xref: /openbmc/linux/kernel/auditfilter.c (revision 780a7654)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/security.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		LSM rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /* Audit filter lists, defined in <linux/audit.h> */
48 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
49 	LIST_HEAD_INIT(audit_filter_list[0]),
50 	LIST_HEAD_INIT(audit_filter_list[1]),
51 	LIST_HEAD_INIT(audit_filter_list[2]),
52 	LIST_HEAD_INIT(audit_filter_list[3]),
53 	LIST_HEAD_INIT(audit_filter_list[4]),
54 	LIST_HEAD_INIT(audit_filter_list[5]),
55 #if AUDIT_NR_FILTERS != 6
56 #error Fix audit_filter_list initialiser
57 #endif
58 };
59 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
60 	LIST_HEAD_INIT(audit_rules_list[0]),
61 	LIST_HEAD_INIT(audit_rules_list[1]),
62 	LIST_HEAD_INIT(audit_rules_list[2]),
63 	LIST_HEAD_INIT(audit_rules_list[3]),
64 	LIST_HEAD_INIT(audit_rules_list[4]),
65 	LIST_HEAD_INIT(audit_rules_list[5]),
66 };
67 
68 DEFINE_MUTEX(audit_filter_mutex);
69 
70 static inline void audit_free_rule(struct audit_entry *e)
71 {
72 	int i;
73 	struct audit_krule *erule = &e->rule;
74 
75 	/* some rules don't have associated watches */
76 	if (erule->watch)
77 		audit_put_watch(erule->watch);
78 	if (erule->fields)
79 		for (i = 0; i < erule->field_count; i++) {
80 			struct audit_field *f = &erule->fields[i];
81 			kfree(f->lsm_str);
82 			security_audit_rule_free(f->lsm_rule);
83 		}
84 	kfree(erule->fields);
85 	kfree(erule->filterkey);
86 	kfree(e);
87 }
88 
89 void audit_free_rule_rcu(struct rcu_head *head)
90 {
91 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
92 	audit_free_rule(e);
93 }
94 
95 /* Initialize an audit filterlist entry. */
96 static inline struct audit_entry *audit_init_entry(u32 field_count)
97 {
98 	struct audit_entry *entry;
99 	struct audit_field *fields;
100 
101 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 	if (unlikely(!entry))
103 		return NULL;
104 
105 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
106 	if (unlikely(!fields)) {
107 		kfree(entry);
108 		return NULL;
109 	}
110 	entry->rule.fields = fields;
111 
112 	return entry;
113 }
114 
115 /* Unpack a filter field's string representation from user-space
116  * buffer. */
117 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
118 {
119 	char *str;
120 
121 	if (!*bufp || (len == 0) || (len > *remain))
122 		return ERR_PTR(-EINVAL);
123 
124 	/* Of the currently implemented string fields, PATH_MAX
125 	 * defines the longest valid length.
126 	 */
127 	if (len > PATH_MAX)
128 		return ERR_PTR(-ENAMETOOLONG);
129 
130 	str = kmalloc(len + 1, GFP_KERNEL);
131 	if (unlikely(!str))
132 		return ERR_PTR(-ENOMEM);
133 
134 	memcpy(str, *bufp, len);
135 	str[len] = 0;
136 	*bufp += len;
137 	*remain -= len;
138 
139 	return str;
140 }
141 
142 /* Translate an inode field to kernel respresentation. */
143 static inline int audit_to_inode(struct audit_krule *krule,
144 				 struct audit_field *f)
145 {
146 	if (krule->listnr != AUDIT_FILTER_EXIT ||
147 	    krule->watch || krule->inode_f || krule->tree ||
148 	    (f->op != Audit_equal && f->op != Audit_not_equal))
149 		return -EINVAL;
150 
151 	krule->inode_f = f;
152 	return 0;
153 }
154 
155 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
156 
157 int __init audit_register_class(int class, unsigned *list)
158 {
159 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
160 	if (!p)
161 		return -ENOMEM;
162 	while (*list != ~0U) {
163 		unsigned n = *list++;
164 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
165 			kfree(p);
166 			return -EINVAL;
167 		}
168 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
169 	}
170 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
171 		kfree(p);
172 		return -EINVAL;
173 	}
174 	classes[class] = p;
175 	return 0;
176 }
177 
178 int audit_match_class(int class, unsigned syscall)
179 {
180 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
181 		return 0;
182 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
183 		return 0;
184 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
185 }
186 
187 #ifdef CONFIG_AUDITSYSCALL
188 static inline int audit_match_class_bits(int class, u32 *mask)
189 {
190 	int i;
191 
192 	if (classes[class]) {
193 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
194 			if (mask[i] & classes[class][i])
195 				return 0;
196 	}
197 	return 1;
198 }
199 
200 static int audit_match_signal(struct audit_entry *entry)
201 {
202 	struct audit_field *arch = entry->rule.arch_f;
203 
204 	if (!arch) {
205 		/* When arch is unspecified, we must check both masks on biarch
206 		 * as syscall number alone is ambiguous. */
