xref: /openbmc/linux/kernel/auditfilter.c (revision dc9eb698)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/security.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		LSM rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /* Audit filter lists, defined in <linux/audit.h> */
48 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
49 	LIST_HEAD_INIT(audit_filter_list[0]),
50 	LIST_HEAD_INIT(audit_filter_list[1]),
51 	LIST_HEAD_INIT(audit_filter_list[2]),
52 	LIST_HEAD_INIT(audit_filter_list[3]),
53 	LIST_HEAD_INIT(audit_filter_list[4]),
54 	LIST_HEAD_INIT(audit_filter_list[5]),
55 #if AUDIT_NR_FILTERS != 6
56 #error Fix audit_filter_list initialiser
57 #endif
58 };
59 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
60 	LIST_HEAD_INIT(audit_rules_list[0]),
61 	LIST_HEAD_INIT(audit_rules_list[1]),
62 	LIST_HEAD_INIT(audit_rules_list[2]),
63 	LIST_HEAD_INIT(audit_rules_list[3]),
64 	LIST_HEAD_INIT(audit_rules_list[4]),
65 	LIST_HEAD_INIT(audit_rules_list[5]),
66 };
67 
68 DEFINE_MUTEX(audit_filter_mutex);
69 
70 static inline void audit_free_rule(struct audit_entry *e)
71 {
72 	int i;
73 	struct audit_krule *erule = &e->rule;
74 
75 	/* some rules don't have associated watches */
76 	if (erule->watch)
77 		audit_put_watch(erule->watch);
78 	if (erule->fields)
79 		for (i = 0; i < erule->field_count; i++) {
80 			struct audit_field *f = &erule->fields[i];
81 			kfree(f->lsm_str);
82 			security_audit_rule_free(f->lsm_rule);
83 		}
84 	kfree(erule->fields);
85 	kfree(erule->filterkey);
86 	kfree(e);
87 }
88 
89 void audit_free_rule_rcu(struct rcu_head *head)
90 {
91 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
92 	audit_free_rule(e);
93 }
94 
95 /* Initialize an audit filterlist entry. */
96 static inline struct audit_entry *audit_init_entry(u32 field_count)
97 {
98 	struct audit_entry *entry;
99 	struct audit_field *fields;
100 
101 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 	if (unlikely(!entry))
103 		return NULL;
104 
105 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
106 	if (unlikely(!fields)) {
107 		kfree(entry);
108 		return NULL;
109 	}
110 	entry->rule.fields = fields;
111 
112 	return entry;
113 }
114 
115 /* Unpack a filter field's string representation from user-space
116  * buffer. */
117 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
118 {
119 	char *str;
120 
121 	if (!*bufp || (len == 0) || (len > *remain))
122 		return ERR_PTR(-EINVAL);
123 
124 	/* Of the currently implemented string fields, PATH_MAX
125 	 * defines the longest valid length.
126 	 */
127 	if (len > PATH_MAX)
128 		return ERR_PTR(-ENAMETOOLONG);
129 
130 	str = kmalloc(len + 1, GFP_KERNEL);
131 	if (unlikely(!str))
132 		return ERR_PTR(-ENOMEM);
133 
134 	memcpy(str, *bufp, len);
135 	str[len] = 0;
136 	*bufp += len;
137 	*remain -= len;
138 
139 	return str;
140 }
141 
142 /* Translate an inode field to kernel respresentation. */
143 static inline int audit_to_inode(struct audit_krule *krule,
144 				 struct audit_field *f)
145 {
146 	if (krule->listnr != AUDIT_FILTER_EXIT ||
147 	    krule->watch || krule->inode_f || krule->tree ||
148 	    (f->op != Audit_equal && f->op != Audit_not_equal))
149 		return -EINVAL;
150 
151 	krule->inode_f = f;
152 	return 0;
153 }
154 
155 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
156 
157 int __init audit_register_class(int class, unsigned *list)
158 {
159 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
160 	if (!p)
161 		return -ENOMEM;
162 	while (*list != ~0U) {
163 		unsigned n = *list++;
164 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
165 			kfree(p);
166 			return -EINVAL;
167 		}
168 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
169 	}
170 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
171 		kfree(p);
172 		return -EINVAL;
173 	}
174 	classes[class] = p;
175 	return 0;
176 }
177 
178 int audit_match_class(int class, unsigned syscall)
179 {
180 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
181 		return 0;
182 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
183 		return 0;
184 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
185 }
186 
187 #ifdef CONFIG_AUDITSYSCALL
188 static inline int audit_match_class_bits(int class, u32 *mask)
189 {
190 	int i;
191 
192 	if (classes[class]) {
193 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
194 			if (mask[i] & classes[class][i])
195 				return 0;
196 	}
197 	return 1;
198 }
199 
200 static int audit_match_signal(struct audit_entry *entry)
201 {
202 	struct audit_field *arch = entry->rule.arch_f;
203 
204 	if (!arch) {
205 		/* When arch is unspecified, we must check both masks on biarch
