1 /* auditfilter.c -- filtering of audit events 2 * 3 * Copyright 2003-2004 Red Hat, Inc. 4 * Copyright 2005 Hewlett-Packard Development Company, L.P. 5 * Copyright 2005 IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/audit.h> 24 #include <linux/kthread.h> 25 #include <linux/mutex.h> 26 #include <linux/fs.h> 27 #include <linux/namei.h> 28 #include <linux/netlink.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/security.h> 32 #include "audit.h" 33 34 /* 35 * Locking model: 36 * 37 * audit_filter_mutex: 38 * Synchronizes writes and blocking reads of audit's filterlist 39 * data. Rcu is used to traverse the filterlist and access 40 * contents of structs audit_entry, audit_watch and opaque 41 * LSM rules during filtering. If modified, these structures 42 * must be copied and replace their counterparts in the filterlist. 43 * An audit_parent struct is not accessed during filtering, so may 44 * be written directly provided audit_filter_mutex is held. 45 */ 46 47 /* Audit filter lists, defined in <linux/audit.h> */ 48 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { 49 LIST_HEAD_INIT(audit_filter_list[0]), 50 LIST_HEAD_INIT(audit_filter_list[1]), 51 LIST_HEAD_INIT(audit_filter_list[2]), 52 LIST_HEAD_INIT(audit_filter_list[3]), 53 LIST_HEAD_INIT(audit_filter_list[4]), 54 LIST_HEAD_INIT(audit_filter_list[5]), 55 #if AUDIT_NR_FILTERS != 6 56 #error Fix audit_filter_list initialiser 57 #endif 58 }; 59 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { 60 LIST_HEAD_INIT(audit_rules_list[0]), 61 LIST_HEAD_INIT(audit_rules_list[1]), 62 LIST_HEAD_INIT(audit_rules_list[2]), 63 LIST_HEAD_INIT(audit_rules_list[3]), 64 LIST_HEAD_INIT(audit_rules_list[4]), 65 LIST_HEAD_INIT(audit_rules_list[5]), 66 }; 67 68 DEFINE_MUTEX(audit_filter_mutex); 69 70 static inline void audit_free_rule(struct audit_entry *e) 71 { 72 int i; 73 struct audit_krule *erule = &e->rule; 74 75 /* some rules don't have associated watches */ 76 if (erule->watch) 77 audit_put_watch(erule->watch); 78 if (erule->fields) 79 for (i = 0; i < erule->field_count; i++) { 80 struct audit_field *f = &erule->fields[i]; 81 kfree(f->lsm_str); 82 security_audit_rule_free(f->lsm_rule); 83 } 84 kfree(erule->fields); 85 kfree(erule->filterkey); 86 kfree(e); 87 } 88 89 void audit_free_rule_rcu(struct rcu_head *head) 90 { 91 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 92 audit_free_rule(e); 93 } 94 95 /* Initialize an audit filterlist entry. */ 96 static inline struct audit_entry *audit_init_entry(u32 field_count) 97 { 98 struct audit_entry *entry; 99 struct audit_field *fields; 100 101 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 102 if (unlikely(!entry)) 103 return NULL; 104 105 fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); 106 if (unlikely(!fields)) { 107 kfree(entry); 108 return NULL; 109 } 110 entry->rule.fields = fields; 111 112 return entry; 113 } 114 115 /* Unpack a filter field's string representation from user-space 116 * buffer. */ 117 char *audit_unpack_string(void **bufp, size_t *remain, size_t len) 118 { 119 char *str; 120 121 if (!*bufp || (len == 0) || (len > *remain)) 122 return ERR_PTR(-EINVAL); 123 124 /* Of the currently implemented string fields, PATH_MAX 125 * defines the longest valid length. 126 */ 127 if (len > PATH_MAX) 128 return ERR_PTR(-ENAMETOOLONG); 129 130 str = kmalloc(len + 1, GFP_KERNEL); 131 if (unlikely(!str)) 132 return ERR_PTR(-ENOMEM); 133 134 memcpy(str, *bufp, len); 135 str[len] = 0; 136 *bufp += len; 137 *remain -= len; 138 139 return str; 140 } 141 142 /* Translate an inode field to kernel respresentation. */ 143 static inline int audit_to_inode(struct audit_krule *krule, 144 struct audit_field *f) 145 { 146 if (krule->listnr != AUDIT_FILTER_EXIT || 147 krule->watch || krule->inode_f || krule->tree || 148 (f->op != Audit_equal && f->op != Audit_not_equal)) 149 return -EINVAL; 150 151 krule->inode_f = f; 152 return 0; 153 } 154 155 static __u32 *classes[AUDIT_SYSCALL_CLASSES]; 156 157 int __init audit_register_class(int class, unsigned *list) 158 { 159 __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL); 160 if (!p) 161 return -ENOMEM; 162 while (*list != ~0U) { 163 unsigned n = *list++; 164 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { 165 kfree(p); 166 return -EINVAL; 167 } 168 p[AUDIT_WORD(n)] |= AUDIT_BIT(n); 169 } 170 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { 171 kfree(p); 172 return -EINVAL; 173 } 174 classes[class] = p; 175 return 0; 176 } 177 178 int audit_match_class(int class, unsigned syscall) 179 { 180 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) 