207 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
208 					       entry->rule.mask) &&
209 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
210 					       entry->rule.mask));
211 	}
212 
213 	switch(audit_classify_arch(arch->val)) {
214 	case 0: /* native */
215 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 					       entry->rule.mask));
217 	case 1: /* 32bit on biarch */
218 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
219 					       entry->rule.mask));
220 	default:
221 		return 1;
222 	}
223 }
224 #endif
225 
226 /* Common user-space to kernel rule translation. */
227 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
228 {
229 	unsigned listnr;
230 	struct audit_entry *entry;
231 	int i, err;
232 
233 	err = -EINVAL;
234 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
235 	switch(listnr) {
236 	default:
237 		goto exit_err;
238 #ifdef CONFIG_AUDITSYSCALL
239 	case AUDIT_FILTER_ENTRY:
240 		if (rule->action == AUDIT_ALWAYS)
241 			goto exit_err;
242 	case AUDIT_FILTER_EXIT:
243 	case AUDIT_FILTER_TASK:
244 #endif
245 	case AUDIT_FILTER_USER:
246 	case AUDIT_FILTER_TYPE:
247 		;
248 	}
249 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
250 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
251 		goto exit_err;
252 	}
253 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
254 		goto exit_err;
255 	if (rule->field_count > AUDIT_MAX_FIELDS)
256 		goto exit_err;
257 
258 	err = -ENOMEM;
259 	entry = audit_init_entry(rule->field_count);
260 	if (!entry)
261 		goto exit_err;
262 
263 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
264 	entry->rule.listnr = listnr;
265 	entry->rule.action = rule->action;
266 	entry->rule.field_count = rule->field_count;
267 
268 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
269 		entry->rule.mask[i] = rule->mask[i];
270 
271 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
272 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
273 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
274 		__u32 *class;
275 
276 		if (!(*p & AUDIT_BIT(bit)))
277 			continue;
278 		*p &= ~AUDIT_BIT(bit);
279 		class = classes[i];
280 		if (class) {
281 			int j;
282 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
283 				entry->rule.mask[j] |= class[j];
284 		}
285 	}
286 
287 	return entry;
288 
289 exit_err:
290 	return ERR_PTR(err);
291 }
292 
293 static u32 audit_ops[] =
294 {
295 	[Audit_equal] = AUDIT_EQUAL,
296 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
297 	[Audit_bitmask] = AUDIT_BIT_MASK,
298 	[Audit_bittest] = AUDIT_BIT_TEST,
299 	[Audit_lt] = AUDIT_LESS_THAN,
300 	[Audit_gt] = AUDIT_GREATER_THAN,
301 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
302 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
303 };
304 
305 static u32 audit_to_op(u32 op)
306 {
307 	u32 n;
308 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
309 		;
310 	return n;
311 }
312 
313 /* check if an audit field is valid */
314 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
315 {
316 	switch(f->type) {
317 	case AUDIT_MSGTYPE:
318 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
319 		    entry->rule.listnr != AUDIT_FILTER_USER)
320 			return -EINVAL;
321 		break;
322 	};
323 
324 	switch(f->type) {
325 	default:
326 		return -EINVAL;
327 	case AUDIT_UID:
328 	case AUDIT_EUID:
329 	case AUDIT_SUID:
330 	case AUDIT_FSUID:
331 	case AUDIT_LOGINUID:
332 	case AUDIT_OBJ_UID:
333 	case AUDIT_GID:
334 	case AUDIT_EGID:
335 	case AUDIT_SGID:
336 	case AUDIT_FSGID:
337 	case AUDIT_OBJ_GID:
338 	case AUDIT_PID:
339 	case AUDIT_PERS:
340 	case AUDIT_MSGTYPE:
341 	case AUDIT_PPID:
342 	case AUDIT_DEVMAJOR:
343 	case AUDIT_DEVMINOR:
344 	case AUDIT_EXIT:
345 	case AUDIT_SUCCESS:
346 		/* bit ops are only useful on syscall args */
347 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
348 			return -EINVAL;
349 		break;
350 	case AUDIT_ARG0:
351 	case AUDIT_ARG1:
352 	case AUDIT_ARG2:
353 	case AUDIT_ARG3:
354 	case AUDIT_SUBJ_USER:
355 	case AUDIT_SUBJ_ROLE:
356 	case AUDIT_SUBJ_TYPE:
357 	case AUDIT_SUBJ_SEN:
358 	case AUDIT_SUBJ_CLR:
359 	case AUDIT_OBJ_USER:
360 	case AUDIT_OBJ_ROLE:
361 	case AUDIT_OBJ_TYPE:
362 	case AUDIT_OBJ_LEV_LOW:
363 	case AUDIT_OBJ_LEV_HIGH:
364 	case AUDIT_WATCH:
365 	case AUDIT_DIR:
366 	case AUDIT_FILTERKEY:
367 		break;
368 	case AUDIT_LOGINUID_SET:
369 		if ((f->val != 0) && (f->val != 1))
370 			return -EINVAL;
371 	/* FALL THROUGH */
372 	case AUDIT_ARCH:
373 		if (f->op != Audit_not_equal && f->op != Audit_equal)
374 			return -EINVAL;
375 		break;
376 	case AUDIT_PERM:
377 		if (f->val & ~15)
378 			return -EINVAL;
379 		break;
380 	case AUDIT_FILETYPE:
