1 /* auditfilter.c -- filtering of audit events 2 * 3 * Copyright 2003-2004 Red Hat, Inc. 4 * Copyright 2005 Hewlett-Packard Development Company, L.P. 5 * Copyright 2005 IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/audit.h> 24 #include <linux/kthread.h> 25 #include <linux/mutex.h> 26 #include <linux/fs.h> 27 #include <linux/namei.h> 28 #include <linux/netlink.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/security.h> 32 #include "audit.h" 33 34 /* 35 * Locking model: 36 * 37 * audit_filter_mutex: 38 * Synchronizes writes and blocking reads of audit's filterlist 39 * data. Rcu is used to traverse the filterlist and access 40 * contents of structs audit_entry, audit_watch and opaque 41 * LSM rules during filtering. If modified, these structures 42 * must be copied and replace their counterparts in the filterlist. 43 * An audit_parent struct is not accessed during filtering, so may 44 * be written directly provided audit_filter_mutex is held. 45 */ 46 47 /* Audit filter lists, defined in <linux/audit.h> */ 48 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { 49 LIST_HEAD_INIT(audit_filter_list[0]), 50 LIST_HEAD_INIT(audit_filter_list[1]), 51 LIST_HEAD_INIT(audit_filter_list[2]), 52 LIST_HEAD_INIT(audit_filter_list[3]), 53 LIST_HEAD_INIT(audit_filter_list[4]), 54 LIST_HEAD_INIT(audit_filter_list[5]), 55 #if AUDIT_NR_FILTERS != 6 56 #error Fix audit_filter_list initialiser 57 #endif 58 }; 59 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { 60 LIST_HEAD_INIT(audit_rules_list[0]), 61 LIST_HEAD_INIT(audit_rules_list[1]), 62 LIST_HEAD_INIT(audit_rules_list[2]), 63 LIST_HEAD_INIT(audit_rules_list[3]), 64 LIST_HEAD_INIT(audit_rules_list[4]), 65 LIST_HEAD_INIT(audit_rules_list[5]), 66 }; 67 68 DEFINE_MUTEX(audit_filter_mutex); 69 70 static inline void audit_free_rule(struct audit_entry *e) 71 { 72 int i; 73 struct audit_krule *erule = &e->rule; 74 75 /* some rules don't have associated watches */ 76 if (erule->watch) 77 audit_put_watch(erule->watch); 78 if (erule->fields) 79 for (i = 0; i < erule->field_count; i++) { 80 struct audit_field *f = &erule->fields[i]; 81 kfree(f->lsm_str); 82 security_audit_rule_free(f->lsm_rule); 83 } 84 kfree(erule->fields); 85 kfree(erule->filterkey); 86 kfree(e); 87 } 88 89 void audit_free_rule_rcu(struct rcu_head *head) 90 { 91 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 92 audit_free_rule(e); 93 } 94 95 /* Initialize an audit filterlist entry. */ 96 static inline struct audit_entry *audit_init_entry(u32 field_count) 97 { 98 struct audit_entry *entry; 99 struct audit_field *fields; 100 101 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 102 if (unlikely(!entry)) 103 return NULL; 104 105 fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); 106 if (unlikely(!fields)) { 107 kfree(entry); 108 return NULL; 109 } 110 entry->rule.fields = fields; 111 112 return entry; 113 } 114 115 /* Unpack a filter field's string representation from user-space 116 * buffer. */ 117 char *audit_unpack_string(void **bufp, size_t *remain, size_t len) 118 { 119 char *str; 120 121 if (!*bufp || (len == 0) || (len > *remain)) 122 return ERR_PTR(-EINVAL); 123 124 /* Of the currently implemented string fields, PATH_MAX 125 * defines the longest valid length. 126 */ 127 if (len > PATH_MAX) 128 return ERR_PTR(-ENAMETOOLONG); 129 130 str = kmalloc(len + 1, GFP_KERNEL); 131 if (unlikely(!str)) 132 return ERR_PTR(-ENOMEM); 133 134 memcpy(str, *bufp, len); 135 str[len] = 0; 136 *bufp += len; 137 *remain -= len; 138 139 return str; 140 } 141 142 /* Translate an inode field to kernel respresentation. */ 143 static inline int audit_to_inode(struct audit_krule *krule, 144 struct audit_field *f) 145 { 146 if (krule->listnr != AUDIT_FILTER_EXIT || 147 krule->watch || krule->inode_f || krule->tree || 148 (f->op != Audit_equal && f->op != Audit_not_equal)) 149 return -EINVAL; 150 151 krule->inode_f = f; 152 return 0; 153 } 154 155 static __u32 *classes[AUDIT_SYSCALL_CLASSES]; 156 157 int __init audit_register_class(int class, unsigned *list) 158 { 159 __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL); 160 if (!p) 161 return -ENOMEM; 162 while (*list != ~0U) { 163 unsigned n = *list++; 164 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { 165 kfree(p); 166 return -EINVAL; 167 } 168 p[AUDIT_WORD(n)] |= AUDIT_BIT(n); 169 } 170 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { 171 kfree(p); 172 return -EINVAL; 173 } 174 classes[class] = p; 175 return 0; 176 } 177 178 int audit_match_class(int