xref: /openbmc/linux/kernel/audit_tree.c (revision c0e297dc)
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7 
8 struct audit_tree;
9 struct audit_chunk;
10 
11 struct audit_tree {
12 	atomic_t count;
13 	int goner;
14 	struct audit_chunk *root;
15 	struct list_head chunks;
16 	struct list_head rules;
17 	struct list_head list;
18 	struct list_head same_root;
19 	struct rcu_head head;
20 	char pathname[];
21 };
22 
23 struct audit_chunk {
24 	struct list_head hash;
25 	struct fsnotify_mark mark;
26 	struct list_head trees;		/* with root here */
27 	int dead;
28 	int count;
29 	atomic_long_t refs;
30 	struct rcu_head head;
31 	struct node {
32 		struct list_head list;
33 		struct audit_tree *owner;
34 		unsigned index;		/* index; upper bit indicates 'will prune' */
35 	} owners[];
36 };
37 
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
41 
42 /*
43  * One struct chunk is attached to each inode of interest.
44  * We replace struct chunk on tagging/untagging.
45  * Rules have pointer to struct audit_tree.
46  * Rules have struct list_head rlist forming a list of rules over
47  * the same tree.
48  * References to struct chunk are collected at audit_inode{,_child}()
49  * time and used in AUDIT_TREE rule matching.
50  * These references are dropped at the same time we are calling
51  * audit_free_names(), etc.
52  *
53  * Cyclic lists galore:
54  * tree.chunks anchors chunk.owners[].list			hash_lock
55  * tree.rules anchors rule.rlist				audit_filter_mutex
56  * chunk.trees anchors tree.same_root				hash_lock
57  * chunk.hash is a hash with middle bits of watch.inode as
58  * a hash function.						RCU, hash_lock
59  *
60  * tree is refcounted; one reference for "some rules on rules_list refer to
61  * it", one for each chunk with pointer to it.
62  *
63  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64  * of watch contributes 1 to .refs).
65  *
66  * node.index allows to get from node.list to containing chunk.
67  * MSB of that sucker is stolen to mark taggings that we might have to
68  * revert - several operations have very unpleasant cleanup logics and
69  * that makes a difference.  Some.
70  */
71 
72 static struct fsnotify_group *audit_tree_group;
73 
74 static struct audit_tree *alloc_tree(const char *s)
75 {
76 	struct audit_tree *tree;
77 
78 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79 	if (tree) {
80 		atomic_set(&tree->count, 1);
81 		tree->goner = 0;
82 		INIT_LIST_HEAD(&tree->chunks);
83 		INIT_LIST_HEAD(&tree->rules);
84 		INIT_LIST_HEAD(&tree->list);
85 		INIT_LIST_HEAD(&tree->same_root);
86 		tree->root = NULL;
87 		strcpy(tree->pathname, s);
88 	}
89 	return tree;
90 }
91 
92 static inline void get_tree(struct audit_tree *tree)
93 {
94 	atomic_inc(&tree->count);
95 }
96 
97 static inline void put_tree(struct audit_tree *tree)
98 {
99 	if (atomic_dec_and_test(&tree->count))
100 		kfree_rcu(tree, head);
101 }
102 
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
105 {
106 	return tree->pathname;
107 }
108 
109 static void free_chunk(struct audit_chunk *chunk)
110 {
111 	int i;
112 
113 	for (i = 0; i < chunk->count; i++) {
114 		if (chunk->owners[i].owner)
115 			put_tree(chunk->owners[i].owner);
116 	}
117 	kfree(chunk);
118 }
119 
120 void audit_put_chunk(struct audit_chunk *chunk)
121 {
122 	if (atomic_long_dec_and_test(&chunk->refs))
123 		free_chunk(chunk);
124 }
125 
126 static void __put_chunk(struct rcu_head *rcu)
127 {
128 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 	audit_put_chunk(chunk);
130 }
131 
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 {
