xref: /openbmc/linux/kernel/audit_tree.c (revision fe7498ef)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9 
10 struct audit_tree;
11 struct audit_chunk;
12 
13 struct audit_tree {
14 	refcount_t count;
15 	int goner;
16 	struct audit_chunk *root;
17 	struct list_head chunks;
18 	struct list_head rules;
19 	struct list_head list;
20 	struct list_head same_root;
21 	struct rcu_head head;
22 	char pathname[];
23 };
24 
25 struct audit_chunk {
26 	struct list_head hash;
27 	unsigned long key;
28 	struct fsnotify_mark *mark;
29 	struct list_head trees;		/* with root here */
30 	int count;
31 	atomic_long_t refs;
32 	struct rcu_head head;
33 	struct audit_node {
34 		struct list_head list;
35 		struct audit_tree *owner;
36 		unsigned index;		/* index; upper bit indicates 'will prune' */
37 	} owners[];
38 };
39 
40 struct audit_tree_mark {
41 	struct fsnotify_mark mark;
42 	struct audit_chunk *chunk;
43 };
44 
45 static LIST_HEAD(tree_list);
46 static LIST_HEAD(prune_list);
47 static struct task_struct *prune_thread;
48 
49 /*
50  * One struct chunk is attached to each inode of interest through
51  * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52  * untagging, the mark is stable as long as there is chunk attached. The
53  * association between mark and chunk is protected by hash_lock and
54  * audit_tree_group->mark_mutex. Thus as long as we hold
55  * audit_tree_group->mark_mutex and check that the mark is alive by
56  * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57  * the current chunk.
58  *
59  * Rules have pointer to struct audit_tree.
60  * Rules have struct list_head rlist forming a list of rules over
61  * the same tree.
62  * References to struct chunk are collected at audit_inode{,_child}()
63  * time and used in AUDIT_TREE rule matching.
64  * These references are dropped at the same time we are calling
65  * audit_free_names(), etc.
66  *
67  * Cyclic lists galore:
68  * tree.chunks anchors chunk.owners[].list			hash_lock
69  * tree.rules anchors rule.rlist				audit_filter_mutex
70  * chunk.trees anchors tree.same_root				hash_lock
71  * chunk.hash is a hash with middle bits of watch.inode as
72  * a hash function.						RCU, hash_lock
73  *
74  * tree is refcounted; one reference for "some rules on rules_list refer to
75  * it", one for each chunk with pointer to it.
76  *
77  * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78  * one chunk reference. This reference is dropped either when a mark is going
79  * to be freed (corresponding inode goes away) or when chunk attached to the
80  * mark gets replaced. This reference must be dropped using
81  * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82  * grace period as it protects RCU readers of the hash table.
83  *
84  * node.index allows to get from node.list to containing chunk.
85  * MSB of that sucker is stolen to mark taggings that we might have to
86  * revert - several operations have very unpleasant cleanup logics and
87  * that makes a difference.  Some.
88  */
89 
90 static struct fsnotify_group *audit_tree_group;
91 static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
92 
93 static struct audit_tree *alloc_tree(const char *s)
94 {
95 	struct audit_tree *tree;
96 
97 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
98 	if (tree) {
99 		refcount_set(&tree->count, 1);
100 		tree->goner = 0;
101 		INIT_LIST_HEAD(&tree->chunks);
102 		INIT_LIST_HEAD(&tree->rules);
103 		INIT_LIST_HEAD(&tree->list);
104 		INIT_LIST_HEAD(&tree->same_root);
105 		tree->root = NULL;
106 		strcpy(tree->pathname, s);
107 	}
108 	return tree;
109 }
110 
111 static inline void get_tree(struct audit_tree *tree)
112 {
113 	refcount_inc(&tree->count);
114 }
115 
116 static inline void put_tree(struct audit_tree *tree)
117 {
118 	if (refcount_dec_and_test(&tree->count))
119 		kfree_rcu(tree, head);
120 }
121 
122 /* to avoid bringing the entire thing in audit.h */
123 const char *audit_tree_path(struct audit_tree *tree)
124 {
125 	return tree->pathname;
126 }
127 
128 static void free_chunk(struct audit_chunk *chunk)
129 {
130 	int i;
131 
132 	for (i = 0; i < chunk->count; i++) {
133 		if (chunk->owners[i].owner)
134 			put_tree(chunk->owners[i].owner);
135 	}
136 	kfree(chunk);
137 }
138 
139 void audit_put_chunk(struct audit_chunk *chunk)
140 {
141 	if (atomic_long_dec_and_test(&chunk->refs))
142 		free_chunk(chunk);
143 }
144 
145 static void __put_chunk(struct rcu_head *rcu)
146 {
147 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148 	audit_put_chunk(chunk);
149 }
150 
151 /*
152  * Drop reference to the chunk that was held by the mark. This is the reference
153  * that gets dropped after we've removed the chunk from the hash table and we
154  * use it to make sure chunk cannot be freed before RCU grace period expires.
