (revision e1f7c9ee)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/kernel.h>
25 #include <linux/audit.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <linux/fs.h>
29 #include <linux/namei.h>
30 #include <linux/netlink.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/security.h>
34 #include <net/net_namespace.h>
35 #include <net/sock.h>
36 #include "audit.h"
37 
38 /*
39  * Locking model:
40  *
41  * audit_filter_mutex:
42  * 		Synchronizes writes and blocking reads of audit's filterlist
43  * 		data.  Rcu is used to traverse the filterlist and access
44  * 		contents of structs audit_entry, audit_watch and opaque
45  * 		LSM rules during filtering.  If modified, these structures
46  * 		must be copied and replace their counterparts in the filterlist.
47  * 		An audit_parent struct is not accessed during filtering, so may
48  * 		be written directly provided audit_filter_mutex is held.
49  */
50 
51 /* Audit filter lists, defined in <linux/audit.h> */
52 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
53 	LIST_HEAD_INIT(audit_filter_list[0]),
54 	LIST_HEAD_INIT(audit_filter_list[1]),
55 	LIST_HEAD_INIT(audit_filter_list[2]),
56 	LIST_HEAD_INIT(audit_filter_list[3]),
57 	LIST_HEAD_INIT(audit_filter_list[4]),
58 	LIST_HEAD_INIT(audit_filter_list[5]),
59 #if AUDIT_NR_FILTERS != 6
60 #error Fix audit_filter_list initialiser
61 #endif
62 };
63 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
64 	LIST_HEAD_INIT(audit_rules_list[0]),
65 	LIST_HEAD_INIT(audit_rules_list[1]),
66 	LIST_HEAD_INIT(audit_rules_list[2]),
67 	LIST_HEAD_INIT(audit_rules_list[3]),
68 	LIST_HEAD_INIT(audit_rules_list[4]),
69 	LIST_HEAD_INIT(audit_rules_list[5]),
70 };
71 
72 DEFINE_MUTEX(audit_filter_mutex);
73 
74 static void audit_free_lsm_field(struct audit_field *f)
75 {
76 	switch (f->type) {
77 	case AUDIT_SUBJ_USER:
78 	case AUDIT_SUBJ_ROLE:
79 	case AUDIT_SUBJ_TYPE:
80 	case AUDIT_SUBJ_SEN:
81 	case AUDIT_SUBJ_CLR:
82 	case AUDIT_OBJ_USER:
83 	case AUDIT_OBJ_ROLE:
84 	case AUDIT_OBJ_TYPE:
85 	case AUDIT_OBJ_LEV_LOW:
86 	case AUDIT_OBJ_LEV_HIGH:
87 		kfree(f->lsm_str);
88 		security_audit_rule_free(f->lsm_rule);
89 	}
90 }
91 
92 static inline void audit_free_rule(struct audit_entry *e)
93 {
94 	int i;
95 	struct audit_krule *erule = &e->rule;
96 
97 	/* some rules don't have associated watches */
98 	if (erule->watch)
99 		audit_put_watch(erule->watch);
100 	if (erule->fields)
101 		for (i = 0; i < erule->field_count; i++)
102 			audit_free_lsm_field(&erule->fields[i]);
103 	kfree(erule->fields);
104 	kfree(erule->filterkey);
105 	kfree(e);
106 }
107 
108 void audit_free_rule_rcu(struct rcu_head *head)
109 {
110 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
111 	audit_free_rule(e);
112 }
113 
114 /* Initialize an audit filterlist entry. */
115 static inline struct audit_entry *audit_init_entry(u32 field_count)
116 {
117 	struct audit_entry *entry;
118 	struct audit_field *fields;
119 
120 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
121 	if (unlikely(!entry))
122 		return NULL;
123 
124 	fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
125 	if (unlikely(!fields)) {
126 		kfree(entry);
127 		return NULL;
128 	}
129 	entry->rule.fields = fields;
130 
131 	return entry;
132 }
133 
134 /* Unpack a filter field's string representation from user-space
135  * buffer. */
136 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
137 {
138 	char *str;
139 
140 	if (!*bufp || (len == 0) || (len > *remain))
141 		return ERR_PTR(-EINVAL);
142 
143 	/* Of the currently implemented string fields, PATH_MAX
144 	 * defines the longest valid length.