134 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 	call_rcu(&chunk->head, __put_chunk);
136 }
137 
138 static struct audit_chunk *alloc_chunk(int count)
139 {
140 	struct audit_chunk *chunk;
141 	size_t size;
142 	int i;
143 
144 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 	chunk = kzalloc(size, GFP_KERNEL);
146 	if (!chunk)
147 		return NULL;
148 
149 	INIT_LIST_HEAD(&chunk->hash);
150 	INIT_LIST_HEAD(&chunk->trees);
151 	chunk->count = count;
152 	atomic_long_set(&chunk->refs, 1);
153 	for (i = 0; i < count; i++) {
154 		INIT_LIST_HEAD(&chunk->owners[i].list);
155 		chunk->owners[i].index = i;
156 	}
157 	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 	chunk->mark.mask = FS_IN_IGNORED;
159 	return chunk;
160 }
161 
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165 
166 static inline struct list_head *chunk_hash(const struct inode *inode)
167 {
168 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 	return chunk_hash_heads + n % HASH_SIZE;
170 }
171 
172 /* hash_lock & entry->lock is held by caller */
173 static void insert_hash(struct audit_chunk *chunk)
174 {
175 	struct fsnotify_mark *entry = &chunk->mark;
176 	struct list_head *list;
177 
178 	if (!entry->inode)
179 		return;
180 	list = chunk_hash(entry->inode);
181 	list_add_rcu(&chunk->hash, list);
182 }
183 
184 /* called under rcu_read_lock */
185 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186 {
187 	struct list_head *list = chunk_hash(inode);
188 	struct audit_chunk *p;
189 
190 	list_for_each_entry_rcu(p, list, hash) {
191 		/* mark.inode may have gone NULL, but who cares? */
192 		if (p->mark.inode == inode) {
193 			atomic_long_inc(&p->refs);
194 			return p;
195 		}
196 	}
197 	return NULL;
198 }
199 
200 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201 {
202 	int n;
203 	for (n = 0; n < chunk->count; n++)
204 		if (chunk->owners[n].owner == tree)
205 			return 1;
206 	return 0;
207 }
208 
209 /* tagging and untagging inodes with trees */
210 
211 static struct audit_chunk *find_chunk(struct node *p)
212 {
213 	int index = p->index & ~(1U<<31);
214 	p -= index;
215 	return container_of(p, struct audit_chunk, owners[0]);
216 }
217 
218 static void untag_chunk(struct node *p)
219 {
220 	struct audit_chunk *chunk = find_chunk(p);
221 	struct fsnotify_mark *entry = &chunk->mark;
222 	struct audit_chunk *new = NULL;
223 	struct audit_tree *owner;
224 	int size = chunk->count - 1;
225 	int i, j;
226 
227 	fsnotify_get_mark(entry);
228 
229 	spin_unlock(&hash_lock);
230 
231 	if (size)
232 		new = alloc_chunk(size);
233 
234 	spin_lock(&entry->lock);
235 	if (chunk->dead || !entry->inode) {
236 		spin_unlock(&entry->lock);
237 		if (new)
238 			free_chunk(new);
239 		goto out;
240 	}
241 
242 	owner = p->owner;
243 
244 	if (!size) {
245 		chunk->dead = 1;
246 		spin_lock(&hash_lock);
247 		list_del_init(&chunk->trees);
248 		if (owner->root == chunk)
249 			owner->root = NULL;
250 		list_del_init(&p->list);
251 		list_del_rcu(&chunk->hash);
252 		spin_unlock(&hash_lock);
253 		spin_unlock(&entry->lock);
254 		fsnotify_destroy_mark(entry, audit_tree_group);
255 		goto out;
256 	}
257 
258 	if (!new)
259 		goto Fallback;
260 
261 	fsnotify_duplicate_mark(&new->mark, entry);
262 	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
263 		fsnotify_put_mark(&new->mark);
264 		goto Fallback;
265 	}
266 
267 	chunk->dead = 1;
268 	spin_lock(&hash_lock);
269 	list_replace_init(&chunk->trees, &new->trees);
270 	if (owner->root == chunk) {
271 		list_del_init(&owner->same_root);