155  */
156 static void audit_mark_put_chunk(struct audit_chunk *chunk)
157 {
158 	call_rcu(&chunk->head, __put_chunk);
159 }
160 
161 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162 {
163 	return container_of(mark, struct audit_tree_mark, mark);
164 }
165 
166 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167 {
168 	return audit_mark(mark)->chunk;
169 }
170 
171 static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172 {
173 	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174 }
175 
176 static struct fsnotify_mark *alloc_mark(void)
177 {
178 	struct audit_tree_mark *amark;
179 
180 	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181 	if (!amark)
182 		return NULL;
183 	fsnotify_init_mark(&amark->mark, audit_tree_group);
184 	amark->mark.mask = FS_IN_IGNORED;
185 	return &amark->mark;
186 }
187 
188 static struct audit_chunk *alloc_chunk(int count)
189 {
190 	struct audit_chunk *chunk;
191 	int i;
192 
193 	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
194 	if (!chunk)
195 		return NULL;
196 
197 	INIT_LIST_HEAD(&chunk->hash);
198 	INIT_LIST_HEAD(&chunk->trees);
199 	chunk->count = count;
200 	atomic_long_set(&chunk->refs, 1);
201 	for (i = 0; i < count; i++) {
202 		INIT_LIST_HEAD(&chunk->owners[i].list);
203 		chunk->owners[i].index = i;
204 	}
205 	return chunk;
206 }
207 
208 enum {HASH_SIZE = 128};
209 static struct list_head chunk_hash_heads[HASH_SIZE];
210 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
211 
212 /* Function to return search key in our hash from inode. */
213 static unsigned long inode_to_key(const struct inode *inode)
214 {
215 	/* Use address pointed to by connector->obj as the key */
216 	return (unsigned long)&inode->i_fsnotify_marks;
217 }
218 
219 static inline struct list_head *chunk_hash(unsigned long key)
220 {
221 	unsigned long n = key / L1_CACHE_BYTES;
222 	return chunk_hash_heads + n % HASH_SIZE;
223 }
224 
225 /* hash_lock & mark->group->mark_mutex is held by caller */
226 static void insert_hash(struct audit_chunk *chunk)
227 {
228 	struct list_head *list;
229 
230 	/*
231 	 * Make sure chunk is fully initialized before making it visible in the
232 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
233 	 * audit_tree_lookup().
234 	 */
235 	smp_wmb();
236 	WARN_ON_ONCE(!chunk->key);
237 	list = chunk_hash(chunk->key);
238 	list_add_rcu(&chunk->hash, list);
239 }
240 
241 /* called under rcu_read_lock */
242 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
243 {
244 	unsigned long key = inode_to_key(inode);
245 	struct list_head *list = chunk_hash(key);
246 	struct audit_chunk *p;
247 
248 	list_for_each_entry_rcu(p, list, hash) {
249 		/*
250 		 * We use a data dependency barrier in READ_ONCE() to make sure
251 		 * the chunk we see is fully initialized.