206 		 * as syscall number alone is ambiguous. */
207 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
208 					       entry->rule.mask) &&
209 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
210 					       entry->rule.mask));
211 	}
212 
213 	switch(audit_classify_arch(arch->val)) {
214 	case 0: /* native */
215 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 					       entry->rule.mask));
217 	case 1: /* 32bit on biarch */
218 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
219 					       entry->rule.mask));
220 	default:
221 		return 1;
222 	}
223 }
224 #endif
225 
226 /* Common user-space to kernel rule translation. */
227 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
228 {
229 	unsigned listnr;
230 	struct audit_entry *entry;
231 	int i, err;
232 
233 	err = -EINVAL;
234 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
235 	switch(listnr) {
236 	default:
237 		goto exit_err;
238 #ifdef CONFIG_AUDITSYSCALL
239 	case AUDIT_FILTER_ENTRY:
240 		if (rule->action == AUDIT_ALWAYS)
241 			goto exit_err;
242 	case AUDIT_FILTER_EXIT:
243 	case AUDIT_FILTER_TASK:
244 #endif
245 	case AUDIT_FILTER_USER:
246 	case AUDIT_FILTER_TYPE:
247 		;
248 	}
249 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
250 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
251 		goto exit_err;
252 	}
253 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
254 		goto exit_err;
255 	if (rule->field_count > AUDIT_MAX_FIELDS)
256 		goto exit_err;
257 
258 	err = -ENOMEM;
259 	entry = audit_init_entry(rule->field_count);
260 	if (!entry)
261 		goto exit_err;
262 
263 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
264 	entry->rule.listnr = listnr;
265 	entry->rule.action = rule->action;
266 	entry->rule.field_count = rule->field_count;
267 
268 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
269 		entry->rule.mask[i] = rule->mask[i];
270 
271 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
272 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
273 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
274 		__u32 *class;
275 
276 		if (!(*p & AUDIT_BIT(bit)))
277 			continue;
278 		*p &= ~AUDIT_BIT(bit);
279 		class = classes[i];
280 		if (class) {
281 			int j;
282 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
283 				entry->rule.mask[j] |= class[j];
284 		}
285 	}
286 
287 	return entry;
288 
289 exit_err:
290 	return ERR_PTR(err);
291 }
292 
293 static u32 audit_ops[] =
294 {
295 	[Audit_equal] = AUDIT_EQUAL,
296 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
297 	[Audit_bitmask] = AUDIT_BIT_MASK,
298 	[Audit_bittest] = AUDIT_BIT_TEST,
299 	[Audit_lt] = AUDIT_LESS_THAN,
300 	[Audit_gt] = AUDIT_GREATER_THAN,
301 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
302 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
303 };
304 
305 static u32 audit_to_op(u32 op)
306 {
307 	u32 n;
308 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
309 		;
310 	return n;
311 }
312 
313 /* check if an audit field is valid */
314 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
315 {
316 	switch(f->type) {
317 	case AUDIT_MSGTYPE:
318 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
319 		    entry->rule.listnr != AUDIT_FILTER_USER)
320 			return -EINVAL;
321 		break;
322 	};
323 
324 	switch(f->type) {
325 	default:
326 		return -EINVAL;
327 	case AUDIT_UID:
328 	case AUDIT_EUID:
329 	case AUDIT_SUID:
330 	case AUDIT_FSUID:
331 	case AUDIT_LOGINUID:
332 	case AUDIT_OBJ_UID:
333 	case AUDIT_GID:
334 	case AUDIT_EGID:
335 	case AUDIT_SGID:
336 	case AUDIT_FSGID:
337 	case AUDIT_OBJ_GID:
338 	case AUDIT_PID:
339 	case AUDIT_PERS:
340 	case AUDIT_MSGTYPE:
341 	case AUDIT_PPID:
342 	case AUDIT_DEVMAJOR:
343 	case AUDIT_DEVMINOR:
344 	case AUDIT_EXIT:
345 	case AUDIT_SUCCESS:
346 		/* bit ops are only useful on syscall args */
347 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
348 			return -EINVAL;
349 		break;
350 	case AUDIT_ARG0:
351 	case AUDIT_ARG1:
352 	case AUDIT_ARG2:
353 	case AUDIT_ARG3:
354 	case AUDIT_SUBJ_USER:
355 	case AUDIT_SUBJ_ROLE:
356 	case AUDIT_SUBJ_TYPE:
357 	case AUDIT_SUBJ_SEN:
358 	case AUDIT_SUBJ_CLR:
359 	case AUDIT_OBJ_USER:
360 	case AUDIT_OBJ_ROLE:
361 	case AUDIT_OBJ_TYPE:
362 	case AUDIT_OBJ_LEV_LOW:
363 	case AUDIT_OBJ_LEV_HIGH:
364 	case AUDIT_WATCH:
365 	case AUDIT_DIR:
366 	case AUDIT_FILTERKEY:
367 		break;
368 	/* arch is only allowed to be = or != */
369 	case AUDIT_ARCH:
370 		if (f->op != Audit_not_equal && f->op != Audit_equal)
371 			return -EINVAL;
372 		break;
373 	case AUDIT_PERM:
374 		if (f->val & ~15)