class, unsigned syscall) 179 { 180 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) 181 return 0; 182 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) 183 return 0; 184 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); 185 } 186 187 #ifdef CONFIG_AUDITSYSCALL 188 static inline int audit_match_class_bits(int class, u32 *mask) 189 { 190 int i; 191 192 if (classes[class]) { 193 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 194 if (mask[i] & classes[class][i]) 195 return 0; 196 } 197 return 1; 198 } 199 200 static int audit_match_signal(struct audit_entry *entry) 201 { 202 struct audit_field *arch = entry->rule.arch_f; 203 204 if (!arch) { 205 /* When arch is unspecified, we must check both masks on biarch 206 * as syscall number alone is ambiguous. */ 207 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 208 entry->rule.mask) && 209 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 210 entry->rule.mask)); 211 } 212 213 switch(audit_classify_arch(arch->val)) { 214 case 0: /* native */ 215 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 216 entry->rule.mask)); 217 case 1: /* 32bit on biarch */ 218 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 219 entry->rule.mask)); 220 default: 221 return 1; 222 } 223 } 224 #endif 225 226 /* Common user-space to kernel rule translation. */ 227 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) 228 { 229 unsigned listnr; 230 struct audit_entry *entry; 231 int i, err; 232 233 err = -EINVAL; 234 listnr = rule->flags & ~AUDIT_FILTER_PREPEND; 235 switch(listnr) { 236 default: 237 goto exit_err; 238 #ifdef CONFIG_AUDITSYSCALL 239 case AUDIT_FILTER_ENTRY: 240 if (rule->action == AUDIT_ALWAYS) 241 goto exit_err; 242 case AUDIT_FILTER_EXIT: 243 case AUDIT_FILTER_TASK: 244 #endif 245 case AUDIT_FILTER_USER: 246 case AUDIT_FILTER_TYPE: 247 ; 248 } 249 if (unlikely(rule->action == AUDIT_POSSIBLE)) { 250 printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n"); 251 goto exit_err; 252 } 253 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) 254 goto exit_err; 255 if (rule->field_count > AUDIT_MAX_FIELDS) 256 goto exit_err; 257 258 err = -ENOMEM; 259 entry = audit_init_entry(rule->field_count); 260 if (!entry) 261 goto exit_err; 262 263 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; 264 entry->rule.listnr = listnr; 265 entry->rule.action = rule->action; 266 entry->rule.field_count = rule->field_count; 267 268 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 269 entry->rule.mask[i] = rule->mask[i]; 270 271 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { 272 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; 273 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; 274 __u32 *class; 275 276 if (!(*p & AUDIT_BIT(bit))) 277 continue; 278 *p &= ~AUDIT_BIT(bit); 279 class = classes[i]; 280 if (class) { 281 int j; 282 for (j = 0; j < AUDIT_BITMASK_SIZE; j++) 283 entry->rule.mask[j] |= class[j]; 284 } 285 } 286 287 return entry; 288 289 exit_err: 290 return ERR_PTR(err); 291 } 292 293 static u32 audit_ops[] = 294 { 295 [Audit_equal] = AUDIT_EQUAL, 296 [Audit_not_equal] = AUDIT_NOT_EQUAL, 297 [Audit_bitmask] = AUDIT_BIT_MASK, 298 [Audit_bittest] = AUDIT_BIT_TEST, 299 [Audit_lt] = AUDIT_LESS_THAN, 300 [Audit_gt] = AUDIT_GREATER_THAN, 301 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, 302 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, 303 }; 304 305 static u32 audit_to_op(u32 op) 306 { 307 u32 n; 308 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) 309 ; 310 return n; 311 } 312 313 /* check if an audit field is valid */ 314 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f) 315 { 316 switch(f->type) { 317 case AUDIT_MSGTYPE: 318 if (entry->rule.listnr != AUDIT_FILTER_TYPE && 319 entry->rule.listnr != AUDIT_FILTER_USER) 320 return -EINVAL; 321 break; 322 }; 323 324 switch(f->type) { 325 default: 326 return -EINVAL; 327 case AUDIT_UID: 328 case AUDIT_EUID: 329 case AUDIT_SUID: 330 case AUDIT_FSUID: 331 case AUDIT_LOGINUID: 332 case AUDIT_OBJ_UID: 333 case AUDIT_GID: 334 case AUDIT_EGID: 335 case AUDIT_SGID: 336 case AUDIT_FSGID: 337 case AUDIT_OBJ_GID: 338 case AUDIT_PID: 339 case AUDIT_PERS: 340 case AUDIT_MSGTYPE: 341 case AUDIT_PPID: 342 case AUDIT_DEVMAJOR: 343 case AUDIT_DEVMINOR: 344 case AUDIT_EXIT: 345 case AUDIT_SUCCESS: 346 case AUDIT_INODE: 347 /* bit ops are only useful on syscall args */ 348 if (f->op == Audit_bitmask || f->op == Audit_bittest) 349 return -EINVAL; 350 break; 351 case AUDIT_ARG0: 352 case