xref: /openbmc/linux/kernel/auditfilter.c (revision 26541cb1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditfilter.c -- filtering of audit events
3  *
4  * Copyright 2003-2004 Red Hat, Inc.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright 2005 IBM Corporation
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/audit.h>
13 #include <linux/kthread.h>
14 #include <linux/mutex.h>
15 #include <linux/fs.h>
16 #include <linux/namei.h>
17 #include <linux/netlink.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/security.h>
21 #include <net/net_namespace.h>
22 #include <net/sock.h>
23 #include "audit.h"
24 
25 /*
26  * Locking model:
27  *
28  * audit_filter_mutex:
29  *		Synchronizes writes and blocking reads of audit's filterlist
30  *		data.  Rcu is used to traverse the filterlist and access
31  *		contents of structs audit_entry, audit_watch and opaque
32  *		LSM rules during filtering.  If modified, these structures
33  *		must be copied and replace their counterparts in the filterlist.
34  *		An audit_parent struct is not accessed during filtering, so may
35  *		be written directly provided audit_filter_mutex is held.
36  */
37 
38 /* Audit filter lists, defined in <linux/audit.h> */
39 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
40 	LIST_HEAD_INIT(audit_filter_list[0]),
41 	LIST_HEAD_INIT(audit_filter_list[1]),
42 	LIST_HEAD_INIT(audit_filter_list[2]),
43 	LIST_HEAD_INIT(audit_filter_list[3]),
44 	LIST_HEAD_INIT(audit_filter_list[4]),
45 	LIST_HEAD_INIT(audit_filter_list[5]),
46 	LIST_HEAD_INIT(audit_filter_list[6]),
47 #if AUDIT_NR_FILTERS != 7
48 #error Fix audit_filter_list initialiser
49 #endif
50 };
51 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
52 	LIST_HEAD_INIT(audit_rules_list[0]),
53 	LIST_HEAD_INIT(audit_rules_list[1]),
54 	LIST_HEAD_INIT(audit_rules_list[2]),
55 	LIST_HEAD_INIT(audit_rules_list[3]),
56 	LIST_HEAD_INIT(audit_rules_list[4]),
57 	LIST_HEAD_INIT(audit_rules_list[5]),
58 	LIST_HEAD_INIT(audit_rules_list[6]),
59 };
60 
61 DEFINE_MUTEX(audit_filter_mutex);
62 
63 static void audit_free_lsm_field(struct audit_field *f)
64 {
65 	switch (f->type) {
66 	case AUDIT_SUBJ_USER:
67 	case AUDIT_SUBJ_ROLE:
68 	case AUDIT_SUBJ_TYPE:
69 	case AUDIT_SUBJ_SEN:
70 	case AUDIT_SUBJ_CLR:
71 	case AUDIT_OBJ_USER:
72 	case AUDIT_OBJ_ROLE:
73 	case AUDIT_OBJ_TYPE:
74 	case AUDIT_OBJ_LEV_LOW:
75 	case AUDIT_OBJ_LEV_HIGH:
76 		kfree(f->lsm_str);
77 		security_audit_rule_free(f->lsm_rule);
78 	}
79 }
80 
81 static inline void audit_free_rule(struct audit_entry *e)
82 {
83 	int i;
84 	struct audit_krule *erule = &e->rule;
85 
86 	/* some rules don't have associated watches */
87 	if (erule->watch)
88 		audit_put_watch(erule->watch);
89 	if (erule->fields)
90 		for (i = 0; i < erule->field_count; i++)
91 			audit_free_lsm_field(&erule->fields[i]);
92 	kfree(erule->fields);
93 	kfree(erule->filterkey);
94 	kfree(e);
95 }
96 
97 void audit_free_rule_rcu(struct rcu_head *head)
98 {
99 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
100 	audit_free_rule(e);
101 }
102 
103 /* Initialize an audit filterlist entry. */
104 static inline struct audit_entry *audit_init_entry(u32 field_count)
105 {
106 	struct audit_entry *entry;
107 	struct audit_field *fields;
108 
109 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
110 	if (unlikely(!entry))
111 		return NULL;
112 
113 	fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
114 	if (unlikely(!fields)) {
115 		kfree(entry);
116 		return NULL;
117 	}
118 	entry->rule.fields = fields;
119 
120 	return entry;
121 }
122 
123 /* Unpack a filter field's string representation from user-space
124  * buffer. */
125 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
126 {
127 	char *str;
128 
129 	if (!*bufp || (len == 0) || (len > *remain))
130 		return ERR_PTR(-EINVAL);
131 
132 	/* Of the currently implemented string fields, PATH_MAX
133 	 * defines the longest valid length.