181 return 0; 182 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) 183 return 0; 184 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); 185 } 186 187 #ifdef CONFIG_AUDITSYSCALL 188 static inline int audit_match_class_bits(int class, u32 *mask) 189 { 190 int i; 191 192 if (classes[class]) { 193 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 194 if (mask[i] & classes[class][i]) 195 return 0; 196 } 197 return 1; 198 } 199 200 static int audit_match_signal(struct audit_entry *entry) 201 { 202 struct audit_field *arch = entry->rule.arch_f; 203 204 if (!arch) { 205 /* When arch is unspecified, we must check both masks on biarch 206 * as syscall number alone is ambiguous. */ 207 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 208 entry->rule.mask) && 209 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 210 entry->rule.mask)); 211 } 212 213 switch(audit_classify_arch(arch->val)) { 214 case 0: /* native */ 215 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 216 entry->rule.mask)); 217 case 1: /* 32bit on biarch */ 218 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 219 entry->rule.mask)); 220 default: 221 return 1; 222 } 223 } 224 #endif 225 226 /* Common user-space to kernel rule translation. */ 227 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) 228 { 229 unsigned listnr; 230 struct audit_entry *entry; 231 int i, err; 232 233 err = -EINVAL; 234 listnr = rule->flags & ~AUDIT_FILTER_PREPEND; 235 switch(listnr) { 236 default: 237 goto exit_err; 238 #ifdef CONFIG_AUDITSYSCALL 239 case AUDIT_FILTER_ENTRY: 240 if (rule->action == AUDIT_ALWAYS) 241 goto exit_err; 242 case AUDIT_FILTER_EXIT: 243 case AUDIT_FILTER_TASK: 244 #endif 245 case AUDIT_FILTER_USER: 246 case AUDIT_FILTER_TYPE: 247 ; 248 } 249 if (unlikely(rule->action == AUDIT_POSSIBLE)) { 250 printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n"); 251 goto exit_err; 252 } 253 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) 254 goto exit_err; 255 if (rule->field_count > AUDIT_MAX_FIELDS) 256 goto exit_err; 257 258 err = -ENOMEM; 259 entry = audit_init_entry(rule->field_count); 260 if (!entry) 261 goto exit_err; 262 263 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; 264 entry->rule.listnr = listnr; 265 entry->rule.action = rule->action; 266 entry->rule.field_count = rule->field_count; 267 268 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 269 entry->rule.mask[i] = rule->mask[i]; 270 271 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { 272 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; 273 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; 274 __u32 *class; 275 276 if (!(*p & AUDIT_BIT(bit))) 277 continue; 278 *p &= ~AUDIT_BIT(bit); 279 class = classes[i]; 280 if (class) { 281 int j; 282 for (j = 0; j < AUDIT_BITMASK_SIZE; j++) 283 entry->rule.mask[j] |= class[j]; 284 } 285 } 286 287 return entry; 288 289 exit_err: 290 return ERR_PTR(err); 291 } 292 293 static u32 audit_ops[] = 294 { 295 [Audit_equal] = AUDIT_EQUAL, 296 [Audit_not_equal] = AUDIT_NOT_EQUAL, 297 [Audit_bitmask] = AUDIT_BIT_MASK, 298 [Audit_bittest] = AUDIT_BIT_TEST, 299 [Audit_lt] = AUDIT_LESS_THAN, 300 [Audit_gt] = AUDIT_GREATER_THAN, 301 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, 302 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, 303 }; 304 305 static u32 audit_to_op(u32 op) 306 { 307 u32 n; 308 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) 309 ; 310 return n; 311 } 312 313 314 /* Translate struct audit_rule to kernel's rule respresentation. 315 * Exists for backward compatibility with userspace. */ 316 static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule) 317 { 318 struct audit_entry *entry; 319 int err = 0; 320 int i; 321 322 entry = audit_to_entry_common(rule); 323 if (IS_ERR(entry)) 324 goto exit_nofree; 325 326 for (i = 0; i < rule->field_count; i++) { 327 struct audit_field *f = &entry->rule.fields[i]; 328 u32 n; 329 330 n = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS); 331 332 /* Support for legacy operators where 333 * AUDIT_NEGATE bit signifies != and otherwise assumes == */ 334 if (n & AUDIT_NEGATE) 335 f->op = Audit_not_equal; 336 else if (!n) 337 f->op = Audit_equal; 338 else 339 f->op = audit_to_op(n); 340 341 entry->rule.vers_ops = (n & AUDIT_OPERATORS) ? 