1 /* auditfilter.c -- filtering of audit events 2 * 3 * Copyright 2003-2004 Red Hat, Inc. 4 * Copyright 2005 Hewlett-Packard Development Company, L.P. 5 * Copyright 2005 IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/kernel.h> 25 #include <linux/audit.h> 26 #include <linux/kthread.h> 27 #include <linux/mutex.h> 28 #include <linux/fs.h> 29 #include <linux/namei.h> 30 #include <linux/netlink.h> 31 #include <linux/sched.h> 32 #include <linux/slab.h> 33 #include <linux/security.h> 34 #include <net/net_namespace.h> 35 #include <net/sock.h> 36 #include "audit.h" 37 38 /* 39 * Locking model: 40 * 41 * audit_filter_mutex: 42 * Synchronizes writes and blocking reads of audit's filterlist 43 * data. Rcu is used to traverse the filterlist and access 44 * contents of structs audit_entry, audit_watch and opaque 45 * LSM rules during filtering. If modified, these structures 46 * must be copied and replace their counterparts in the filterlist. 47 * An audit_parent struct is not accessed during filtering, so may 48 * be written directly provided audit_filter_mutex is held. 49 */ 50 51 /* Audit filter lists, defined in <linux/audit.h> */ 52 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { 53 LIST_HEAD_INIT(audit_filter_list[0]), 54 LIST_HEAD_INIT(audit_filter_list[1]), 55 LIST_HEAD_INIT(audit_filter_list[2]), 56 LIST_HEAD_INIT(audit_filter_list[3]), 57 LIST_HEAD_INIT(audit_filter_list[4]), 58 LIST_HEAD_INIT(audit_filter_list[5]), 59 LIST_HEAD_INIT(audit_filter_list[6]), 60 #if AUDIT_NR_FILTERS != 7 61 #error Fix audit_filter_list initialiser 62 #endif 63 }; 64 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { 65 LIST_HEAD_INIT(audit_rules_list[0]), 66 LIST_HEAD_INIT(audit_rules_list[1]), 67 LIST_HEAD_INIT(audit_rules_list[2]), 68 LIST_HEAD_INIT(audit_rules_list[3]), 69 LIST_HEAD_INIT(audit_rules_list[4]), 70 LIST_HEAD_INIT(audit_rules_list[5]), 71 LIST_HEAD_INIT(audit_rules_list[6]), 72 }; 73 74 DEFINE_MUTEX(audit_filter_mutex); 75 76 static void audit_free_lsm_field(struct audit_field *f) 77 { 78 switch (f->type) { 79 case AUDIT_SUBJ_USER: 80 case AUDIT_SUBJ_ROLE: 81 case AUDIT_SUBJ_TYPE: 82 case AUDIT_SUBJ_SEN: 83 case AUDIT_SUBJ_CLR: 84 case AUDIT_OBJ_USER: 85 case AUDIT_OBJ_ROLE: 86 case AUDIT_OBJ_TYPE: 87 case AUDIT_OBJ_LEV_LOW: 88 case AUDIT_OBJ_LEV_HIGH: 89 kfree(f->lsm_str); 90 security_audit_rule_free(f->lsm_rule); 91 } 92 } 93 94 static inline void audit_free_rule(struct audit_entry *e) 95 { 96 int i; 97 struct audit_krule *erule = &e->rule; 98 99 /* some rules don't have associated watches */ 100 if (erule->watch) 101 audit_put_watch(erule->watch); 102 if (erule->fields) 103 for (i = 0; i < erule->field_count; i++) 104 audit_free_lsm_field(&erule->fields[i]); 105 kfree(erule->fields); 106 kfree(erule->filterkey); 107 kfree(e); 108 } 109 110 void audit_free_rule_rcu(struct rcu_head *head) 111 { 112 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 113 audit_free_rule(e); 114 } 115 116 /* Initialize an audit filterlist entry. */ 117 static inline struct audit_entry *audit_init_entry(u32 field_count) 118 { 119 struct audit_entry *entry; 120 struct audit_field *fields; 121 122 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 123 if (unlikely(!entry)) 124 return NULL; 125 126 fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL); 127 if (unlikely(!fields)) { 128 kfree(entry); 129 return NULL; 130 } 131 entry->rule.fields = fields; 132 133 return entry; 134 } 135 136 /* Unpack a filter field's string representation from user-space 137 * buffer. */ 138 char *audit_unpack_string(void **bufp, size_t *remain, size_t len) 139 { 140 char *str; 141 142 if (!*bufp || (len == 0) || (len > *remain)) 143 return ERR_PTR(-EINVAL); 144 145 /* Of the currently implemented string fields, PATH_MAX 146 * defines the longest valid length. 147 */ 148 if (len > PATH_MAX) 149 return ERR_PTR(-ENAMETOOLONG); 150 151 str = kmalloc(len + 1, GFP_KERNEL); 152 if (unlikely(!str)) 153 return ERR_PTR(-ENOMEM); 154 155 memcpy(str, *bufp, len); 156 str[len] = 0; 157 *bufp += len; 158 *remain -= len; 159 160 return str; 161 } 162 163 /* Translate an inode field to kernel representation. */ 164 static inline int audit_to_inode(struct audit_krule *krule, 165 struct audit_field *f) 166 { 167 if (krule->listnr != AUDIT_FILTER_EXIT || 168 krule->inode_f || krule->watch || krule->tree || 169 (f->op != Audit_equal && f->op != Audit_not_equal)) 170 return -EINVAL; 171 172 krule->inode_f = f; 173 return 0; 174 } 175 176 static __u32 *classes[AUDIT_SYSCALL_CLASSES]; 177 178 int __init audit_register_class(int class, unsigned *list) 179 { 180 __u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL); 181 if (!p) 182 return -ENOMEM; 183 while (*list != ~0U) { 