375 			return -EINVAL;
376 		break;
377 	case AUDIT_FILETYPE:
378 		if (f->val & ~S_IFMT)
379 			return -EINVAL;
380 		break;
381 	case AUDIT_FIELD_COMPARE:
382 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
383 			return -EINVAL;
384 		break;
385 	};
386 	return 0;
387 }
388 
389 /* Translate struct audit_rule_data to kernel's rule respresentation. */
390 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
391 					       size_t datasz)
392 {
393 	int err = 0;
394 	struct audit_entry *entry;
395 	void *bufp;
396 	size_t remain = datasz - sizeof(struct audit_rule_data);
397 	int i;
398 	char *str;
399 
400 	entry = audit_to_entry_common((struct audit_rule *)data);
401 	if (IS_ERR(entry))
402 		goto exit_nofree;
403 
404 	bufp = data->buf;
405 	entry->rule.vers_ops = 2;
406 	for (i = 0; i < data->field_count; i++) {
407 		struct audit_field *f = &entry->rule.fields[i];
408 
409 		err = -EINVAL;
410 
411 		f->op = audit_to_op(data->fieldflags[i]);
412 		if (f->op == Audit_bad)
413 			goto exit_free;
414 
415 		f->type = data->fields[i];
416 		f->val = data->values[i];
417 		f->uid = INVALID_UID;
418 		f->gid = INVALID_GID;
419 		f->lsm_str = NULL;
420 		f->lsm_rule = NULL;
421 
422 		err = audit_field_valid(entry, f);
423 		if (err)
424 			goto exit_free;
425 
426 		err = -EINVAL;
427 		switch (f->type) {
428 		case AUDIT_UID:
429 		case AUDIT_EUID:
430 		case AUDIT_SUID:
431 		case AUDIT_FSUID:
432 		case AUDIT_LOGINUID:
433 		case AUDIT_OBJ_UID:
434 			f->uid = make_kuid(current_user_ns(), f->val);
435 			if (!uid_valid(f->uid))
436 				goto exit_free;
437 			break;
438 		case AUDIT_GID:
439 		case AUDIT_EGID:
440 		case AUDIT_SGID:
441 		case AUDIT_FSGID:
442 		case AUDIT_OBJ_GID:
443 			f->gid = make_kgid(current_user_ns(), f->val);
444 			if (!gid_valid(f->gid))
445 				goto exit_free;
446 			break;
447 		case AUDIT_ARCH:
448 			entry->rule.arch_f = f;
449 			break;
450 		case AUDIT_SUBJ_USER:
451 		case AUDIT_SUBJ_ROLE:
452 		case AUDIT_SUBJ_TYPE:
453 		case AUDIT_SUBJ_SEN:
454 		case AUDIT_SUBJ_CLR:
455 		case AUDIT_OBJ_USER:
456 		case AUDIT_OBJ_ROLE:
457 		case AUDIT_OBJ_TYPE:
458 		case AUDIT_OBJ_LEV_LOW:
459 		case AUDIT_OBJ_LEV_HIGH:
460 			str = audit_unpack_string(&bufp, &remain, f->val);
461 			if (IS_ERR(str))
462 				goto exit_free;
463 			entry->rule.buflen += f->val;
464 
465 			err = security_audit_rule_init(f->type, f->op, str,
466 						       (void **)&f->lsm_rule);
467 			/* Keep currently invalid fields around in case they
468 			 * become valid after a policy reload. */
469 			if (err == -EINVAL) {
470 				printk(KERN_WARNING "audit rule for LSM "
471 				       "\'%s\' is invalid\n",  str);
472 				err = 0;
473 			}
474 			if (err) {
475 				kfree(str);
476 				goto exit_free;
477 			} else
478 				f->lsm_str = str;
479 			break;
480 		case AUDIT_WATCH:
481 			str = audit_unpack_string(&bufp, &remain, f->val);
482 			if (IS_ERR(str))
483 				goto exit_free;
484 			entry->rule.buflen += f->val;
485 
486 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
487 			if (err) {
488 				kfree(str);
489 				goto exit_free;
490 			}
491 			break;
492 		case AUDIT_DIR:
493 			str = audit_unpack_string(&bufp, &remain, f->val);
494 			if (IS_ERR(str))
495 				goto exit_free;
496 			entry->rule.buflen += f->val;
497 
498 			err = audit_make_tree(&entry->rule, str, f->op);
499 			kfree(str);
500 			if (err)
501 				goto exit_free;
502 			break;
503 		case AUDIT_INODE:
504 			err = audit_to_inode(&entry->rule, f);
505 			if (err)
506 				goto exit_free;
507 			break;
508 		case AUDIT_FILTERKEY:
509 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
510 				goto exit_free;
511 			str = audit_unpack_string(&bufp, &remain, f->val);
512 			if (IS_ERR(str))
513 				goto exit_free;
514 			entry->rule.buflen += f->val;
515 			entry->rule.filterkey = str;
516 			break;
517 		}
518 	}
519 
520 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
521 		entry->rule.inode_f = NULL;
522 
523 exit_nofree:
524 	return entry;
525 
526 exit_free:
527 	audit_free_rule(entry);
528 	return ERR_PTR(err);
529 }
530 
531 /* Pack a filter field's string representation into data block. */
532 static inline size_t audit_pack_string(void **bufp, const char *str)
533 {
534 	size_t len = strlen(str);
535 
536 	memcpy(*bufp, str, len);
537 	*bufp += len;
538 
539 	return len;
540 }
541 
542 /* Translate kernel rule respresentation to struct audit_rule_data. */
543 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
544 {
545 	struct audit_rule_data *data;
546 	void *bufp;
547 	int i;
548 
549 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