2 : 1; 342 343 f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS); 344 f->val = rule->values[i]; 345 346 err = -EINVAL; 347 if (f->op == Audit_bad) 348 goto exit_free; 349 350 switch(f->type) { 351 default: 352 goto exit_free; 353 case AUDIT_PID: 354 case AUDIT_UID: 355 case AUDIT_EUID: 356 case AUDIT_SUID: 357 case AUDIT_FSUID: 358 case AUDIT_GID: 359 case AUDIT_EGID: 360 case AUDIT_SGID: 361 case AUDIT_FSGID: 362 case AUDIT_LOGINUID: 363 case AUDIT_PERS: 364 case AUDIT_MSGTYPE: 365 case AUDIT_PPID: 366 case AUDIT_DEVMAJOR: 367 case AUDIT_DEVMINOR: 368 case AUDIT_EXIT: 369 case AUDIT_SUCCESS: 370 /* bit ops are only useful on syscall args */ 371 if (f->op == Audit_bitmask || f->op == Audit_bittest) 372 goto exit_free; 373 break; 374 case AUDIT_ARG0: 375 case AUDIT_ARG1: 376 case AUDIT_ARG2: 377 case AUDIT_ARG3: 378 break; 379 /* arch is only allowed to be = or != */ 380 case AUDIT_ARCH: 381 if (f->op != Audit_not_equal && f->op != Audit_equal) 382 goto exit_free; 383 entry->rule.arch_f = f; 384 break; 385 case AUDIT_PERM: 386 if (f->val & ~15) 387 goto exit_free; 388 break; 389 case AUDIT_FILETYPE: 390 if (f->val & ~S_IFMT) 391 goto exit_free; 392 break; 393 case AUDIT_INODE: 394 err = audit_to_inode(&entry->rule, f); 395 if (err) 396 goto exit_free; 397 break; 398 } 399 } 400 401 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 402 entry->rule.inode_f = NULL; 403 404 exit_nofree: 405 return entry; 406 407 exit_free: 408 audit_free_rule(entry); 409 return ERR_PTR(err); 410 } 411 412 /* Translate struct audit_rule_data to kernel's rule respresentation. */ 413 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, 414 size_t datasz) 415 { 416 int err = 0; 417 struct audit_entry *entry; 418 void *bufp; 419 size_t remain = datasz - sizeof(struct audit_rule_data); 420 int i; 421 char *str; 422 423 entry = audit_to_entry_common((struct audit_rule *)data); 424 if (IS_ERR(entry)) 425 goto exit_nofree; 426 427 bufp = data->buf; 428 entry->rule.vers_ops = 2; 429 for (i = 0; i < data->field_count; i++) { 430 struct audit_field *f = &entry->rule.fields[i]; 431 432 err = -EINVAL; 433 434 f->op = audit_to_op(data->fieldflags[i]); 435 if (f->op == Audit_bad) 436 goto exit_free; 437 438 f->type = data->fields[i]; 439 f->val = data->values[i]; 440 f->lsm_str = NULL; 441 f->lsm_rule = NULL; 442 switch(f->type) { 443 case AUDIT_PID: 444 case AUDIT_UID: 445 case AUDIT_EUID: 446 case AUDIT_SUID: 447 case AUDIT_FSUID: 448 case AUDIT_GID: 449 case AUDIT_EGID: 450 case AUDIT_SGID: 451 case AUDIT_FSGID: 452 case AUDIT_LOGINUID: 453 case AUDIT_PERS: 454 case AUDIT_MSGTYPE: 455 case AUDIT_PPID: 456 case AUDIT_DEVMAJOR: 457 case AUDIT_DEVMINOR: 458 case AUDIT_EXIT: 459 case AUDIT_SUCCESS: 460 case AUDIT_ARG0: 461 case AUDIT_ARG1: 462 case AUDIT_ARG2: 463 case AUDIT_ARG3: 464 case AUDIT_OBJ_UID: 465 case AUDIT_OBJ_GID: 466 break; 467 case AUDIT_ARCH: 468 entry->rule.arch_f = f; 469 break; 470 case AUDIT_SUBJ_USER: 471 case AUDIT_SUBJ_ROLE: 472 case AUDIT_SUBJ_TYPE: 473 case AUDIT_SUBJ_SEN: 474 case AUDIT_SUBJ_CLR: 475 case AUDIT_OBJ_USER: 476 case AUDIT_OBJ_ROLE: 477 case AUDIT_OBJ_TYPE: 478 case AUDIT_OBJ_LEV_LOW: 479 case AUDIT_OBJ_LEV_HIGH: 480 str = audit_unpack_string(&bufp, &remain, f->val); 481 if (IS_ERR(str)) 482 goto exit_free; 483 entry->rule.buflen += f->val; 484 485 err = security_audit_rule_init(f->type, f->op, str, 486 (void **)&f->lsm_rule); 487 /* Keep currently invalid fields around in case they 488 * become valid after a policy reload. */ 489 if (err == -EINVAL) { 490 printk(KERN_WARNING "audit rule for LSM " 491 "\'%s\' is invalid\n", str); 492 err = 0; 493 } 494 if (err) { 495 kfree(str); 496 goto exit_free; 497 } else 498 f->lsm_str = str; 499 break; 500 case AUDIT_WATCH: 501 str = audit_unpack_string(&bufp, &remain, f->val); 502 if (IS_ERR(str)) 503 goto exit_free; 504 entry->rule.buflen += f->val; 505 506 err = audit_to_watch(&entry->rule, str, f->val, f->op); 507 if (err) { 508 kfree(str); 509 goto exit_free; 510 } 511 break; 512 case AUDIT_DIR: 513 str = audit_unpack_string(&bufp, &remain, f->val); 514 if (IS_ERR(str)) 515 goto exit_free; 516 entry->rule.buflen += f->val; 517 518 err = audit_make_tree(&entry->rule, str, f->op); 519 kfree(str); 520 if (err) 521 goto exit_free; 522 break; 523 case AUDIT_INODE: 524 err = audit_to_inode(&entry->rule, f); 525 if (err) 526 goto exit_free; 527 break; 528 case AUDIT_FILTERKEY: 529 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) 530 goto exit_free; 531 str = audit_unpack_string(&bufp, &remain, f->val); 532 if (IS_ERR(str)) 533 goto exit_free; 534 entry->rule.buflen += f->val; 535 entry->rule.filterkey = str; 536 break; 537 case AUDIT_PERM: 538 if (f->val & ~15) 539 goto exit_free; 540 break; 541 case AUDIT_FILETYPE: 542 if (f->val & ~S_IFMT) 543 goto exit_free; 544 break; 545 case