184 unsigned n = *list++; 185 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { 186 kfree(p); 187 return -EINVAL; 188 } 189 p[AUDIT_WORD(n)] |= AUDIT_BIT(n); 190 } 191 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { 192 kfree(p); 193 return -EINVAL; 194 } 195 classes[class] = p; 196 return 0; 197 } 198 199 int audit_match_class(int class, unsigned syscall) 200 { 201 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) 202 return 0; 203 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) 204 return 0; 205 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); 206 } 207 208 #ifdef CONFIG_AUDITSYSCALL 209 static inline int audit_match_class_bits(int class, u32 *mask) 210 { 211 int i; 212 213 if (classes[class]) { 214 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 215 if (mask[i] & classes[class][i]) 216 return 0; 217 } 218 return 1; 219 } 220 221 static int audit_match_signal(struct audit_entry *entry) 222 { 223 struct audit_field *arch = entry->rule.arch_f; 224 225 if (!arch) { 226 /* When arch is unspecified, we must check both masks on biarch 227 * as syscall number alone is ambiguous. */ 228 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 229 entry->rule.mask) && 230 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 231 entry->rule.mask)); 232 } 233 234 switch(audit_classify_arch(arch->val)) { 235 case 0: /* native */ 236 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 237 entry->rule.mask)); 238 case 1: /* 32bit on biarch */ 239 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 240 entry->rule.mask)); 241 default: 242 return 1; 243 } 244 } 245 #endif 246 247 /* Common user-space to kernel rule translation. */ 248 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule) 249 { 250 unsigned listnr; 251 struct audit_entry *entry; 252 int i, err; 253 254 err = -EINVAL; 255 listnr = rule->flags & ~AUDIT_FILTER_PREPEND; 256 switch(listnr) { 257 default: 258 goto exit_err; 259 #ifdef CONFIG_AUDITSYSCALL 260 case AUDIT_FILTER_ENTRY: 261 pr_err("AUDIT_FILTER_ENTRY is deprecated\n"); 262 goto exit_err; 263 case AUDIT_FILTER_EXIT: 264 case AUDIT_FILTER_TASK: 265 #endif 266 case AUDIT_FILTER_USER: 267 case AUDIT_FILTER_EXCLUDE: 268 case AUDIT_FILTER_FS: 269 ; 270 } 271 if (unlikely(rule->action == AUDIT_POSSIBLE)) { 272 pr_err("AUDIT_POSSIBLE is deprecated\n"); 273 goto exit_err; 274 } 275 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) 276 goto exit_err; 277 if (rule->field_count > AUDIT_MAX_FIELDS) 278 goto exit_err; 279 280 err = -ENOMEM; 281 entry = audit_init_entry(rule->field_count); 282 if (!entry) 283 goto exit_err; 284 285 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; 286 entry->rule.listnr = listnr; 287 entry->rule.action = rule->action; 288 entry->rule.field_count = rule->field_count; 289 290 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 291 entry->rule.mask[i] = rule->mask[i]; 292 293 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { 294 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; 295 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; 296 __u32 *class; 297 298 if (!(*p & AUDIT_BIT(bit))) 299 continue; 300 *p &= ~AUDIT_BIT(bit); 301 class = classes[i]; 302 if (class) { 303 int j; 304 for (j = 0; j < AUDIT_BITMASK_SIZE; j++) 305 entry->rule.mask[j] |= class[j]; 306 } 307 } 308 309 return entry; 310 311 exit_err: 312 return ERR_PTR(err); 313 } 314 315 static u32 audit_ops[] = 316 { 317 [Audit_equal] = AUDIT_EQUAL, 318 [Audit_not_equal] = AUDIT_NOT_EQUAL, 319 [Audit_bitmask] = AUDIT_BIT_MASK, 320 [Audit_bittest] = AUDIT_BIT_TEST, 321 [Audit_lt] = AUDIT_LESS_THAN, 322 [Audit_gt] = AUDIT_GREATER_THAN, 323 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, 324 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, 325 }; 326 327 static u32 audit_to_op(u32 op) 328 { 329 u32 n; 330 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) 331 ; 332 return n; 333 } 334 335 /* check if an audit field is valid */ 336 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f) 337 { 338 switch(f->type) { 339 case AUDIT_MSGTYPE: 340 if (entry->rule.listnr != AUDIT_FILTER_EXCLUDE && 341 entry->rule.listnr != AUDIT_FILTER_USER) 342 return -EINVAL; 343 break; 344 case AUDIT_FSTYPE: 345 if (entry->rule.listnr != AUDIT_FILTER_FS) 346 return -EINVAL; 347 break; 348 } 349 350 switch(entry->rule.listnr) { 351 case AUDIT_FILTER_FS: 352 switch(f->type) { 353 case AUDIT_FSTYPE: 354 case AUDIT_FILTERKEY: 355 break; 356 default: 357 return -EINVAL; 358 } 359 } 360 361 switch(f->type) { 362 default: 363 return -EINVAL; 364 case AUDIT_UID: 365 case AUDIT_EUID: 366 case AUDIT_SUID: 367 case AUDIT_FSUID: 368 case AUDIT_LOGINUID: 369 case AUDIT_OBJ_UID: 370 case AUDIT_GID: 371 case