550 	if (unlikely(!data))
551 		return NULL;
552 	memset(data, 0, sizeof(*data));
553 
554 	data->flags = krule->flags | krule->listnr;
555 	data->action = krule->action;
556 	data->field_count = krule->field_count;
557 	bufp = data->buf;
558 	for (i = 0; i < data->field_count; i++) {
559 		struct audit_field *f = &krule->fields[i];
560 
561 		data->fields[i] = f->type;
562 		data->fieldflags[i] = audit_ops[f->op];
563 		switch(f->type) {
564 		case AUDIT_SUBJ_USER:
565 		case AUDIT_SUBJ_ROLE:
566 		case AUDIT_SUBJ_TYPE:
567 		case AUDIT_SUBJ_SEN:
568 		case AUDIT_SUBJ_CLR:
569 		case AUDIT_OBJ_USER:
570 		case AUDIT_OBJ_ROLE:
571 		case AUDIT_OBJ_TYPE:
572 		case AUDIT_OBJ_LEV_LOW:
573 		case AUDIT_OBJ_LEV_HIGH:
574 			data->buflen += data->values[i] =
575 				audit_pack_string(&bufp, f->lsm_str);
576 			break;
577 		case AUDIT_WATCH:
578 			data->buflen += data->values[i] =
579 				audit_pack_string(&bufp,
580 						  audit_watch_path(krule->watch));
581 			break;
582 		case AUDIT_DIR:
583 			data->buflen += data->values[i] =
584 				audit_pack_string(&bufp,
585 						  audit_tree_path(krule->tree));
586 			break;
587 		case AUDIT_FILTERKEY:
588 			data->buflen += data->values[i] =
589 				audit_pack_string(&bufp, krule->filterkey);
590 			break;
591 		default:
592 			data->values[i] = f->val;
593 		}
594 	}
595 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
596 
597 	return data;
598 }
599 
600 /* Compare two rules in kernel format.  Considered success if rules
601  * don't match. */
602 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
603 {
604 	int i;
605 
606 	if (a->flags != b->flags ||
607 	    a->listnr != b->listnr ||
608 	    a->action != b->action ||
609 	    a->field_count != b->field_count)
610 		return 1;
611 
612 	for (i = 0; i < a->field_count; i++) {
613 		if (a->fields[i].type != b->fields[i].type ||
614 		    a->fields[i].op != b->fields[i].op)
615 			return 1;
616 
617 		switch(a->fields[i].type) {
618 		case AUDIT_SUBJ_USER:
619 		case AUDIT_SUBJ_ROLE:
620 		case AUDIT_SUBJ_TYPE:
621 		case AUDIT_SUBJ_SEN:
622 		case AUDIT_SUBJ_CLR:
623 		case AUDIT_OBJ_USER:
624 		case AUDIT_OBJ_ROLE:
625 		case AUDIT_OBJ_TYPE:
626 		case AUDIT_OBJ_LEV_LOW:
627 		case AUDIT_OBJ_LEV_HIGH:
628 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
629 				return 1;
630 			break;
631 		case AUDIT_WATCH:
632 			if (strcmp(audit_watch_path(a->watch),
633 				   audit_watch_path(b->watch)))
634 				return 1;
635 			break;
636 		case AUDIT_DIR:
637 			if (strcmp(audit_tree_path(a->tree),
638 				   audit_tree_path(b->tree)))
639 				return 1;
640 			break;
641 		case AUDIT_FILTERKEY:
642 			/* both filterkeys exist based on above type compare */
643 			if (strcmp(a->filterkey, b->filterkey))
644 				return 1;
645 			break;
646 		case AUDIT_UID:
647 		case AUDIT_EUID:
648 		case AUDIT_SUID:
649 		case AUDIT_FSUID:
650 		case AUDIT_LOGINUID:
651 		case AUDIT_OBJ_UID:
652 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
653 				return 1;
654 			break;
655 		case AUDIT_GID:
656 		case AUDIT_EGID:
657 		case AUDIT_SGID:
658 		case AUDIT_FSGID:
659 		case AUDIT_OBJ_GID:
660 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
661 				return 1;
662 			break;
663 		default:
664 			if (a->fields[i].val != b->fields[i].val)
665 				return 1;
666 		}
667 	}
668 
669 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
670 		if (a->mask[i] != b->mask[i])
671 			return 1;
672 
673 	return 0;
674 }
675 
676 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
677  * re-initialized. */
678 static inline int audit_dupe_lsm_field(struct audit_field *df,
679 					   struct audit_field *sf)
680 {
681 	int ret = 0;
682 	char *lsm_str;
683 
684 	/* our own copy of lsm_str */
685 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
686 	if (unlikely(!lsm_str))
687 		return -ENOMEM;
688 	df->lsm_str = lsm_str;
689 
690 	/* our own (refreshed) copy of lsm_rule */
691 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
692 				       (void **)&df->lsm_rule);
693 	/* Keep currently invalid fields around in case they
694 	 * become valid after a policy reload. */
695 	if (ret == -EINVAL) {
696 		printk(KERN_WARNING "audit rule for LSM \'%s\' is "
697 		       "invalid\n", df->lsm_str);
698 		ret = 0;
699 	}
700 
701 	return ret;
702 }
703 
704 /* Duplicate an audit rule.  This will be a deep copy with the exception
705  * of the watch - that pointer is carried over.  The LSM specific fields
706  * will be updated in the copy.  The point is to be able to replace the old
707  * rule with the new rule in the filterlist, then free the old rule.