145 	 */
146 	if (len > PATH_MAX)
147 		return ERR_PTR(-ENAMETOOLONG);
148 
149 	str = kmalloc(len + 1, GFP_KERNEL);
150 	if (unlikely(!str))
151 		return ERR_PTR(-ENOMEM);
152 
153 	memcpy(str, *bufp, len);
154 	str[len] = 0;
155 	*bufp += len;
156 	*remain -= len;
157 
158 	return str;
159 }
160 
161 /* Translate an inode field to kernel respresentation. */
162 static inline int audit_to_inode(struct audit_krule *krule,
163 				 struct audit_field *f)
164 {
165 	if (krule->listnr != AUDIT_FILTER_EXIT ||
166 	    krule->inode_f || krule->watch || krule->tree ||
167 	    (f->op != Audit_equal && f->op != Audit_not_equal))
168 		return -EINVAL;
169 
170 	krule->inode_f = f;
171 	return 0;
172 }
173 
174 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
175 
176 int __init audit_register_class(int class, unsigned *list)
177 {
178 	__u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
179 	if (!p)
180 		return -ENOMEM;
181 	while (*list != ~0U) {
182 		unsigned n = *list++;
183 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
184 			kfree(p);
185 			return -EINVAL;
186 		}
187 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
188 	}
189 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
190 		kfree(p);
191 		return -EINVAL;
192 	}
193 	classes[class] = p;
194 	return 0;
195 }
196 
197 int audit_match_class(int class, unsigned syscall)
198 {
199 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
200 		return 0;
201 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
202 		return 0;
203 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
204 }
205 
206 #ifdef CONFIG_AUDITSYSCALL
207 static inline int audit_match_class_bits(int class, u32 *mask)
208 {
209 	int i;
210 
211 	if (classes[class]) {
212 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
213 			if (mask[i] & classes[class][i])
214 				return 0;
215 	}
216 	return 1;
217 }
218 
219 static int audit_match_signal(struct audit_entry *entry)
220 {
221 	struct audit_field *arch = entry->rule.arch_f;
222 
223 	if (!arch) {
224 		/* When arch is unspecified, we must check both masks on biarch
225 		 * as syscall number alone is ambiguous. */
226 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
227 					       entry->rule.mask) &&
228 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
229 					       entry->rule.mask));
230 	}
231 
232 	switch(audit_classify_arch(arch->val)) {
233 	case 0: /* native */
234 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
235 					       entry->rule.mask));
236 	case 1: /* 32bit on biarch */
237 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
238 					       entry->rule.mask));
239 	default:
240 		return 1;
241 	}
242 }
243 #endif
244 
245 /* Common user-space to kernel rule translation. */
246 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
247 {
248 	unsigned listnr;
249 	struct audit_entry *entry;
250 	int i, err;
251 
252 	err = -EINVAL;
253 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
254 	switch(listnr) {
255 	default:
256 		goto exit_err;
257 #ifdef CONFIG_AUDITSYSCALL
258 	case AUDIT_FILTER_ENTRY:
259 		if (rule->action == AUDIT_ALWAYS)
260 			goto exit_err;
261 	case AUDIT_FILTER_EXIT:
262 	case AUDIT_FILTER_TASK:
263 #endif
264 	case AUDIT_FILTER_USER:
265 	case AUDIT_FILTER_TYPE:
266 		;
267 	}
268 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
269 		pr_err("AUDIT_POSSIBLE is deprecated\n");
270 		goto exit_err;
271 	}
272 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
273 		goto exit_err;
274 	if (rule->field_count > AUDIT_MAX_FIELDS)
275 		goto exit_err;
276 
277 	err = -ENOMEM;
278 	entry = audit_init_entry(rule->field_count);
279 	if (!entry)
280 		goto exit_err;
281 
282 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
283 	entry->rule.listnr = listnr;
284 	entry->rule.action = rule->action;
285 	entry->rule.field_count = rule->field_count;
286 
287 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
288 		entry->rule.mask[i] = rule->mask[i];
289 
290 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
291 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
292 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
293 		__u32 *class;
294 
295 		if (!(*p & AUDIT_BIT(bit)))
296 			continue;
297 		*p &= ~AUDIT_BIT(bit);
298 		class = classes[i];
299 		if (class) {
300 			int j;
301 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
302 				entry->rule.mask[j] |= class[j];
303 		}
304 	}
305 
306 	return entry;
307 
308 exit_err:
309 	return ERR_PTR(err);
310 }
311 
312 static u32 audit_ops[] =
313 {
314 	[Audit_equal] = AUDIT_EQUAL,
315 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
316 	[Audit_bitmask] = AUDIT_BIT_MASK,
317 	[Audit_bittest] = AUDIT_BIT_TEST,
318 	[Audit_lt] = AUDIT_LESS_THAN,
319 	[Audit_gt] = AUDIT_GREATER_THAN,
320 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
321 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
322 };
323 
324 static u32 audit_to_op(u32 op)
325 {
326 	u32 n;
327 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
328 		;
329 	return n;
330 }
331 
332 /* check if an audit field is valid */
333 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
334 {
335 	switch(f->type) {
336 	case AUDIT_MSGTYPE:
337 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
338 		    entry->rule.listnr != AUDIT_FILTER_USER)
339 			return -EINVAL;
340 		break;
341 	};
342 
343 	switch(f->type) {
344 	default:
345 		return -EINVAL;
346 	case AUDIT_UID:
347 	case AUDIT_EUID:
348 	case AUDIT_SUID:
349 	case AUDIT_FSUID:
350 	case AUDIT_LOGINUID:
351 	case AUDIT_OBJ_UID:
352 	case AUDIT_GID:
353 	case AUDIT_EGID:
354 	case AUDIT_SGID:
355 	case AUDIT_FSGID:
356 	case AUDIT_OBJ_GID:
357 	case AUDIT_PID:
358 	case AUDIT_PERS:
359 	case AUDIT_MSGTYPE:
360 	case AUDIT_PPID:
361 	case AUDIT_DEVMAJOR:
362 	case AUDIT_DEVMINOR:
363 	case AUDIT_EXIT:
364 	case AUDIT_SUCCESS:
365 	case AUDIT_INODE:
366 		/* bit ops are only useful on syscall args */
367 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
368 			return -EINVAL;
369 		break;
370 	case AUDIT_ARG0:
371 	case AUDIT_ARG1:
372 	case AUDIT_ARG2:
373 	case AUDIT_ARG3:
374 	case AUDIT_SUBJ_USER:
375 	case AUDIT_SUBJ_ROLE:
376 	case AUDIT_SUBJ_TYPE:
377 	case AUDIT_SUBJ_SEN:
378 	case AUDIT_SUBJ_CLR:
379 	case AUDIT_OBJ_USER:
380 	case AUDIT_OBJ_ROLE:
381 	case AUDIT_OBJ_TYPE:
382 	case AUDIT_OBJ_LEV_LOW:
383 	case AUDIT_OBJ_LEV_HIGH:
384 	case AUDIT_WATCH:
385 	case AUDIT_DIR:
386 	case AUDIT_FILTERKEY:
387 		break;
388 	case AUDIT_LOGINUID_SET:
389 		if ((f->val != 0) && (f->val != 1))
390 			return -EINVAL;
391 	/* FALL THROUGH */
392 	case AUDIT_ARCH:
393 		if (f->op != Audit_not_equal && f->op != Audit_equal)
394 			return -EINVAL;
395 		break;
396 	case AUDIT_PERM:
397 		if (f->val & ~15)
398 			return -EINVAL;
399 		break;
400 	case AUDIT_FILETYPE:
401 		if (f->val & ~S_IFMT)
402 			return -EINVAL;
403 		break;
404 	case AUDIT_FIELD_COMPARE:
405 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
406 			return -EINVAL;
407 		break;
408 	};
409 	return 0;
410 }
411 
412 /* Translate struct audit_rule_data to kernel's rule respresentation. */
413 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
414 					       size_t datasz)
415 {
416 	int err = 0;
417 	struct audit_entry *entry;
418 	void *bufp;
419 	size_t remain = datasz - sizeof(struct audit_rule_data);
420 	int i;
421 	char *str;
422 
423 	entry = audit_to_entry_common(data);
424 	if (IS_ERR(entry))
425 		goto exit_nofree;
426 
427 	bufp = data->buf;
428 	entry->rule.vers_ops = 2;
429 	for (i = 0; i < data->field_count; i++) {
430 		struct audit_field *f = &entry->rule.fields[i];
431 
432 		err = -EINVAL;
433 
434 		f->op = audit_to_op(data->fieldflags[i]);
435 		if (f->op == Audit_bad)
436 			goto exit_free;
437 
438 		f->type = data->fields[i];
439 		f->val = data->values[i];
440 
441 		/* Support legacy tests for a valid loginuid */
442 		if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) {
443 			f->type = AUDIT_LOGINUID_SET;
444 			f->val = 0;
445 		}
446 
447 		if ((f->type == AUDIT_PID) || (f->type == AUDIT_PPID)) {
448 			struct pid *pid;
449 			rcu_read_lock();
450 			pid = find_vpid(f->val);
451 			if (!pid) {
452 				rcu_read_unlock();
453 				err = -ESRCH;
454 				goto exit_free;
455 			}
456 			f->val = pid_nr(pid);
457 			rcu_read_unlock();
458 		}
459 
460 		err = audit_field_valid(entry, f);
461 		if (err)
462 			goto exit_free;
463 
464 		err = -EINVAL;
465 		switch (f->type) {
466 		case AUDIT_LOGINUID:
467 		case AUDIT_UID:
468 		case AUDIT_EUID:
469 		case AUDIT_SUID:
470 		case AUDIT_FSUID:
471 		case AUDIT_OBJ_UID:
472 			f->uid = make_kuid(current_user_ns(), f->val);
473 			if (!uid_valid(f->uid))
474 				goto exit_free;
475 			break;
476 		case AUDIT_GID:
477 		case AUDIT_EGID:
478 		case AUDIT_SGID:
479 		case AUDIT_FSGID:
480 		case AUDIT_OBJ_GID:
481 			f->gid = make_kgid(current_user_ns(), f->val);
482 			if (!gid_valid(f->gid))
483 				goto exit_free;
484 			break;
485 		case AUDIT_ARCH:
486 			entry->rule.arch_f = f;
487 			break;
488 		case AUDIT_SUBJ_USER:
489 		case AUDIT_SUBJ_ROLE:
490 		case AUDIT_SUBJ_TYPE:
491 		case AUDIT_SUBJ_SEN:
492 		case AUDIT_SUBJ_CLR:
493 		case AUDIT_OBJ_USER:
494 		case AUDIT_OBJ_ROLE:
495 		case AUDIT_OBJ_TYPE:
496 		case AUDIT_OBJ_LEV_LOW:
497 		case AUDIT_OBJ_LEV_HIGH:
498 			str = audit_unpack_string(&bufp, &remain, f->val);
499 			if (IS_ERR(str))
500 				goto exit_free;
501 			entry->rule.buflen += f->val;
502 
503 			err = security_audit_rule_init(f->type, f->op, str,
504 						       (void **)&f->lsm_rule);
505 			/* Keep currently invalid fields around in case they
506 			 * become valid after a policy reload. */
507 			if (err == -EINVAL) {
508 				pr_warn("audit rule for LSM \'%s\' is invalid\n",
509 					str);
510 				err = 0;
511 			}
512 			if (err) {
513 				kfree(str);
514 				goto exit_free;
515 			} else
516 				f->lsm_str = str;
517 			break;
518 		case AUDIT_WATCH:
519 			str = audit_unpack_string(&bufp, &remain, f->val);
520 			if (IS_ERR(str))
521 				goto exit_free;
522 			entry->rule.buflen += f->val;
523 
524 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
525 			if (err) {
526 				kfree(str);
527 				goto exit_free;
528 			}
529 			break;
530 		case AUDIT_DIR:
531 			str = audit_unpack_string(&bufp, &remain, f->val);
532 			if (IS_ERR(str))
533 				goto exit_free;
534 			entry->rule.buflen += f->val;
535 
536 			err = audit_make_tree(&entry->rule, str, f->op);
537 			kfree(str);
538 			if (err)
539 				goto exit_free;
540 			break;
541 		case AUDIT_INODE:
542 			err = audit_to_inode(&entry->rule, f);
543 			if (err)
544 				goto exit_free;
545 			break;
546 		case AUDIT_FILTERKEY:
547 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
548 				goto exit_free;
549 			str = audit_unpack_string(&bufp, &remain, f->val);
550 			if (IS_ERR(str))
551 				goto exit_free;
552 			entry->rule.buflen += f->val;
553 			entry->rule.filterkey = str;
554 			break;
555 		}
556 	}
557 