252 		 */
253 		if (READ_ONCE(p->key) == key) {
254 			atomic_long_inc(&p->refs);
255 			return p;
256 		}
257 	}
258 	return NULL;
259 }
260 
261 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
262 {
263 	int n;
264 	for (n = 0; n < chunk->count; n++)
265 		if (chunk->owners[n].owner == tree)
266 			return true;
267 	return false;
268 }
269 
270 /* tagging and untagging inodes with trees */
271 
272 static struct audit_chunk *find_chunk(struct audit_node *p)
273 {
274 	int index = p->index & ~(1U<<31);
275 	p -= index;
276 	return container_of(p, struct audit_chunk, owners[0]);
277 }
278 
279 static void replace_mark_chunk(struct fsnotify_mark *mark,
280 			       struct audit_chunk *chunk)
281 {
282 	struct audit_chunk *old;
283 
284 	assert_spin_locked(&hash_lock);
285 	old = mark_chunk(mark);
286 	audit_mark(mark)->chunk = chunk;
287 	if (chunk)
288 		chunk->mark = mark;
289 	if (old)
290 		old->mark = NULL;
291 }
292 
293 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
294 {
295 	struct audit_tree *owner;
296 	int i, j;
297 
298 	new->key = old->key;
299 	list_splice_init(&old->trees, &new->trees);
300 	list_for_each_entry(owner, &new->trees, same_root)
301 		owner->root = new;
302 	for (i = j = 0; j < old->count; i++, j++) {
303 		if (!old->owners[j].owner) {
304 			i--;
305 			continue;
306 		}
307 		owner = old->owners[j].owner;
308 		new->owners[i].owner = owner;
309 		new->owners[i].index = old->owners[j].index - j + i;
310 		if (!owner) /* result of earlier fallback */
311 			continue;
312 		get_tree(owner);
313 		list_replace_init(&old->owners[j].list, &new->owners[i].list);
314 	}
315 	replace_mark_chunk(old->mark, new);
316 	/*
317 	 * Make sure chunk is fully initialized before making it visible in the
318 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
319 	 * audit_tree_lookup().
320 	 */
321 	smp_wmb();
322 	list_replace_rcu(&old->hash, &new->hash);
323 }
324 
325 static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
326 {
327 	struct audit_tree *owner = p->owner;
328 
329 	if (owner->root == chunk) {
330 		list_del_init(&owner->same_root);
331 		owner->root = NULL;
332 	}
333 	list_del_init(&p->list);
334 	p->owner = NULL;
335 	put_tree(owner);
336 }
337 
338 static int chunk_count_trees(struct audit_chunk *chunk)
339 {
340 	int i;
341 	int ret = 0;
342 
343 	for (i = 0; i < chunk->count; i++)
344 		if (chunk->owners[i].owner)
345 			ret++;
346 	return ret;
347 }
348 
349 static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
350 {
351 	struct audit_chunk *new;
352 	int size;
353 
354 	mutex_lock(&audit_tree_group->mark_mutex);
355 	/*
356 	 * mark_mutex stabilizes chunk attached to the mark so we can check
357 	 * whether it didn't change while we've dropped hash_lock.
358 	 */
359 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
360 	    mark_chunk(mark) != chunk)
361 		goto out_mutex;
362 
363 	size = chunk_count_trees(chunk);
364 	if (!size) {
365 		spin_lock(&hash_lock);
366 		list_del_init(&chunk->trees);
367 		list_del_rcu(&chunk->hash);
368 		replace_mark_chunk(mark, NULL);
369 		spin_unlock(&hash_lock);
370 		fsnotify_detach_mark(mark);
371 		mutex_unlock(&audit_tree_group->mark_mutex);
372 		audit_mark_put_chunk(chunk);
373 		fsnotify_free_mark(mark);
374 		return;
375 	}
376 
377 	new = alloc_chunk(size);
378 	if (!new)
379 		goto out_mutex;
380 
381 	spin_lock(&hash_lock);
382 	/*
383 	 * This has to go last when updating chunk as once replace_chunk() is
384 	 * called, new RCU readers can see the new chunk.
385 	 */
386 	replace_chunk(new, chunk);
387 	spin_unlock(&hash_lock);
388 	mutex_unlock(&audit_tree_group->mark_mutex);
389 	audit_mark_put_chunk(chunk);
390 	return;
391 
392 out_mutex:
393 	mutex_unlock(&audit_tree_group->mark_mutex);
394 }
395 
396 /* Call with group->mark_mutex held, releases it */
397 static int create_chunk(struct inode *inode, struct audit_tree *tree)
398 {
399 	struct fsnotify_mark *mark;
400 	struct audit_chunk *chunk = alloc_chunk(1);
401 
402 	if (!chunk) {
403 		mutex_unlock(&audit_tree_group->mark_mutex);
404 		return -ENOMEM;
405 	}
406 
407 	mark = alloc_mark();
408 	if (!mark) {
409 		mutex_unlock(&audit_tree_group->mark_mutex);
410 		kfree(chunk);
411 		return -ENOMEM;
412 	}
413 
414 	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
415 		mutex_unlock(&audit_tree_group->mark_mutex);
416 		fsnotify_put_mark(mark);
417 		kfree(chunk);
418 		return -ENOSPC;
419 	}
420 
421 	spin_lock(&hash_lock);
422 	if (tree->goner) {
423 		spin_unlock(&hash_lock);
424 		fsnotify_detach_mark(mark);
425 		mutex_unlock(&audit_tree_group->mark_mutex);
426 		fsnotify_free_mark(mark);
427 		fsnotify_put_mark(mark);
428 		kfree(chunk);
429 		return 0;
430 	}
431 	replace_mark_chunk(mark, chunk);
432 	chunk->owners[0].index = (1U << 31);
433 	chunk->owners[0].owner = tree;
434 	get_tree(tree);
435 	list_add(&chunk->owners[0].list, &tree->chunks);
436 	if (!tree->root) {
437 		tree->root = chunk;
438 		list_add(&tree->same_root, &chunk->trees);
439 	}
440 	chunk->key = inode_to_key(inode);
441 	/*
442 	 * Inserting into the hash table has to go last as once we do that RCU
443 	 * readers can see the chunk.