708  * The rlist element is undefined; list manipulations are handled apart from
709  * the initial copy. */
710 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
711 {
712 	u32 fcount = old->field_count;
713 	struct audit_entry *entry;
714 	struct audit_krule *new;
715 	char *fk;
716 	int i, err = 0;
717 
718 	entry = audit_init_entry(fcount);
719 	if (unlikely(!entry))
720 		return ERR_PTR(-ENOMEM);
721 
722 	new = &entry->rule;
723 	new->vers_ops = old->vers_ops;
724 	new->flags = old->flags;
725 	new->listnr = old->listnr;
726 	new->action = old->action;
727 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
728 		new->mask[i] = old->mask[i];
729 	new->prio = old->prio;
730 	new->buflen = old->buflen;
731 	new->inode_f = old->inode_f;
732 	new->field_count = old->field_count;
733 
734 	/*
735 	 * note that we are OK with not refcounting here; audit_match_tree()
736 	 * never dereferences tree and we can't get false positives there
737 	 * since we'd have to have rule gone from the list *and* removed
738 	 * before the chunks found by lookup had been allocated, i.e. before
739 	 * the beginning of list scan.
740 	 */
741 	new->tree = old->tree;
742 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
743 
744 	/* deep copy this information, updating the lsm_rule fields, because
745 	 * the originals will all be freed when the old rule is freed. */
746 	for (i = 0; i < fcount; i++) {
747 		switch (new->fields[i].type) {
748 		case AUDIT_SUBJ_USER:
749 		case AUDIT_SUBJ_ROLE:
750 		case AUDIT_SUBJ_TYPE:
751 		case AUDIT_SUBJ_SEN:
752 		case AUDIT_SUBJ_CLR:
753 		case AUDIT_OBJ_USER:
754 		case AUDIT_OBJ_ROLE:
755 		case AUDIT_OBJ_TYPE:
756 		case AUDIT_OBJ_LEV_LOW:
757 		case AUDIT_OBJ_LEV_HIGH:
758 			err = audit_dupe_lsm_field(&new->fields[i],
759 						       &old->fields[i]);
760 			break;
761 		case AUDIT_FILTERKEY:
762 			fk = kstrdup(old->filterkey, GFP_KERNEL);
763 			if (unlikely(!fk))
764 				err = -ENOMEM;
765 			else
766 				new->filterkey = fk;
767 		}
768 		if (err) {
769 			audit_free_rule(entry);
770 			return ERR_PTR(err);
771 		}
772 	}
773 
774 	if (old->watch) {
775 		audit_get_watch(old->watch);
776 		new->watch = old->watch;
777 	}
778 
779 	return entry;
780 }
781 
782 /* Find an existing audit rule.
783  * Caller must hold audit_filter_mutex to prevent stale rule data. */
784 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
785 					   struct list_head **p)
786 {
787 	struct audit_entry *e, *found = NULL;
788 	struct list_head *list;
789 	int h;
790 
791 	if (entry->rule.inode_f) {
792 		h = audit_hash_ino(entry->rule.inode_f->val);
793 		*p = list = &audit_inode_hash[h];
794 	} else if (entry->rule.watch) {
795 		/* we don't know the inode number, so must walk entire hash */
796 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
797 			list = &audit_inode_hash[h];
798 			list_for_each_entry(e, list, list)
799 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
800 					found = e;
801 					goto out;
802 				}
803 		}
804 		goto out;
805 	} else {
806 		*p = list = &audit_filter_list[entry->rule.listnr];
807 	}
808 
809 	list_for_each_entry(e, list, list)
810 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
811 			found = e;
812 			goto out;
813 		}
814 
815 out:
816 	return found;
817 }
818 
819 static u64 prio_low = ~0ULL/2;
820 static u64 prio_high = ~0ULL/2 - 1;
821 
822 /* Add rule to given filterlist if not a duplicate. */
823 static inline int audit_add_rule(struct audit_entry *entry)
824 {
825 	struct audit_entry *e;
826 	struct audit_watch *watch = entry->rule.watch;
827 	struct audit_tree *tree = entry->rule.tree;
828 	struct list_head *list;
829 	int err;
830 #ifdef CONFIG_AUDITSYSCALL
831 	int dont_count = 0;
832 
833 	/* If either of these, don't count towards total */
834 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
835 		entry->rule.listnr == AUDIT_FILTER_TYPE)
836 		dont_count = 1;
837 #endif
838 
839 	mutex_lock(&audit_filter_mutex);
840 	e = audit_find_rule(entry, &list);
841 	if (e) {
842 		mutex_unlock(&audit_filter_mutex);
843 		err = -EEXIST;
844 		/* normally audit_add_tree_rule() will free it on failure */
845 		if (tree)
846 			audit_put_tree(tree);
847 		goto error;
848 	}
849 
850 	if (watch) {
851 		/* audit_filter_mutex is dropped and re-taken during this call */
852 		err = audit_add_watch(&entry->rule, &list);
853 		if (err) {
854 			mutex_unlock(&audit_filter_mutex);
855 			goto error;
856 		}
857 	}
858 	if (tree) {
859 		err = audit_add_tree_rule(&entry->rule);
860 		if (err) {
861 			mutex_unlock(&audit_filter_mutex);