AUDIT_EGID: 372 case AUDIT_SGID: 373 case AUDIT_FSGID: 374 case AUDIT_OBJ_GID: 375 case AUDIT_PID: 376 case AUDIT_PERS: 377 case AUDIT_MSGTYPE: 378 case AUDIT_PPID: 379 case AUDIT_DEVMAJOR: 380 case AUDIT_DEVMINOR: 381 case AUDIT_EXIT: 382 case AUDIT_SUCCESS: 383 case AUDIT_INODE: 384 case AUDIT_SESSIONID: 385 /* bit ops are only useful on syscall args */ 386 if (f->op == Audit_bitmask || f->op == Audit_bittest) 387 return -EINVAL; 388 break; 389 case AUDIT_ARG0: 390 case AUDIT_ARG1: 391 case AUDIT_ARG2: 392 case AUDIT_ARG3: 393 case AUDIT_SUBJ_USER: 394 case AUDIT_SUBJ_ROLE: 395 case AUDIT_SUBJ_TYPE: 396 case AUDIT_SUBJ_SEN: 397 case AUDIT_SUBJ_CLR: 398 case AUDIT_OBJ_USER: 399 case AUDIT_OBJ_ROLE: 400 case AUDIT_OBJ_TYPE: 401 case AUDIT_OBJ_LEV_LOW: 402 case AUDIT_OBJ_LEV_HIGH: 403 case AUDIT_WATCH: 404 case AUDIT_DIR: 405 case AUDIT_FILTERKEY: 406 break; 407 case AUDIT_LOGINUID_SET: 408 if ((f->val != 0) && (f->val != 1)) 409 return -EINVAL; 410 /* FALL THROUGH */ 411 case AUDIT_ARCH: 412 case AUDIT_FSTYPE: 413 if (f->op != Audit_not_equal && f->op != Audit_equal) 414 return -EINVAL; 415 break; 416 case AUDIT_PERM: 417 if (f->val & ~15) 418 return -EINVAL; 419 break; 420 case AUDIT_FILETYPE: 421 if (f->val & ~S_IFMT) 422 return -EINVAL; 423 break; 424 case AUDIT_FIELD_COMPARE: 425 if (f->val > AUDIT_MAX_FIELD_COMPARE) 426 return -EINVAL; 427 break; 428 case AUDIT_EXE: 429 if (f->op != Audit_not_equal && f->op != Audit_equal) 430 return -EINVAL; 431 break; 432 } 433 return 0; 434 } 435 436 /* Translate struct audit_rule_data to kernel's rule representation. */ 437 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, 438 size_t datasz) 439 { 440 int err = 0; 441 struct audit_entry *entry; 442 void *bufp; 443 size_t remain = datasz - sizeof(struct audit_rule_data); 444 int i; 445 char *str; 446 struct audit_fsnotify_mark *audit_mark; 447 448 entry = audit_to_entry_common(data); 449 if (IS_ERR(entry)) 450 goto exit_nofree; 451 452 bufp = data->buf; 453 for (i = 0; i < data->field_count; i++) { 454 struct audit_field *f = &entry->rule.fields[i]; 455 456 err = -EINVAL; 457 458 f->op = audit_to_op(data->fieldflags[i]); 459 if (f->op == Audit_bad) 460 goto exit_free; 461 462 f->type = data->fields[i]; 463 f->val = data->values[i]; 464 465 /* Support legacy tests for a valid loginuid */ 466 if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) { 467 f->type = AUDIT_LOGINUID_SET; 468 f->val = 0; 469 entry->rule.pflags |= AUDIT_LOGINUID_LEGACY; 470 } 471 472 err = audit_field_valid(entry, f); 473 if (err) 474 goto exit_free; 475 476 err = -EINVAL; 477 switch (f->type) { 478 case AUDIT_LOGINUID: 479 case AUDIT_UID: 480 case AUDIT_EUID: 481 case AUDIT_SUID: 482 case AUDIT_FSUID: 483 case AUDIT_OBJ_UID: 484 f->uid = make_kuid(current_user_ns(), f->val); 485 if (!uid_valid(f->uid)) 486 goto exit_free; 487 break; 488 case AUDIT_GID: 489 case AUDIT_EGID: 490 case AUDIT_SGID: 491 case AUDIT_FSGID: 492 case AUDIT_OBJ_GID: 493 f->gid = make_kgid(current_user_ns(), f->val); 494 if (!gid_valid(f->gid)) 495 goto exit_free; 496 break; 497 case AUDIT_ARCH: 498 entry->rule.arch_f = f; 499 break; 500 case AUDIT_SUBJ_USER: 501 case AUDIT_SUBJ_ROLE: 502 case AUDIT_SUBJ_TYPE: 503 case AUDIT_SUBJ_SEN: 504 case AUDIT_SUBJ_CLR: 505 case AUDIT_OBJ_USER: 506 case AUDIT_OBJ_ROLE: 507 case AUDIT_OBJ_TYPE: 508 case AUDIT_OBJ_LEV_LOW: 509 case AUDIT_OBJ_LEV_HIGH: 510 str = audit_unpack_string(&bufp, &remain, f->val); 511 if (IS_ERR(str)) 512 goto exit_free; 513 entry->rule.buflen += f->val; 514 515 err = security_audit_rule_init(f->type, f->op, str, 516 (void **)&f->lsm_rule); 517 /* Keep currently invalid fields around in case they 518 * become valid after a policy reload. */ 519 if (err == -EINVAL) { 520 pr_warn("audit rule for LSM \'%s\' is invalid\n", 521 str); 522 err = 0; 523 } 524 if (err) { 525 kfree(str); 526 goto exit_free; 527 } else 528 f->lsm_str = str; 529 break; 530 case AUDIT_WATCH: 531 str = audit_unpack_string(&bufp, &remain, f->val); 532 if (IS_ERR(str)) 533 goto exit_free; 534 entry->rule.buflen += f->val; 535 536 err = audit_to_watch(&entry->rule, str, f->val, f->op); 537 if (err) { 538 kfree(str); 539 goto exit_free; 540 } 541 break; 542 case AUDIT_DIR: 543 str = audit_unpack_string(&bufp, &remain, f->val); 544 if (IS_ERR(str)) 545 goto exit_free; 546 entry->rule.buflen += f->val; 547 548 err = audit_make_tree(&entry->rule, str, f->op); 549 kfree(str); 550 if (err) 551 goto exit_free; 552 break; 553 case AUDIT_INODE: 554 err = audit_to_inode(&entry->rule, f); 555 if (err) 556 goto exit_free; 557 break; 558 case AUDIT_FILTERKEY: 559 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) 560 goto exit_free; 561 str = audit_unpack_string(&bufp, &remain, f->val); 