272 		owner->root = NULL;
273 	}
274 
275 	for (i = j = 0; j <= size; i++, j++) {
276 		struct audit_tree *s;
277 		if (&chunk->owners[j] == p) {
278 			list_del_init(&p->list);
279 			i--;
280 			continue;
281 		}
282 		s = chunk->owners[j].owner;
283 		new->owners[i].owner = s;
284 		new->owners[i].index = chunk->owners[j].index - j + i;
285 		if (!s) /* result of earlier fallback */
286 			continue;
287 		get_tree(s);
288 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 	}
290 
291 	list_replace_rcu(&chunk->hash, &new->hash);
292 	list_for_each_entry(owner, &new->trees, same_root)
293 		owner->root = new;
294 	spin_unlock(&hash_lock);
295 	spin_unlock(&entry->lock);
296 	fsnotify_destroy_mark(entry, audit_tree_group);
297 	fsnotify_put_mark(&new->mark);	/* drop initial reference */
298 	goto out;
299 
300 Fallback:
301 	// do the best we can
302 	spin_lock(&hash_lock);
303 	if (owner->root == chunk) {
304 		list_del_init(&owner->same_root);
305 		owner->root = NULL;
306 	}
307 	list_del_init(&p->list);
308 	p->owner = NULL;
309 	put_tree(owner);
310 	spin_unlock(&hash_lock);
311 	spin_unlock(&entry->lock);
312 out:
313 	fsnotify_put_mark(entry);
314 	spin_lock(&hash_lock);
315 }
316 
317 static int create_chunk(struct inode *inode, struct audit_tree *tree)
318 {
319 	struct fsnotify_mark *entry;
320 	struct audit_chunk *chunk = alloc_chunk(1);
321 	if (!chunk)
322 		return -ENOMEM;
323 
324 	entry = &chunk->mark;
325 	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326 		fsnotify_put_mark(entry);
327 		return -ENOSPC;
328 	}
329 
330 	spin_lock(&entry->lock);
331 	spin_lock(&hash_lock);
332 	if (tree->goner) {
333 		spin_unlock(&hash_lock);
334 		chunk->dead = 1;
335 		spin_unlock(&entry->lock);
336 		fsnotify_destroy_mark(entry, audit_tree_group);
337 		fsnotify_put_mark(entry);
338 		return 0;
339 	}
340 	chunk->owners[0].index = (1U << 31);
341 	chunk->owners[0].owner = tree;
342 	get_tree(tree);
343 	list_add(&chunk->owners[0].list, &tree->chunks);
344 	if (!tree->root) {
345 		tree->root = chunk;
346 		list_add(&tree->same_root, &chunk->trees);
347 	}
348 	insert_hash(chunk);
349 	spin_unlock(&hash_lock);
350 	spin_unlock(&entry->lock);
351 	fsnotify_put_mark(entry);	/* drop initial reference */
352 	return 0;
353 }
354 
355 /* the first tagged inode becomes root of tree */
356 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
357 {
358 	struct fsnotify_mark *old_entry, *chunk_entry;
359 	struct audit_tree *owner;
360 	struct audit_chunk *chunk, *old;
361 	struct node *p;
362 	int n;
363 
364 	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
365 	if (!old_entry)
366 		return create_chunk(inode, tree);
367 
368 	old = container_of(old_entry, struct audit_chunk, mark);
369 
370 	/* are we already there? */
371 	spin_lock(&hash_lock);
372 	for (n = 0; n < old->count; n++) {
373 		if (old->owners[n].owner == tree) {
374 			spin_unlock(&hash_lock);
375 			fsnotify_put_mark(old_entry);
376 			return 0;
377 		}
378 	}
379 	spin_unlock(&hash_lock);
380 
381 	chunk = alloc_chunk(old->count + 1);
382 	if (!chunk) {
383 		fsnotify_put_mark(old_entry);
384 		return -ENOMEM;
385 	}
386 
387 	chunk_entry = &chunk->mark;
388 
389 	spin_lock(&old_entry->lock);
390 	if (!old_entry->inode) {
391 		/* old_entry is being shot, lets just lie */
392 		spin_unlock(&old_entry->lock);
393 		fsnotify_put_mark(old_entry);
394 		free_chunk(chunk);
395 		return -ENOENT;
396 	}
397 
398 	fsnotify_duplicate_mark(chunk_entry, old_entry);
399 	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