381 		if (f->val & ~S_IFMT)
382 			return -EINVAL;
383 		break;
384 	case AUDIT_FIELD_COMPARE:
385 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
386 			return -EINVAL;
387 		break;
388 	};
389 	return 0;
390 }
391 
392 /* Translate struct audit_rule_data to kernel's rule respresentation. */
393 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
394 					       size_t datasz)
395 {
396 	int err = 0;
397 	struct audit_entry *entry;
398 	void *bufp;
399 	size_t remain = datasz - sizeof(struct audit_rule_data);
400 	int i;
401 	char *str;
402 
403 	entry = audit_to_entry_common((struct audit_rule *)data);
404 	if (IS_ERR(entry))
405 		goto exit_nofree;
406 
407 	bufp = data->buf;
408 	entry->rule.vers_ops = 2;
409 	for (i = 0; i < data->field_count; i++) {
410 		struct audit_field *f = &entry->rule.fields[i];
411 
412 		err = -EINVAL;
413 
414 		f->op = audit_to_op(data->fieldflags[i]);
415 		if (f->op == Audit_bad)
416 			goto exit_free;
417 
418 		f->type = data->fields[i];
419 		f->val = data->values[i];
420 		f->uid = INVALID_UID;
421 		f->gid = INVALID_GID;
422 		f->lsm_str = NULL;
423 		f->lsm_rule = NULL;
424 
425 		/* Support legacy tests for a valid loginuid */
426 		if ((f->type == AUDIT_LOGINUID) && (f->val == 4294967295)) {
427 			f->type = AUDIT_LOGINUID_SET;
428 			f->val = 0;
429 		}
430 
431 		err = audit_field_valid(entry, f);
432 		if (err)
433 			goto exit_free;
434 
435 		err = -EINVAL;
436 		switch (f->type) {
437 		case AUDIT_LOGINUID:
438 		case AUDIT_UID:
439 		case AUDIT_EUID:
440 		case AUDIT_SUID:
441 		case AUDIT_FSUID:
442 		case AUDIT_OBJ_UID:
443 			f->uid = make_kuid(current_user_ns(), f->val);
444 			if (!uid_valid(f->uid))
445 				goto exit_free;
446 			break;
447 		case AUDIT_GID:
448 		case AUDIT_EGID:
449 		case AUDIT_SGID:
450 		case AUDIT_FSGID:
451 		case AUDIT_OBJ_GID:
452 			f->gid = make_kgid(current_user_ns(), f->val);
453 			if (!gid_valid(f->gid))
454 				goto exit_free;
455 			break;
456 		case AUDIT_ARCH:
457 			entry->rule.arch_f = f;
458 			break;
459 		case AUDIT_SUBJ_USER:
460 		case AUDIT_SUBJ_ROLE:
461 		case AUDIT_SUBJ_TYPE:
462 		case AUDIT_SUBJ_SEN:
463 		case AUDIT_SUBJ_CLR:
464 		case AUDIT_OBJ_USER:
465 		case AUDIT_OBJ_ROLE:
466 		case AUDIT_OBJ_TYPE:
467 		case AUDIT_OBJ_LEV_LOW:
468 		case AUDIT_OBJ_LEV_HIGH:
469 			str = audit_unpack_string(&bufp, &remain, f->val);
470 			if (IS_ERR(str))
471 				goto exit_free;
472 			entry->rule.buflen += f->val;
473 
474 			err = security_audit_rule_init(f->type, f->op, str,
475 						       (void **)&f->lsm_rule);
476 			/* Keep currently invalid fields around in case they
477 			 * become valid after a policy reload. */
478 			if (err == -EINVAL) {
479 				printk(KERN_WARNING "audit rule for LSM "
480 				       "\'%s\' is invalid\n",  str);
481 				err = 0;
482 			}
483 			if (err) {
484 				kfree(str);
485 				goto exit_free;
486 			} else
487 				f->lsm_str = str;
488 			break;
489 		case AUDIT_WATCH:
490 			str = audit_unpack_string(&bufp, &remain, f->val);
491 			if (IS_ERR(str))
492 				goto exit_free;
493 			entry->rule.buflen += f->val;
494 
495 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
496 			if (err) {
497 				kfree(str);
498 				goto exit_free;
499 			}
500 			break;
501 		case AUDIT_DIR:
502 			str = audit_unpack_string(&bufp, &remain, f->val);
503 			if (IS_ERR(str))
504 				goto exit_free;
505 			entry->rule.buflen += f->val;
506 
507 			err = audit_make_tree(&entry->rule, str, f->op);
508 			kfree(str);
509 			if (err)
510 				goto exit_free;
511 			break;
512 		case AUDIT_INODE:
513 			err = audit_to_inode(&entry->rule, f);
514 			if (err)
515 				goto exit_free;
516 			break;
517 		case AUDIT_FILTERKEY:
518 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
519 				goto exit_free;
520 			str = audit_unpack_string(&bufp, &remain, f->val);
521 			if (IS_ERR(str))
522 				goto exit_free;
523 			entry->rule.buflen += f->val;
524 			entry->rule.filterkey = str;
525 			break;
526 		}
527 	}
528 
529 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
530 		entry->rule.inode_f = NULL;
531 
532 exit_nofree:
533 	return entry;
534 
535 exit_free:
536 	audit_free_rule(entry);
537 	return ERR_PTR(err);
538 }
539 
540 /* Pack a filter field's string representation into data block. */
541 static inline size_t audit_pack_string(void **bufp, const char *str)
542 {
543 	size_t len = strlen(str);
544 
545 	memcpy(*bufp, str, len);
546 	*bufp += len;
547 
548 	return len;
549 }
550 
551 /* Translate kernel rule respresentation to struct audit_rule_data. */
552 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
553 {
554 	struct audit_rule_data *data;
555 	void *bufp;