134 	 */
135 	if (len > PATH_MAX)
136 		return ERR_PTR(-ENAMETOOLONG);
137 
138 	str = kmalloc(len + 1, GFP_KERNEL);
139 	if (unlikely(!str))
140 		return ERR_PTR(-ENOMEM);
141 
142 	memcpy(str, *bufp, len);
143 	str[len] = 0;
144 	*bufp += len;
145 	*remain -= len;
146 
147 	return str;
148 }
149 
150 /* Translate an inode field to kernel representation. */
151 static inline int audit_to_inode(struct audit_krule *krule,
152 				 struct audit_field *f)
153 {
154 	if (krule->listnr != AUDIT_FILTER_EXIT ||
155 	    krule->inode_f || krule->watch || krule->tree ||
156 	    (f->op != Audit_equal && f->op != Audit_not_equal))
157 		return -EINVAL;
158 
159 	krule->inode_f = f;
160 	return 0;
161 }
162 
163 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
164 
165 int __init audit_register_class(int class, unsigned *list)
166 {
167 	__u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
168 	if (!p)
169 		return -ENOMEM;
170 	while (*list != ~0U) {
171 		unsigned n = *list++;
172 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
173 			kfree(p);
174 			return -EINVAL;
175 		}
176 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
177 	}
178 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
179 		kfree(p);
180 		return -EINVAL;
181 	}
182 	classes[class] = p;
183 	return 0;
184 }
185 
186 int audit_match_class(int class, unsigned syscall)
187 {
188 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
189 		return 0;
190 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
191 		return 0;
192 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
193 }
194 
195 #ifdef CONFIG_AUDITSYSCALL
196 static inline int audit_match_class_bits(int class, u32 *mask)
197 {
198 	int i;
199 
200 	if (classes[class]) {
201 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
202 			if (mask[i] & classes[class][i])
203 				return 0;
204 	}
205 	return 1;
206 }
207 
208 static int audit_match_signal(struct audit_entry *entry)
209 {
210 	struct audit_field *arch = entry->rule.arch_f;
211 
212 	if (!arch) {
213 		/* When arch is unspecified, we must check both masks on biarch
214 		 * as syscall number alone is ambiguous. */
215 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 					       entry->rule.mask) &&
217 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
218 					       entry->rule.mask));
219 	}
220 
221 	switch(audit_classify_arch(arch->val)) {
222 	case 0: /* native */
223 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
224 					       entry->rule.mask));
225 	case 1: /* 32bit on biarch */
226 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
227 					       entry->rule.mask));
228 	default:
229 		return 1;
230 	}
231 }
232 #endif
233 
234 /* Common user-space to kernel rule translation. */
235 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
236 {
237 	unsigned listnr;
238 	struct audit_entry *entry;
239 	int i, err;
240 
241 	err = -EINVAL;
242 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
243 	switch(listnr) {
244 	default:
245 		goto exit_err;
246 #ifdef CONFIG_AUDITSYSCALL
247 	case AUDIT_FILTER_ENTRY:
248 		pr_err("AUDIT_FILTER_ENTRY is deprecated\n");
249 		goto exit_err;
250 	case AUDIT_FILTER_EXIT:
251 	case AUDIT_FILTER_TASK:
252 #endif
253 	case AUDIT_FILTER_USER:
254 	case AUDIT_FILTER_EXCLUDE:
255 	case AUDIT_FILTER_FS:
256 		;
257 	}
258 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
259 		pr_err("AUDIT_POSSIBLE is deprecated\n");
260 		goto exit_err;
261 	}
262 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
263 		goto exit_err;
264 	if (rule->field_count > AUDIT_MAX_FIELDS)
265 		goto exit_err;
266 
267 	err = -ENOMEM;
268 	entry = audit_init_entry(rule->field_count);
269 	if (!entry)
270 		goto exit_err;
271 
272 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
273 	entry->rule.listnr = listnr;
274 	entry->rule.action = rule->action;
275 	entry->rule.field_count = rule->field_count;
276 
277 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
278 		entry->rule.mask[i] = rule->mask[i];
279 
280 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
281 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
282 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
283 		__u32 *class;
284 
285 		if (!(*p & AUDIT_BIT(bit)))
286 			continue;
287 		*p &= ~AUDIT_BIT(bit);
288 		class = classes[i];
289 		if (class) {
290 			int j;
291 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
292 				entry->rule.mask[j] |= class[j];
293 		}
294 	}
295 
296 	return entry;
297 
298 exit_err:
299 	return ERR_PTR(err);
300 }
301 
302 static u32 audit_ops[] =
303 {
304 	[Audit_equal] = AUDIT_EQUAL,
305 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
306 	[Audit_bitmask] = AUDIT_BIT_MASK,
307 	[Audit_bittest] = AUDIT_BIT_TEST,
308 	[Audit_lt] = AUDIT_LESS_THAN,
309 	[Audit_gt] = AUDIT_GREATER_THAN,
310 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
311 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
312 };
313 
314 static u32 audit_to_op(u32 op)
315 {
316 	u32 n;
317 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
318 		;
319 	return n;
320 }
321 
322 /* check if an audit field is valid */
323 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
324 {
325 	switch (f->type) {