AUDIT_FIELD_COMPARE: 546 if (f->val > AUDIT_MAX_FIELD_COMPARE) 547 goto exit_free; 548 break; 549 default: 550 goto exit_free; 551 } 552 } 553 554 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 555 entry->rule.inode_f = NULL; 556 557 exit_nofree: 558 return entry; 559 560 exit_free: 561 audit_free_rule(entry); 562 return ERR_PTR(err); 563 } 564 565 /* Pack a filter field's string representation into data block. */ 566 static inline size_t audit_pack_string(void **bufp, const char *str) 567 { 568 size_t len = strlen(str); 569 570 memcpy(*bufp, str, len); 571 *bufp += len; 572 573 return len; 574 } 575 576 /* Translate kernel rule respresentation to struct audit_rule. 577 * Exists for backward compatibility with userspace. */ 578 static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule) 579 { 580 struct audit_rule *rule; 581 int i; 582 583 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 584 if (unlikely(!rule)) 585 return NULL; 586 587 rule->flags = krule->flags | krule->listnr; 588 rule->action = krule->action; 589 rule->field_count = krule->field_count; 590 for (i = 0; i < rule->field_count; i++) { 591 rule->values[i] = krule->fields[i].val; 592 rule->fields[i] = krule->fields[i].type; 593 594 if (krule->vers_ops == 1) { 595 if (krule->fields[i].op == Audit_not_equal) 596 rule->fields[i] |= AUDIT_NEGATE; 597 } else { 598 rule->fields[i] |= audit_ops[krule->fields[i].op]; 599 } 600 } 601 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i]; 602 603 return rule; 604 } 605 606 /* Translate kernel rule respresentation to struct audit_rule_data. */ 607 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) 608 { 609 struct audit_rule_data *data; 610 void *bufp; 611 int i; 612 613 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); 614 if (unlikely(!data)) 615 return NULL; 616 memset(data, 0, sizeof(*data)); 617 618 data->flags = krule->flags | krule->listnr; 619 data->action = krule->action; 620 data->field_count = krule->field_count; 621 bufp = data->buf; 622 for (i = 0; i < data->field_count; i++) { 623 struct audit_field *f = &krule->fields[i]; 624 625 data->fields[i] = f->type; 626 data->fieldflags[i] = audit_ops[f->op]; 627 switch(f->type) { 628 case AUDIT_SUBJ_USER: 629 case AUDIT_SUBJ_ROLE: 630 case AUDIT_SUBJ_TYPE: 631 case AUDIT_SUBJ_SEN: 632 case AUDIT_SUBJ_CLR: 633 case AUDIT_OBJ_USER: 634 case AUDIT_OBJ_ROLE: 635 case AUDIT_OBJ_TYPE: 636 case AUDIT_OBJ_LEV_LOW: 637 case AUDIT_OBJ_LEV_HIGH: 638 data->buflen += data->values[i] = 639 audit_pack_string(&bufp, f->lsm_str); 640 break; 641 case AUDIT_WATCH: 642 data->buflen += data->values[i] = 643 audit_pack_string(&bufp, 644 audit_watch_path(krule->watch)); 645 break; 646 case AUDIT_DIR: 647 data->buflen += data->values[i] = 648 audit_pack_string(&bufp, 649 audit_tree_path(krule->tree)); 650 break; 651 case AUDIT_FILTERKEY: 652 data->buflen += data->values[i] = 653 audit_pack_string(&bufp, krule->filterkey); 654 break; 655 default: 656 data->values[i] = f->val; 657 } 658 } 659 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; 660 661 return data; 662 } 663 664 /* Compare two rules in kernel format. Considered success if rules 665 * don't match. */ 666 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) 667 { 668 int i; 669 670 if (a->flags != b->flags || 671 a->listnr != b->listnr || 672 a->action != b->action || 673 a->field_count != b->field_count) 674 return 1; 675 676 for (i = 0; i < a->field_count; i++) { 677 if (a->fields[i].type != b->fields[i].type || 678 a->fields[i].op != b->fields[i].op) 679 return 1; 680 681 switch(a->fields[i].type) { 682 case AUDIT_SUBJ_USER: 683 case AUDIT_SUBJ_ROLE: 684 case AUDIT_SUBJ_TYPE: 685 case AUDIT_SUBJ_SEN: 686 case AUDIT_SUBJ_CLR: 687 case AUDIT_OBJ_USER: 688 case AUDIT_OBJ_ROLE: 689 case AUDIT_OBJ_TYPE: 690 case AUDIT_OBJ_LEV_LOW: 691 case AUDIT_OBJ_LEV_HIGH: 692 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) 693 return 1; 694 break; 695 case AUDIT_WATCH: 696 if (strcmp(audit_watch_path(a->watch), 697 audit_watch_path(b->watch))) 698 return 1; 699 break; 700 case AUDIT_DIR: 701 if (strcmp(audit_tree_path(a->tree), 702 audit_tree_path(b->tree))) 703 return 1; 704 break; 705 case AUDIT_FILTERKEY: 706 /* both filterkeys exist based on above type compare */ 707 if (strcmp(a->filterkey, b->filterkey)) 708 return 1; 709 break; 710 default: 711 if (a->fields[i].val != b->fields[i].val) 712 return 1; 713 } 714 } 715 716 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 717 if (a->mask[i] != b->mask[i]) 718 return 1; 719 720 return 0; 721 } 722 723 /* Duplicate