558 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
559 		entry->rule.inode_f = NULL;
560 
561 exit_nofree:
562 	return entry;
563 
564 exit_free:
565 	if (entry->rule.watch)
566 		audit_put_watch(entry->rule.watch); /* matches initial get */
567 	if (entry->rule.tree)
568 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
569 	audit_free_rule(entry);
570 	return ERR_PTR(err);
571 }
572 
573 /* Pack a filter field's string representation into data block. */
574 static inline size_t audit_pack_string(void **bufp, const char *str)
575 {
576 	size_t len = strlen(str);
577 
578 	memcpy(*bufp, str, len);
579 	*bufp += len;
580 
581 	return len;
582 }
583 
584 /* Translate kernel rule respresentation to struct audit_rule_data. */
585 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
586 {
587 	struct audit_rule_data *data;
588 	void *bufp;
589 	int i;
590 
591 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
592 	if (unlikely(!data))
593 		return NULL;
594 	memset(data, 0, sizeof(*data));
595 
596 	data->flags = krule->flags | krule->listnr;
597 	data->action = krule->action;
598 	data->field_count = krule->field_count;
599 	bufp = data->buf;
600 	for (i = 0; i < data->field_count; i++) {
601 		struct audit_field *f = &krule->fields[i];
602 
603 		data->fields[i] = f->type;
604 		data->fieldflags[i] = audit_ops[f->op];
605 		switch(f->type) {
606 		case AUDIT_SUBJ_USER:
607 		case AUDIT_SUBJ_ROLE:
608 		case AUDIT_SUBJ_TYPE:
609 		case AUDIT_SUBJ_SEN:
610 		case AUDIT_SUBJ_CLR:
611 		case AUDIT_OBJ_USER:
612 		case AUDIT_OBJ_ROLE:
613 		case AUDIT_OBJ_TYPE:
614 		case AUDIT_OBJ_LEV_LOW:
615 		case AUDIT_OBJ_LEV_HIGH:
616 			data->buflen += data->values[i] =
617 				audit_pack_string(&bufp, f->lsm_str);
618 			break;
619 		case AUDIT_WATCH:
620 			data->buflen += data->values[i] =
621 				audit_pack_string(&bufp,
622 						  audit_watch_path(krule->watch));
623 			break;
624 		case AUDIT_DIR:
625 			data->buflen += data->values[i] =
626 				audit_pack_string(&bufp,
627 						  audit_tree_path(krule->tree));
628 			break;
629 		case AUDIT_FILTERKEY:
630 			data->buflen += data->values[i] =
631 				audit_pack_string(&bufp, krule->filterkey);
632 			break;
633 		default:
634 			data->values[i] = f->val;
635 		}
636 	}
637 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
638 
639 	return data;
640 }
641 
642 /* Compare two rules in kernel format.  Considered success if rules
643  * don't match. */
644 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
645 {
646 	int i;
647 
648 	if (a->flags != b->flags ||
649 	    a->listnr != b->listnr ||
650 	    a->action != b->action ||
651 	    a->field_count != b->field_count)
652 		return 1;
653 
654 	for (i = 0; i < a->field_count; i++) {
655 		if (a->fields[i].type != b->fields[i].type ||
656 		    a->fields[i].op != b->fields[i].op)
657 			return 1;
658 
659 		switch(a->fields[i].type) {
660 		case AUDIT_SUBJ_USER:
661 		case AUDIT_SUBJ_ROLE:
662 		case AUDIT_SUBJ_TYPE:
663 		case AUDIT_SUBJ_SEN:
664 		case AUDIT_SUBJ_CLR:
665 		case AUDIT_OBJ_USER:
666 		case AUDIT_OBJ_ROLE:
667 		case AUDIT_OBJ_TYPE:
668 		case AUDIT_OBJ_LEV_LOW:
669 		case AUDIT_OBJ_LEV_HIGH:
670 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
671 				return 1;
672 			break;
673 		case AUDIT_WATCH:
674 			if (strcmp(audit_watch_path(a->watch),
675 				   audit_watch_path(b->watch)))
676 				return 1;
677 			break;
678 		case AUDIT_DIR:
679 			if (strcmp(audit_tree_path(a->tree),
680 				   audit_tree_path(b->tree)))
681 				return 1;
682 			break;
683 		case AUDIT_FILTERKEY:
684 			/* both filterkeys exist based on above type compare */
685 			if (strcmp(a->filterkey, b->filterkey))
686 				return 1;
687 			break;
688 		case AUDIT_UID:
689 		case AUDIT_EUID:
690 		case AUDIT_SUID:
691 		case AUDIT_FSUID:
692 		case AUDIT_LOGINUID:
693 		case AUDIT_OBJ_UID:
694 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
695 				return 1;
696 			break;
697 		case AUDIT_GID:
698 		case AUDIT_EGID:
699 		case AUDIT_SGID:
700 		case AUDIT_FSGID:
701 		case AUDIT_OBJ_GID:
702 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
703 				return 1;
704 			break;
705 		default:
706 			if (a->fields[i].val != b->fields[i].val)
707 				return 1;
708 		}
709 	}
710 
711 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
712 		if (a->mask[i] != b->mask[i])
713 			return 1;
714 
715 	return 0;
716 }
717 
718 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
719  * re-initialized. */
720 static inline int audit_dupe_lsm_field(struct audit_field *df,
721 					   struct audit_field *sf)
722 {
723 	int ret = 0;
724 	char *lsm_str;
725 
726 	/* our own copy of lsm_str */
727 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
728 	if (unlikely(!lsm_str))
729 		return -ENOMEM;
730 	df->lsm_str = lsm_str;
731 
732 	/* our own (refreshed) copy of lsm_rule */
733 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
734 				       (void **)&df->lsm_rule);
735 	/* Keep currently invalid fields around in case they
736 	 * become valid after a policy reload. */
737 	if (ret == -EINVAL) {
738 		pr_warn("audit rule for LSM \'%s\' is invalid\n",
739 			df->lsm_str);
740 		ret = 0;
741 	}
742 
743 	return ret;
744 }
745 
746 /* Duplicate an audit rule.  This will be a deep copy with the exception
747  * of the watch - that pointer is carried over.  The LSM specific fields
748  * will be updated in the copy.  The point is to be able to replace the old
749  * rule with the new rule in the filterlist, then free the old rule.