326 	case AUDIT_MSGTYPE:
327 		if (entry->rule.listnr != AUDIT_FILTER_EXCLUDE &&
328 		    entry->rule.listnr != AUDIT_FILTER_USER)
329 			return -EINVAL;
330 		break;
331 	case AUDIT_FSTYPE:
332 		if (entry->rule.listnr != AUDIT_FILTER_FS)
333 			return -EINVAL;
334 		break;
335 	}
336 
337 	switch (entry->rule.listnr) {
338 	case AUDIT_FILTER_FS:
339 		switch(f->type) {
340 		case AUDIT_FSTYPE:
341 		case AUDIT_FILTERKEY:
342 			break;
343 		default:
344 			return -EINVAL;
345 		}
346 	}
347 
348 	/* Check for valid field type and op */
349 	switch (f->type) {
350 	case AUDIT_ARG0:
351 	case AUDIT_ARG1:
352 	case AUDIT_ARG2:
353 	case AUDIT_ARG3:
354 	case AUDIT_PERS: /* <uapi/linux/personality.h> */
355 	case AUDIT_DEVMINOR:
356 		/* all ops are valid */
357 		break;
358 	case AUDIT_UID:
359 	case AUDIT_EUID:
360 	case AUDIT_SUID:
361 	case AUDIT_FSUID:
362 	case AUDIT_LOGINUID:
363 	case AUDIT_OBJ_UID:
364 	case AUDIT_GID:
365 	case AUDIT_EGID:
366 	case AUDIT_SGID:
367 	case AUDIT_FSGID:
368 	case AUDIT_OBJ_GID:
369 	case AUDIT_PID:
370 	case AUDIT_MSGTYPE:
371 	case AUDIT_PPID:
372 	case AUDIT_DEVMAJOR:
373 	case AUDIT_EXIT:
374 	case AUDIT_SUCCESS:
375 	case AUDIT_INODE:
376 	case AUDIT_SESSIONID:
377 	case AUDIT_SUBJ_SEN:
378 	case AUDIT_SUBJ_CLR:
379 	case AUDIT_OBJ_LEV_LOW:
380 	case AUDIT_OBJ_LEV_HIGH:
381 	case AUDIT_SADDR_FAM:
382 		/* bit ops are only useful on syscall args */
383 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
384 			return -EINVAL;
385 		break;
386 	case AUDIT_SUBJ_USER:
387 	case AUDIT_SUBJ_ROLE:
388 	case AUDIT_SUBJ_TYPE:
389 	case AUDIT_OBJ_USER:
390 	case AUDIT_OBJ_ROLE:
391 	case AUDIT_OBJ_TYPE:
392 	case AUDIT_WATCH:
393 	case AUDIT_DIR:
394 	case AUDIT_FILTERKEY:
395 	case AUDIT_LOGINUID_SET:
396 	case AUDIT_ARCH:
397 	case AUDIT_FSTYPE:
398 	case AUDIT_PERM:
399 	case AUDIT_FILETYPE:
400 	case AUDIT_FIELD_COMPARE:
401 	case AUDIT_EXE:
402 		/* only equal and not equal valid ops */
403 		if (f->op != Audit_not_equal && f->op != Audit_equal)
404 			return -EINVAL;
405 		break;
406 	default:
407 		/* field not recognized */
408 		return -EINVAL;
409 	}
410 
411 	/* Check for select valid field values */
412 	switch (f->type) {
413 	case AUDIT_LOGINUID_SET:
414 		if ((f->val != 0) && (f->val != 1))
415 			return -EINVAL;
416 		break;
417 	case AUDIT_PERM:
418 		if (f->val & ~15)
419 			return -EINVAL;
420 		break;
421 	case AUDIT_FILETYPE:
422 		if (f->val & ~S_IFMT)
423 			return -EINVAL;
424 		break;
425 	case AUDIT_FIELD_COMPARE:
426 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
427 			return -EINVAL;
428 		break;
429 	case AUDIT_SADDR_FAM:
430 		if (f->val >= AF_MAX)
431 			return -EINVAL;
432 		break;
433 	default:
434 		break;
435 	}
436 
437 	return 0;
438 }
439 
440 /* Translate struct audit_rule_data to kernel's rule representation. */
441 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
442 					       size_t datasz)
443 {
444 	int err = 0;
445 	struct audit_entry *entry;
446 	void *bufp;
447 	size_t remain = datasz - sizeof(struct audit_rule_data);
448 	int i;
449 	char *str;
450 	struct audit_fsnotify_mark *audit_mark;
451 
452 	entry = audit_to_entry_common(data);
453 	if (IS_ERR(entry))
454 		goto exit_nofree;
455 
456 	bufp = data->buf;
457 	for (i = 0; i < data->field_count; i++) {
458 		struct audit_field *f = &entry->rule.fields[i];
459 		u32 f_val;
460 
461 		err = -EINVAL;
462 
463 		f->op = audit_to_op(data->fieldflags[i]);
464 		if (f->op == Audit_bad)
465 			goto exit_free;
466 
467 		f->type = data->fields[i];
468 		f_val = data->values[i];
469 
470 		/* Support legacy tests for a valid loginuid */
471 		if ((f->type == AUDIT_LOGINUID) && (f_val == AUDIT_UID_UNSET)) {
472 			f->type = AUDIT_LOGINUID_SET;
473 			f_val = 0;
474 			entry->rule.pflags |= AUDIT_LOGINUID_LEGACY;
475 		}
476 
477 		err = audit_field_valid(entry, f);
478 		if (err)
479 			goto exit_free;
480 
481 		err = -EINVAL;
482 		switch (f->type) {
483 		case AUDIT_LOGINUID:
484 		case AUDIT_UID:
485 		case AUDIT_EUID:
486 		case AUDIT_SUID:
487 		case AUDIT_FSUID:
488 		case AUDIT_OBJ_UID:
489 			f->uid = make_kuid(current_user_ns(), f_val);
490 			if (!uid_valid(f->uid))
491 				goto exit_free;
492 			break;
493 		case AUDIT_GID:
494 		case AUDIT_EGID:
495 		case AUDIT_SGID:
496 		case AUDIT_FSGID:
497 		case AUDIT_OBJ_GID:
498 			f->gid = make_kgid(current_user_ns(), f_val);
499 			if (!gid_valid(f->gid))
500 				goto exit_free;
501 			break;
502 		case AUDIT_ARCH:
503 			f->val = f_val;
504 			entry->rule.arch_f = f;
505 			break;
506 		case AUDIT_SUBJ_USER:
507 		case AUDIT_SUBJ_ROLE:
508 		case AUDIT_SUBJ_TYPE:
509 		case AUDIT_SUBJ_SEN:
510 		case AUDIT_SUBJ_CLR:
511 		case AUDIT_OBJ_USER:
512 		case AUDIT_OBJ_ROLE:
513 		case AUDIT_OBJ_TYPE:
514 		case AUDIT_OBJ_LEV_LOW:
515 		case AUDIT_OBJ_LEV_HIGH:
516 			str = audit_unpack_string(&bufp, &remain, f_val);
517 			if (IS_ERR(str)) {
518 				err = PTR_ERR(str);
519 				goto exit_free;
520 			}
521 			entry->rule.buflen += f_val;
522 			f->lsm_str = str;
523 			err = security_audit_rule_init(f->type, f->op, str,
524 						       (void **)&f->lsm_rule);
525 			/* Keep currently invalid fields around in case they
526 			 * become valid after a policy reload. */