562 if (IS_ERR(str)) 563 goto exit_free; 564 entry->rule.buflen += f->val; 565 entry->rule.filterkey = str; 566 break; 567 case AUDIT_EXE: 568 if (entry->rule.exe || f->val > PATH_MAX) 569 goto exit_free; 570 str = audit_unpack_string(&bufp, &remain, f->val); 571 if (IS_ERR(str)) { 572 err = PTR_ERR(str); 573 goto exit_free; 574 } 575 entry->rule.buflen += f->val; 576 577 audit_mark = audit_alloc_mark(&entry->rule, str, f->val); 578 if (IS_ERR(audit_mark)) { 579 kfree(str); 580 err = PTR_ERR(audit_mark); 581 goto exit_free; 582 } 583 entry->rule.exe = audit_mark; 584 break; 585 } 586 } 587 588 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 589 entry->rule.inode_f = NULL; 590 591 exit_nofree: 592 return entry; 593 594 exit_free: 595 if (entry->rule.tree) 596 audit_put_tree(entry->rule.tree); /* that's the temporary one */ 597 if (entry->rule.exe) 598 audit_remove_mark(entry->rule.exe); /* that's the template one */ 599 audit_free_rule(entry); 600 return ERR_PTR(err); 601 } 602 603 /* Pack a filter field's string representation into data block. */ 604 static inline size_t audit_pack_string(void **bufp, const char *str) 605 { 606 size_t len = strlen(str); 607 608 memcpy(*bufp, str, len); 609 *bufp += len; 610 611 return len; 612 } 613 614 /* Translate kernel rule representation to struct audit_rule_data. */ 615 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) 616 { 617 struct audit_rule_data *data; 618 void *bufp; 619 int i; 620 621 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); 622 if (unlikely(!data)) 623 return NULL; 624 memset(data, 0, sizeof(*data)); 625 626 data->flags = krule->flags | krule->listnr; 627 data->action = krule->action; 628 data->field_count = krule->field_count; 629 bufp = data->buf; 630 for (i = 0; i < data->field_count; i++) { 631 struct audit_field *f = &krule->fields[i]; 632 633 data->fields[i] = f->type; 634 data->fieldflags[i] = audit_ops[f->op]; 635 switch(f->type) { 636 case AUDIT_SUBJ_USER: 637 case AUDIT_SUBJ_ROLE: 638 case AUDIT_SUBJ_TYPE: 639 case AUDIT_SUBJ_SEN: 640 case AUDIT_SUBJ_CLR: 641 case AUDIT_OBJ_USER: 642 case AUDIT_OBJ_ROLE: 643 case AUDIT_OBJ_TYPE: 644 case AUDIT_OBJ_LEV_LOW: 645 case AUDIT_OBJ_LEV_HIGH: 646 data->buflen += data->values[i] = 647 audit_pack_string(&bufp, f->lsm_str); 648 break; 649 case AUDIT_WATCH: 650 data->buflen += data->values[i] = 651 audit_pack_string(&bufp, 652 audit_watch_path(krule->watch)); 653 break; 654 case AUDIT_DIR: 655 data->buflen += data->values[i] = 656 audit_pack_string(&bufp, 657 audit_tree_path(krule->tree)); 658 break; 659 case AUDIT_FILTERKEY: 660 data->buflen += data->values[i] = 661 audit_pack_string(&bufp, krule->filterkey); 662 break; 663 case AUDIT_EXE: 664 data->buflen += data->values[i] = 665 audit_pack_string(&bufp, audit_mark_path(krule->exe)); 666 break; 667 case AUDIT_LOGINUID_SET: 668 if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) { 669 data->fields[i] = AUDIT_LOGINUID; 670 data->values[i] = AUDIT_UID_UNSET; 671 break; 672 } 673 /* fall through - if set */ 674 default: 675 data->values[i] = f->val; 676 } 677 } 678 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; 679 680 return data; 681 } 682 683 /* Compare two rules in kernel format. Considered success if rules 684 * don't match. */ 685 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) 686 { 687 int i; 688 689 if (a->flags != b->flags || 690 a->pflags != b->pflags || 691 a->listnr != b->listnr || 692 a->action != b->action || 693 a->field_count != b->field_count) 694 return 1; 695 696 for (i = 0; i < a->field_count; i++) { 697 if (a->fields[i].type != b->fields[i].type || 698 a->fields[i].op != b->fields[i].op) 699 return 1; 700 701 switch(a->fields[i].type) { 702 case AUDIT_SUBJ_USER: 703 case AUDIT_SUBJ_ROLE: 704 case AUDIT_SUBJ_TYPE: 705 case AUDIT_SUBJ_SEN: 706 case AUDIT_SUBJ_CLR: 707 case AUDIT_OBJ_USER: 708 case AUDIT_OBJ_ROLE: 709 case AUDIT_OBJ_TYPE: 710 case AUDIT_OBJ_LEV_LOW: 711 case AUDIT_OBJ_LEV_HIGH: 712 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) 713 return 1; 714 break; 715 case AUDIT_WATCH: 716 if (strcmp(audit_watch_path(a->watch), 717 audit_watch_path(b->watch))) 718 return 1; 719 break; 720 case AUDIT_DIR: 721 if (strcmp(audit_tree_path(a->tree), 722 audit_tree_path(b->tree))) 723 return 1; 724 break; 725 case AUDIT_FILTERKEY: 726 /* both filterkeys exist based on above type compare */ 727 if (strcmp(a->filterkey, b->filterkey)) 728 return 1; 729 break; 730 case AUDIT_EXE: 731 /* both paths exist based on above type compare */ 732 if (strcmp(audit_mark_path(a->exe), 733 audit_mark_path(b->exe))) 734 return 1; 735 break; 736 case AUDIT_UID: 737 case AUDIT_EUID: 738 case AUDIT_SUID: 739 case AUDIT_FSUID: 