400 		spin_unlock(&old_entry->lock);
401 		fsnotify_put_mark(chunk_entry);
402 		fsnotify_put_mark(old_entry);
403 		return -ENOSPC;
404 	}
405 
406 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
407 	spin_lock(&chunk_entry->lock);
408 	spin_lock(&hash_lock);
409 
410 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
411 	if (tree->goner) {
412 		spin_unlock(&hash_lock);
413 		chunk->dead = 1;
414 		spin_unlock(&chunk_entry->lock);
415 		spin_unlock(&old_entry->lock);
416 
417 		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
418 
419 		fsnotify_put_mark(chunk_entry);
420 		fsnotify_put_mark(old_entry);
421 		return 0;
422 	}
423 	list_replace_init(&old->trees, &chunk->trees);
424 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
425 		struct audit_tree *s = old->owners[n].owner;
426 		p->owner = s;
427 		p->index = old->owners[n].index;
428 		if (!s) /* result of fallback in untag */
429 			continue;
430 		get_tree(s);
431 		list_replace_init(&old->owners[n].list, &p->list);
432 	}
433 	p->index = (chunk->count - 1) | (1U<<31);
434 	p->owner = tree;
435 	get_tree(tree);
436 	list_add(&p->list, &tree->chunks);
437 	list_replace_rcu(&old->hash, &chunk->hash);
438 	list_for_each_entry(owner, &chunk->trees, same_root)
439 		owner->root = chunk;
440 	old->dead = 1;
441 	if (!tree->root) {
442 		tree->root = chunk;
443 		list_add(&tree->same_root, &chunk->trees);
444 	}
445 	spin_unlock(&hash_lock);
446 	spin_unlock(&chunk_entry->lock);
447 	spin_unlock(&old_entry->lock);
448 	fsnotify_destroy_mark(old_entry, audit_tree_group);
449 	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
450 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451 	return 0;
452 }
453 
454 static void audit_tree_log_remove_rule(struct audit_krule *rule)
455 {
456 	struct audit_buffer *ab;
457 
458 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
459 	if (unlikely(!ab))
460 		return;
461 	audit_log_format(ab, "op=");
462 	audit_log_string(ab, "remove_rule");
463 	audit_log_format(ab, " dir=");
464 	audit_log_untrustedstring(ab, rule->tree->pathname);
465 	audit_log_key(ab, rule->filterkey);
466 	audit_log_format(ab, " list=%d res=1", rule->listnr);
467 	audit_log_end(ab);
468 }
469 
470 static void kill_rules(struct audit_tree *tree)
471 {
472 	struct audit_krule *rule, *next;
473 	struct audit_entry *entry;
474 
475 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
476 		entry = container_of(rule, struct audit_entry, rule);
477 
478 		list_del_init(&rule->rlist);
479 		if (rule->tree) {
480 			/* not a half-baked one */
481 			audit_tree_log_remove_rule(rule);
482 			rule->tree = NULL;
483 			list_del_rcu(&entry->list);
484 			list_del(&entry->rule.list);
485 			call_rcu(&entry->rcu, audit_free_rule_rcu);
486 		}
487 	}
488 }
489 
490 /*
491  * finish killing struct audit_tree
492  */
493 static void prune_one(struct audit_tree *victim)
494 {
495 	spin_lock(&hash_lock);
496 	while (!list_empty(&victim->chunks)) {
497 		struct node *p;
498 
499 		p = list_entry(victim->chunks.next, struct node, list);
500 
501 		untag_chunk(p);
502 	}
503 	spin_unlock(&hash_lock);
504 	put_tree(victim);
505 }
506 
507 /* trim the uncommitted chunks from tree */
508 
509 static void trim_marked(struct audit_tree *tree)
510 {
511 	struct list_head *p, *q;
512 	spin_lock(&hash_lock);
513 	if (tree->goner) {
514 		spin_unlock(&hash_lock);
515 		return;
516 	}
517 	/* reorder */
518 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
519 		struct node *node = list_entry(p, struct node, list);
520 		q = p->next;