750  * The rlist element is undefined; list manipulations are handled apart from
751  * the initial copy. */
752 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
753 {
754 	u32 fcount = old->field_count;
755 	struct audit_entry *entry;
756 	struct audit_krule *new;
757 	char *fk;
758 	int i, err = 0;
759 
760 	entry = audit_init_entry(fcount);
761 	if (unlikely(!entry))
762 		return ERR_PTR(-ENOMEM);
763 
764 	new = &entry->rule;
765 	new->vers_ops = old->vers_ops;
766 	new->flags = old->flags;
767 	new->listnr = old->listnr;
768 	new->action = old->action;
769 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
770 		new->mask[i] = old->mask[i];
771 	new->prio = old->prio;
772 	new->buflen = old->buflen;
773 	new->inode_f = old->inode_f;
774 	new->field_count = old->field_count;
775 
776 	/*
777 	 * note that we are OK with not refcounting here; audit_match_tree()
778 	 * never dereferences tree and we can't get false positives there
779 	 * since we'd have to have rule gone from the list *and* removed
780 	 * before the chunks found by lookup had been allocated, i.e. before
781 	 * the beginning of list scan.
782 	 */
783 	new->tree = old->tree;
784 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
785 
786 	/* deep copy this information, updating the lsm_rule fields, because
787 	 * the originals will all be freed when the old rule is freed. */
788 	for (i = 0; i < fcount; i++) {
789 		switch (new->fields[i].type) {
790 		case AUDIT_SUBJ_USER:
791 		case AUDIT_SUBJ_ROLE:
792 		case AUDIT_SUBJ_TYPE:
793 		case AUDIT_SUBJ_SEN:
794 		case AUDIT_SUBJ_CLR:
795 		case AUDIT_OBJ_USER:
796 		case AUDIT_OBJ_ROLE:
797 		case AUDIT_OBJ_TYPE:
798 		case AUDIT_OBJ_LEV_LOW:
799 		case AUDIT_OBJ_LEV_HIGH:
800 			err = audit_dupe_lsm_field(&new->fields[i],
801 						       &old->fields[i]);
802 			break;
803 		case AUDIT_FILTERKEY:
804 			fk = kstrdup(old->filterkey, GFP_KERNEL);
805 			if (unlikely(!fk))
806 				err = -ENOMEM;
807 			else
808 				new->filterkey = fk;
809 		}
810 		if (err) {
811 			audit_free_rule(entry);
812 			return ERR_PTR(err);
813 		}
814 	}
815 
816 	if (old->watch) {
817 		audit_get_watch(old->watch);
818 		new->watch = old->watch;
819 	}
820 
821 	return entry;
822 }
823 
824 /* Find an existing audit rule.