740 case AUDIT_LOGINUID: 741 case AUDIT_OBJ_UID: 742 if (!uid_eq(a->fields[i].uid, b->fields[i].uid)) 743 return 1; 744 break; 745 case AUDIT_GID: 746 case AUDIT_EGID: 747 case AUDIT_SGID: 748 case AUDIT_FSGID: 749 case AUDIT_OBJ_GID: 750 if (!gid_eq(a->fields[i].gid, b->fields[i].gid)) 751 return 1; 752 break; 753 default: 754 if (a->fields[i].val != b->fields[i].val) 755 return 1; 756 } 757 } 758 759 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 760 if (a->mask[i] != b->mask[i]) 761 return 1; 762 763 return 0; 764 } 765 766 /* Duplicate LSM field information. The lsm_rule is opaque, so must be 767 * re-initialized. */ 768 static inline int audit_dupe_lsm_field(struct audit_field *df, 769 struct audit_field *sf) 770 { 771 int ret = 0; 772 char *lsm_str; 773 774 /* our own copy of lsm_str */ 775 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); 776 if (unlikely(!lsm_str)) 777 return -ENOMEM; 778 df->lsm_str = lsm_str; 779 780 /* our own (refreshed) copy of lsm_rule */ 781 ret = security_audit_rule_init(df->type, df->op, df->lsm_str, 782 (void **)&df->lsm_rule); 783 /* Keep currently invalid fields around in case they 784 * become valid after a policy reload. */ 785 if (ret == -EINVAL) { 786 pr_warn("audit rule for LSM \'%s\' is invalid\n", 787 df->lsm_str); 788 ret = 0; 789 } 790 791 return ret; 792 } 793 794 /* Duplicate an audit rule. This will be a deep copy with the exception 795 * of the watch - that pointer is carried over. The LSM specific fields 796 * will be updated in the copy. The point is to be able to replace the old 797 * rule with the new rule in the filterlist, then free the old rule. 798 * The rlist element is undefined; list manipulations are handled apart from 799 * the initial copy. */ 800 struct audit_entry *audit_dupe_rule(struct audit_krule *old) 801 { 802 u32 fcount = old->field_count; 803 struct audit_entry *entry; 804 struct audit_krule *new; 805 char *fk; 806 int i, err = 0; 807 808 entry = audit_init_entry(fcount); 809 if (unlikely(!entry)) 810 return ERR_PTR(-ENOMEM); 811 812 new = &entry->rule; 813 new->flags = old->flags; 814 new->pflags = old->pflags; 815 new->listnr = old->listnr; 816 new->action = old->action; 817 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 818 new->mask[i] = old->mask[i]; 819 new->prio = old->prio; 820 new->buflen = old->buflen; 821 new->inode_f = old->inode_f; 822 new->field_count = old->field_count; 823 824 /* 825 * note that we are OK with not refcounting here; audit_match_tree() 826 * never dereferences tree and we can't get false positives there 827 * since we'd have to have rule gone from the list *and* removed 828 * before the chunks found by lookup had been allocated, i.e. before 829 * the beginning of list scan. 830 */ 831 new->tree = old->tree; 832 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); 833 834 /* deep copy this information, updating the lsm_rule fields, because 835 * the originals will all be freed when the old rule is freed. */ 836 for (i = 0; i < fcount; i++) { 837 switch (new->fields[i].type) { 838 case AUDIT_SUBJ_USER: 839 case AUDIT_SUBJ_ROLE: 840 case AUDIT_SUBJ_TYPE: 841 case AUDIT_SUBJ_SEN: 842 case AUDIT_SUBJ_CLR: 843 case AUDIT_OBJ_USER: 844 case AUDIT_OBJ_ROLE: 845 case AUDIT_OBJ_TYPE: 846 case AUDIT_OBJ_LEV_LOW: 847 case AUDIT_OBJ_LEV_HIGH: 848 err = audit_dupe_lsm_field(&new->fields[i], 849 &old->fields[i]); 850 break; 851 case AUDIT_FILTERKEY: 852 fk = kstrdup(old->filterkey, GFP_KERNEL); 853 if (unlikely(!fk)) 854 err = -ENOMEM; 855 else 856 new->filterkey = fk; 857 break; 858 case AUDIT_EXE: 859 err = audit_dupe_exe(new, old); 860 break; 861 } 862 if (err) { 863 if (new->exe) 864 audit_remove_mark(new->exe); 865 audit_free_rule(entry); 866 return ERR_PTR(err); 867 } 868 } 869 870 if (old->watch) { 871 audit_get_watch(old->watch); 872 new->watch = old->watch; 873 } 874 875 return entry; 876 } 877 878 /* Find an existing audit rule. 879 * Caller must hold audit_filter_mutex to prevent stale rule data. */ 880 static struct audit_entry *audit_find_rule(struct audit_entry *entry, 881 struct list_head **p) 882 { 883 struct audit_entry *e, *found = NULL; 884 struct list_head *list; 885 int h; 886 887 if (entry->rule.inode_f) { 888 h = audit_hash_ino(entry->rule.inode_f->val); 889 *p = list = &audit_inode_hash[h]; 890 } else if (entry->rule.watch) { 891 /* we don't know the inode number, so must walk entire hash */ 892 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { 893 list = &audit_inode_hash[h]; 894 list_for_each_entry(e, list, list) 895 if (!audit_compare_rule(&entry->rule, &e->rule)) { 896 found = e; 897 goto out; 898 } 899 } 900 goto out; 901 } else { 902 *p = list = &audit_filter_list[entry->rule.listnr]; 