444 	 */
445 	insert_hash(chunk);
446 	spin_unlock(&hash_lock);
447 	mutex_unlock(&audit_tree_group->mark_mutex);
448 	/*
449 	 * Drop our initial reference. When mark we point to is getting freed,
450 	 * we get notification through ->freeing_mark callback and cleanup
451 	 * chunk pointing to this mark.
452 	 */
453 	fsnotify_put_mark(mark);
454 	return 0;
455 }
456 
457 /* the first tagged inode becomes root of tree */
458 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
459 {
460 	struct fsnotify_mark *mark;
461 	struct audit_chunk *chunk, *old;
462 	struct audit_node *p;
463 	int n;
464 
465 	mutex_lock(&audit_tree_group->mark_mutex);
466 	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
467 	if (!mark)
468 		return create_chunk(inode, tree);
469 
470 	/*
471 	 * Found mark is guaranteed to be attached and mark_mutex protects mark
472 	 * from getting detached and thus it makes sure there is chunk attached
473 	 * to the mark.
474 	 */
475 	/* are we already there? */
476 	spin_lock(&hash_lock);
477 	old = mark_chunk(mark);
478 	for (n = 0; n < old->count; n++) {
479 		if (old->owners[n].owner == tree) {
480 			spin_unlock(&hash_lock);
481 			mutex_unlock(&audit_tree_group->mark_mutex);
482 			fsnotify_put_mark(mark);
483 			return 0;
484 		}
485 	}
486 	spin_unlock(&hash_lock);
487 
488 	chunk = alloc_chunk(old->count + 1);
489 	if (!chunk) {
490 		mutex_unlock(&audit_tree_group->mark_mutex);
491 		fsnotify_put_mark(mark);
492 		return -ENOMEM;
493 	}
494 
495 	spin_lock(&hash_lock);
496 	if (tree->goner) {
497 		spin_unlock(&hash_lock);
498 		mutex_unlock(&audit_tree_group->mark_mutex);
499 		fsnotify_put_mark(mark);
500 		kfree(chunk);
501 		return 0;
502 	}
503 	p = &chunk->owners[chunk->count - 1];
504 	p->index = (chunk->count - 1) | (1U<<31);
505 	p->owner = tree;
506 	get_tree(tree);
507 	list_add(&p->list, &tree->chunks);
508 	if (!tree->root) {
509 		tree->root = chunk;
510 		list_add(&tree->same_root, &chunk->trees);
511 	}
512 	/*
513 	 * This has to go last when updating chunk as once replace_chunk() is
514 	 * called, new RCU readers can see the new chunk.