556 	int i;
557 
558 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
559 	if (unlikely(!data))
560 		return NULL;
561 	memset(data, 0, sizeof(*data));
562 
563 	data->flags = krule->flags | krule->listnr;
564 	data->action = krule->action;
565 	data->field_count = krule->field_count;
566 	bufp = data->buf;
567 	for (i = 0; i < data->field_count; i++) {
568 		struct audit_field *f = &krule->fields[i];
569 
570 		data->fields[i] = f->type;
571 		data->fieldflags[i] = audit_ops[f->op];
572 		switch(f->type) {
573 		case AUDIT_SUBJ_USER:
574 		case AUDIT_SUBJ_ROLE:
575 		case AUDIT_SUBJ_TYPE:
576 		case AUDIT_SUBJ_SEN:
577 		case AUDIT_SUBJ_CLR:
578 		case AUDIT_OBJ_USER:
579 		case AUDIT_OBJ_ROLE:
580 		case AUDIT_OBJ_TYPE:
581 		case AUDIT_OBJ_LEV_LOW:
582 		case AUDIT_OBJ_LEV_HIGH:
583 			data->buflen += data->values[i] =
584 				audit_pack_string(&bufp, f->lsm_str);
585 			break;
586 		case AUDIT_WATCH:
587 			data->buflen += data->values[i] =
588 				audit_pack_string(&bufp,
589 						  audit_watch_path(krule->watch));
590 			break;
591 		case AUDIT_DIR:
592 			data->buflen += data->values[i] =
593 				audit_pack_string(&bufp,
594 						  audit_tree_path(krule->tree));
595 			break;
596 		case AUDIT_FILTERKEY:
597 			data->buflen += data->values[i] =
598 				audit_pack_string(&bufp, krule->filterkey);
599 			break;
600 		default:
601 			data->values[i] = f->val;
602 		}
603 	}
604 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
605 
606 	return data;
607 }
608 
609 /* Compare two rules in kernel format.  Considered success if rules
610  * don't match. */
611 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
612 {
613 	int i;
614 
615 	if (a->flags != b->flags ||
616 	    a->listnr != b->listnr ||
617 	    a->action != b->action ||
618 	    a->field_count != b->field_count)
619 		return 1;
620 
621 	for (i = 0; i < a->field_count; i++) {
622 		if (a->fields[i].type != b->fields[i].type ||
623 		    a->fields[i].op != b->fields[i].op)
624 			return 1;
625 
626 		switch(a->fields[i].type) {
627 		case AUDIT_SUBJ_USER:
628 		case AUDIT_SUBJ_ROLE:
629 		case AUDIT_SUBJ_TYPE:
630 		case AUDIT_SUBJ_SEN:
631 		case AUDIT_SUBJ_CLR:
632 		case AUDIT_OBJ_USER:
633 		case AUDIT_OBJ_ROLE:
634 		case AUDIT_OBJ_TYPE:
635 		case AUDIT_OBJ_LEV_LOW:
636 		case AUDIT_OBJ_LEV_HIGH:
637 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
638 				return 1;
639 			break;
640 		case AUDIT_WATCH:
641 			if (strcmp(audit_watch_path(a->watch),
642 				   audit_watch_path(b->watch)))
643 				return 1;
644 			break;
645 		case AUDIT_DIR:
646 			if (strcmp(audit_tree_path(a->tree),
647 				   audit_tree_path(b->tree)))
648 				return 1;
649 			break;
650 		case AUDIT_FILTERKEY:
651 			/* both filterkeys exist based on above type compare */
652 			if (strcmp(a->filterkey, b->filterkey))
653 				return 1;
654 			break;
655 		case AUDIT_UID:
656 		case AUDIT_EUID:
657 		case AUDIT_SUID:
658 		case AUDIT_FSUID:
659 		case AUDIT_LOGINUID:
660 		case AUDIT_OBJ_UID:
661 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
662 				return 1;
663 			break;
664 		case AUDIT_GID:
665 		case AUDIT_EGID:
666 		case AUDIT_SGID:
667 		case AUDIT_FSGID:
668 		case AUDIT_OBJ_GID:
669 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
670 				return 1;
671 			break;
672 		default:
673 			if (a->fields[i].val != b->fields[i].val)
674 				return 1;
675 		}
676 	}
677 
678 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
679 		if (a->mask[i] != b->mask[i])
680 			return 1;
681 
682 	return 0;
683 }
684 
685 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
686  * re-initialized. */
687 static inline int audit_dupe_lsm_field(struct audit_field *df,
688 					   struct audit_field *sf)
689 {
690 	int ret = 0;
691 	char *lsm_str;
692 
693 	/* our own copy of lsm_str */
694 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
695 	if (unlikely(!lsm_str))
696 		return -ENOMEM;
697 	df->lsm_str = lsm_str;
698 
699 	/* our own (refreshed) copy of lsm_rule */
700 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
701 				       (void **)&df->lsm_rule);
702 	/* Keep currently invalid fields around in case they
703 	 * become valid after a policy reload. */
704 	if (ret == -EINVAL) {
705 		printk(KERN_WARNING "audit rule for LSM \'%s\' is "
706 		       "invalid\n", df->lsm_str);
707 		ret = 0;
708 	}
709 
710 	return ret;
711 }
712 
713 /* Duplicate an audit rule.  This will be a deep copy with the exception
714  * of the watch - that pointer is carried over.  The LSM specific fields
715  * will be updated in the copy.  The point is to be able to replace the old
716  * rule with the new rule in the filterlist, then free the old rule.