527 			if (err == -EINVAL) {
528 				pr_warn("audit rule for LSM \'%s\' is invalid\n",
529 					str);
530 				err = 0;
531 			} else if (err)
532 				goto exit_free;
533 			break;
534 		case AUDIT_WATCH:
535 			str = audit_unpack_string(&bufp, &remain, f_val);
536 			if (IS_ERR(str)) {
537 				err = PTR_ERR(str);
538 				goto exit_free;
539 			}
540 			err = audit_to_watch(&entry->rule, str, f_val, f->op);
541 			if (err) {
542 				kfree(str);
543 				goto exit_free;
544 			}
545 			entry->rule.buflen += f_val;
546 			break;
547 		case AUDIT_DIR:
548 			str = audit_unpack_string(&bufp, &remain, f_val);
549 			if (IS_ERR(str)) {
550 				err = PTR_ERR(str);
551 				goto exit_free;
552 			}
553 			err = audit_make_tree(&entry->rule, str, f->op);
554 			kfree(str);
555 			if (err)
556 				goto exit_free;
557 			entry->rule.buflen += f_val;
558 			break;
559 		case AUDIT_INODE:
560 			f->val = f_val;
561 			err = audit_to_inode(&entry->rule, f);
562 			if (err)
563 				goto exit_free;
564 			break;
565 		case AUDIT_FILTERKEY:
566 			if (entry->rule.filterkey || f_val > AUDIT_MAX_KEY_LEN)
567 				goto exit_free;
568 			str = audit_unpack_string(&bufp, &remain, f_val);
569 			if (IS_ERR(str)) {
570 				err = PTR_ERR(str);
571 				goto exit_free;
572 			}
573 			entry->rule.buflen += f_val;
574 			entry->rule.filterkey = str;
575 			break;
576 		case AUDIT_EXE:
577 			if (entry->rule.exe || f_val > PATH_MAX)
578 				goto exit_free;
579 			str = audit_unpack_string(&bufp, &remain, f_val);
580 			if (IS_ERR(str)) {
581 				err = PTR_ERR(str);
582 				goto exit_free;
583 			}
584 			audit_mark = audit_alloc_mark(&entry->rule, str, f_val);
585 			if (IS_ERR(audit_mark)) {
586 				kfree(str);
587 				err = PTR_ERR(audit_mark);
588 				goto exit_free;
589 			}
590 			entry->rule.buflen += f_val;
591 			entry->rule.exe = audit_mark;
592 			break;
593 		default:
594 			f->val = f_val;
595 			break;
596 		}
597 	}
598 
599 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
600 		entry->rule.inode_f = NULL;
601 
602 exit_nofree:
603 	return entry;
604 
605 exit_free:
606 	if (entry->rule.tree)
607 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
608 	if (entry->rule.exe)
609 		audit_remove_mark(entry->rule.exe); /* that's the template one */
610 	audit_free_rule(entry);
611 	return ERR_PTR(err);
612 }
613 
614 /* Pack a filter field's string representation into data block. */
615 static inline size_t audit_pack_string(void **bufp, const char *str)
616 {
617 	size_t len = strlen(str);
618 
619 	memcpy(*bufp, str, len);
620 	*bufp += len;
621 
622 	return len;
623 }
624 
625 /* Translate kernel rule representation to struct audit_rule_data. */
626 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
627 {
628 	struct audit_rule_data *data;
629 	void *bufp;
630 	int i;
631 
632 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
633 	if (unlikely(!data))
634 		return NULL;
635 	memset(data, 0, sizeof(*data));
636 
637 	data->flags = krule->flags | krule->listnr;
638 	data->action = krule->action;
639 	data->field_count = krule->field_count;
640 	bufp = data->buf;
641 	for (i = 0; i < data->field_count; i++) {
642 		struct audit_field *f = &krule->fields[i];
643 
644 		data->fields[i] = f->type;
645 		data->fieldflags[i] = audit_ops[f->op];
646 		switch(f->type) {
647 		case AUDIT_SUBJ_USER:
648 		case AUDIT_SUBJ_ROLE:
649 		case AUDIT_SUBJ_TYPE:
650 		case AUDIT_SUBJ_SEN:
651 		case AUDIT_SUBJ_CLR:
652 		case AUDIT_OBJ_USER:
653 		case AUDIT_OBJ_ROLE:
654 		case AUDIT_OBJ_TYPE:
655 		case AUDIT_OBJ_LEV_LOW:
656 		case AUDIT_OBJ_LEV_HIGH:
657 			data->buflen += data->values[i] =
658 				audit_pack_string(&bufp, f->lsm_str);
659 			break;
660 		case AUDIT_WATCH:
661 			data->buflen += data->values[i] =
662 				audit_pack_string(&bufp,
663 						  audit_watch_path(krule->watch));
664 			break;
665 		case AUDIT_DIR:
666 			data->buflen += data->values[i] =
667 				audit_pack_string(&bufp,
668 						  audit_tree_path(krule->tree));
669 			break;
670 		case AUDIT_FILTERKEY:
671 			data->buflen += data->values[i] =
672 				audit_pack_string(&bufp, krule->filterkey);
673 			break;
674 		case AUDIT_EXE:
675 			data->buflen += data->values[i] =
676 				audit_pack_string(&bufp, audit_mark_path(krule->exe));
677 			break;
678 		case AUDIT_LOGINUID_SET:
679 			if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) {
680 				data->fields[i] = AUDIT_LOGINUID;
681 				data->values[i] = AUDIT_UID_UNSET;
682 				break;
683 			}
684 			fallthrough;	/* if set */
685 		default:
686 			data->values[i] = f->val;
687 		}
688 	}
689 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
690 
691 	return data;
692 }
693 
694 /* Compare two rules in kernel format.  Considered success if rules
695  * don't match. */
696 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
697 {
698 	int i;
699 
700 	if (a->flags != b->flags ||
701 	    a->pflags != b->pflags ||
702 	    a->listnr != b->listnr ||
703 	    a->action != b->action ||
704 	    a->field_count != b->field_count)
705 		return 1;
706 
707 	for (i = 0; i < a->field_count; i++) {
708 		if (a->fields[i].type != b->fields[i].type ||
709 		    a->fields[i].op != b->fields[i].op)
710 			return 1;
711 
712 		switch(a->fields[i].type) {