AUDIT_ARG1: 353 case AUDIT_ARG2: 354 case AUDIT_ARG3: 355 case AUDIT_SUBJ_USER: 356 case AUDIT_SUBJ_ROLE: 357 case AUDIT_SUBJ_TYPE: 358 case AUDIT_SUBJ_SEN: 359 case AUDIT_SUBJ_CLR: 360 case AUDIT_OBJ_USER: 361 case AUDIT_OBJ_ROLE: 362 case AUDIT_OBJ_TYPE: 363 case AUDIT_OBJ_LEV_LOW: 364 case AUDIT_OBJ_LEV_HIGH: 365 case AUDIT_WATCH: 366 case AUDIT_DIR: 367 case AUDIT_FILTERKEY: 368 break; 369 case AUDIT_LOGINUID_SET: 370 if ((f->val != 0) && (f->val != 1)) 371 return -EINVAL; 372 /* FALL THROUGH */ 373 case AUDIT_ARCH: 374 if (f->op != Audit_not_equal && f->op != Audit_equal) 375 return -EINVAL; 376 break; 377 case AUDIT_PERM: 378 if (f->val & ~15) 379 return -EINVAL; 380 break; 381 case AUDIT_FILETYPE: 382 if (f->val & ~S_IFMT) 383 return -EINVAL; 384 break; 385 case AUDIT_FIELD_COMPARE: 386 if (f->val > AUDIT_MAX_FIELD_COMPARE) 387 return -EINVAL; 388 break; 389 }; 390 return 0; 391 } 392 393 /* Translate struct audit_rule_data to kernel's rule respresentation. */ 394 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, 395 size_t datasz) 396 { 397 int err = 0; 398 struct audit_entry *entry; 399 void *bufp; 400 size_t remain = datasz - sizeof(struct audit_rule_data); 401 int i; 402 char *str; 403 404 entry = audit_to_entry_common((struct audit_rule *)data); 405 if (IS_ERR(entry)) 406 goto exit_nofree; 407 408 bufp = data->buf; 409 entry->rule.vers_ops = 2; 410 for (i = 0; i < data->field_count; i++) { 411 struct audit_field *f = &entry->rule.fields[i]; 412 413 err = -EINVAL; 414 415 f->op = audit_to_op(data->fieldflags[i]); 416 if (f->op == Audit_bad) 417 goto exit_free; 418 419 f->type = data->fields[i]; 420 f->val = data->values[i]; 421 f->uid = INVALID_UID; 422 f->gid = INVALID_GID; 423 f->lsm_str = NULL; 424 f->lsm_rule = NULL; 425 426 /* Support legacy tests for a valid loginuid */ 427 if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) { 428 f->type = AUDIT_LOGINUID_SET; 429 f->val = 0; 430 } 431 432 err = audit_field_valid(entry, f); 433 if (err) 434 goto exit_free; 435 436 err = -EINVAL; 437 switch (f->type) { 438 case AUDIT_LOGINUID: 439 case AUDIT_UID: 440 case AUDIT_EUID: 441 case AUDIT_SUID: 442 case AUDIT_FSUID: 443 case AUDIT_OBJ_UID: 444 f->uid = make_kuid(current_user_ns(), f->val); 445 if (!uid_valid(f->uid)) 446 goto exit_free; 447 break; 448 case AUDIT_GID: 449 case AUDIT_EGID: 450 case AUDIT_SGID: 451 case AUDIT_FSGID: 452 case AUDIT_OBJ_GID: 453 f->gid = make_kgid(current_user_ns(), f->val); 454 if (!gid_valid(f->gid)) 455 goto exit_free; 456 break; 457 case AUDIT_ARCH: 458 entry->rule.arch_f = f; 459 break; 460 case AUDIT_SUBJ_USER: 461 case AUDIT_SUBJ_ROLE: 462 case AUDIT_SUBJ_TYPE: 463 case AUDIT_SUBJ_SEN: 464 case AUDIT_SUBJ_CLR: 465 case AUDIT_OBJ_USER: 466 case AUDIT_OBJ_ROLE: 467 case AUDIT_OBJ_TYPE: 468 case AUDIT_OBJ_LEV_LOW: 469 case AUDIT_OBJ_LEV_HIGH: 470 str = audit_unpack_string(&bufp, &remain, f->val); 471 if (IS_ERR(str)) 472 goto exit_free; 473 entry->rule.buflen += f->val; 474 475 err = security_audit_rule_init(f->type, f->op, str, 476 (void **)&f->lsm_rule); 477 /* Keep currently invalid fields around in case they 478 * become valid after a policy reload. */ 479 if (err == -EINVAL) { 480 printk(KERN_WARNING "audit rule for LSM " 481 "\'%s\' is invalid\n", str); 482 err = 0; 483 } 484 if (err) { 485 kfree(str); 486 goto exit_free; 487 } else 488 f->lsm_str = str; 489 break; 490 case AUDIT_WATCH: 491 str = audit_unpack_string(&bufp, &remain, f->val); 492 if (IS_ERR(str)) 493 goto exit_free; 494 entry->rule.buflen += f->val; 495 496 err = audit_to_watch(&entry->rule, str, f->val, f->op); 497 if (err) { 498 kfree(str); 499 goto exit_free; 500 } 501 break; 502 case AUDIT_DIR: 503 str = audit_unpack_string(&bufp, &remain, f->val); 504 if (IS_ERR(str)) 505 goto exit_free; 506 entry->rule.buflen += f->val; 507 508 err = audit_make_tree(&entry->rule, str, f->op); 509 kfree(str); 510 if (err) 511 goto exit_free; 512 break; 513 case AUDIT_INODE: 514 err = audit_to_inode(&entry->rule, f); 515 if (err) 516 goto exit_free; 517 break; 518 case AUDIT_FILTERKEY: 519 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) 520 goto exit_free; 521 str = audit_unpack_string(&bufp, &remain, f->val); 522 if (IS_ERR(str)) 523 goto exit_free; 524 entry->rule.buflen += f->val; 525 entry->rule.filterkey = str; 526 break; 527 } 528 } 529 530 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 531 entry->rule.inode_f = NULL; 532 533 exit_nofree: 534 return entry; 535 536 exit_free: 537 if (entry->rule.watch) 538 