717  * The rlist element is undefined; list manipulations are handled apart from
718  * the initial copy. */
719 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
720 {
721 	u32 fcount = old->field_count;
722 	struct audit_entry *entry;
723 	struct audit_krule *new;
724 	char *fk;
725 	int i, err = 0;
726 
727 	entry = audit_init_entry(fcount);
728 	if (unlikely(!entry))
729 		return ERR_PTR(-ENOMEM);
730 
731 	new = &entry->rule;
732 	new->vers_ops = old->vers_ops;
733 	new->flags = old->flags;
734 	new->listnr = old->listnr;
735 	new->action = old->action;
736 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
737 		new->mask[i] = old->mask[i];
738 	new->prio = old->prio;
739 	new->buflen = old->buflen;
740 	new->inode_f = old->inode_f;
741 	new->field_count = old->field_count;
742 
743 	/*
744 	 * note that we are OK with not refcounting here; audit_match_tree()
745 	 * never dereferences tree and we can't get false positives there
746 	 * since we'd have to have rule gone from the list *and* removed
747 	 * before the chunks found by lookup had been allocated, i.e. before
748 	 * the beginning of list scan.
749 	 */
750 	new->tree = old->tree;
751 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
752 
753 	/* deep copy this information, updating the lsm_rule fields, because
754 	 * the originals will all be freed when the old rule is freed. */
755 	for (i = 0; i < fcount; i++) {
756 		switch (new->fields[i].type) {
757 		case AUDIT_SUBJ_USER:
758 		case AUDIT_SUBJ_ROLE:
759 		case AUDIT_SUBJ_TYPE:
760 		case AUDIT_SUBJ_SEN:
761 		case AUDIT_SUBJ_CLR:
762 		case AUDIT_OBJ_USER:
763 		case AUDIT_OBJ_ROLE:
764 		case AUDIT_OBJ_TYPE:
765 		case AUDIT_OBJ_LEV_LOW:
766 		case AUDIT_OBJ_LEV_HIGH:
767 			err = audit_dupe_lsm_field(&new->fields[i],
768 						       &old->fields[i]);
769 			break;
770 		case AUDIT_FILTERKEY:
771 			fk = kstrdup(old->filterkey, GFP_KERNEL);
772 			if (unlikely(!fk))
773 				err = -ENOMEM;
774 			else
775 				new->filterkey = fk;
776 		}
777 		if (err) {
778 			audit_free_rule(entry);
779 			return ERR_PTR(err);
780 		}
781 	}
782 
783 	if (old->watch) {
784 		audit_get_watch(old->watch);
785 		new->watch = old->watch;
786 	}
787 
788 	return entry;
789 }
790 
791 /* Find an existing audit rule.
792  * Caller must hold audit_filter_mutex to prevent stale rule data. */
793 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
794 					   struct list_head **p)
795 {
796 	struct audit_entry *e, *found = NULL;
797 	struct list_head *list;
798 	int h;
799 
800 	if (entry->rule.inode_f) {
801 		h = audit_hash_ino(entry->rule.inode_f->val);
802 		*p = list = &audit_inode_hash[h];
803 	} else if (entry->rule.watch) {
804 		/* we don't know the inode number, so must walk entire hash */
805 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
806 			list = &audit_inode_hash[h];
807 			list_for_each_entry(e, list, list)
808 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
809 					found = e;
810 					goto out;
811 				}
812 		}
813 		goto out;
814 	} else {
815 		*p = list = &audit_filter_list[entry->rule.listnr];
816 	}
817 
818 	list_for_each_entry(e, list, list)
819 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
820 			found = e;
821 			goto out;
822 		}
823 
824 out:
825 	return found;
826 }
827 
828 static u64 prio_low = ~0ULL/2;
829 static u64 prio_high = ~0ULL/2 - 1;
830 
831 /* Add rule to given filterlist if not a duplicate. */
832 static inline int audit_add_rule(struct audit_entry *entry)
833 {
834 	struct audit_entry *e;
835 	struct audit_watch *watch = entry->rule.watch;
836 	struct audit_tree *tree = entry->rule.tree;
837 	struct list_head *list;
838 	int err;
839 #ifdef CONFIG_AUDITSYSCALL
840 	int dont_count = 0;
841 
842 	/* If either of these, don't count towards total */
843 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
844 		entry->rule.listnr == AUDIT_FILTER_TYPE)
845 		dont_count = 1;
846 #endif
847 
848 	mutex_lock(&audit_filter_mutex);
849 	e = audit_find_rule(entry, &list);
850 	if (e) {
851 		mutex_unlock(&audit_filter_mutex);
852 		err = -EEXIST;
853 		/* normally audit_add_tree_rule() will free it on failure */
854 		if (tree)
855 			audit_put_tree(tree);
856 		goto error;
857 	}
858 
859 	if (watch) {
860 		/* audit_filter_mutex is dropped and re-taken during this call */
861 		err = audit_add_watch(&entry->rule, &list);
862 		if (err) {
863 			mutex_unlock(&audit_filter_mutex);
864 			goto error;
865 		}
866 	}
867 	if (tree) {