903 } 904 905 list_for_each_entry(e, list, list) 906 if (!audit_compare_rule(&entry->rule, &e->rule)) { 907 found = e; 908 goto out; 909 } 910 911 out: 912 return found; 913 } 914 915 static u64 prio_low = ~0ULL/2; 916 static u64 prio_high = ~0ULL/2 - 1; 917 918 /* Add rule to given filterlist if not a duplicate. */ 919 static inline int audit_add_rule(struct audit_entry *entry) 920 { 921 struct audit_entry *e; 922 struct audit_watch *watch = entry->rule.watch; 923 struct audit_tree *tree = entry->rule.tree; 924 struct list_head *list; 925 int err = 0; 926 #ifdef CONFIG_AUDITSYSCALL 927 int dont_count = 0; 928 929 /* If any of these, don't count towards total */ 930 switch(entry->rule.listnr) { 931 case AUDIT_FILTER_USER: 932 case AUDIT_FILTER_EXCLUDE: 933 case AUDIT_FILTER_FS: 934 dont_count = 1; 935 } 936 #endif 937 938 mutex_lock(&audit_filter_mutex); 939 e = audit_find_rule(entry, &list); 940 if (e) { 941 mutex_unlock(&audit_filter_mutex); 942 err = -EEXIST; 943 /* normally audit_add_tree_rule() will free it on failure */ 944 if (tree) 945 audit_put_tree(tree); 946 return err; 947 } 948 949 if (watch) { 950 /* audit_filter_mutex is dropped and re-taken during this call */ 951 err = audit_add_watch(&entry->rule, &list); 952 if (err) { 953 mutex_unlock(&audit_filter_mutex); 954 /* 955 * normally audit_add_tree_rule() will free it 956 * on failure 957 */ 958 if (tree) 959 audit_put_tree(tree); 960 return err; 961 } 962 } 963 if (tree) { 964 err = audit_add_tree_rule(&entry->rule); 965 if (err) { 966 mutex_unlock(&audit_filter_mutex); 967 return err; 968 } 969 } 970 971 entry->rule.prio = ~0ULL; 972 if (entry->rule.listnr == AUDIT_FILTER_EXIT) { 973 if (entry->rule.flags & AUDIT_FILTER_PREPEND) 974 entry->rule.prio = ++prio_high; 975 else 976 entry->rule.prio = --prio_low; 977 } 978 979 if (entry->rule.flags & AUDIT_FILTER_PREPEND) { 980 list_add(&entry->rule.list, 981 &audit_rules_list[entry->rule.listnr]); 982 list_add_rcu(&entry->list, list); 983 entry->rule.flags &= ~AUDIT_FILTER_PREPEND; 984 } else { 985 list_add_tail(&entry->rule.list, 986 &audit_rules_list[entry->rule.listnr]); 987 list_add_tail_rcu(&entry->list, list); 988 } 989 #ifdef CONFIG_AUDITSYSCALL 990 if (!dont_count) 991 audit_n_rules++; 992 993 if (!audit_match_signal(entry)) 994 audit_signals++; 995 #endif 996 mutex_unlock(&audit_filter_mutex); 997 998 return err; 999 } 1000 1001 /* Remove an existing rule from filterlist. */ 1002 int audit_del_rule(struct audit_entry *entry) 1003 { 1004 struct audit_entry *e; 1005 struct audit_tree *tree = entry->rule.tree; 1006 struct list_head *list; 1007 int ret = 0; 1008 #ifdef CONFIG_AUDITSYSCALL 1009 int dont_count = 0; 1010 1011 /* If any of these, don't count towards total */ 1012 switch(entry->rule.listnr) { 1013 case AUDIT_FILTER_USER: 1014 case AUDIT_FILTER_EXCLUDE: 1015 case AUDIT_FILTER_FS: 1016 dont_count = 1; 1017 } 1018 #endif 1019 1020 mutex_lock(&audit_filter_mutex); 1021 e = audit_find_rule(entry, &list); 1022 if (!e) { 1023 ret = -ENOENT; 1024 goto out; 1025 } 1026 1027 if (e->rule.watch) 1028 audit_remove_watch_rule(&e->rule); 1029 1030 if (e->rule.tree) 1031 audit_remove_tree_rule(&e->rule); 1032 1033 if (e->rule.exe) 1034 audit_remove_mark_rule(&e->rule); 1035 1036 #ifdef CONFIG_AUDITSYSCALL 1037 if (!dont_count) 1038 audit_n_rules--; 1039 1040 if (!audit_match_signal(entry)) 1041 audit_signals--; 1042 #endif 1043 1044 list_del_rcu(&e->list); 1045 list_del(&e->rule.list); 1046 call_rcu(&e->rcu, audit_free_rule_rcu); 1047 1048 out: 1049 mutex_unlock(&audit_filter_mutex); 1050 1051 if (tree) 1052 audit_put_tree(tree); /* that's the temporary one */ 1053 1054 return ret; 1055 } 1056 1057 /* List rules using struct audit_rule_data. */ 1058 static void audit_list_rules(int seq, struct sk_buff_head *q) 1059 { 1060 struct sk_buff *skb; 1061 struct audit_krule *r; 1062 int i; 1063 1064 /* This is a blocking read, so use audit_filter_mutex instead of rcu 1065 * iterator to sync with list writers. */ 1066 for (i=0; i<AUDIT_NR_FILTERS; i++) { 1067 list_for_each_entry(r, &audit_rules_list[i], list) { 1068 struct audit_rule_data *data; 1069 1070 data = audit_krule_to_data(r); 1071 if (unlikely(!data)) 1072 break; 1073 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 0, 1, 1074 data, 1075 sizeof(*data) + data->buflen); 1076 if (skb) 1077 skb_queue_tail(q, skb); 1078 kfree(data); 1079 } 1080 } 1081 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); 1082 if (skb) 1083 skb_queue_tail(q, skb); 1084 } 1085 1086 /* Log rule additions and removals */ 1087 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res) 1088 { 1089 struct audit_buffer *ab; 1090 1091 if (!audit_enabled) 1092 return; 1093 1094 