515 	 */
516 	replace_chunk(chunk, old);
517 	spin_unlock(&hash_lock);
518 	mutex_unlock(&audit_tree_group->mark_mutex);
519 	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
520 	audit_mark_put_chunk(old);
521 
522 	return 0;
523 }
524 
525 static void audit_tree_log_remove_rule(struct audit_context *context,
526 				       struct audit_krule *rule)
527 {
528 	struct audit_buffer *ab;
529 
530 	if (!audit_enabled)
531 		return;
532 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
533 	if (unlikely(!ab))
534 		return;
535 	audit_log_format(ab, "op=remove_rule dir=");
536 	audit_log_untrustedstring(ab, rule->tree->pathname);
537 	audit_log_key(ab, rule->filterkey);
538 	audit_log_format(ab, " list=%d res=1", rule->listnr);
539 	audit_log_end(ab);
540 }
541 
542 static void kill_rules(struct audit_context *context, struct audit_tree *tree)
543 {
544 	struct audit_krule *rule, *next;
545 	struct audit_entry *entry;
546 
547 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
548 		entry = container_of(rule, struct audit_entry, rule);
549 
550 		list_del_init(&rule->rlist);
551 		if (rule->tree) {
552 			/* not a half-baked one */
553 			audit_tree_log_remove_rule(context, rule);
554 			if (entry->rule.exe)
555 				audit_remove_mark(entry->rule.exe);
556 			rule->tree = NULL;
557 			list_del_rcu(&entry->list);
558 			list_del(&entry->rule.list);
559 			call_rcu(&entry->rcu, audit_free_rule_rcu);
560 		}
561 	}
562 }
563 
564 /*
565  * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
566  * chunks. The function expects tagged chunks are all at the beginning of the
567  * chunks list.
568  */
569 static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
570 {
571 	spin_lock(&hash_lock);
572 	while (!list_empty(&victim->chunks)) {
573 		struct audit_node *p;
574 		struct audit_chunk *chunk;
575 		struct fsnotify_mark *mark;
576 
577 		p = list_first_entry(&victim->chunks, struct audit_node, list);
578 		/* have we run out of marked? */
579 		if (tagged && !(p->index & (1U<<31)))
580 			break;
581 		chunk = find_chunk(p);
582 		mark = chunk->mark;
583 		remove_chunk_node(chunk, p);
584 		/* Racing with audit_tree_freeing_mark()? */
585 		if (!mark)
586 			continue;
587 		fsnotify_get_mark(mark);
588 		spin_unlock(&hash_lock);
589 
590 		untag_chunk(chunk, mark);
591 		fsnotify_put_mark(mark);
592 
593 		spin_lock(&hash_lock);
594 	}
595 	spin_unlock(&hash_lock);
596 }
597 
598 /*
599  * finish killing struct audit_tree
600  */
601 static void prune_one(struct audit_tree *victim)
602 {
603 	prune_tree_chunks(victim, false);
604 	put_tree(victim);
605 }
606 
607 /* trim the uncommitted chunks from tree */
608 
609 static void trim_marked(struct audit_tree *tree)
610 {
611 	struct list_head *p, *q;
612 	spin_lock(&hash_lock);
613 	if (tree->goner) {
614 		spin_unlock(&hash_lock);
615 		return;
616 	}
617 	/* reorder */
618 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
619 		struct audit_node *node = list_entry(p, struct audit_node, list);
620 		q = p->next;
621 		if (node->index & (1U<<31)) {
622 			list_del_init(p);
623 			list_add(p, &tree->chunks);
624 		}
625 	}
626 	spin_unlock(&hash_lock);
627 
628 	prune_tree_chunks(tree, true);
629 
630 	spin_lock(&hash_lock);
631 	if (!tree->root && !tree->goner) {
632 		tree->goner = 1;
633 		spin_unlock(&hash_lock);
634 		mutex_lock(&audit_filter_mutex);
635 		kill_rules(audit_context(), tree);
636 		list_del_init(&tree->list);
637 		mutex_unlock(&audit_filter_mutex);
638 		prune_one(tree);
639 	} else {
640 		spin_unlock(&hash_lock);
641 	}
642 }
643 
644 static void audit_schedule_prune(void);
645 
646 /* called with audit_filter_mutex */
647 int audit_remove_tree_rule(struct audit_krule *rule)
648 {
649 	struct audit_tree *tree;
650 	tree = rule->tree;
651 	if (tree) {
652 		spin_lock(&hash_lock);
653 		list_del_init(&rule->rlist);
654 		if (list_empty(&tree->rules) && !tree->goner) {