868 		err = audit_add_tree_rule(&entry->rule);
869 		if (err) {
870 			mutex_unlock(&audit_filter_mutex);
871 			goto error;
872 		}
873 	}
874 
875 	entry->rule.prio = ~0ULL;
876 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
877 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
878 			entry->rule.prio = ++prio_high;
879 		else
880 			entry->rule.prio = --prio_low;
881 	}
882 
883 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
884 		list_add(&entry->rule.list,
885 			 &audit_rules_list[entry->rule.listnr]);
886 		list_add_rcu(&entry->list, list);
887 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
888 	} else {
889 		list_add_tail(&entry->rule.list,
890 			      &audit_rules_list[entry->rule.listnr]);
891 		list_add_tail_rcu(&entry->list, list);
892 	}
893 #ifdef CONFIG_AUDITSYSCALL
894 	if (!dont_count)
895 		audit_n_rules++;
896 
897 	if (!audit_match_signal(entry))
898 		audit_signals++;
899 #endif
900 	mutex_unlock(&audit_filter_mutex);
901 
902  	return 0;
903 
904 error:
905 	if (watch)
906 		audit_put_watch(watch); /* tmp watch, matches initial get */
907 	return err;
908 }
909 
910 /* Remove an existing rule from filterlist. */
911 static inline int audit_del_rule(struct audit_entry *entry)
912 {
913 	struct audit_entry  *e;
914 	struct audit_watch *watch = entry->rule.watch;
915 	struct audit_tree *tree = entry->rule.tree;
916 	struct list_head *list;
917 	int ret = 0;
918 #ifdef CONFIG_AUDITSYSCALL
919 	int dont_count = 0;
920 
921 	/* If either of these, don't count towards total */
922 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
923 		entry->rule.listnr == AUDIT_FILTER_TYPE)
924 		dont_count = 1;
925 #endif
926 
927 	mutex_lock(&audit_filter_mutex);
928 	e = audit_find_rule(entry, &list);
929 	if (!e) {
930 		mutex_unlock(&audit_filter_mutex);
931 		ret = -ENOENT;
932 		goto out;
933 	}
934 
935 	if (e->rule.watch)
936 		audit_remove_watch_rule(&e->rule);
937 
938 	if (e->rule.tree)
939 		audit_remove_tree_rule(&e->rule);
940 
941 	list_del_rcu(&e->list);
942 	list_del(&e->rule.list);
943 	call_rcu(&e->rcu, audit_free_rule_rcu);
944 
945 #ifdef CONFIG_AUDITSYSCALL
946 	if (!dont_count)
947 		audit_n_rules--;
948 
949 	if (!audit_match_signal(entry))
950 		audit_signals--;
951 #endif
952 	mutex_unlock(&audit_filter_mutex);
953 
954 out:
955 	if (watch)
956 		audit_put_watch(watch); /* match initial get */
957 	if (tree)
958 		audit_put_tree(tree);	/* that's the temporary one */
959 
960 	return ret;
961 }
962 
963 /* List rules using struct audit_rule_data. */
964 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
965 {
966 	struct sk_buff *skb;
967 	struct audit_krule *r;
968 	int i;
969 
970 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
971 	 * iterator to sync with list writers. */
972 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
973 		list_for_each_entry(r, &audit_rules_list[i], list) {
974 			struct audit_rule_data *data;
975 
976 			data = audit_krule_to_data(r);
977 			if (unlikely(!data))
978 				break;
979 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
980 					 data, sizeof(*data) + data->buflen);
981 			if (skb)
982 				skb_queue_tail(q, skb);
983 			kfree(data);
984 		}
985 	}
986 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
987 	if (skb)
988 		skb_queue_tail(q, skb);
989 }
990 
991 /* Log rule additions and removals */
992 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
993 {
994 	struct audit_buffer *ab;
995 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
996 	u32 sessionid = audit_get_sessionid(current);
997 
998 	if (!audit_enabled)
999 		return;
1000 
1001 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1002 	if (!ab)
1003 		return;
1004 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1005 	audit_log_task_context(ab);
1006 	audit_log_format(ab, " op=");
1007 	audit_log_string(ab, action);
1008 	audit_log_key(ab, rule->filterkey);
1009 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1010 	audit_log_end(ab);
1011 }
1012 
1013 /**
1014  * audit_receive_filter - apply all rules to the specified message type
1015  * @type: audit message type
1016  * @pid: target pid for netlink audit messages
1017  * @seq: netlink audit message sequence (serial) number
1018  * @data: payload data
1019  * @datasz: size of payload data
1020  * @loginuid: loginuid of sender
1021  * @sessionid: sessionid for netlink audit message
1022  * @sid: SE Linux Security ID of sender
1023  */