LSM field information. The lsm_rule is opaque, so must be 724 * re-initialized. */ 725 static inline int audit_dupe_lsm_field(struct audit_field *df, 726 struct audit_field *sf) 727 { 728 int ret = 0; 729 char *lsm_str; 730 731 /* our own copy of lsm_str */ 732 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); 733 if (unlikely(!lsm_str)) 734 return -ENOMEM; 735 df->lsm_str = lsm_str; 736 737 /* our own (refreshed) copy of lsm_rule */ 738 ret = security_audit_rule_init(df->type, df->op, df->lsm_str, 739 (void **)&df->lsm_rule); 740 /* Keep currently invalid fields around in case they 741 * become valid after a policy reload. */ 742 if (ret == -EINVAL) { 743 printk(KERN_WARNING "audit rule for LSM \'%s\' is " 744 "invalid\n", df->lsm_str); 745 ret = 0; 746 } 747 748 return ret; 749 } 750 751 /* Duplicate an audit rule. This will be a deep copy with the exception 752 * of the watch - that pointer is carried over. The LSM specific fields 753 * will be updated in the copy. The point is to be able to replace the old 754 * rule with the new rule in the filterlist, then free the old rule. 755 * The rlist element is undefined; list manipulations are handled apart from 756 * the initial copy. */ 757 struct audit_entry *audit_dupe_rule(struct audit_krule *old) 758 { 759 u32 fcount = old->field_count; 760 struct audit_entry *entry; 761 struct audit_krule *new; 762 char *fk; 763 int i, err = 0; 764 765 entry = audit_init_entry(fcount); 766 if (unlikely(!entry)) 767 return ERR_PTR(-ENOMEM); 768 769 new = &entry->rule; 770 new->vers_ops = old->vers_ops; 771 new->flags = old->flags; 772 new->listnr = old->listnr; 773 new->action = old->action; 774 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 775 new->mask[i] = old->mask[i]; 776 new->prio = old->prio; 777 new->buflen = old->buflen; 778 new->inode_f = old->inode_f; 779 new->field_count = old->field_count; 780 781 /* 782 * note that we are OK with not refcounting here; audit_match_tree() 783 * never dereferences tree and we can't get false positives there 784 * since we'd have to have rule gone from the list *and* removed 785 * before the chunks found by lookup had been allocated, i.e. before 786 * the beginning of list scan. 787 */ 788 new->tree = old->tree; 789 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); 790 791 /* deep copy this information, updating the lsm_rule fields, because 792 * the originals will all be freed when the old rule is freed. */ 793 for (i = 0; i < fcount; i++) { 794 switch (new->fields[i].type) { 795 case AUDIT_SUBJ_USER: 796 case AUDIT_SUBJ_ROLE: 797 case AUDIT_SUBJ_TYPE: 798 case AUDIT_SUBJ_SEN: 799 case AUDIT_SUBJ_CLR: 800 case AUDIT_OBJ_USER: 801 case AUDIT_OBJ_ROLE: 802 case AUDIT_OBJ_TYPE: 803 case AUDIT_OBJ_LEV_LOW: 804 case AUDIT_OBJ_LEV_HIGH: 805 err = audit_dupe_lsm_field(&new->fields[i], 806 &old->fields[i]); 807 break; 808 case AUDIT_FILTERKEY: 809 fk = kstrdup(old->filterkey, GFP_KERNEL); 810 if (unlikely(!fk)) 811 err = -ENOMEM; 812 else 813 new->filterkey = fk; 814 } 815 if (err) { 816 audit_free_rule(entry); 817 return ERR_PTR(err); 818 } 819 } 820 821 if (old->watch) { 822 audit_get_watch(old->watch); 823 new->watch = old->watch; 824 } 825 826 return entry; 827 } 828 829 /* Find an existing audit rule. 830 * Caller must hold audit_filter_mutex to prevent stale rule data. */ 831 static struct audit_entry *audit_find_rule(struct audit_entry *entry, 832 struct list_head **p) 833 { 834 struct audit_entry *e, *found = NULL; 835 struct list_head *list; 836 int h; 837 838 if (entry->rule.inode_f) { 839 h = audit_hash_ino(entry->rule.inode_f->val); 840 *p = list = &audit_inode_hash[h]; 841 } else if (entry->rule.watch) { 842 /* we don't know the inode number, so must walk entire hash */ 843 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { 844 list = &audit_inode_hash[h]; 845 list_for_each_entry(e, list, list) 846 if (!audit_compare_rule(&entry->rule, &e->rule)) { 847 found = e; 848 goto out; 849 } 850 } 851 goto out; 852 } else { 853 *p = list = &audit_filter_list[entry->rule.listnr]; 854 } 855 856 list_for_each_entry(e, list, list) 857 if (!audit_compare_rule(&entry->rule, &e->rule)) { 858 found = e; 859 goto out; 860 } 861 862 out: 863 return found; 864 } 865 866 static u64 prio_low = ~0ULL/2; 867 static u64 prio_high = ~0ULL/2 - 1; 868 869 /* Add rule to given filterlist if not a duplicate. */ 870 static inline int audit_add_rule(struct audit_entry *entry) 871 { 872 struct audit_entry *e; 873 struct audit_watch *watch = entry->rule.watch; 874 struct audit_tree *tree = entry->rule.tree; 875 struct