713 		case AUDIT_SUBJ_USER:
714 		case AUDIT_SUBJ_ROLE:
715 		case AUDIT_SUBJ_TYPE:
716 		case AUDIT_SUBJ_SEN:
717 		case AUDIT_SUBJ_CLR:
718 		case AUDIT_OBJ_USER:
719 		case AUDIT_OBJ_ROLE:
720 		case AUDIT_OBJ_TYPE:
721 		case AUDIT_OBJ_LEV_LOW:
722 		case AUDIT_OBJ_LEV_HIGH:
723 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
724 				return 1;
725 			break;
726 		case AUDIT_WATCH:
727 			if (strcmp(audit_watch_path(a->watch),
728 				   audit_watch_path(b->watch)))
729 				return 1;
730 			break;
731 		case AUDIT_DIR:
732 			if (strcmp(audit_tree_path(a->tree),
733 				   audit_tree_path(b->tree)))
734 				return 1;
735 			break;
736 		case AUDIT_FILTERKEY:
737 			/* both filterkeys exist based on above type compare */
738 			if (strcmp(a->filterkey, b->filterkey))
739 				return 1;
740 			break;
741 		case AUDIT_EXE:
742 			/* both paths exist based on above type compare */
743 			if (strcmp(audit_mark_path(a->exe),
744 				   audit_mark_path(b->exe)))
745 				return 1;
746 			break;
747 		case AUDIT_UID:
748 		case AUDIT_EUID:
749 		case AUDIT_SUID:
750 		case AUDIT_FSUID:
751 		case AUDIT_LOGINUID:
752 		case AUDIT_OBJ_UID:
753 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
754 				return 1;
755 			break;
756 		case AUDIT_GID:
757 		case AUDIT_EGID:
758 		case AUDIT_SGID:
759 		case AUDIT_FSGID:
760 		case AUDIT_OBJ_GID:
761 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
762 				return 1;
763 			break;
764 		default:
765 			if (a->fields[i].val != b->fields[i].val)
766 				return 1;
767 		}
768 	}
769 
770 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
771 		if (a->mask[i] != b->mask[i])
772 			return 1;
773 
774 	return 0;
775 }
776 
777 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
778  * re-initialized. */
779 static inline int audit_dupe_lsm_field(struct audit_field *df,
780 					   struct audit_field *sf)
781 {
782 	int ret = 0;
783 	char *lsm_str;
784 
785 	/* our own copy of lsm_str */
786 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
787 	if (unlikely(!lsm_str))
788 		return -ENOMEM;
789 	df->lsm_str = lsm_str;
790 
791 	/* our own (refreshed) copy of lsm_rule */
792 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
793 				       (void **)&df->lsm_rule);
794 	/* Keep currently invalid fields around in case they
795 	 * become valid after a policy reload. */
796 	if (ret == -EINVAL) {
797 		pr_warn("audit rule for LSM \'%s\' is invalid\n",
798 			df->lsm_str);
799 		ret = 0;
800 	}
801 
802 	return ret;
803 }
804 
805 /* Duplicate an audit rule.  This will be a deep copy with the exception
806  * of the watch - that pointer is carried over.  The LSM specific fields
807  * will be updated in the copy.  The point is to be able to replace the old
808  * rule with the new rule in the filterlist, then free the old rule.
809  * The rlist element is undefined; list manipulations are handled apart from
810  * the initial copy. */
811 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
812 {
813 	u32 fcount = old->field_count;
814 	struct audit_entry *entry;
815 	struct audit_krule *new;
816 	char *fk;
817 	int i, err = 0;
818 
819 	entry = audit_init_entry(fcount);
820 	if (unlikely(!entry))
821 		return ERR_PTR(-ENOMEM);
822 
823 	new = &entry->rule;
824 	new->flags = old->flags;
825 	new->pflags = old->pflags;
826 	new->listnr = old->listnr;
827 	new->action = old->action;
828 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
829 		new->mask[i] = old->mask[i];
830 	new->prio = old->prio;
831 	new->buflen = old->buflen;
832 	new->inode_f = old->inode_f;
833 	new->field_count = old->field_count;
834 
835 	/*
836 	 * note that we are OK with not refcounting here; audit_match_tree()
837 	 * never dereferences tree and we can't get false positives there
838 	 * since we'd have to have rule gone from the list *and* removed
839 	 * before the chunks found by lookup had been allocated, i.e. before
840 	 * the beginning of list scan.
841 	 */
842 	new->tree = old->tree;
843 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
844 
845 	/* deep copy this information, updating the lsm_rule fields, because
846 	 * the originals will all be freed when the old rule is freed. */
847 	for (i = 0; i < fcount; i++) {
848 		switch (new->fields[i].type) {
849 		case AUDIT_SUBJ_USER:
850 		case AUDIT_SUBJ_ROLE:
851 		case AUDIT_SUBJ_TYPE:
852 		case AUDIT_SUBJ_SEN:
853 		case AUDIT_SUBJ_CLR:
854 		case AUDIT_OBJ_USER:
855 		case AUDIT_OBJ_ROLE:
856 		case AUDIT_OBJ_TYPE:
857 		case AUDIT_OBJ_LEV_LOW:
858 		case AUDIT_OBJ_LEV_HIGH:
859 			err = audit_dupe_lsm_field(&new->fields[i],
860 						       &old->fields[i]);
861 			break;
862 		case AUDIT_FILTERKEY:
863 			fk = kstrdup(old->filterkey, GFP_KERNEL);
864 			if (unlikely(!fk))
865 				err = -ENOMEM;
866 			else
867 				new->filterkey = fk;
868 			break;
869 		case AUDIT_EXE:
870 			err = audit_dupe_exe(new, old);
871 			break;
872 		}
873 		if (err) {
874 			if (new->exe)
875 				audit_remove_mark(new->exe);
876 			audit_free_rule(entry);
877 			return ERR_PTR(err);
878 		}
879 	}
880 
881 	if (old->watch) {
882 		audit_get_watch(old->watch);
883 		new->watch = old->watch;
884 	}
885 
886 	return entry;
887 }
888 
889 /* Find an existing audit rule.