862 			goto error;
863 		}
864 	}
865 
866 	entry->rule.prio = ~0ULL;
867 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
868 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
869 			entry->rule.prio = ++prio_high;
870 		else
871 			entry->rule.prio = --prio_low;
872 	}
873 
874 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
875 		list_add(&entry->rule.list,
876 			 &audit_rules_list[entry->rule.listnr]);
877 		list_add_rcu(&entry->list, list);
878 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
879 	} else {
880 		list_add_tail(&entry->rule.list,
881 			      &audit_rules_list[entry->rule.listnr]);
882 		list_add_tail_rcu(&entry->list, list);
883 	}
884 #ifdef CONFIG_AUDITSYSCALL
885 	if (!dont_count)
886 		audit_n_rules++;
887 
888 	if (!audit_match_signal(entry))
889 		audit_signals++;
890 #endif
891 	mutex_unlock(&audit_filter_mutex);
892 
893  	return 0;
894 
895 error:
896 	if (watch)
897 		audit_put_watch(watch); /* tmp watch, matches initial get */
898 	return err;
899 }
900 
901 /* Remove an existing rule from filterlist. */
902 static inline int audit_del_rule(struct audit_entry *entry)
903 {
904 	struct audit_entry  *e;
905 	struct audit_watch *watch = entry->rule.watch;
906 	struct audit_tree *tree = entry->rule.tree;
907 	struct list_head *list;
908 	int ret = 0;
909 #ifdef CONFIG_AUDITSYSCALL
910 	int dont_count = 0;
911 
912 	/* If either of these, don't count towards total */
913 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
914 		entry->rule.listnr == AUDIT_FILTER_TYPE)
915 		dont_count = 1;
916 #endif
917 
918 	mutex_lock(&audit_filter_mutex);
919 	e = audit_find_rule(entry, &list);
920 	if (!e) {
921 		mutex_unlock(&audit_filter_mutex);
922 		ret = -ENOENT;
923 		goto out;
924 	}
925 
926 	if (e->rule.watch)
927 		audit_remove_watch_rule(&e->rule);
928 
929 	if (e->rule.tree)
930 		audit_remove_tree_rule(&e->rule);
931 
932 	list_del_rcu(&e->list);
933 	list_del(&e->rule.list);
934 	call_rcu(&e->rcu, audit_free_rule_rcu);
935 
936 #ifdef CONFIG_AUDITSYSCALL
937 	if (!dont_count)
938 		audit_n_rules--;
939 
940 	if (!audit_match_signal(entry))
941 		audit_signals--;
942 #endif
943 	mutex_unlock(&audit_filter_mutex);
944 
945 out:
946 	if (watch)
947 		audit_put_watch(watch); /* match initial get */
948 	if (tree)
949 		audit_put_tree(tree);	/* that's the temporary one */
950 
951 	return ret;
952 }
953 
954 /* List rules using struct audit_rule_data. */
955 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
956 {
957 	struct sk_buff *skb;
958 	struct audit_krule *r;
959 	int i;
960 
961 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
962 	 * iterator to sync with list writers. */
963 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
964 		list_for_each_entry(r, &audit_rules_list[i], list) {
965 			struct audit_rule_data *data;
966 
967 			data = audit_krule_to_data(r);
968 			if (unlikely(!data))
969 				break;
970 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
971 					 data, sizeof(*data) + data->buflen);
972 			if (skb)
973 				skb_queue_tail(q, skb);
974 			kfree(data);
975 		}
976 	}
977 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
978 	if (skb)
979 		skb_queue_tail(q, skb);
980 }
981 
982 /* Log rule additions and removals */
983 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
984 {
985 	struct audit_buffer *ab;
986 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
987 	u32 sessionid = audit_get_sessionid(current);
988 	u32 sid;
989 
990 	if (!audit_enabled)
991 		return;
992 
993 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
994 	if (!ab)
995 		return;
996 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
997 	security_task_getsecid(current, &sid);
998 	if (sid) {
999 		char *ctx = NULL;
1000 		u32 len;
1001 		if (security_secid_to_secctx(sid, &ctx, &len))
1002 			audit_log_format(ab, " ssid=%u", sid);
1003 		else {
1004 			audit_log_format(ab, " subj=%s", ctx);
1005 			security_release_secctx(ctx, len);
1006 		}
1007 	}
1008 	audit_log_format(ab, " op=");
1009 	audit_log_string(ab, action);
1010 	audit_log_key(ab, rule->filterkey);
1011 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1012 	audit_log_end(ab);
1013 }
1014 
1015 /**
1016  * audit_receive_filter - apply all rules to the specified message type
1017  * @type: audit message type
1018  * @pid: target pid for netlink audit messages
1019  * @seq: netlink audit message sequence (serial) number
1020  * @data: payload data
1021  * @datasz: size of payload data
1022  * @loginuid: loginuid of sender
1023  * @sessionid: sessionid for netlink audit message