list_head *list; 876 int err; 877 #ifdef CONFIG_AUDITSYSCALL 878 int dont_count = 0; 879 880 /* If either of these, don't count towards total */ 881 if (entry->rule.listnr == AUDIT_FILTER_USER || 882 entry->rule.listnr == AUDIT_FILTER_TYPE) 883 dont_count = 1; 884 #endif 885 886 mutex_lock(&audit_filter_mutex); 887 e = audit_find_rule(entry, &list); 888 if (e) { 889 mutex_unlock(&audit_filter_mutex); 890 err = -EEXIST; 891 /* normally audit_add_tree_rule() will free it on failure */ 892 if (tree) 893 audit_put_tree(tree); 894 goto error; 895 } 896 897 if (watch) { 898 /* audit_filter_mutex is dropped and re-taken during this call */ 899 err = audit_add_watch(&entry->rule, &list); 900 if (err) { 901 mutex_unlock(&audit_filter_mutex); 902 goto error; 903 } 904 } 905 if (tree) { 906 err = audit_add_tree_rule(&entry->rule); 907 if (err) { 908 mutex_unlock(&audit_filter_mutex); 909 goto error; 910 } 911 } 912 913 entry->rule.prio = ~0ULL; 914 if (entry->rule.listnr == AUDIT_FILTER_EXIT) { 915 if (entry->rule.flags & AUDIT_FILTER_PREPEND) 916 entry->rule.prio = ++prio_high; 917 else 918 entry->rule.prio = --prio_low; 919 } 920 921 if (entry->rule.flags & AUDIT_FILTER_PREPEND) { 922 list_add(&entry->rule.list, 923 &audit_rules_list[entry->rule.listnr]); 924 list_add_rcu(&entry->list, list); 925 entry->rule.flags &= ~AUDIT_FILTER_PREPEND; 926 } else { 927 list_add_tail(&entry->rule.list, 928 &audit_rules_list[entry->rule.listnr]); 929 list_add_tail_rcu(&entry->list, list); 930 } 931 #ifdef CONFIG_AUDITSYSCALL 932 if (!dont_count) 933 audit_n_rules++; 934 935 if (!audit_match_signal(entry)) 936 audit_signals++; 937 #endif 938 mutex_unlock(&audit_filter_mutex); 939 940 return 0; 941 942 error: 943 if (watch) 944 audit_put_watch(watch); /* tmp watch, matches initial get */ 945 return err; 946 } 947 948 /* Remove an existing rule from filterlist. */ 949 static inline int audit_del_rule(struct audit_entry *entry) 950 { 951 struct audit_entry *e; 952 struct audit_watch *watch = entry->rule.watch; 953 struct audit_tree *tree = entry->rule.tree; 954 struct list_head *list; 955 int ret = 0; 956 #ifdef CONFIG_AUDITSYSCALL 957 int dont_count = 0; 958 959 /* If either of these, don't count towards total */ 960 if (entry->rule.listnr == AUDIT_FILTER_USER || 961 entry->rule.listnr == AUDIT_FILTER_TYPE) 962 dont_count = 1; 963 #endif 964 965 mutex_lock(&audit_filter_mutex); 966 e = audit_find_rule(entry, &list); 967 if (!e) { 968 mutex_unlock(&audit_filter_mutex); 969 ret = -ENOENT; 970 goto out; 971 } 972 973 if (e->rule.watch) 974 audit_remove_watch_rule(&e->rule); 975 976 if (e->rule.tree) 977 audit_remove_tree_rule(&e->rule); 978 979 list_del_rcu(&e->list); 980 list_del(&e->rule.list); 981 call_rcu(&e->rcu, audit_free_rule_rcu); 982 983 #ifdef CONFIG_AUDITSYSCALL 984 if (!dont_count) 985 audit_n_rules--; 986 987 if (!audit_match_signal(entry)) 988 audit_signals--; 989 #endif 990 mutex_unlock(&audit_filter_mutex); 991 992 out: 993 if (watch) 994 audit_put_watch(watch); /* match initial get */ 995 if (tree) 996 audit_put_tree(tree); /* that's the temporary one */ 997 998 return ret; 999 } 1000 1001 /* List rules using struct audit_rule. Exists for backward 1002 * compatibility with userspace. */ 1003 static void audit_list(int pid, int seq, struct sk_buff_head *q) 1004 { 1005 struct sk_buff *skb; 1006 struct audit_krule *r; 1007 int i; 1008 1009 /* This is a blocking read, so use audit_filter_mutex instead of rcu 1010 * iterator to sync with list writers. */ 1011 for (i=0; i<AUDIT_NR_FILTERS; i++) { 1012 list_for_each_entry(r, &audit_rules_list[i], list) { 1013 struct audit_rule *rule; 1014 1015 rule = audit_krule_to_rule(r); 1016 if (unlikely(!rule)) 1017 break; 1018 skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1, 1019 rule, sizeof(*rule)); 1020 if (skb) 1021 skb_queue_tail(q, skb); 1022 kfree(rule); 1023 } 1024 } 1025 skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); 1026 if (skb) 1027 skb_queue_tail(q, skb); 1028 } 1029 1030 /* List rules using struct audit_rule_data. */ 1031 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q) 1032 { 1033 struct sk_buff *skb; 1034 struct audit_krule *r; 1035 int i; 1036 1037 /* This is a blocking read, so use audit_filter_mutex instead of rcu 1038 * iterator to sync with list writers. */ 1039 for (i=0; i<AUDIT_NR_FILTERS; i++) { 1040 list_for_each_entry(r, &audit_rules_list[i], list) { 1041 struct audit_rule_data *data; 1042 1043 data = audit_krule_to_data(r); 1044 if (unlikely(!data)) 1045 break; 1046 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, 