825  * Caller must hold audit_filter_mutex to prevent stale rule data. */
826 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
827 					   struct list_head **p)
828 {
829 	struct audit_entry *e, *found = NULL;
830 	struct list_head *list;
831 	int h;
832 
833 	if (entry->rule.inode_f) {
834 		h = audit_hash_ino(entry->rule.inode_f->val);
835 		*p = list = &audit_inode_hash[h];
836 	} else if (entry->rule.watch) {
837 		/* we don't know the inode number, so must walk entire hash */
838 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
839 			list = &audit_inode_hash[h];
840 			list_for_each_entry(e, list, list)
841 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
842 					found = e;
843 					goto out;
844 				}
845 		}
846 		goto out;
847 	} else {
848 		*p = list = &audit_filter_list[entry->rule.listnr];
849 	}
850 
851 	list_for_each_entry(e, list, list)
852 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
853 			found = e;
854 			goto out;
855 		}
856 
857 out:
858 	return found;
859 }
860 
861 static u64 prio_low = ~0ULL/2;
862 static u64 prio_high = ~0ULL/2 - 1;
863 
864 /* Add rule to given filterlist if not a duplicate. */
865 static inline int audit_add_rule(struct audit_entry *entry)
866 {
867 	struct audit_entry *e;
868 	struct audit_watch *watch = entry->rule.watch;
869 	struct audit_tree *tree = entry->rule.tree;
870 	struct list_head *list;
871 	int err;
872 #ifdef CONFIG_AUDITSYSCALL
873 	int dont_count = 0;
874 
875 	/* If either of these, don't count towards total */
876 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
877 		entry->rule.listnr == AUDIT_FILTER_TYPE)
878 		dont_count = 1;
879 #endif
880 
881 	mutex_lock(&audit_filter_mutex);
882 	e = audit_find_rule(entry, &list);
883 	if (e) {
884 		mutex_unlock(&audit_filter_mutex);
885 		err = -EEXIST;
886 		/* normally audit_add_tree_rule() will free it on failure */
887 		if (tree)
888 			audit_put_tree(tree);
889 		goto error;
890 	}
891 
892 	if (watch) {
893 		/* audit_filter_mutex is dropped and re-taken during this call */
894 		err = audit_add_watch(&entry->rule, &list);
895 		if (err) {
896 			mutex_unlock(&audit_filter_mutex);
897 			/*
898 			 * normally audit_add_tree_rule() will free it
899 			 * on failure
900 			 */
901 			if (tree)
902 				audit_put_tree(tree);
903 			goto error;
904 		}
905 	}
906 	if (tree) {
907 		err = audit_add_tree_rule(&entry->rule);
908 		if (err) {
909 			mutex_unlock(&audit_filter_mutex);
910 			goto error;
911 		}
912 	}
913 
914 	entry->rule.prio = ~0ULL;
915 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
916 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
917 			entry->rule.prio = ++prio_high;
918 		else
919 			entry->rule.prio = --prio_low;
920 	}
921 
922 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
923 		list_add(&entry->rule.list,
924 			 &audit_rules_list[entry->rule.listnr]);
925 		list_add_rcu(&entry->list, list);
926 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
927 	} else {
928 		list_add_tail(&entry->rule.list,
929 			      &audit_rules_list[entry->rule.listnr]);
930 		list_add_tail_rcu(&entry->list, list);
931 	}
932 #ifdef CONFIG_AUDITSYSCALL
933 	if (!dont_count)
934 		audit_n_rules++;
935 
936 	if (!audit_match_signal(entry))
937 		audit_signals++;
938 #endif
939 	mutex_unlock(&audit_filter_mutex);
940 
941  	return 0;
942 
943 error:
944 	if (watch)
945 		audit_put_watch(watch); /* tmp watch, matches initial get */
946 	return err;
947 }
948 
949 /* Remove an existing rule from filterlist. */
950 static inline int audit_del_rule(struct audit_entry *entry)
951 {
952 	struct audit_entry  *e;
953 	struct audit_watch *watch = entry->rule.watch;
954 	struct audit_tree *tree = entry->rule.tree;
955 	struct list_head *list;
956 	int ret = 0;
957 #ifdef CONFIG_AUDITSYSCALL
958 	int dont_count = 0;
959 
960 	/* If either of these, don't count towards total */
961 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
962 		entry->rule.listnr == AUDIT_FILTER_TYPE)
963 		dont_count = 1;
964 #endif
965 
966 	mutex_lock(&audit_filter_mutex);
967 	e = audit_find_rule(entry, &list);
968 	if (!e) {
969 		mutex_unlock(&audit_filter_mutex);
970 		ret = -ENOENT;
971 		goto out;
972 	}
973 
974 	if (e->rule.watch)
975 		audit_remove_watch_rule(&e->rule);
976 
977 	if (e->rule.tree)
978 		audit_remove_tree_rule(&e->rule);
979 
980 	list_del_rcu(&e->list);
981 	list_del(&e->rule.list);
982 	call_rcu(&e->rcu, audit_free_rule_rcu);
983 
984 #ifdef CONFIG_AUDITSYSCALL
985 	if (!dont_count)
986 		audit_n_rules--;
987 
988 	if (!audit_match_signal(entry))
989 		audit_signals--;
990 #endif
991 	mutex_unlock(&audit_filter_mutex);
992 
993 out:
994 	if (watch)
995 		audit_put_watch(watch); /* match initial get */
996 	if (tree)
997 		audit_put_tree(tree);	/* that's the temporary one */
998 
999 	return ret;
1000 }
1001 
1002 /* List rules using struct audit_rule_data. */
1003 static void audit_list_rules(__u32 portid, int seq, struct sk_buff_head *q)
1004 {
1005 	struct sk_buff *skb;
1006 	struct audit_krule *r;
1007 	int i;
1008 
1009 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1010 	 * iterator to sync with list writers. */
1011 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1012 		list_for_each_entry(r, &audit_rules_list[i], list) {
1013 			struct audit_rule_data *data;
1014 
1015 			data = audit_krule_to_data(r);
1016 			if (unlikely(!data))
1017 				break;
1018 			skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES,
1019 					       0, 1, data,
1020 					       sizeof(*data) + data->buflen);
1021 			if (skb)
1022 				skb_queue_tail(q, skb);
1023 			kfree(data);
1024 		}
1025 	}
1026 	skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1027 	if (skb)