1024 int audit_receive_filter(int type, int pid, int seq, void *data, size_t datasz)
1025 {
1026 	struct task_struct *tsk;
1027 	struct audit_netlink_list *dest;
1028 	int err = 0;
1029 	struct audit_entry *entry;
1030 
1031 	switch (type) {
1032 	case AUDIT_LIST_RULES:
1033 		/* We can't just spew out the rules here because we might fill
1034 		 * the available socket buffer space and deadlock waiting for
1035 		 * auditctl to read from it... which isn't ever going to
1036 		 * happen if we're actually running in the context of auditctl
1037 		 * trying to _send_ the stuff */
1038 
1039 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1040 		if (!dest)
1041 			return -ENOMEM;
1042 		dest->pid = pid;
1043 		skb_queue_head_init(&dest->q);
1044 
1045 		mutex_lock(&audit_filter_mutex);
1046 		audit_list_rules(pid, seq, &dest->q);
1047 		mutex_unlock(&audit_filter_mutex);
1048 
1049 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1050 		if (IS_ERR(tsk)) {
1051 			skb_queue_purge(&dest->q);
1052 			kfree(dest);
1053 			err = PTR_ERR(tsk);
1054 		}
1055 		break;
1056 	case AUDIT_ADD_RULE:
1057 		entry = audit_data_to_entry(data, datasz);
1058 		if (IS_ERR(entry))
1059 			return PTR_ERR(entry);
1060 
1061 		err = audit_add_rule(entry);
1062 		audit_log_rule_change("add rule", &entry->rule, !err);
1063 		if (err)
1064 			audit_free_rule(entry);
1065 		break;
1066 	case AUDIT_DEL_RULE:
1067 		entry = audit_data_to_entry(data, datasz);
1068 		if (IS_ERR(entry))
1069 			return PTR_ERR(entry);
1070 
1071 		err = audit_del_rule(entry);
1072 		audit_log_rule_change("remove rule", &entry->rule, !err);
1073 		audit_free_rule(entry);
1074 		break;
1075 	default:
1076 		return -EINVAL;
1077 	}
1078 
1079 	return err;
1080 }
1081 
1082 int audit_comparator(u32 left, u32 op, u32 right)
1083 {
1084 	switch (op) {
1085 	case Audit_equal:
1086 		return (left == right);
1087 	case Audit_not_equal:
1088 		return (left != right);
1089 	case Audit_lt:
1090 		return (left < right);
1091 	case Audit_le:
1092 		return (left <= right);
1093 	case Audit_gt:
1094 		return (left > right);
1095 	case Audit_ge:
1096 		return (left >= right);
1097 	case Audit_bitmask:
1098 		return (left & right);
1099 	case Audit_bittest:
1100 		return ((left & right) == right);
1101 	default:
1102 		BUG();
1103 		return 0;
1104 	}
1105 }
1106 
1107 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1108 {
1109 	switch (op) {
1110 	case Audit_equal:
1111 		return uid_eq(left, right);
1112 	case Audit_not_equal:
1113 		return !uid_eq(left, right);
1114 	case Audit_lt:
1115 		return uid_lt(left, right);
1116 	case Audit_le:
1117 		return uid_lte(left, right);
1118 	case Audit_gt:
1119 		return uid_gt(left, right);
1120 	case Audit_ge:
1121 		return uid_gte(left, right);
1122 	case Audit_bitmask:
1123 	case Audit_bittest:
1124 	default:
1125 		BUG();
1126 		return 0;
1127 	}
1128 }
1129 
1130 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1131 {
1132 	switch (op) {
1133 	case Audit_equal:
1134 		return gid_eq(left, right);
1135 	case Audit_not_equal:
1136 		return !gid_eq(left, right);
1137 	case Audit_lt:
1138 		return gid_lt(left, right);
1139 	case Audit_le:
1140 		return gid_lte(left, right);
1141 	case Audit_gt:
1142 		return gid_gt(left, right);
1143 	case Audit_ge:
1144 		return gid_gte(left, right);
1145 	case Audit_bitmask:
1146 	case Audit_bittest:
1147 	default:
1148 		BUG();
1149 		return 0;
1150 	}
1151 }
1152 
1153 /**
1154  * parent_len - find the length of the parent portion of a pathname
1155  * @path: pathname of which to determine length
1156  */
1157 int parent_len(const char *path)
1158 {
1159 	int plen;
1160 	const char *p;
1161 
1162 	plen = strlen(path);
1163 
1164 	if (plen == 0)
1165 		return plen;
1166 
1167 	/* disregard trailing slashes */
1168 	p = path + plen - 1;
1169 	while ((*p == '/') && (p > path))
1170 		p--;
1171 
1172 	/* walk backward until we find the next slash or hit beginning */
1173 	while ((*p != '/') && (p > path))
1174 		p--;
1175 
1176 	/* did we find a slash? Then increment to include it in path */
1177 	if (*p == '/')
1178 		p++;
1179 
1180 	return p - path;
1181 }
1182 
1183 /**
1184  * audit_compare_dname_path - compare given dentry name with last component in
1185  * 			      given path. Return of 0 indicates a match.
1186  * @dname:	dentry name that we're comparing
1187  * @path:	full pathname that we're comparing
1188  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1189  * 		here indicates that we must compute this value.