655 			tree->root = NULL;
656 			list_del_init(&tree->same_root);
657 			tree->goner = 1;
658 			list_move(&tree->list, &prune_list);
659 			rule->tree = NULL;
660 			spin_unlock(&hash_lock);
661 			audit_schedule_prune();
662 			return 1;
663 		}
664 		rule->tree = NULL;
665 		spin_unlock(&hash_lock);
666 		return 1;
667 	}
668 	return 0;
669 }
670 
671 static int compare_root(struct vfsmount *mnt, void *arg)
672 {
673 	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
674 	       (unsigned long)arg;
675 }
676 
677 void audit_trim_trees(void)
678 {
679 	struct list_head cursor;
680 
681 	mutex_lock(&audit_filter_mutex);
682 	list_add(&cursor, &tree_list);
683 	while (cursor.next != &tree_list) {
684 		struct audit_tree *tree;
685 		struct path path;
686 		struct vfsmount *root_mnt;
687 		struct audit_node *node;
688 		int err;
689 
690 		tree = container_of(cursor.next, struct audit_tree, list);
691 		get_tree(tree);
692 		list_move(&cursor, &tree->list);
693 		mutex_unlock(&audit_filter_mutex);
694 
695 		err = kern_path(tree->pathname, 0, &path);
696 		if (err)
697 			goto skip_it;
698 
699 		root_mnt = collect_mounts(&path);
700 		path_put(&path);
701 		if (IS_ERR(root_mnt))
702 			goto skip_it;
703 
704 		spin_lock(&hash_lock);
705 		list_for_each_entry(node, &tree->chunks, list) {
706 			struct audit_chunk *chunk = find_chunk(node);
707 			/* this could be NULL if the watch is dying else where... */
708 			node->index |= 1U<<31;
709 			if (iterate_mounts(compare_root,
710 					   (void *)(chunk->key),
711 					   root_mnt))
712 				node->index &= ~(1U<<31);
713 		}
714 		spin_unlock(&hash_lock);
715 		trim_marked(tree);
716 		drop_collected_mounts(root_mnt);
717 skip_it:
718 		put_tree(tree);
719 		mutex_lock(&audit_filter_mutex);
720 	}
721 	list_del(&cursor);
722 	mutex_unlock(&audit_filter_mutex);
723 }
724 
725 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
726 {
727 
728 	if (pathname[0] != '/' ||
729 	    (rule->listnr != AUDIT_FILTER_EXIT &&
730 	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
731 	    op != Audit_equal ||
732 	    rule->inode_f || rule->watch || rule->tree)
733 		return -EINVAL;
734 	rule->tree = alloc_tree(pathname);
735 	if (!rule->tree)
736 		return -ENOMEM;
737 	return 0;
738 }
739 
740 void audit_put_tree(struct audit_tree *tree)
741 {
742 	put_tree(tree);
743 }
744 
745 static int tag_mount(struct vfsmount *mnt, void *arg)
746 {
747 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
748 }
749 
750 /*
751  * That gets run when evict_chunk() ends up needing to kill audit_tree.
752  * Runs from a separate thread.
753  */
754 static int prune_tree_thread(void *unused)
755 {
756 	for (;;) {
757 		if (list_empty(&prune_list)) {
758 			set_current_state(TASK_INTERRUPTIBLE);
759 			schedule();
760 		}
761 
762 		audit_ctl_lock();
763 		mutex_lock(&audit_filter_mutex);
764 
765 		while (!list_empty(&prune_list)) {
766 			struct audit_tree *victim;
767 
768 			victim = list_entry(prune_list.next,
769 					struct audit_tree, list);
770 			list_del_init(&victim->list);
771 
772 			mutex_unlock(&audit_filter_mutex);
773 
774 			prune_one(victim);
775 
776 			mutex_lock(&audit_filter_mutex);
777 		}
778 
779 		mutex_unlock(&audit_filter_mutex);
780 		audit_ctl_unlock();
781 	}
782 	return 0;
783 }
784 
785 static int audit_launch_prune(void)
786 {
787 	if (prune_thread)
788 		return 0;
789 	prune_thread = kthread_run(prune_tree_thread, NULL,
790 				"audit_prune_tree");
791 	if (IS_ERR(prune_thread)) {
792 		pr_err("cannot start thread audit_prune_tree");
793 		prune_thread = NULL;
794 		return -ENOMEM;
795 	}
796 	return 0;
797 }
798 
799 /* called with audit_filter_mutex */
800 int audit_add_tree_rule(struct audit_krule *rule)
801 {
802 	struct audit_tree *seed = rule->tree, *tree;
803 	struct path path;
804 	struct vfsmount *mnt;
805 	int err;
806 
807 	rule->tree = NULL;
808 	list_for_each_entry(tree, &tree_list, list) {