audit_put_watch(entry->rule.watch); /* matches initial get */ 539 if (entry->rule.tree) 540 audit_put_tree(entry->rule.tree); /* that's the temporary one */ 541 audit_free_rule(entry); 542 return ERR_PTR(err); 543 } 544 545 /* Pack a filter field's string representation into data block. */ 546 static inline size_t audit_pack_string(void **bufp, const char *str) 547 { 548 size_t len = strlen(str); 549 550 memcpy(*bufp, str, len); 551 *bufp += len; 552 553 return len; 554 } 555 556 /* Translate kernel rule respresentation to struct audit_rule_data. */ 557 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) 558 { 559 struct audit_rule_data *data; 560 void *bufp; 561 int i; 562 563 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); 564 if (unlikely(!data)) 565 return NULL; 566 memset(data, 0, sizeof(*data)); 567 568 data->flags = krule->flags | krule->listnr; 569 data->action = krule->action; 570 data->field_count = krule->field_count; 571 bufp = data->buf; 572 for (i = 0; i < data->field_count; i++) { 573 struct audit_field *f = &krule->fields[i]; 574 575 data->fields[i] = f->type; 576 data->fieldflags[i] = audit_ops[f->op]; 577 switch(f->type) { 578 case AUDIT_SUBJ_USER: 579 case AUDIT_SUBJ_ROLE: 580 case AUDIT_SUBJ_TYPE: 581 case AUDIT_SUBJ_SEN: 582 case AUDIT_SUBJ_CLR: 583 case AUDIT_OBJ_USER: 584 case AUDIT_OBJ_ROLE: 585 case AUDIT_OBJ_TYPE: 586 case AUDIT_OBJ_LEV_LOW: 587 case AUDIT_OBJ_LEV_HIGH: 588 data->buflen += data->values[i] = 589 audit_pack_string(&bufp, f->lsm_str); 590 break; 591 case AUDIT_WATCH: 592 data->buflen += data->values[i] = 593 audit_pack_string(&bufp, 594 audit_watch_path(krule->watch)); 595 break; 596 case AUDIT_DIR: 597 data->buflen += data->values[i] = 598 audit_pack_string(&bufp, 599 audit_tree_path(krule->tree)); 600 break; 601 case AUDIT_FILTERKEY: 602 data->buflen += data->values[i] = 603 audit_pack_string(&bufp, krule->filterkey); 604 break; 605 default: 606 data->values[i] = f->val; 607 } 608 } 609 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; 610 611 return data; 612 } 613 614 /* Compare two rules in kernel format. Considered success if rules 615 * don't match. */ 616 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) 617 { 618 int i; 619 620 if (a->flags != b->flags || 621 a->listnr != b->listnr || 622 a->action != b->action || 623 a->field_count != b->field_count) 624 return 1; 625 626 for (i = 0; i < a->field_count; i++) { 627 if (a->fields[i].type != b->fields[i].type || 628 a->fields[i].op != b->fields[i].op) 629 return 1; 630 631 switch(a->fields[i].type) { 632 case AUDIT_SUBJ_USER: 633 case AUDIT_SUBJ_ROLE: 634 case AUDIT_SUBJ_TYPE: 635 case AUDIT_SUBJ_SEN: 636 case AUDIT_SUBJ_CLR: 637 case AUDIT_OBJ_USER: 638 case AUDIT_OBJ_ROLE: 639 case AUDIT_OBJ_TYPE: 640 case AUDIT_OBJ_LEV_LOW: 641 case AUDIT_OBJ_LEV_HIGH: 642 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) 643 return 1; 644 break; 645 case AUDIT_WATCH: 646 if (strcmp(audit_watch_path(a->watch), 647 audit_watch_path(b->watch))) 648 return 1; 649 break; 650 case AUDIT_DIR: 651 if (strcmp(audit_tree_path(a->tree), 652 audit_tree_path(b->tree))) 653 return 1; 654 break; 655 case AUDIT_FILTERKEY: 656 /* both filterkeys exist based on above type compare */ 657 if (strcmp(a->filterkey, b->filterkey)) 658 return 1; 659 break; 660 case AUDIT_UID: 661 case AUDIT_EUID: 662 case AUDIT_SUID: 663 case AUDIT_FSUID: 664 case AUDIT_LOGINUID: 665 case AUDIT_OBJ_UID: 666 if (!uid_eq(a->fields[i].uid, b->fields[i].uid)) 667 return 1; 668 break; 669 case AUDIT_GID: 670 case AUDIT_EGID: 671 case AUDIT_SGID: 672 case AUDIT_FSGID: 673 case AUDIT_OBJ_GID: 674 if (!gid_eq(a->fields[i].gid, b->fields[i].gid)) 675 return 1; 676 break; 677 default: 678 if (a->fields[i].val != b->fields[i].val) 679 return 1; 680 } 681 } 682 683 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 684 if (a->mask[i] != b->mask[i]) 685 return 1; 686 687 return 0; 688 } 689 690 /* Duplicate LSM field information. The lsm_rule is opaque, so must be 691 * re-initialized. */ 692 static inline int audit_dupe_lsm_field(struct audit_field *df, 693 struct audit_field *sf) 694 { 695 int ret = 0; 696 char *lsm_str; 697 698 /* our own copy of lsm_str */ 699 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); 700 if (unlikely(!lsm_str)) 701 return -ENOMEM; 702 df->lsm_str = lsm_str; 703 704 /* our own (refreshed) copy of lsm_rule */ 705 ret = security_audit_rule_init(df->type, df->op, df->lsm_str, 706 (void **)&df->lsm_rule); 707 /* Keep currently invalid fields