1028 		skb_queue_tail(q, skb);
1029 }
1030 
1031 /* Log rule additions and removals */
1032 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1033 {
1034 	struct audit_buffer *ab;
1035 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1036 	unsigned int sessionid = audit_get_sessionid(current);
1037 
1038 	if (!audit_enabled)
1039 		return;
1040 
1041 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1042 	if (!ab)
1043 		return;
1044 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1045 	audit_log_task_context(ab);
1046 	audit_log_format(ab, " op=");
1047 	audit_log_string(ab, action);
1048 	audit_log_key(ab, rule->filterkey);
1049 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1050 	audit_log_end(ab);
1051 }
1052 
1053 /**
1054  * audit_rule_change - apply all rules to the specified message type
1055  * @type: audit message type
1056  * @portid: target port id for netlink audit messages
1057  * @seq: netlink audit message sequence (serial) number
1058  * @data: payload data
1059  * @datasz: size of payload data
1060  */
1061 int audit_rule_change(int type, __u32 portid, int seq, void *data,
1062 			size_t datasz)
1063 {
1064 	int err = 0;
1065 	struct audit_entry *entry;
1066 
1067 	entry = audit_data_to_entry(data, datasz);
1068 	if (IS_ERR(entry))
1069 		return PTR_ERR(entry);
1070 
1071 	switch (type) {
1072 	case AUDIT_ADD_RULE:
1073 		err = audit_add_rule(entry);
1074 		audit_log_rule_change("add_rule", &entry->rule, !err);
1075 		break;
1076 	case AUDIT_DEL_RULE:
1077 		err = audit_del_rule(entry);
1078 		audit_log_rule_change("remove_rule", &entry->rule, !err);
1079 		break;
1080 	default:
1081 		err = -EINVAL;
1082 		WARN_ON(1);
1083 	}
1084 
1085 	if (err || type == AUDIT_DEL_RULE)
1086 		audit_free_rule(entry);
1087 
1088 	return err;
1089 }
1090 
1091 /**
1092  * audit_list_rules_send - list the audit rules
1093  * @request_skb: skb of request we are replying to (used to target the reply)
1094  * @seq: netlink audit message sequence (serial) number
1095  */
1096 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1097 {
1098 	u32 portid = NETLINK_CB(request_skb).portid;
1099 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
1100 	struct task_struct *tsk;
1101 	struct audit_netlink_list *dest;
1102 	int err = 0;
1103 
1104 	/* We can't just spew out the rules here because we might fill
1105 	 * the available socket buffer space and deadlock waiting for
1106 	 * auditctl to read from it... which isn't ever going to
1107 	 * happen if we're actually running in the context of auditctl
1108 	 * trying to _send_ the stuff */
1109 
1110 	dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1111 	if (!dest)
1112 		return -ENOMEM;
1113 	dest->net = get_net(net);
1114 	dest->portid = portid;
1115 	skb_queue_head_init(&dest->q);
1116 
1117 	mutex_lock(&audit_filter_mutex);
1118 	audit_list_rules(portid, seq, &dest->q);
1119 	mutex_unlock(&audit_filter_mutex);
1120 
1121 	tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1122 	if (IS_ERR(tsk)) {
1123 		skb_queue_purge(&dest->q);
1124 		kfree(dest);
1125 		err = PTR_ERR(tsk);
1126 	}
1127 
1128 	return err;
1129 }
1130 
1131 int audit_comparator(u32 left, u32 op, u32 right)
1132 {
1133 	switch (op) {
1134 	case Audit_equal:
1135 		return (left == right);
1136 	case Audit_not_equal:
1137 		return (left != right);
1138 	case Audit_lt:
1139 		return (left < right);
1140 	case Audit_le:
1141 		return (left <= right);
1142 	case Audit_gt:
1143 		return (left > right);
1144 	case Audit_ge:
1145 		return (left >= right);
1146 	case Audit_bitmask:
1147 		return (left & right);
1148 	case Audit_bittest:
1149 		return ((left & right) == right);
1150 	default:
1151 		BUG();
1152 		return 0;
1153 	}
1154 }
1155 
1156 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1157 {
1158 	switch (op) {
1159 	case Audit_equal:
1160 		return uid_eq(left, right);
1161 	case Audit_not_equal:
1162 		return !uid_eq(left, right);
1163 	case Audit_lt:
1164 		return uid_lt(left, right);
1165 	case Audit_le:
1166 		return uid_lte(left, right);
1167 	case Audit_gt:
1168 		return uid_gt(left, right);
1169 	case Audit_ge:
1170 		return uid_gte(left, right);
1171 	case Audit_bitmask:
1172 	case Audit_bittest:
1173 	default:
1174 		BUG();
1175 		return 0;
1176 	}
1177 }
1178 
1179 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1180 {
1181 	switch (op) {
1182 	case Audit_equal:
1183 		return gid_eq(left, right);
1184 	case Audit_not_equal:
1185 		return !gid_eq(left, right);
1186 	case Audit_lt:
1187 		return gid_lt(left, right);
1188 	case Audit_le:
1189 		return gid_lte(left, right);
1190 	case Audit_gt:
1191 		return gid_gt(left, right);
1192 	case Audit_ge:
1193 		return gid_gte(left, right);
1194 	case Audit_bitmask:
1195 	case Audit_bittest:
1196 	default:
1197 		BUG();
1198 		return 0;
1199 	}
1200 }
1201 
1202 /**
1203  * parent_len - find the length of the parent portion of a pathname
1204  * @path: pathname of which to determine length
1205  */
1206 int parent_len(const char *path)
1207 {
1208 	int plen;
1209 	const char *p;
1210 
1211 	plen = strlen(path);
1212 
1213 	if (plen == 0)
1214 		return plen;
1215 
1216 	/* disregard trailing slashes */
1217 	p = path + plen - 1;
1218 	while ((*p == '/') && (p > path))
1219 		p--;
1220 
1221 	/* walk backward until we find the next slash or hit beginning */
1222 	while ((*p != '/') && (p > path))
1223 		p--;
1224 
1225 	/* did we find a slash? Then increment to include it in path */
1226 	if (*p == '/')
1227 		p++;
1228 
1229 	return p - path;
1230 }
1231 
1232 /**
1233  * audit_compare_dname_path - compare given dentry name with last component in
1234  * 			      given path. Return of 0 indicates a match.