1047 data, sizeof(*data) + data->buflen); 1048 if (skb) 1049 skb_queue_tail(q, skb); 1050 kfree(data); 1051 } 1052 } 1053 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); 1054 if (skb) 1055 skb_queue_tail(q, skb); 1056 } 1057 1058 /* Log rule additions and removals */ 1059 static void audit_log_rule_change(uid_t loginuid, u32 sessionid, u32 sid, 1060 char *action, struct audit_krule *rule, 1061 int res) 1062 { 1063 struct audit_buffer *ab; 1064 1065 if (!audit_enabled) 1066 return; 1067 1068 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 1069 if (!ab) 1070 return; 1071 audit_log_format(ab, "auid=%u ses=%u", loginuid, sessionid); 1072 if (sid) { 1073 char *ctx = NULL; 1074 u32 len; 1075 if (security_secid_to_secctx(sid, &ctx, &len)) 1076 audit_log_format(ab, " ssid=%u", sid); 1077 else { 1078 audit_log_format(ab, " subj=%s", ctx); 1079 security_release_secctx(ctx, len); 1080 } 1081 } 1082 audit_log_format(ab, " op="); 1083 audit_log_string(ab, action); 1084 audit_log_key(ab, rule->filterkey); 1085 audit_log_format(ab, " list=%d res=%d", rule->listnr, res); 1086 audit_log_end(ab); 1087 } 1088 1089 /** 1090 * audit_receive_filter - apply all rules to the specified message type 1091 * @type: audit message type 1092 * @pid: target pid for netlink audit messages 1093 * @uid: target uid for netlink audit messages 1094 * @seq: netlink audit message sequence (serial) number 1095 * @data: payload data 1096 * @datasz: size of payload data 1097 * @loginuid: loginuid of sender 1098 * @sessionid: sessionid for netlink audit message 1099 * @sid: SE Linux Security ID of sender 1100 */ 1101 int audit_receive_filter(int type, int pid, int uid, int seq, void *data, 1102 size_t datasz, uid_t loginuid, u32 sessionid, u32 sid) 1103 { 1104 struct task_struct *tsk; 1105 struct audit_netlink_list *dest; 1106 int err = 0; 1107 struct audit_entry *entry; 1108 1109 switch (type) { 1110 case AUDIT_LIST: 1111 case AUDIT_LIST_RULES: 1112 /* We can't just spew out the rules here because we might fill 1113 * the available socket buffer space and deadlock waiting for 1114 * auditctl to read from it... which isn't ever going to 1115 * happen if we're actually running in the context of auditctl 1116 * trying to _send_ the stuff */ 1117 1118 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); 1119 if (!dest) 1120 return -ENOMEM; 1121 dest->pid = pid; 1122 skb_queue_head_init(&dest->q); 1123 1124 mutex_lock(&audit_filter_mutex); 1125 if (type == AUDIT_LIST) 1126 audit_list(pid, seq, &dest->q); 1127 else 1128 audit_list_rules(pid, seq, &dest->q); 1129 mutex_unlock(&audit_filter_mutex); 1130 1131 tsk = kthread_run(audit_send_list, dest, "audit_send_list"); 1132 if (IS_ERR(tsk)) { 1133 skb_queue_purge(&dest->q); 1134 kfree(dest); 1135 err = PTR_ERR(tsk); 1136 } 1137 break; 1138 case AUDIT_ADD: 1139 case AUDIT_ADD_RULE: 1140 if (type == AUDIT_ADD) 1141 entry = audit_rule_to_entry(data); 1142 else 1143 entry = audit_data_to_entry(data, datasz); 1144 if (IS_ERR(entry)) 1145 return PTR_ERR(entry); 1146 1147 err = audit_add_rule(entry); 1148 audit_log_rule_change(loginuid, sessionid, sid, "add rule", 1149 &entry->rule, !err); 1150 1151 if (err) 1152 audit_free_rule(entry); 1153 break; 1154 case AUDIT_DEL: 1155 case AUDIT_DEL_RULE: 1156 if (type == AUDIT_DEL) 1157 entry = audit_rule_to_entry(data); 1158 else 1159 entry = audit_data_to_entry(data, datasz); 1160 if (IS_ERR(entry)) 1161 return PTR_ERR(entry); 1162 1163 err = audit_del_rule(entry); 1164 audit_log_rule_change(loginuid, sessionid, sid, "remove rule", 1165 &entry->rule, !err); 1166 1167 audit_free_rule(entry); 1168 break; 1169 default: 1170 return -EINVAL; 1171 } 1172 1173 return err; 1174 } 1175 1176 int audit_comparator(u32 left, u32 op, u32 right) 1177 { 1178 switch (op) { 1179 case Audit_equal: 1180 return (left == right); 1181 case Audit_not_equal: 1182 return (left != right); 1183 case Audit_lt: 1184 return (left < right); 1185 case Audit_le: 1186 return (left <= right); 1187 case Audit_gt: 1188 return (left > right); 1189 case Audit_ge: 1190 return (left >= right); 1191 case Audit_bitmask: 1192 return (left & right); 1193 case Audit_bittest: 1194 return ((left & right) == right); 1195 default: 1196 BUG(); 1197 return 0; 1198 } 1199 } 1200 1201 /* Compare given dentry name with last component in given path, 1202 * return of 0 indicates a match. */ 1203 int audit_compare_dname_path(const char *dname, const char *path, 1204 int *dirlen) 1205 { 1206 int dlen, plen; 1207 const char *p; 1208 1209 if (!dname || !path) 1210 return 1; 1211 1212 dlen = strlen(dname); 