809 		if (!strcmp(seed->pathname, tree->pathname)) {
810 			put_tree(seed);
811 			rule->tree = tree;
812 			list_add(&rule->rlist, &tree->rules);
813 			return 0;
814 		}
815 	}
816 	tree = seed;
817 	list_add(&tree->list, &tree_list);
818 	list_add(&rule->rlist, &tree->rules);
819 	/* do not set rule->tree yet */
820 	mutex_unlock(&audit_filter_mutex);
821 
822 	if (unlikely(!prune_thread)) {
823 		err = audit_launch_prune();
824 		if (err)
825 			goto Err;
826 	}
827 
828 	err = kern_path(tree->pathname, 0, &path);
829 	if (err)
830 		goto Err;
831 	mnt = collect_mounts(&path);
832 	path_put(&path);
833 	if (IS_ERR(mnt)) {
834 		err = PTR_ERR(mnt);
835 		goto Err;
836 	}
837 
838 	get_tree(tree);
839 	err = iterate_mounts(tag_mount, tree, mnt);
840 	drop_collected_mounts(mnt);
841 
842 	if (!err) {
843 		struct audit_node *node;
844 		spin_lock(&hash_lock);
845 		list_for_each_entry(node, &tree->chunks, list)
846 			node->index &= ~(1U<<31);
847 		spin_unlock(&hash_lock);
848 	} else {
849 		trim_marked(tree);
850 		goto Err;
851 	}
852 
853 	mutex_lock(&audit_filter_mutex);
854 	if (list_empty(&rule->rlist)) {
855 		put_tree(tree);
856 		return -ENOENT;
857 	}
858 	rule->tree = tree;
859 	put_tree(tree);
860 
861 	return 0;
862 Err:
863 	mutex_lock(&audit_filter_mutex);
864 	list_del_init(&tree->list);
865 	list_del_init(&tree->rules);
866 	put_tree(tree);
867 	return err;
868 }
869 
870 int audit_tag_tree(char *old, char *new)
871 {
872 	struct list_head cursor, barrier;
873 	int failed = 0;
874 	struct path path1, path2;
875 	struct vfsmount *tagged;
876 	int err;
877 
878 	err = kern_path(new, 0, &path2);
879 	if (err)
880 		return err;
881 	tagged = collect_mounts(&path2);
882 	path_put(&path2);
883 	if (IS_ERR(tagged))
884 		return PTR_ERR(tagged);
885 
886 	err = kern_path(old, 0, &path1);
887 	if (err) {
888 		drop_collected_mounts(tagged);
889 		return err;
890 	}
891 
892 	mutex_lock(&audit_filter_mutex);
893 	list_add(&barrier, &tree_list);
894 	list_add(&cursor, &barrier);
895 
896 	while (cursor.next != &tree_list) {
897 		struct audit_tree *tree;
898 		int good_one = 0;
899 
900 		tree = container_of(cursor.next, struct audit_tree, list);
901 		get_tree(tree);
902 		list_move(&cursor, &tree->list);
903 		mutex_unlock(&audit_filter_mutex);
904 
905 		err = kern_path(tree->pathname, 0, &path2);
906 		if (!err) {
907 			good_one = path_is_under(&path1, &path2);
908 			path_put(&path2);
909 		}
910 
911 		if (!good_one) {
912 			put_tree(tree);
913 			mutex_lock(&audit_filter_mutex);
914 			continue;
915 		}
916 
917 		failed = iterate_mounts(tag_mount, tree, tagged);
918 		if (failed) {
919 			put_tree(tree);
920 			mutex_lock(&audit_filter_mutex);
921 			break;
922 		}
923 
924 		mutex_lock(&audit_filter_mutex);
925 		spin_lock(&hash_lock);
926 		if (!tree->goner) {
927 			list_move(&tree->list, &tree_list);
928 		}
929 		spin_unlock(&hash_lock);
930 		put_tree(tree);
931 	}
932 
933 	while (barrier.prev != &tree_list) {
934 		struct audit_tree *tree;
935 
936 		tree = container_of(barrier.prev, struct audit_tree, list);
937 		get_tree(tree);
938 		list_move(&tree->list, &barrier);
939 		mutex_unlock(&audit_filter_mutex);
940 
941 		if (!failed) {
942 			struct audit_node *node;
943 			spin_lock(&hash_lock);
944 			list_for_each_entry(node, &tree->chunks, list)
945 				node->index &= ~(1U<<31);
946 			spin_unlock(&hash_lock);
947 		} else {
948 			trim_marked(tree);
949 		}
950 
951 		put_tree(tree);
952 		mutex_lock(&audit_filter_mutex);
953 	}
954 	list_del(&barrier);
955 	list_del(&cursor);
956 	mutex_unlock(&audit_filter_mutex);
957 	path_put(&path1);
958 	drop_collected_mounts(tagged);
959 	return failed;
960 }
961 
962 
963 static void audit_schedule_prune(void)
964 {
965 	wake_up_process(prune_thread);
966 }
967 
968 /*
969  * ... and that one is done if evict_chunk() decides to delay until the end
970  * of syscall.  Runs synchronously.