around in case they 708 * become valid after a policy reload. */ 709 if (ret == -EINVAL) { 710 printk(KERN_WARNING "audit rule for LSM \'%s\' is " 711 "invalid\n", df->lsm_str); 712 ret = 0; 713 } 714 715 return ret; 716 } 717 718 /* Duplicate an audit rule. This will be a deep copy with the exception 719 * of the watch - that pointer is carried over. The LSM specific fields 720 * will be updated in the copy. The point is to be able to replace the old 721 * rule with the new rule in the filterlist, then free the old rule. 722 * The rlist element is undefined; list manipulations are handled apart from 723 * the initial copy. */ 724 struct audit_entry *audit_dupe_rule(struct audit_krule *old) 725 { 726 u32 fcount = old->field_count; 727 struct audit_entry *entry; 728 struct audit_krule *new; 729 char *fk; 730 int i, err = 0; 731 732 entry = audit_init_entry(fcount); 733 if (unlikely(!entry)) 734 return ERR_PTR(-ENOMEM); 735 736 new = &entry->rule; 737 new->vers_ops = old->vers_ops; 738 new->flags = old->flags; 739 new->listnr = old->listnr; 740 new->action = old->action; 741 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 742 new->mask[i] = old->mask[i]; 743 new->prio = old->prio; 744 new->buflen = old->buflen; 745 new->inode_f = old->inode_f; 746 new->field_count = old->field_count; 747 748 /* 749 * note that we are OK with not refcounting here; audit_match_tree() 750 * never dereferences tree and we can't get false positives there 751 * since we'd have to have rule gone from the list *and* removed 752 * before the chunks found by lookup had been allocated, i.e. before 753 * the beginning of list scan. 754 */ 755 new->tree = old->tree; 756 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); 757 758 /* deep copy this information, updating the lsm_rule fields, because 759 * the originals will all be freed when the old rule is freed. */ 760 for (i = 0; i < fcount; i++) { 761 switch (new->fields[i].type) { 762 case AUDIT_SUBJ_USER: 763 case AUDIT_SUBJ_ROLE: 764 case AUDIT_SUBJ_TYPE: 765 case AUDIT_SUBJ_SEN: 766 case AUDIT_SUBJ_CLR: 767 case AUDIT_OBJ_USER: 768 case AUDIT_OBJ_ROLE: 769 case AUDIT_OBJ_TYPE: 770 case AUDIT_OBJ_LEV_LOW: 771 case AUDIT_OBJ_LEV_HIGH: 772 err = audit_dupe_lsm_field(&new->fields[i], 773 &old->fields[i]); 774 break; 775 case AUDIT_FILTERKEY: 776 fk = kstrdup(old->filterkey, GFP_KERNEL); 777 if (unlikely(!fk)) 778 err = -ENOMEM; 779 else 780 new->filterkey = fk; 781 } 782 if (err) { 783 audit_free_rule(entry); 784 return ERR_PTR(err); 785 } 786 } 787 788 if (old->watch) { 789 audit_get_watch(old->watch); 790 new->watch = old->watch; 791 } 792 793 return entry; 794 } 795 796 /* Find an existing audit rule. 797 * Caller must hold audit_filter_mutex to prevent stale rule data. */ 798 static struct audit_entry *audit_find_rule(struct audit_entry *entry, 799 struct list_head **p) 800 { 801 struct audit_entry *e, *found = NULL; 802 struct list_head *list; 803 int h; 804 805 if (entry->rule.inode_f) { 806 h = audit_hash_ino(entry->rule.inode_f->val); 807 *p = list = &audit_inode_hash[h]; 808 } else if (entry->rule.watch) { 809 /* we don't know the inode number, so must walk entire hash */ 810 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { 811 list = &audit_inode_hash[h]; 812 list_for_each_entry(e, list, list) 813 if (!audit_compare_rule(&entry->rule, &e->rule)) { 814 found = e; 815 goto out; 816 } 817 } 818 goto out; 819 } else { 820 *p = list = &audit_filter_list[entry->rule.listnr]; 821 } 822 823 list_for_each_entry(e, list, list) 824 if (!audit_compare_rule(&entry->rule, &e->rule)) { 825 found = e; 826 goto out; 827 } 828 829 out: 830 return found; 831 } 832 833 static u64 prio_low = ~0ULL/2; 834 static u64 prio_high = ~0ULL/2 - 1; 835 836 /* Add rule to given filterlist if not a duplicate. */ 837 static inline int audit_add_rule(struct audit_entry *entry) 838 { 839 struct audit_entry *e; 840 struct audit_watch *watch = entry->rule.watch; 841 struct audit_tree *tree = entry->rule.tree; 842 struct list_head *list; 843 int err; 844 #ifdef CONFIG_AUDITSYSCALL 845 int dont_count = 0; 846 847 /* If either of these, don't count towards total */ 848 if (entry->rule.listnr == AUDIT_FILTER_USER || 849 entry->rule.listnr == AUDIT_FILTER_TYPE) 850 dont_count = 1; 851 #endif 852 853 mutex_lock(&audit_filter_mutex); 854 e = audit_find_rule(entry, &list); 855 if (e) { 856 mutex_unlock(&audit_filter_mutex); 857 err = -EEXIST; 858 /* normally audit_add_tree_rule() will free it on failure */ 859 if (tree) 860 