890  * Caller must hold audit_filter_mutex to prevent stale rule data. */
891 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
892 					   struct list_head **p)
893 {
894 	struct audit_entry *e, *found = NULL;
895 	struct list_head *list;
896 	int h;
897 
898 	if (entry->rule.inode_f) {
899 		h = audit_hash_ino(entry->rule.inode_f->val);
900 		*p = list = &audit_inode_hash[h];
901 	} else if (entry->rule.watch) {
902 		/* we don't know the inode number, so must walk entire hash */
903 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
904 			list = &audit_inode_hash[h];
905 			list_for_each_entry(e, list, list)
906 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
907 					found = e;
908 					goto out;
909 				}
910 		}
911 		goto out;
912 	} else {
913 		*p = list = &audit_filter_list[entry->rule.listnr];
914 	}
915 
916 	list_for_each_entry(e, list, list)
917 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
918 			found = e;
919 			goto out;
920 		}
921 
922 out:
923 	return found;
924 }
925 
926 static u64 prio_low = ~0ULL/2;
927 static u64 prio_high = ~0ULL/2 - 1;
928 
929 /* Add rule to given filterlist if not a duplicate. */
930 static inline int audit_add_rule(struct audit_entry *entry)
931 {
932 	struct audit_entry *e;
933 	struct audit_watch *watch = entry->rule.watch;
934 	struct audit_tree *tree = entry->rule.tree;
935 	struct list_head *list;
936 	int err = 0;
937 #ifdef CONFIG_AUDITSYSCALL
938 	int dont_count = 0;
939 
940 	/* If any of these, don't count towards total */
941 	switch(entry->rule.listnr) {
942 	case AUDIT_FILTER_USER:
943 	case AUDIT_FILTER_EXCLUDE:
944 	case AUDIT_FILTER_FS:
945 		dont_count = 1;
946 	}
947 #endif
948 
949 	mutex_lock(&audit_filter_mutex);
950 	e = audit_find_rule(entry, &list);
951 	if (e) {
952 		mutex_unlock(&audit_filter_mutex);
953 		err = -EEXIST;
954 		/* normally audit_add_tree_rule() will free it on failure */
955 		if (tree)
956 			audit_put_tree(tree);
957 		return err;
958 	}
959 
960 	if (watch) {
961 		/* audit_filter_mutex is dropped and re-taken during this call */
962 		err = audit_add_watch(&entry->rule, &list);
963 		if (err) {
964 			mutex_unlock(&audit_filter_mutex);
965 			/*
966 			 * normally audit_add_tree_rule() will free it
967 			 * on failure
968 			 */
969 			if (tree)
970 				audit_put_tree(tree);
971 			return err;
972 		}
973 	}
974 	if (tree) {
975 		err = audit_add_tree_rule(&entry->rule);
976 		if (err) {
977 			mutex_unlock(&audit_filter_mutex);
978 			return err;
979 		}
980 	}
981 
982 	entry->rule.prio = ~0ULL;
983 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
984 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
985 			entry->rule.prio = ++prio_high;
986 		else
987 			entry->rule.prio = --prio_low;
988 	}
989 
990 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
991 		list_add(&entry->rule.list,
992 			 &audit_rules_list[entry->rule.listnr]);
993 		list_add_rcu(&entry->list, list);
994 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
995 	} else {
996 		list_add_tail(&entry->rule.list,
997 			      &audit_rules_list[entry->rule.listnr]);
998 		list_add_tail_rcu(&entry->list, list);
999 	}
1000 #ifdef CONFIG_AUDITSYSCALL
1001 	if (!dont_count)
1002 		audit_n_rules++;
1003 
1004 	if (!audit_match_signal(entry))
1005 		audit_signals++;
1006 #endif
1007 	mutex_unlock(&audit_filter_mutex);
1008 
1009 	return err;
1010 }
1011 
1012 /* Remove an existing rule from filterlist. */
1013 int audit_del_rule(struct audit_entry *entry)
1014 {
1015 	struct audit_entry  *e;
1016 	struct audit_tree *tree = entry->rule.tree;
1017 	struct list_head *list;
1018 	int ret = 0;
1019 #ifdef CONFIG_AUDITSYSCALL
1020 	int dont_count = 0;
1021 
1022 	/* If any of these, don't count towards total */
1023 	switch(entry->rule.listnr) {
1024 	case AUDIT_FILTER_USER:
1025 	case AUDIT_FILTER_EXCLUDE:
1026 	case AUDIT_FILTER_FS:
1027 		dont_count = 1;
1028 	}
1029 #endif
1030 
1031 	mutex_lock(&audit_filter_mutex);
1032 	e = audit_find_rule(entry, &list);
1033 	if (!e) {
1034 		ret = -ENOENT;
1035 		goto out;
1036 	}
1037 
1038 	if (e->rule.watch)
1039 		audit_remove_watch_rule(&e->rule);
1040 
1041 	if (e->rule.tree)
1042 		audit_remove_tree_rule(&e->rule);
1043 
1044 	if (e->rule.exe)
1045 		audit_remove_mark_rule(&e->rule);
1046 
1047 #ifdef CONFIG_AUDITSYSCALL
1048 	if (!dont_count)
1049 		audit_n_rules--;
1050 
1051 	if (!audit_match_signal(entry))
1052 		audit_signals--;
1053 #endif
1054 
1055 	list_del_rcu(&e->list);
1056 	list_del(&e->rule.list);
1057 	call_rcu(&e->rcu, audit_free_rule_rcu);
1058 
1059 out:
1060 	mutex_unlock(&audit_filter_mutex);
1061 
1062 	if (tree)
1063 		audit_put_tree(tree);	/* that's the temporary one */
1064 
1065 	return ret;
1066 }
1067 
1068 /* List rules using struct audit_rule_data. */
1069 static void audit_list_rules(int seq, struct sk_buff_head *q)
1070 {
1071 	struct sk_buff *skb;
1072 	struct audit_krule *r;
1073 	int i;
1074 
1075 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1076 	 * iterator to sync with list writers. */
1077 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1078 		list_for_each_entry(r, &audit_rules_list[i], list) {
1079 			struct audit_rule_data *data;
1080 
1081 			data = audit_krule_to_data(r);
1082 			if (unlikely(!data))
1083 				break;
1084 			skb = audit_make_reply(seq, AUDIT_LIST_RULES, 0, 1,
1085 					       data,
1086 					       sizeof(*data) + data->buflen);
1087 			if (skb)
1088 				skb_queue_tail(q, skb);
1089 			kfree(data);
1090 		}
1091 	}
1092 	skb = audit_make_reply(seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1093 	if (skb)