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 1095 if (!ab) 1096 return; 1097 audit_log_session_info(ab); 1098 audit_log_task_context(ab); 1099 audit_log_format(ab, " op=%s", action); 1100 audit_log_key(ab, rule->filterkey); 1101 audit_log_format(ab, " list=%d res=%d", rule->listnr, res); 1102 audit_log_end(ab); 1103 } 1104 1105 /** 1106 * audit_rule_change - apply all rules to the specified message type 1107 * @type: audit message type 1108 * @seq: netlink audit message sequence (serial) number 1109 * @data: payload data 1110 * @datasz: size of payload data 1111 */ 1112 int audit_rule_change(int type, int seq, void *data, size_t datasz) 1113 { 1114 int err = 0; 1115 struct audit_entry *entry; 1116 1117 entry = audit_data_to_entry(data, datasz); 1118 if (IS_ERR(entry)) 1119 return PTR_ERR(entry); 1120 1121 switch (type) { 1122 case AUDIT_ADD_RULE: 1123 err = audit_add_rule(entry); 1124 audit_log_rule_change("add_rule", &entry->rule, !err); 1125 break; 1126 case AUDIT_DEL_RULE: 1127 err = audit_del_rule(entry); 1128 audit_log_rule_change("remove_rule", &entry->rule, !err); 1129 break; 1130 default: 1131 err = -EINVAL; 1132 WARN_ON(1); 1133 } 1134 1135 if (err || type == AUDIT_DEL_RULE) { 1136 if (entry->rule.exe) 1137 audit_remove_mark(entry->rule.exe); 1138 audit_free_rule(entry); 1139 } 1140 1141 return err; 1142 } 1143 1144 /** 1145 * audit_list_rules_send - list the audit rules 1146 * @request_skb: skb of request we are replying to (used to target the reply) 1147 * @seq: netlink audit message sequence (serial) number 1148 */ 1149 int audit_list_rules_send(struct sk_buff *request_skb, int seq) 1150 { 1151 u32 portid = NETLINK_CB(request_skb).portid; 1152 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 1153 struct task_struct *tsk; 1154 struct audit_netlink_list *dest; 1155 int err = 0; 1156 1157 /* We can't just spew out the rules here because we might fill 1158 * the available socket buffer space and deadlock waiting for 1159 * auditctl to read from it... which isn't ever going to 1160 * happen if we're actually running in the context of auditctl 1161 * trying to _send_ the stuff */ 1162 1163 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); 1164 if (!dest) 1165 return -ENOMEM; 1166 dest->net = get_net(net); 1167 dest->portid = portid; 1168 skb_queue_head_init(&dest->q); 1169 1170 mutex_lock(&audit_filter_mutex); 1171 audit_list_rules(seq, &dest->q); 1172 mutex_unlock(&audit_filter_mutex); 1173 1174 tsk = kthread_run(audit_send_list, dest, "audit_send_list"); 1175 if (IS_ERR(tsk)) { 1176 skb_queue_purge(&dest->q); 1177 kfree(dest); 1178 err = PTR_ERR(tsk); 1179 } 1180 1181 return err; 1182 } 1183 1184 int audit_comparator(u32 left, u32 op, u32 right) 1185 { 1186 switch (op) { 1187 case Audit_equal: 1188 return (left == right); 1189 case Audit_not_equal: 1190 return (left != right); 1191 case Audit_lt: 1192 return (left < right); 1193 case Audit_le: 1194 return (left <= right); 1195 case Audit_gt: 1196 return (left > right); 1197 case Audit_ge: 1198 return (left >= right); 1199 case Audit_bitmask: 1200 return (left & right); 1201 case Audit_bittest: 1202 return ((left & right) == right); 1203 default: 1204 BUG(); 1205 return 0; 1206 } 1207 } 1208 1209 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right) 1210 { 1211 switch (op) { 1212 case Audit_equal: 1213 return uid_eq(left, right); 1214 case Audit_not_equal: 1215 return !uid_eq(left, right); 1216 case Audit_lt: 1217 return uid_lt(left, right); 1218 case Audit_le: 1219 return uid_lte(left, right); 1220 case Audit_gt: 1221 return uid_gt(left, right); 1222 case Audit_ge: 1223 return uid_gte(left, right); 1224 case Audit_bitmask: 1225 case Audit_bittest: 1226 default: 1227 BUG(); 1228 return 0; 1229 } 1230 } 1231 1232 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right) 1233 { 1234 switch (op) { 1235 case Audit_equal: 1236 return gid_eq(left, right); 1237 case Audit_not_equal: 1238 return !gid_eq(left, right); 1239 case Audit_lt: 1240 return gid_lt(left, right); 1241 case Audit_le: 1242 return gid_lte(left, right); 1243 case Audit_gt: 1244 return gid_gt(left, right); 1245 case Audit_ge: 1246 return gid_gte(left, right); 1247 case Audit_bitmask: 1248 case Audit_bittest: 1249 default: 1250 BUG(); 1251 return 0; 1252 } 1253 } 1254 1255 /** 1256 * parent_len - find the length of the parent portion of a pathname 1257 * @path: pathname of which to determine length 1258 */ 1259 int parent_len(const char *path) 1260 { 1261 int plen; 1262 const char *p; 1263 1264 plen = strlen(path); 1265 1266 if (plen == 0) 1267 return plen; 1268 1269 /* disregard trailing slashes */ 1270 p = path + plen - 1; 1271 while ((*p == '/') && (p > path)) 1272 p--; 1273 1274 /* walk backward until we find the next slash or hit beginning */ 1275 while ((*p != '/') && (p > path)) 1276 p--; 1277 1278 /* did we find a slash? Then increment to include it in path */ 1279 if (*p == '/') 1280 p++; 1281 1282 return p - path; 1283 } 1284 1285 /** 1286 * audit_compare_dname_path - compare given dentry name with last component in 1287 * given path. Return of 0 indicates a match. 