audit_put_tree(tree); 861 goto error; 862 } 863 864 if (watch) { 865 /* audit_filter_mutex is dropped and re-taken during this call */ 866 err = audit_add_watch(&entry->rule, &list); 867 if (err) { 868 mutex_unlock(&audit_filter_mutex); 869 /* 870 * normally audit_add_tree_rule() will free it 871 * on failure 872 */ 873 if (tree) 874 audit_put_tree(tree); 875 goto error; 876 } 877 } 878 if (tree) { 879 err = audit_add_tree_rule(&entry->rule); 880 if (err) { 881 mutex_unlock(&audit_filter_mutex); 882 goto error; 883 } 884 } 885 886 entry->rule.prio = ~0ULL; 887 if (entry->rule.listnr == AUDIT_FILTER_EXIT) { 888 if (entry->rule.flags & AUDIT_FILTER_PREPEND) 889 entry->rule.prio = ++prio_high; 890 else 891 entry->rule.prio = --prio_low; 892 } 893 894 if (entry->rule.flags & AUDIT_FILTER_PREPEND) { 895 list_add(&entry->rule.list, 896 &audit_rules_list[entry->rule.listnr]); 897 list_add_rcu(&entry->list, list); 898 entry->rule.flags &= ~AUDIT_FILTER_PREPEND; 899 } else { 900 list_add_tail(&entry->rule.list, 901 &audit_rules_list[entry->rule.listnr]); 902 list_add_tail_rcu(&entry->list, list); 903 } 904 #ifdef CONFIG_AUDITSYSCALL 905 if (!dont_count) 906 audit_n_rules++; 907 908 if (!audit_match_signal(entry)) 909 audit_signals++; 910 #endif 911 mutex_unlock(&audit_filter_mutex); 912 913 return 0; 914 915 error: 916 if (watch) 917 audit_put_watch(watch); /* tmp watch, matches initial get */ 918 return err; 919 } 920 921 /* Remove an existing rule from filterlist. */ 922 static inline int audit_del_rule(struct audit_entry *entry) 923 { 924 struct audit_entry *e; 925 struct audit_watch *watch = entry->rule.watch; 926 struct audit_tree *tree = entry->rule.tree; 927 struct list_head *list; 928 int ret = 0; 929 #ifdef CONFIG_AUDITSYSCALL 930 int dont_count = 0; 931 932 /* If either of these, don't count towards total */ 933 if (entry->rule.listnr == AUDIT_FILTER_USER || 934 entry->rule.listnr == AUDIT_FILTER_TYPE) 935 dont_count = 1; 936 #endif 937 938 mutex_lock(&audit_filter_mutex); 939 e = audit_find_rule(entry, &list); 940 if (!e) { 941 mutex_unlock(&audit_filter_mutex); 942 ret = -ENOENT; 943 goto out; 944 } 945 946 if (e->rule.watch) 947 audit_remove_watch_rule(&e->rule); 948 949 if (e->rule.tree) 950 audit_remove_tree_rule(&e->rule); 951 952 list_del_rcu(&e->list); 953 list_del(&e->rule.list); 954 call_rcu(&e->rcu, audit_free_rule_rcu); 955 956 #ifdef CONFIG_AUDITSYSCALL 957 if (!dont_count) 958 audit_n_rules--; 959 960 if (!audit_match_signal(entry)) 961 audit_signals--; 962 #endif 963 mutex_unlock(&audit_filter_mutex); 964 965 out: 966 if (watch) 967 audit_put_watch(watch); /* match initial get */ 968 if (tree) 969 audit_put_tree(tree); /* that's the temporary one */ 970 971 return ret; 972 } 973 974 /* List rules using struct audit_rule_data. */ 975 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q) 976 { 977 struct sk_buff *skb; 978 struct audit_krule *r; 979 int i; 980 981 /* This is a blocking read, so use audit_filter_mutex instead of rcu 982 * iterator to sync with list writers. */ 983 for (i=0; i<AUDIT_NR_FILTERS; i++) { 984 list_for_each_entry(r, &audit_rules_list[i], list) { 985 struct audit_rule_data *data; 986 987 data = audit_krule_to_data(r); 988 if (unlikely(!data)) 989 break; 990 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, 991 data, sizeof(*data) + data->buflen); 992 if (skb) 993 skb_queue_tail(q, skb); 994 kfree(data); 995 } 996 } 997 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); 998 if (skb) 999 skb_queue_tail(q, skb); 1000 } 1001 1002 /* Log rule additions and removals */ 1003 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res) 1004 { 1005 struct audit_buffer *ab; 1006 uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1007 u32 sessionid = audit_get_sessionid(current); 1008 1009 if (!audit_enabled) 1010 return; 1011 1012 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 1013 if (!ab) 1014 return; 1015 audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid); 1016 audit_log_task_context(ab); 1017 audit_log_format(ab, " op="); 1018 audit_log_string(ab, action); 1019 audit_log_key(ab, rule->filterkey); 1020 audit_log_format(ab, " list=%d res=%d", rule->listnr, res); 1021 audit_log_end(ab); 1022 } 1023 1024 /** 1025 * audit_receive_filter - apply all rules to the specified message type 1026 * @type: audit message type 1027 * @pid: target pid for netlink audit messages 1028 * @seq: netlink audit message sequence (serial) number 1029 * @data: payload data 1030 * @datasz: size of payload