1094 		skb_queue_tail(q, skb);
1095 }
1096 
1097 /* Log rule additions and removals */
1098 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1099 {
1100 	struct audit_buffer *ab;
1101 
1102 	if (!audit_enabled)
1103 		return;
1104 
1105 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1106 	if (!ab)
1107 		return;
1108 	audit_log_session_info(ab);
1109 	audit_log_task_context(ab);
1110 	audit_log_format(ab, " op=%s", action);
1111 	audit_log_key(ab, rule->filterkey);
1112 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1113 	audit_log_end(ab);
1114 }
1115 
1116 /**
1117  * audit_rule_change - apply all rules to the specified message type
1118  * @type: audit message type
1119  * @seq: netlink audit message sequence (serial) number
1120  * @data: payload data
1121  * @datasz: size of payload data
1122  */
1123 int audit_rule_change(int type, int seq, void *data, size_t datasz)
1124 {
1125 	int err = 0;
1126 	struct audit_entry *entry;
1127 
1128 	switch (type) {
1129 	case AUDIT_ADD_RULE:
1130 		entry = audit_data_to_entry(data, datasz);
1131 		if (IS_ERR(entry))
1132 			return PTR_ERR(entry);
1133 		err = audit_add_rule(entry);
1134 		audit_log_rule_change("add_rule", &entry->rule, !err);
1135 		break;
1136 	case AUDIT_DEL_RULE:
1137 		entry = audit_data_to_entry(data, datasz);
1138 		if (IS_ERR(entry))
1139 			return PTR_ERR(entry);
1140 		err = audit_del_rule(entry);
1141 		audit_log_rule_change("remove_rule", &entry->rule, !err);
1142 		break;
1143 	default:
1144 		WARN_ON(1);
1145 		return -EINVAL;
1146 	}
1147 
1148 	if (err || type == AUDIT_DEL_RULE) {
1149 		if (entry->rule.exe)
1150 			audit_remove_mark(entry->rule.exe);
1151 		audit_free_rule(entry);
1152 	}
1153 
1154 	return err;
1155 }
1156 
1157 /**
1158  * audit_list_rules_send - list the audit rules
1159  * @request_skb: skb of request we are replying to (used to target the reply)
1160  * @seq: netlink audit message sequence (serial) number
1161  */
1162 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1163 {
1164 	struct task_struct *tsk;
1165 	struct audit_netlink_list *dest;
1166 
1167 	/* We can't just spew out the rules here because we might fill
1168 	 * the available socket buffer space and deadlock waiting for
1169 	 * auditctl to read from it... which isn't ever going to
1170 	 * happen if we're actually running in the context of auditctl
1171 	 * trying to _send_ the stuff */
1172 
1173 	dest = kmalloc(sizeof(*dest), GFP_KERNEL);
1174 	if (!dest)
1175 		return -ENOMEM;
1176 	dest->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1177 	dest->portid = NETLINK_CB(request_skb).portid;
1178 	skb_queue_head_init(&dest->q);
1179 
1180 	mutex_lock(&audit_filter_mutex);
1181 	audit_list_rules(seq, &dest->q);
1182 	mutex_unlock(&audit_filter_mutex);
1183 
1184 	tsk = kthread_run(audit_send_list_thread, dest, "audit_send_list");
1185 	if (IS_ERR(tsk)) {
1186 		skb_queue_purge(&dest->q);
1187 		put_net(dest->net);
1188 		kfree(dest);
1189 		return PTR_ERR(tsk);
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 int audit_comparator(u32 left, u32 op, u32 right)
1196 {
1197 	switch (op) {
1198 	case Audit_equal:
1199 		return (left == right);
1200 	case Audit_not_equal:
1201 		return (left != right);
1202 	case Audit_lt:
1203 		return (left < right);
1204 	case Audit_le:
1205 		return (left <= right);
1206 	case Audit_gt:
1207 		return (left > right);
1208 	case Audit_ge:
1209 		return (left >= right);
1210 	case Audit_bitmask:
1211 		return (left & right);
1212 	case Audit_bittest:
1213 		return ((left & right) == right);
1214 	default:
1215 		return 0;
1216 	}
1217 }
1218 
1219 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1220 {
1221 	switch (op) {
1222 	case Audit_equal:
1223 		return uid_eq(left, right);
1224 	case Audit_not_equal:
1225 		return !uid_eq(left, right);
1226 	case Audit_lt:
1227 		return uid_lt(left, right);
1228 	case Audit_le:
1229 		return uid_lte(left, right);
1230 	case Audit_gt:
1231 		return uid_gt(left, right);
1232 	case Audit_ge:
1233 		return uid_gte(left, right);
1234 	case Audit_bitmask:
1235 	case Audit_bittest:
1236 	default:
1237 		return 0;
1238 	}
1239 }
1240 
1241 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1242 {
1243 	switch (op) {
1244 	case Audit_equal:
1245 		return gid_eq(left, right);
1246 	case Audit_not_equal:
1247 		return !gid_eq(left, right);
1248 	case Audit_lt:
1249 		return gid_lt(left, right);
1250 	case Audit_le:
1251 		return gid_lte(left, right);
1252 	case Audit_gt:
1253 		return gid_gt(left, right);
1254 	case Audit_ge:
1255 		return gid_gte(left, right);
1256 	case Audit_bitmask:
1257 	case Audit_bittest:
1258 	default:
1259 		return 0;
1260 	}
1261 }
1262 
1263 /**
1264  * parent_len - find the length of the parent portion of a pathname
1265  * @path: pathname of which to determine length
1266  */
1267 int parent_len(const char *path)
1268 {
1269 	int plen;
1270 	const char *p;
1271 
1272 	plen = strlen(path);
1273 
1274 	if (plen == 0)
1275 		return plen;
1276 
1277 	/* disregard trailing slashes */
1278 	p = path + plen - 1;
1279 	while ((*p == '/') && (p > path))
1280 		p--;
1281 
1282 	/* walk backward until we find the next slash or hit beginning */
1283 	while ((*p != '/') && (p > path))
1284 		p--;
1285 
1286 	/* did we find a slash? Then increment to include it in path */
1287 	if (*p == '/')
1288 		p++;
1289 
1290 	return p - path;
1291 }
1292 
1293 /**
1294  * audit_compare_dname_path - compare given dentry name with last component in
1295  * 			      given path. Return of 0 indicates a match.