521 		if (node->index & (1U<<31)) {
522 			list_del_init(p);
523 			list_add(p, &tree->chunks);
524 		}
525 	}
526 
527 	while (!list_empty(&tree->chunks)) {
528 		struct node *node;
529 
530 		node = list_entry(tree->chunks.next, struct node, list);
531 
532 		/* have we run out of marked? */
533 		if (!(node->index & (1U<<31)))
534 			break;
535 
536 		untag_chunk(node);
537 	}
538 	if (!tree->root && !tree->goner) {
539 		tree->goner = 1;
540 		spin_unlock(&hash_lock);
541 		mutex_lock(&audit_filter_mutex);
542 		kill_rules(tree);
543 		list_del_init(&tree->list);
544 		mutex_unlock(&audit_filter_mutex);
545 		prune_one(tree);
546 	} else {
547 		spin_unlock(&hash_lock);
548 	}
549 }
550 
551 static void audit_schedule_prune(void);
552 
553 /* called with audit_filter_mutex */
554 int audit_remove_tree_rule(struct audit_krule *rule)
555 {
556 	struct audit_tree *tree;
557 	tree = rule->tree;
558 	if (tree) {
559 		spin_lock(&hash_lock);
560 		list_del_init(&rule->rlist);
561 		if (list_empty(&tree->rules) && !tree->goner) {
562 			tree->root = NULL;
563 			list_del_init(&tree->same_root);
564 			tree->goner = 1;
565 			list_move(&tree->list, &prune_list);
566 			rule->tree = NULL;
567 			spin_unlock(&hash_lock);
568 			audit_schedule_prune();
569 			return 1;
570 		}
571 		rule->tree = NULL;
572 		spin_unlock(&hash_lock);
573 		return 1;
574 	}
575 	return 0;
576 }
577 
578 static int compare_root(struct vfsmount *mnt, void *arg)
579 {
580 	return d_backing_inode(mnt->mnt_root) == arg;
581 }
582 
583 void audit_trim_trees(void)
584 {
585 	struct list_head cursor;
586 
587 	mutex_lock(&audit_filter_mutex);
588 	list_add(&cursor, &tree_list);
589 	while (cursor.next != &tree_list) {
590 		struct audit_tree *tree;
591 		struct path path;
592 		struct vfsmount *root_mnt;
593 		struct node *node;
594 		int err;
595 
596 		tree = container_of(cursor.next, struct audit_tree, list);
597 		get_tree(tree);
598 		list_del(&cursor);
599 		list_add(&cursor, &tree->list);
600 		mutex_unlock(&audit_filter_mutex);
601 
602 		err = kern_path(tree->pathname, 0, &path);
603 		if (err)
604 			goto skip_it;
605 
606 		root_mnt = collect_mounts(&path);
607 		path_put(&path);
608 		if (IS_ERR(root_mnt))
609 			goto skip_it;
610 
611 		spin_lock(&hash_lock);
612 		list_for_each_entry(node, &tree->chunks, list) {
613 			struct audit_chunk *chunk = find_chunk(node);
614 			/* this could be NULL if the watch is dying else where... */
615 			struct inode *inode = chunk->mark.inode;
616 			node->index |= 1U<<31;
617 			if (iterate_mounts(compare_root, inode, root_mnt))
618 				node->index &= ~(1U<<31);
619 		}
620 		spin_unlock(&hash_lock);
621 		trim_marked(tree);
622 		drop_collected_mounts(root_mnt);
623 skip_it:
624 		put_tree(tree);
625 		mutex_lock(&audit_filter_mutex);
626 	}
627 	list_del(&cursor);
628 	mutex_unlock(&audit_filter_mutex);
629 }
630 
631 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
632 {
633 
634 	if (pathname[0] != '/' ||
635 	    rule->listnr != AUDIT_FILTER_EXIT ||
636 	    op != Audit_equal ||
637 	    rule->inode_f || rule->watch || rule->tree)
638 		return -EINVAL;
639 	rule->tree = alloc_tree(pathname);
640 	if (!rule->tree)
641 		return -ENOMEM;
642 	return 0;
643 }
644 
645 void audit_put_tree(struct audit_tree *tree)
646 {
647 	put_tree(tree);
648 }
649 
650 static int tag_mount(struct vfsmount *mnt, void *arg)
651 {
652 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
653 }
654 
655 /*
656  * That gets run when evict_chunk() ends up needing to kill audit_tree.
657  * Runs from a separate thread.