data 1031 */ 1032 int audit_receive_filter(int type, int pid, int seq, void *data, size_t datasz) 1033 { 1034 struct task_struct *tsk; 1035 struct audit_netlink_list *dest; 1036 int err = 0; 1037 struct audit_entry *entry; 1038 1039 switch (type) { 1040 case AUDIT_LIST_RULES: 1041 /* We can't just spew out the rules here because we might fill 1042 * the available socket buffer space and deadlock waiting for 1043 * auditctl to read from it... which isn't ever going to 1044 * happen if we're actually running in the context of auditctl 1045 * trying to _send_ the stuff */ 1046 1047 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); 1048 if (!dest) 1049 return -ENOMEM; 1050 dest->pid = pid; 1051 skb_queue_head_init(&dest->q); 1052 1053 mutex_lock(&audit_filter_mutex); 1054 audit_list_rules(pid, seq, &dest->q); 1055 mutex_unlock(&audit_filter_mutex); 1056 1057 tsk = kthread_run(audit_send_list, dest, "audit_send_list"); 1058 if (IS_ERR(tsk)) { 1059 skb_queue_purge(&dest->q); 1060 kfree(dest); 1061 err = PTR_ERR(tsk); 1062 } 1063 break; 1064 case AUDIT_ADD_RULE: 1065 entry = audit_data_to_entry(data, datasz); 1066 if (IS_ERR(entry)) 1067 return PTR_ERR(entry); 1068 1069 err = audit_add_rule(entry); 1070 audit_log_rule_change("add rule", &entry->rule, !err); 1071 if (err) 1072 audit_free_rule(entry); 1073 break; 1074 case AUDIT_DEL_RULE: 1075 entry = audit_data_to_entry(data, datasz); 1076 if (IS_ERR(entry)) 1077 return PTR_ERR(entry); 1078 1079 err = audit_del_rule(entry); 1080 audit_log_rule_change("remove rule", &entry->rule, !err); 1081 audit_free_rule(entry); 1082 break; 1083 default: 1084 return -EINVAL; 1085 } 1086 1087 return err; 1088 } 1089 1090 int audit_comparator(u32 left, u32 op, u32 right) 1091 { 1092 switch (op) { 1093 case Audit_equal: 1094 return (left == right); 1095 case Audit_not_equal: 1096 return (left != right); 1097 case Audit_lt: 1098 return (left < right); 1099 case Audit_le: 1100 return (left <= right); 1101 case Audit_gt: 1102 return (left > right); 1103 case Audit_ge: 1104 return (left >= right); 1105 case Audit_bitmask: 1106 return (left & right); 1107 case Audit_bittest: 1108 return ((left & right) == right); 1109 default: 1110 BUG(); 1111 return 0; 1112 } 1113 } 1114 1115 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right) 1116 { 1117 switch (op) { 1118 case Audit_equal: 1119 return uid_eq(left, right); 1120 case Audit_not_equal: 1121 return !uid_eq(left, right); 1122 case Audit_lt: 1123 return uid_lt(left, right); 1124 case Audit_le: 1125 return uid_lte(left, right); 1126 case Audit_gt: 1127 return uid_gt(left, right); 1128 case Audit_ge: 1129 return uid_gte(left, right); 1130 case Audit_bitmask: 1131 case Audit_bittest: 1132 default: 1133 BUG(); 1134 return 0; 1135 } 1136 } 1137 1138 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right) 1139 { 1140 switch (op) { 1141 case Audit_equal: 1142 return gid_eq(left, right); 1143 case Audit_not_equal: 1144 return !gid_eq(left, right); 1145 case Audit_lt: 1146 return gid_lt(left, right); 1147 case Audit_le: 1148 return gid_lte(left, right); 1149 case Audit_gt: 1150 return gid_gt(left, right); 1151 case Audit_ge: 1152 return gid_gte(left, right); 1153 case Audit_bitmask: 1154 case Audit_bittest: 1155 default: 1156 BUG(); 1157 return 0; 1158 } 1159 } 1160 1161 /** 1162 * parent_len - find the length of the parent portion of a pathname 1163 * @path: pathname of which to determine length 1164 */ 1165 int parent_len(const char *path) 1166 { 1167 int plen; 1168 const char *p; 1169 1170 plen = strlen(path); 1171 1172 if (plen == 0) 1173 return plen; 1174 1175 /* disregard trailing slashes */ 1176 p = path + plen - 1; 1177 while ((*p == '/') && (p > path)) 1178 p--; 1179 1180 /* walk backward until we find the next slash or hit beginning */ 1181 while ((*p != '/') && (p > path)) 1182 p--; 1183 1184 /* did we find a slash? Then increment to include it in path */ 1185 if (*p == '/') 1186 p++; 1187 1188 return p - path; 1189 } 1190 1191 /** 1192 * audit_compare_dname_path - compare given dentry name with last component in 1193 * given path. Return of 0 indicates a match. 1194 * @dname: dentry name that we're comparing 1195 * @path: full pathname that we're comparing 1196 * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL 1197 * here indicates that we must compute this value. 