1288 * @dname: dentry name that we're comparing 1289 * @path: full pathname that we're comparing 1290 * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL 1291 * here indicates that we must compute this value. 1292 */ 1293 int audit_compare_dname_path(const char *dname, const char *path, int parentlen) 1294 { 1295 int dlen, pathlen; 1296 const char *p; 1297 1298 dlen = strlen(dname); 1299 pathlen = strlen(path); 1300 if (pathlen < dlen) 1301 return 1; 1302 1303 parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen; 1304 if (pathlen - parentlen != dlen) 1305 return 1; 1306 1307 p = path + parentlen; 1308 1309 return strncmp(p, dname, dlen); 1310 } 1311 1312 int audit_filter(int msgtype, unsigned int listtype) 1313 { 1314 struct audit_entry *e; 1315 int ret = 1; /* Audit by default */ 1316 1317 rcu_read_lock(); 1318 if (list_empty(&audit_filter_list[listtype])) 1319 goto unlock_and_return; 1320 list_for_each_entry_rcu(e, &audit_filter_list[listtype], list) { 1321 int i, result = 0; 1322 1323 for (i = 0; i < e->rule.field_count; i++) { 1324 struct audit_field *f = &e->rule.fields[i]; 1325 pid_t pid; 1326 u32 sid; 1327 1328 switch (f->type) { 1329 case AUDIT_PID: 1330 pid = task_pid_nr(current); 1331 result = audit_comparator(pid, f->op, f->val); 1332 break; 1333 case AUDIT_UID: 1334 result = audit_uid_comparator(current_uid(), f->op, f->uid); 1335 break; 1336 case AUDIT_GID: 1337 result = audit_gid_comparator(current_gid(), f->op, f->gid); 1338 break; 1339 case AUDIT_LOGINUID: 1340 result = audit_uid_comparator(audit_get_loginuid(current), 1341 f->op, f->uid); 1342 break; 1343 case AUDIT_LOGINUID_SET: 1344 result = audit_comparator(audit_loginuid_set(current), 1345 f->op, f->val); 1346 break; 1347 case AUDIT_MSGTYPE: 1348 result = audit_comparator(msgtype, f->op, f->val); 1349 break; 1350 case AUDIT_SUBJ_USER: 1351 case AUDIT_SUBJ_ROLE: 1352 case AUDIT_SUBJ_TYPE: 1353 case AUDIT_SUBJ_SEN: 1354 case AUDIT_SUBJ_CLR: 1355 if (f->lsm_rule) { 1356 security_task_getsecid(current, &sid); 1357 result = security_audit_rule_match(sid, 1358 f->type, f->op, f->lsm_rule); 1359 } 1360 break; 1361 case AUDIT_EXE: 1362 result = audit_exe_compare(current, e->rule.exe); 1363 if (f->op == Audit_not_equal) 1364 result = !result; 1365 break; 1366 default: 1367 goto unlock_and_return; 1368 } 1369 if (result < 0) /* error */ 1370 goto unlock_and_return; 1371 if (!result) 1372 break; 1373 } 1374 if (result > 0) { 1375 if (e->rule.action == AUDIT_NEVER || listtype == AUDIT_FILTER_EXCLUDE) 1376 ret = 0; 1377 break; 1378 } 1379 } 1380 unlock_and_return: 1381 rcu_read_unlock(); 1382 return ret; 1383 } 1384 1385 static int update_lsm_rule(struct audit_krule *r) 1386 { 1387 struct audit_entry *entry = container_of(r, struct audit_entry, rule); 1388 struct audit_entry *nentry; 1389 int err = 0; 1390 1391 if (!security_audit_rule_known(r)) 1392 return 0; 1393 1394 nentry = audit_dupe_rule(r); 1395 if (entry->rule.exe) 1396 audit_remove_mark(entry->rule.exe); 1397 if (IS_ERR(nentry)) { 1398 /* save the first error encountered for the 1399 * return value */ 1400 err = PTR_ERR(nentry); 1401 audit_panic("error updating LSM filters"); 1402 if (r->watch) 1403 list_del(&r->rlist); 1404 list_del_rcu(&entry->list); 1405 list_del(&r->list); 1406 } else { 1407 if (r->watch || r->tree) 1408 list_replace_init(&r->rlist, &nentry->rule.rlist); 1409 list_replace_rcu(&entry->list, &nentry->list); 1410 list_replace(&r->list, &nentry->rule.list); 1411 } 1412 call_rcu(&entry->rcu, audit_free_rule_rcu); 1413 1414 return err; 1415 } 1416 1417 /* This function will re-initialize the lsm_rule field of all applicable rules. 1418 * It will traverse the filter lists serarching for rules that contain LSM 1419 * specific filter fields. When such a rule is found, it is copied, the 1420 * LSM field is re-initialized, and the old rule is replaced with the 1421 * updated rule. */ 1422 int audit_update_lsm_rules(void) 1423 { 1424 struct audit_krule *r, *n; 1425 int i, err = 0; 1426 1427 /* audit_filter_mutex synchronizes the writers */ 1428 mutex_lock(&audit_filter_mutex); 1429 1430 for (i = 0; i < AUDIT_NR_FILTERS; i++) { 1431 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { 1432 int res = update_lsm_rule(r); 1433 if (!err) 1434 err = res; 1435 } 1436 } 1437 mutex_unlock(&audit_filter_mutex); 1438 1439 return err; 1440 } 1441