1190  */
1191 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1192 {
1193 	int dlen, pathlen;
1194 	const char *p;
1195 
1196 	dlen = strlen(dname);
1197 	pathlen = strlen(path);
1198 	if (pathlen < dlen)
1199 		return 1;
1200 
1201 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1202 	if (pathlen - parentlen != dlen)
1203 		return 1;
1204 
1205 	p = path + parentlen;
1206 
1207 	return strncmp(p, dname, dlen);
1208 }
1209 
1210 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1211 				   enum audit_state *state)
1212 {
1213 	int i;
1214 
1215 	for (i = 0; i < rule->field_count; i++) {
1216 		struct audit_field *f = &rule->fields[i];
1217 		int result = 0;
1218 		u32 sid;
1219 
1220 		switch (f->type) {
1221 		case AUDIT_PID:
1222 			result = audit_comparator(task_pid_vnr(current), f->op, f->val);
1223 			break;
1224 		case AUDIT_UID:
1225 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1226 			break;
1227 		case AUDIT_GID:
1228 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1229 			break;
1230 		case AUDIT_LOGINUID:
1231 			result = audit_uid_comparator(audit_get_loginuid(current),
1232 						  f->op, f->uid);
1233 			break;
1234 		case AUDIT_LOGINUID_SET:
1235 			result = audit_comparator(audit_loginuid_set(current),
1236 						  f->op, f->val);
1237 			break;
1238 		case AUDIT_MSGTYPE:
1239 			result = audit_comparator(type, f->op, f->val);
1240 			break;
1241 		case AUDIT_SUBJ_USER:
1242 		case AUDIT_SUBJ_ROLE:
1243 		case AUDIT_SUBJ_TYPE:
1244 		case AUDIT_SUBJ_SEN:
1245 		case AUDIT_SUBJ_CLR:
1246 			if (f->lsm_rule) {
1247 				security_task_getsecid(current, &sid);
1248 				result = security_audit_rule_match(sid,
1249 								   f->type,
1250 								   f->op,
1251 								   f->lsm_rule,
1252 								   NULL);
1253 			}
1254 			break;
1255 		}
1256 
1257 		if (!result)
1258 			return 0;
1259 	}
1260 	switch (rule->action) {
1261 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1262 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1263 	}
1264 	return 1;
1265 }
1266 
1267 int audit_filter_user(int type)
1268 {
1269 	enum audit_state state = AUDIT_DISABLED;
1270 	struct audit_entry *e;
1271 	int ret = 1;
1272 
1273 	rcu_read_lock();
1274 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1275 		if (audit_filter_user_rules(&e->rule, type, &state)) {
1276 			if (state == AUDIT_DISABLED)
1277 				ret = 0;
1278 			break;
1279 		}
1280 	}
1281 	rcu_read_unlock();
1282 
1283 	return ret; /* Audit by default */
1284 }
1285 
1286 int audit_filter_type(int type)
1287 {
1288 	struct audit_entry *e;
1289 	int result = 0;
1290 
1291 	rcu_read_lock();
1292 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1293 		goto unlock_and_return;
1294 
1295 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1296 				list) {
1297 		int i;
1298 		for (i = 0; i < e->rule.field_count; i++) {
1299 			struct audit_field *f = &e->rule.fields[i];
1300 			if (f->type == AUDIT_MSGTYPE) {
1301 				result = audit_comparator(type, f->op, f->val);
1302 				if (!result)
1303 					break;
1304 			}
1305 		}
1306 		if (result)
1307 			goto unlock_and_return;
1308 	}
1309 unlock_and_return:
1310 	rcu_read_unlock();
1311 	return result;
1312 }
1313 
1314 static int update_lsm_rule(struct audit_krule *r)
1315 {
1316 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1317 	struct audit_entry *nentry;
1318 	int err = 0;
1319 
1320 	if (!security_audit_rule_known(r))
1321 		return 0;
1322 
1323 	nentry = audit_dupe_rule(r);
1324 	if (IS_ERR(nentry)) {
1325 		/* save the first error encountered for the
1326 		 * return value */
1327 		err = PTR_ERR(nentry);
1328 		audit_panic("error updating LSM filters");
1329 		if (r->watch)
1330 			list_del(&r->rlist);
1331 		list_del_rcu(&entry->list);
1332 		list_del(&r->list);
1333 	} else {
1334 		if (r->watch || r->tree)
1335 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1336 		list_replace_rcu(&entry->list, &nentry->list);
1337 		list_replace(&r->list, &nentry->rule.list);
1338 	}
1339 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1340 
1341 	return err;
1342 }
1343 
1344 /* This function will re-initialize the lsm_rule field of all applicable rules.
1345  * It will traverse the filter lists serarching for rules that contain LSM
1346  * specific filter fields.  When such a rule is found, it is copied, the
1347  * LSM field is re-initialized, and the old rule is replaced with the
1348  * updated rule. */
1349 int audit_update_lsm_rules(void)
1350 {
1351 	struct audit_krule *r, *n;
1352 	int i, err = 0;
1353 
1354 	/* audit_filter_mutex synchronizes the writers */
1355 	mutex_lock(&audit_filter_mutex);
1356 
1357 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1358 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1359 			int res = update_lsm_rule(r);
1360 			if (!err)
1361 				err = res;
1362 		}
1363 	}
1364 	mutex_unlock(&audit_filter_mutex);
1365 
1366 	return err;
1367 }
1368