1024  * @sid: SE Linux Security ID of sender
1025  */
1026 int audit_receive_filter(int type, int pid, int seq, void *data, size_t datasz)
1027 {
1028 	struct task_struct *tsk;
1029 	struct audit_netlink_list *dest;
1030 	int err = 0;
1031 	struct audit_entry *entry;
1032 
1033 	switch (type) {
1034 	case AUDIT_LIST_RULES:
1035 		/* We can't just spew out the rules here because we might fill
1036 		 * the available socket buffer space and deadlock waiting for
1037 		 * auditctl to read from it... which isn't ever going to
1038 		 * happen if we're actually running in the context of auditctl
1039 		 * trying to _send_ the stuff */
1040 
1041 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1042 		if (!dest)
1043 			return -ENOMEM;
1044 		dest->pid = pid;
1045 		skb_queue_head_init(&dest->q);
1046 
1047 		mutex_lock(&audit_filter_mutex);
1048 		audit_list_rules(pid, seq, &dest->q);
1049 		mutex_unlock(&audit_filter_mutex);
1050 
1051 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1052 		if (IS_ERR(tsk)) {
1053 			skb_queue_purge(&dest->q);
1054 			kfree(dest);
1055 			err = PTR_ERR(tsk);
1056 		}
1057 		break;
1058 	case AUDIT_ADD_RULE:
1059 		entry = audit_data_to_entry(data, datasz);
1060 		if (IS_ERR(entry))
1061 			return PTR_ERR(entry);
1062 
1063 		err = audit_add_rule(entry);
1064 		audit_log_rule_change("add rule", &entry->rule, !err);
1065 		if (err)
1066 			audit_free_rule(entry);
1067 		break;
1068 	case AUDIT_DEL_RULE:
1069 		entry = audit_data_to_entry(data, datasz);
1070 		if (IS_ERR(entry))
1071 			return PTR_ERR(entry);
1072 
1073 		err = audit_del_rule(entry);
1074 		audit_log_rule_change("remove rule", &entry->rule, !err);
1075 		audit_free_rule(entry);
1076 		break;
1077 	default:
1078 		return -EINVAL;
1079 	}
1080 
1081 	return err;
1082 }
1083 
1084 int audit_comparator(u32 left, u32 op, u32 right)
1085 {
1086 	switch (op) {
1087 	case Audit_equal:
1088 		return (left == right);
1089 	case Audit_not_equal:
1090 		return (left != right);
1091 	case Audit_lt:
1092 		return (left < right);
1093 	case Audit_le:
1094 		return (left <= right);
1095 	case Audit_gt:
1096 		return (left > right);
1097 	case Audit_ge:
1098 		return (left >= right);
1099 	case Audit_bitmask:
1100 		return (left & right);
1101 	case Audit_bittest:
1102 		return ((left & right) == right);
1103 	default:
1104 		BUG();
1105 		return 0;
1106 	}
1107 }
1108 
1109 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1110 {
1111 	switch (op) {
1112 	case Audit_equal:
1113 		return uid_eq(left, right);
1114 	case Audit_not_equal:
1115 		return !uid_eq(left, right);
1116 	case Audit_lt:
1117 		return uid_lt(left, right);
1118 	case Audit_le:
1119 		return uid_lte(left, right);
1120 	case Audit_gt:
1121 		return uid_gt(left, right);
1122 	case Audit_ge:
1123 		return uid_gte(left, right);
1124 	case Audit_bitmask:
1125 	case Audit_bittest:
1126 	default:
1127 		BUG();
1128 		return 0;
1129 	}
1130 }
1131 
1132 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1133 {
1134 	switch (op) {
1135 	case Audit_equal:
1136 		return gid_eq(left, right);
1137 	case Audit_not_equal:
1138 		return !gid_eq(left, right);
1139 	case Audit_lt:
1140 		return gid_lt(left, right);
1141 	case Audit_le:
1142 		return gid_lte(left, right);
1143 	case Audit_gt:
1144 		return gid_gt(left, right);
1145 	case Audit_ge:
1146 		return gid_gte(left, right);
1147 	case Audit_bitmask:
1148 	case Audit_bittest:
1149 	default:
1150 		BUG();
1151 		return 0;
1152 	}
1153 }
1154 
1155 /**
1156  * parent_len - find the length of the parent portion of a pathname
1157  * @path: pathname of which to determine length
1158  */
1159 int parent_len(const char *path)
1160 {
1161 	int plen;
1162 	const char *p;
1163 
1164 	plen = strlen(path);
1165 
1166 	if (plen == 0)
1167 		return plen;
1168 
1169 	/* disregard trailing slashes */
1170 	p = path + plen - 1;
1171 	while ((*p == '/') && (p > path))
1172 		p--;
1173 
1174 	/* walk backward until we find the next slash or hit beginning */
1175 	while ((*p != '/') && (p > path))
1176 		p--;
1177 
1178 	/* did we find a slash? Then increment to include it in path */
1179 	if (*p == '/')
1180 		p++;
1181 
1182 	return p - path;
1183 }
1184 
1185 /**
1186  * audit_compare_dname_path - compare given dentry name with last component in
1187  * 			      given path. Return of 0 indicates a match.
1188  * @dname:	dentry name that we're comparing
1189  * @path:	full pathname that we're comparing
1190  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1191  * 		here indicates that we must compute this value.