1198 */ 1199 int audit_compare_dname_path(const char *dname, const char *path, int parentlen) 1200 { 1201 int dlen, pathlen; 1202 const char *p; 1203 1204 dlen = strlen(dname); 1205 pathlen = strlen(path); 1206 if (pathlen < dlen) 1207 return 1; 1208 1209 parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen; 1210 if (pathlen - parentlen != dlen) 1211 return 1; 1212 1213 p = path + parentlen; 1214 1215 return strncmp(p, dname, dlen); 1216 } 1217 1218 static int audit_filter_user_rules(struct audit_krule *rule, int type, 1219 enum audit_state *state) 1220 { 1221 int i; 1222 1223 for (i = 0; i < rule->field_count; i++) { 1224 struct audit_field *f = &rule->fields[i]; 1225 int result = 0; 1226 u32 sid; 1227 1228 switch (f->type) { 1229 case AUDIT_PID: 1230 result = audit_comparator(task_pid_vnr(current), f->op, f->val); 1231 break; 1232 case AUDIT_UID: 1233 result = audit_uid_comparator(current_uid(), f->op, f->uid); 1234 break; 1235 case AUDIT_GID: 1236 result = audit_gid_comparator(current_gid(), f->op, f->gid); 1237 break; 1238 case AUDIT_LOGINUID: 1239 result = audit_uid_comparator(audit_get_loginuid(current), 1240 f->op, f->uid); 1241 break; 1242 case AUDIT_LOGINUID_SET: 1243 result = audit_comparator(audit_loginuid_set(current), 1244 f->op, f->val); 1245 break; 1246 case AUDIT_MSGTYPE: 1247 result = audit_comparator(type, f->op, f->val); 1248 break; 1249 case AUDIT_SUBJ_USER: 1250 case AUDIT_SUBJ_ROLE: 1251 case AUDIT_SUBJ_TYPE: 1252 case AUDIT_SUBJ_SEN: 1253 case AUDIT_SUBJ_CLR: 1254 if (f->lsm_rule) { 1255 security_task_getsecid(current, &sid); 1256 result = security_audit_rule_match(sid, 1257 f->type, 1258 f->op, 1259 f->lsm_rule, 1260 NULL); 1261 } 1262 break; 1263 } 1264 1265 if (!result) 1266 return 0; 1267 } 1268 switch (rule->action) { 1269 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 1270 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 1271 } 1272 return 1; 1273 } 1274 1275 int audit_filter_user(int type) 1276 { 1277 enum audit_state state = AUDIT_DISABLED; 1278 struct audit_entry *e; 1279 int ret = 1; 1280 1281 rcu_read_lock(); 1282 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { 1283 if (audit_filter_user_rules(&e->rule, type, &state)) { 1284 if (state == AUDIT_DISABLED) 1285 ret = 0; 1286 break; 1287 } 1288 } 1289 rcu_read_unlock(); 1290 1291 return ret; /* Audit by default */ 1292 } 1293 1294 int audit_filter_type(int type) 1295 { 1296 struct audit_entry *e; 1297 int result = 0; 1298 1299 rcu_read_lock(); 1300 if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) 1301 goto unlock_and_return; 1302 1303 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], 1304 list) { 1305 int i; 1306 for (i = 0; i < e->rule.field_count; i++) { 1307 struct audit_field *f = &e->rule.fields[i]; 1308 if (f->type == AUDIT_MSGTYPE) { 1309 result = audit_comparator(type, f->op, f->val); 1310 if (!result) 1311 break; 1312 } 1313 } 1314 if (result) 1315 goto unlock_and_return; 1316 } 1317 unlock_and_return: 1318 rcu_read_unlock(); 1319 return result; 1320 } 1321 1322 static int update_lsm_rule(struct audit_krule *r) 1323 { 1324 struct audit_entry *entry = container_of(r, struct audit_entry, rule); 1325 struct audit_entry *nentry; 1326 int err = 0; 1327 1328 if (!security_audit_rule_known(r)) 1329 return 0; 1330 1331 nentry = audit_dupe_rule(r); 1332 if (IS_ERR(nentry)) { 1333 /* save the first error encountered for the 1334 * return value */ 1335 err = PTR_ERR(nentry); 1336 audit_panic("error updating LSM filters"); 1337 if (r->watch) 1338 list_del(&r->rlist); 1339 list_del_rcu(&entry->list); 1340 list_del(&r->list); 1341 } else { 1342 if (r->watch || r->tree) 1343 list_replace_init(&r->rlist, &nentry->rule.rlist); 1344 list_replace_rcu(&entry->list, &nentry->list); 1345 list_replace(&r->list, &nentry->rule.list); 1346 } 1347 call_rcu(&entry->rcu, audit_free_rule_rcu); 1348 1349 return err; 1350 } 1351 1352 /* This function will re-initialize the lsm_rule field of all applicable rules. 1353 * It will traverse the filter lists serarching for rules that contain LSM 1354 * specific filter fields. When such a rule is found, it is copied, the 1355 * LSM field is re-initialized, and the old rule is replaced with the 1356 * updated rule. */ 1357 int audit_update_lsm_rules(void) 1358 { 1359 struct audit_krule *r, *n; 1360 int i, err = 0; 1361 1362 /* audit_filter_mutex synchronizes the writers */ 1363 mutex_lock(&audit_filter_mutex); 1364 1365 for (i = 0; i < AUDIT_NR_FILTERS; i++) { 1366 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { 1367 int res = update_lsm_rule(r); 1368 if (!err) 1369 err = res; 1370 } 1371 } 1372 mutex_unlock(&audit_filter_mutex); 1373 1374 return err; 1375 } 1376