1296  * @dname:	dentry name that we're comparing
1297  * @path:	full pathname that we're comparing
1298  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1299  * 		here indicates that we must compute this value.
1300  */
1301 int audit_compare_dname_path(const struct qstr *dname, const char *path, int parentlen)
1302 {
1303 	int dlen, pathlen;
1304 	const char *p;
1305 
1306 	dlen = dname->len;
1307 	pathlen = strlen(path);
1308 	if (pathlen < dlen)
1309 		return 1;
1310 
1311 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1312 	if (pathlen - parentlen != dlen)
1313 		return 1;
1314 
1315 	p = path + parentlen;
1316 
1317 	return strncmp(p, dname->name, dlen);
1318 }
1319 
1320 int audit_filter(int msgtype, unsigned int listtype)
1321 {
1322 	struct audit_entry *e;
1323 	int ret = 1; /* Audit by default */
1324 
1325 	rcu_read_lock();
1326 	list_for_each_entry_rcu(e, &audit_filter_list[listtype], list) {
1327 		int i, result = 0;
1328 
1329 		for (i = 0; i < e->rule.field_count; i++) {
1330 			struct audit_field *f = &e->rule.fields[i];
1331 			pid_t pid;
1332 			u32 sid;
1333 
1334 			switch (f->type) {
1335 			case AUDIT_PID:
1336 				pid = task_pid_nr(current);
1337 				result = audit_comparator(pid, f->op, f->val);
1338 				break;
1339 			case AUDIT_UID:
1340 				result = audit_uid_comparator(current_uid(), f->op, f->uid);
1341 				break;
1342 			case AUDIT_GID:
1343 				result = audit_gid_comparator(current_gid(), f->op, f->gid);
1344 				break;
1345 			case AUDIT_LOGINUID:
1346 				result = audit_uid_comparator(audit_get_loginuid(current),
1347 							      f->op, f->uid);
1348 				break;
1349 			case AUDIT_LOGINUID_SET:
1350 				result = audit_comparator(audit_loginuid_set(current),
1351 							  f->op, f->val);
1352 				break;
1353 			case AUDIT_MSGTYPE:
1354 				result = audit_comparator(msgtype, f->op, f->val);
1355 				break;
1356 			case AUDIT_SUBJ_USER:
1357 			case AUDIT_SUBJ_ROLE:
1358 			case AUDIT_SUBJ_TYPE:
1359 			case AUDIT_SUBJ_SEN:
1360 			case AUDIT_SUBJ_CLR:
1361 				if (f->lsm_rule) {
1362 					security_task_getsecid_subj(current,
1363 								    &sid);
1364 					result = security_audit_rule_match(sid,
1365 						   f->type, f->op, f->lsm_rule);
1366 				}
1367 				break;
1368 			case AUDIT_EXE:
1369 				result = audit_exe_compare(current, e->rule.exe);
1370 				if (f->op == Audit_not_equal)
1371 					result = !result;
1372 				break;
1373 			default:
1374 				goto unlock_and_return;
1375 			}
1376 			if (result < 0) /* error */
1377 				goto unlock_and_return;
1378 			if (!result)
1379 				break;
1380 		}
1381 		if (result > 0) {
1382 			if (e->rule.action == AUDIT_NEVER || listtype == AUDIT_FILTER_EXCLUDE)
1383 				ret = 0;
1384 			break;
1385 		}
1386 	}
1387 unlock_and_return:
1388 	rcu_read_unlock();
1389 	return ret;
1390 }
1391 
1392 static int update_lsm_rule(struct audit_krule *r)
1393 {
1394 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1395 	struct audit_entry *nentry;
1396 	int err = 0;
1397 
1398 	if (!security_audit_rule_known(r))
1399 		return 0;
1400 
1401 	nentry = audit_dupe_rule(r);
1402 	if (entry->rule.exe)
1403 		audit_remove_mark(entry->rule.exe);
1404 	if (IS_ERR(nentry)) {
1405 		/* save the first error encountered for the
1406 		 * return value */
1407 		err = PTR_ERR(nentry);
1408 		audit_panic("error updating LSM filters");
1409 		if (r->watch)
1410 			list_del(&r->rlist);
1411 		list_del_rcu(&entry->list);
1412 		list_del(&r->list);
1413 	} else {
1414 		if (r->watch || r->tree)
1415 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1416 		list_replace_rcu(&entry->list, &nentry->list);
1417 		list_replace(&r->list, &nentry->rule.list);
1418 	}
1419 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1420 
1421 	return err;
1422 }
1423 
1424 /* This function will re-initialize the lsm_rule field of all applicable rules.
1425  * It will traverse the filter lists serarching for rules that contain LSM
1426  * specific filter fields.  When such a rule is found, it is copied, the
1427  * LSM field is re-initialized, and the old rule is replaced with the
1428  * updated rule. */
1429 int audit_update_lsm_rules(void)
1430 {
1431 	struct audit_krule *r, *n;
1432 	int i, err = 0;
1433 
1434 	/* audit_filter_mutex synchronizes the writers */
1435 	mutex_lock(&audit_filter_mutex);
1436 
1437 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1438 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1439 			int res = update_lsm_rule(r);
1440 			if (!err)
1441 				err = res;
1442 		}
1443 	}
1444 	mutex_unlock(&audit_filter_mutex);
1445 
1446 	return err;
1447 }
1448