1192  */
1193 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1194 {
1195 	int dlen, pathlen;
1196 	const char *p;
1197 
1198 	dlen = strlen(dname);
1199 	pathlen = strlen(path);
1200 	if (pathlen < dlen)
1201 		return 1;
1202 
1203 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1204 	if (pathlen - parentlen != dlen)
1205 		return 1;
1206 
1207 	p = path + parentlen;
1208 
1209 	return strncmp(p, dname, dlen);
1210 }
1211 
1212 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1213 				   enum audit_state *state)
1214 {
1215 	int i;
1216 
1217 	for (i = 0; i < rule->field_count; i++) {
1218 		struct audit_field *f = &rule->fields[i];
1219 		int result = 0;
1220 		u32 sid;
1221 
1222 		switch (f->type) {
1223 		case AUDIT_PID:
1224 			result = audit_comparator(task_pid_vnr(current), f->op, f->val);
1225 			break;
1226 		case AUDIT_UID:
1227 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1228 			break;
1229 		case AUDIT_GID:
1230 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1231 			break;
1232 		case AUDIT_LOGINUID:
1233 			result = audit_uid_comparator(audit_get_loginuid(current),
1234 						  f->op, f->uid);
1235 			break;
1236 		case AUDIT_MSGTYPE:
1237 			result = audit_comparator(type, f->op, f->val);
1238 			break;
1239 		case AUDIT_SUBJ_USER:
1240 		case AUDIT_SUBJ_ROLE:
1241 		case AUDIT_SUBJ_TYPE:
1242 		case AUDIT_SUBJ_SEN:
1243 		case AUDIT_SUBJ_CLR:
1244 			if (f->lsm_rule) {
1245 				security_task_getsecid(current, &sid);
1246 				result = security_audit_rule_match(sid,
1247 								   f->type,
1248 								   f->op,
1249 								   f->lsm_rule,
1250 								   NULL);
1251 			}
1252 			break;
1253 		}
1254 
1255 		if (!result)
1256 			return 0;
1257 	}
1258 	switch (rule->action) {
1259 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1260 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1261 	}
1262 	return 1;
1263 }
1264 
1265 int audit_filter_user(int type)
1266 {
1267 	enum audit_state state = AUDIT_DISABLED;
1268 	struct audit_entry *e;
1269 	int ret = 1;
1270 
1271 	rcu_read_lock();
1272 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1273 		if (audit_filter_user_rules(&e->rule, type, &state)) {
1274 			if (state == AUDIT_DISABLED)
1275 				ret = 0;
1276 			break;
1277 		}
1278 	}
1279 	rcu_read_unlock();
1280 
1281 	return ret; /* Audit by default */
1282 }
1283 
1284 int audit_filter_type(int type)
1285 {
1286 	struct audit_entry *e;
1287 	int result = 0;
1288 
1289 	rcu_read_lock();
1290 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1291 		goto unlock_and_return;
1292 
1293 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1294 				list) {
1295 		int i;
1296 		for (i = 0; i < e->rule.field_count; i++) {
1297 			struct audit_field *f = &e->rule.fields[i];
1298 			if (f->type == AUDIT_MSGTYPE) {
1299 				result = audit_comparator(type, f->op, f->val);
1300 				if (!result)
1301 					break;
1302 			}
1303 		}
1304 		if (result)
1305 			goto unlock_and_return;
1306 	}
1307 unlock_and_return:
1308 	rcu_read_unlock();
1309 	return result;
1310 }
1311 
1312 static int update_lsm_rule(struct audit_krule *r)
1313 {
1314 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1315 	struct audit_entry *nentry;
1316 	int err = 0;
1317 
1318 	if (!security_audit_rule_known(r))
1319 		return 0;
1320 
1321 	nentry = audit_dupe_rule(r);
1322 	if (IS_ERR(nentry)) {
1323 		/* save the first error encountered for the
1324 		 * return value */
1325 		err = PTR_ERR(nentry);
1326 		audit_panic("error updating LSM filters");
1327 		if (r->watch)
1328 			list_del(&r->rlist);
1329 		list_del_rcu(&entry->list);
1330 		list_del(&r->list);
1331 	} else {
1332 		if (r->watch || r->tree)
1333 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1334 		list_replace_rcu(&entry->list, &nentry->list);
1335 		list_replace(&r->list, &nentry->rule.list);
1336 	}
1337 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1338 
1339 	return err;
1340 }
1341 
1342 /* This function will re-initialize the lsm_rule field of all applicable rules.
1343  * It will traverse the filter lists serarching for rules that contain LSM
1344  * specific filter fields.  When such a rule is found, it is copied, the
1345  * LSM field is re-initialized, and the old rule is replaced with the
1346  * updated rule. */
1347 int audit_update_lsm_rules(void)
1348 {
1349 	struct audit_krule *r, *n;
1350 	int i, err = 0;
1351 
1352 	/* audit_filter_mutex synchronizes the writers */
1353 	mutex_lock(&audit_filter_mutex);
1354 
1355 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1356 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1357 			int res = update_lsm_rule(r);
1358 			if (!err)
1359 				err = res;
1360 		}
1361 	}
1362 	mutex_unlock(&audit_filter_mutex);
1363 
1364 	return err;
1365 }
1366