971  */
972 void audit_kill_trees(struct audit_context *context)
973 {
974 	struct list_head *list = &context->killed_trees;
975 
976 	audit_ctl_lock();
977 	mutex_lock(&audit_filter_mutex);
978 
979 	while (!list_empty(list)) {
980 		struct audit_tree *victim;
981 
982 		victim = list_entry(list->next, struct audit_tree, list);
983 		kill_rules(context, victim);
984 		list_del_init(&victim->list);
985 
986 		mutex_unlock(&audit_filter_mutex);
987 
988 		prune_one(victim);
989 
990 		mutex_lock(&audit_filter_mutex);
991 	}
992 
993 	mutex_unlock(&audit_filter_mutex);
994 	audit_ctl_unlock();
995 }
996 
997 /*
998  *  Here comes the stuff asynchronous to auditctl operations
999  */
1000 
1001 static void evict_chunk(struct audit_chunk *chunk)
1002 {
1003 	struct audit_tree *owner;
1004 	struct list_head *postponed = audit_killed_trees();
1005 	int need_prune = 0;
1006 	int n;
1007 
1008 	mutex_lock(&audit_filter_mutex);
1009 	spin_lock(&hash_lock);
1010 	while (!list_empty(&chunk->trees)) {
1011 		owner = list_entry(chunk->trees.next,
1012 				   struct audit_tree, same_root);
1013 		owner->goner = 1;
1014 		owner->root = NULL;
1015 		list_del_init(&owner->same_root);
1016 		spin_unlock(&hash_lock);
1017 		if (!postponed) {
1018 			kill_rules(audit_context(), owner);
1019 			list_move(&owner->list, &prune_list);
1020 			need_prune = 1;
1021 		} else {
1022 			list_move(&owner->list, postponed);
1023 		}
1024 		spin_lock(&hash_lock);
1025 	}
1026 	list_del_rcu(&chunk->hash);
1027 	for (n = 0; n < chunk->count; n++)
1028 		list_del_init(&chunk->owners[n].list);
1029 	spin_unlock(&hash_lock);
1030 	mutex_unlock(&audit_filter_mutex);
1031 	if (need_prune)
1032 		audit_schedule_prune();
1033 }
1034 
1035 static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1036 				   struct inode *inode, struct inode *dir,
1037 				   const struct qstr *file_name, u32 cookie)
1038 {
1039 	return 0;
1040 }
1041 
1042 static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1043 				    struct fsnotify_group *group)
1044 {
1045 	struct audit_chunk *chunk;
1046 
1047 	mutex_lock(&mark->group->mark_mutex);
1048 	spin_lock(&hash_lock);
1049 	chunk = mark_chunk(mark);
1050 	replace_mark_chunk(mark, NULL);
1051 	spin_unlock(&hash_lock);
1052 	mutex_unlock(&mark->group->mark_mutex);
1053 	if (chunk) {
1054 		evict_chunk(chunk);
1055 		audit_mark_put_chunk(chunk);
1056 	}
1057 
1058 	/*
1059 	 * We are guaranteed to have at least one reference to the mark from
1060 	 * either the inode or the caller of fsnotify_destroy_mark().
1061 	 */
1062 	BUG_ON(refcount_read(&mark->refcnt) < 1);
1063 }
1064 
1065 static const struct fsnotify_ops audit_tree_ops = {
1066 	.handle_inode_event = audit_tree_handle_event,
1067 	.freeing_mark = audit_tree_freeing_mark,
1068 	.free_mark = audit_tree_destroy_watch,
1069 };
1070 
1071 static int __init audit_tree_init(void)
1072 {
1073 	int i;
1074 
1075 	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1076 
1077 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1078 	if (IS_ERR(audit_tree_group))
1079 		audit_panic("cannot initialize fsnotify group for rectree watches");
1080 
1081 	for (i = 0; i < HASH_SIZE; i++)
1082 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1083 
1084 	return 0;
1085 }
1086 __initcall(audit_tree_init);
1087