1235  * @dname:	dentry name that we're comparing
1236  * @path:	full pathname that we're comparing
1237  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1238  * 		here indicates that we must compute this value.
1239  */
1240 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1241 {
1242 	int dlen, pathlen;
1243 	const char *p;
1244 
1245 	dlen = strlen(dname);
1246 	pathlen = strlen(path);
1247 	if (pathlen < dlen)
1248 		return 1;
1249 
1250 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1251 	if (pathlen - parentlen != dlen)
1252 		return 1;
1253 
1254 	p = path + parentlen;
1255 
1256 	return strncmp(p, dname, dlen);
1257 }
1258 
1259 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1260 				   enum audit_state *state)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; i < rule->field_count; i++) {
1265 		struct audit_field *f = &rule->fields[i];
1266 		pid_t pid;
1267 		int result = 0;
1268 		u32 sid;
1269 
1270 		switch (f->type) {
1271 		case AUDIT_PID:
1272 			pid = task_pid_nr(current);
1273 			result = audit_comparator(pid, f->op, f->val);
1274 			break;
1275 		case AUDIT_UID:
1276 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1277 			break;
1278 		case AUDIT_GID:
1279 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1280 			break;
1281 		case AUDIT_LOGINUID:
1282 			result = audit_uid_comparator(audit_get_loginuid(current),
1283 						  f->op, f->uid);
1284 			break;
1285 		case AUDIT_LOGINUID_SET:
1286 			result = audit_comparator(audit_loginuid_set(current),
1287 						  f->op, f->val);
1288 			break;
1289 		case AUDIT_MSGTYPE:
1290 			result = audit_comparator(type, f->op, f->val);
1291 			break;
1292 		case AUDIT_SUBJ_USER:
1293 		case AUDIT_SUBJ_ROLE:
1294 		case AUDIT_SUBJ_TYPE:
1295 		case AUDIT_SUBJ_SEN:
1296 		case AUDIT_SUBJ_CLR:
1297 			if (f->lsm_rule) {
1298 				security_task_getsecid(current, &sid);
1299 				result = security_audit_rule_match(sid,
1300 								   f->type,
1301 								   f->op,
1302 								   f->lsm_rule,
1303 								   NULL);
1304 			}
1305 			break;
1306 		}
1307 
1308 		if (!result)
1309 			return 0;
1310 	}
1311 	switch (rule->action) {
1312 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1313 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1314 	}
1315 	return 1;
1316 }
1317 
1318 int audit_filter_user(int type)
1319 {
1320 	enum audit_state state = AUDIT_DISABLED;
1321 	struct audit_entry *e;
1322 	int rc, ret;
1323 
1324 	ret = 1; /* Audit by default */
1325 
1326 	rcu_read_lock();
1327 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1328 		rc = audit_filter_user_rules(&e->rule, type, &state);
1329 		if (rc) {
1330 			if (rc > 0 && state == AUDIT_DISABLED)
1331 				ret = 0;
1332 			break;
1333 		}
1334 	}
1335 	rcu_read_unlock();
1336 
1337 	return ret;
1338 }
1339 
1340 int audit_filter_type(int type)
1341 {
1342 	struct audit_entry *e;
1343 	int result = 0;
1344 
1345 	rcu_read_lock();
1346 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1347 		goto unlock_and_return;
1348 
1349 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1350 				list) {
1351 		int i;
1352 		for (i = 0; i < e->rule.field_count; i++) {
1353 			struct audit_field *f = &e->rule.fields[i];
1354 			if (f->type == AUDIT_MSGTYPE) {
1355 				result = audit_comparator(type, f->op, f->val);
1356 				if (!result)
1357 					break;
1358 			}
1359 		}
1360 		if (result)
1361 			goto unlock_and_return;
1362 	}
1363 unlock_and_return:
1364 	rcu_read_unlock();
1365 	return result;
1366 }
1367 
1368 static int update_lsm_rule(struct audit_krule *r)
1369 {
1370 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1371 	struct audit_entry *nentry;
1372 	int err = 0;
1373 
1374 	if (!security_audit_rule_known(r))
1375 		return 0;
1376 
1377 	nentry = audit_dupe_rule(r);
1378 	if (IS_ERR(nentry)) {
1379 		/* save the first error encountered for the
1380 		 * return value */
1381 		err = PTR_ERR(nentry);
1382 		audit_panic("error updating LSM filters");
1383 		if (r->watch)
1384 			list_del(&r->rlist);
1385 		list_del_rcu(&entry->list);
1386 		list_del(&r->list);
1387 	} else {
1388 		if (r->watch || r->tree)
1389 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1390 		list_replace_rcu(&entry->list, &nentry->list);
1391 		list_replace(&r->list, &nentry->rule.list);
1392 	}
1393 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1394 
1395 	return err;
1396 }
1397 
1398 /* This function will re-initialize the lsm_rule field of all applicable rules.
1399  * It will traverse the filter lists serarching for rules that contain LSM
1400  * specific filter fields.  When such a rule is found, it is copied, the
1401  * LSM field is re-initialized, and the old rule is replaced with the
1402  * updated rule. */
1403 int audit_update_lsm_rules(void)
1404 {
1405 	struct audit_krule *r, *n;
1406 	int i, err = 0;
1407 
1408 	/* audit_filter_mutex synchronizes the writers */
1409 	mutex_lock(&audit_filter_mutex);
1410 
1411 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1412 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1413 			int res = update_lsm_rule(r);
1414 			if (!err)
1415 				err = res;
1416 		}
1417 	}
1418 	mutex_unlock(&audit_filter_mutex);
1419 
1420 	return err;
1421 }
1422