1213 plen = strlen(path); 1214 if (plen < dlen) 1215 return 1; 1216 1217 /* disregard trailing slashes */ 1218 p = path + plen - 1; 1219 while ((*p == '/') && (p > path)) 1220 p--; 1221 1222 /* find last path component */ 1223 p = p - dlen + 1; 1224 if (p < path) 1225 return 1; 1226 else if (p > path) { 1227 if (*--p != '/') 1228 return 1; 1229 else 1230 p++; 1231 } 1232 1233 /* return length of path's directory component */ 1234 if (dirlen) 1235 *dirlen = p - path; 1236 return strncmp(p, dname, dlen); 1237 } 1238 1239 static int audit_filter_user_rules(struct netlink_skb_parms *cb, 1240 struct audit_krule *rule, 1241 enum audit_state *state) 1242 { 1243 int i; 1244 1245 for (i = 0; i < rule->field_count; i++) { 1246 struct audit_field *f = &rule->fields[i]; 1247 int result = 0; 1248 u32 sid; 1249 1250 switch (f->type) { 1251 case AUDIT_PID: 1252 result = audit_comparator(cb->creds.pid, f->op, f->val); 1253 break; 1254 case AUDIT_UID: 1255 result = audit_comparator(cb->creds.uid, f->op, f->val); 1256 break; 1257 case AUDIT_GID: 1258 result = audit_comparator(cb->creds.gid, f->op, f->val); 1259 break; 1260 case AUDIT_LOGINUID: 1261 result = audit_comparator(audit_get_loginuid(current), 1262 f->op, f->val); 1263 break; 1264 case AUDIT_SUBJ_USER: 1265 case AUDIT_SUBJ_ROLE: 1266 case AUDIT_SUBJ_TYPE: 1267 case AUDIT_SUBJ_SEN: 1268 case AUDIT_SUBJ_CLR: 1269 if (f->lsm_rule) { 1270 security_task_getsecid(current, &sid); 1271 result = security_audit_rule_match(sid, 1272 f->type, 1273 f->op, 1274 f->lsm_rule, 1275 NULL); 1276 } 1277 break; 1278 } 1279 1280 if (!result) 1281 return 0; 1282 } 1283 switch (rule->action) { 1284 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 1285 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 1286 } 1287 return 1; 1288 } 1289 1290 int audit_filter_user(struct netlink_skb_parms *cb) 1291 { 1292 enum audit_state state = AUDIT_DISABLED; 1293 struct audit_entry *e; 1294 int ret = 1; 1295 1296 rcu_read_lock(); 1297 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { 1298 if (audit_filter_user_rules(cb, &e->rule, &state)) { 1299 if (state == AUDIT_DISABLED) 1300 ret = 0; 1301 break; 1302 } 1303 } 1304 rcu_read_unlock(); 1305 1306 return ret; /* Audit by default */ 1307 } 1308 1309 int audit_filter_type(int type) 1310 { 1311 struct audit_entry *e; 1312 int result = 0; 1313 1314 rcu_read_lock(); 1315 if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) 1316 goto unlock_and_return; 1317 1318 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], 1319 list) { 1320 int i; 1321 for (i = 0; i < e->rule.field_count; i++) { 1322 struct audit_field *f = &e->rule.fields[i]; 1323 if (f->type == AUDIT_MSGTYPE) { 1324 result = audit_comparator(type, f->op, f->val); 1325 if (!result) 1326 break; 1327 } 1328 } 1329 if (result) 1330 goto unlock_and_return; 1331 } 1332 unlock_and_return: 1333 rcu_read_unlock(); 1334 return result; 1335 } 1336 1337 static int update_lsm_rule(struct audit_krule *r) 1338 { 1339 struct audit_entry *entry = container_of(r, struct audit_entry, rule); 1340 struct audit_entry *nentry; 1341 int err = 0; 1342 1343 if (!security_audit_rule_known(r)) 1344 return 0; 1345 1346 nentry = audit_dupe_rule(r); 1347 if (IS_ERR(nentry)) { 1348 /* save the first error encountered for the 1349 * return value */ 1350 err = PTR_ERR(nentry); 1351 audit_panic("error updating LSM filters"); 1352 if (r->watch) 1353 list_del(&r->rlist); 1354 list_del_rcu(&entry->list); 1355 list_del(&r->list); 1356 } else { 1357 if (r->watch || r->tree) 1358 list_replace_init(&r->rlist, &nentry->rule.rlist); 1359 list_replace_rcu(&entry->list, &nentry->list); 1360 list_replace(&r->list, &nentry->rule.list); 1361 } 1362 call_rcu(&entry->rcu, audit_free_rule_rcu); 1363 1364 return err; 1365 } 1366 1367 /* This function will re-initialize the lsm_rule field of all applicable rules. 1368 * It will traverse the filter lists serarching for rules that contain LSM 1369 * specific filter fields. When such a rule is found, it is copied, the 1370 * LSM field is re-initialized, and the old rule is replaced with the 1371 * updated rule. */ 1372 int audit_update_lsm_rules(void) 1373 { 1374 struct audit_krule *r, *n; 1375 int i, err = 0; 1376 1377 /* audit_filter_mutex synchronizes the writers */ 1378 mutex_lock(&audit_filter_mutex); 1379 1380 for (i = 0; i < AUDIT_NR_FILTERS; i++) { 1381 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { 1382 int res = update_lsm_rule(r); 1383 if (!err) 1384 err = res; 1385 } 1386 } 1387 mutex_unlock(&audit_filter_mutex); 1388 1389 return err; 1390 } 1391