658  */
659 static int prune_tree_thread(void *unused)
660 {
661 	for (;;) {
662 		set_current_state(TASK_INTERRUPTIBLE);
663 		if (list_empty(&prune_list))
664 			schedule();
665 		__set_current_state(TASK_RUNNING);
666 
667 		mutex_lock(&audit_cmd_mutex);
668 		mutex_lock(&audit_filter_mutex);
669 
670 		while (!list_empty(&prune_list)) {
671 			struct audit_tree *victim;
672 
673 			victim = list_entry(prune_list.next,
674 					struct audit_tree, list);
675 			list_del_init(&victim->list);
676 
677 			mutex_unlock(&audit_filter_mutex);
678 
679 			prune_one(victim);
680 
681 			mutex_lock(&audit_filter_mutex);
682 		}
683 
684 		mutex_unlock(&audit_filter_mutex);
685 		mutex_unlock(&audit_cmd_mutex);
686 	}
687 	return 0;
688 }
689 
690 static int audit_launch_prune(void)
691 {
692 	if (prune_thread)
693 		return 0;
694 	prune_thread = kthread_create(prune_tree_thread, NULL,
695 				"audit_prune_tree");
696 	if (IS_ERR(prune_thread)) {
697 		pr_err("cannot start thread audit_prune_tree");
698 		prune_thread = NULL;
699 		return -ENOMEM;
700 	} else {
701 		wake_up_process(prune_thread);
702 		return 0;
703 	}
704 }
705 
706 /* called with audit_filter_mutex */
707 int audit_add_tree_rule(struct audit_krule *rule)
708 {
709 	struct audit_tree *seed = rule->tree, *tree;
710 	struct path path;
711 	struct vfsmount *mnt;
712 	int err;
713 
714 	rule->tree = NULL;
715 	list_for_each_entry(tree, &tree_list, list) {
716 		if (!strcmp(seed->pathname, tree->pathname)) {
717 			put_tree(seed);
718 			rule->tree = tree;
719 			list_add(&rule->rlist, &tree->rules);
720 			return 0;
721 		}
722 	}
723 	tree = seed;
724 	list_add(&tree->list, &tree_list);
725 	list_add(&rule->rlist, &tree->rules);
726 	/* do not set rule->tree yet */
727 	mutex_unlock(&audit_filter_mutex);
728 
729 	if (unlikely(!prune_thread)) {
730 		err = audit_launch_prune();
731 		if (err)
732 			goto Err;
733 	}
734 
735 	err = kern_path(tree->pathname, 0, &path);
736 	if (err)
737 		goto Err;
738 	mnt = collect_mounts(&path);
739 	path_put(&path);
740 	if (IS_ERR(mnt)) {
741 		err = PTR_ERR(mnt);
742 		goto Err;
743 	}
744 
745 	get_tree(tree);
746 	err = iterate_mounts(tag_mount, tree, mnt);
747 	drop_collected_mounts(mnt);
748 
749 	if (!err) {
750 		struct node *node;
751 		spin_lock(&hash_lock);
752 		list_for_each_entry(node, &tree->chunks, list)
753 			node->index &= ~(1U<<31);
754 		spin_unlock(&hash_lock);
755 	} else {
756 		trim_marked(tree);
757 		goto Err;
758 	}
759 
760 	mutex_lock(&audit_filter_mutex);
761 	if (list_empty(&rule->rlist)) {
762 		put_tree(tree);
763 		return -ENOENT;
764 	}
765 	rule->tree = tree;
766 	put_tree(tree);
767 
768 	return 0;
769 Err:
770 	mutex_lock(&audit_filter_mutex);
771 	list_del_init(&tree->list);
772 	list_del_init(&tree->rules);
773 	put_tree(tree);
774 	return err;
775 }
776 
777 int audit_tag_tree(char *old, char *new)
778 {
779 	struct list_head cursor, barrier;
780 	int failed = 0;
781 	struct path path1, path2;
782 	struct vfsmount *tagged;
783 	int err;
784 
785 	err = kern_path(new, 0, &path2);
786 	if (err)
787 		return err;
788 	tagged = collect_mounts(&path2);
789 	path_put(&path2);
790 	if (IS_ERR(tagged))
791 		return PTR_ERR(tagged);
792 
793 	err = kern_path(old, 0, &path1);
794 	if (err) {
795 		drop_collected_mounts(tagged);
796 		return err;
797 	}
798 
799 	mutex_lock(&audit_filter_mutex);
800 	list_add(&barrier, &tree_list);
801 	list_add(&cursor, &barrier);
802 
803 	while (cursor.next != &tree_list) {
804 		struct audit_tree *tree;
805 		int good_one = 0;
806 
807 		tree = container_of(cursor.next, struct audit_tree, list);
808 		get_tree(tree);
809 		list_del(&cursor);
810 		list_add(&cursor, &tree->list);
811 		mutex_unlock(&audit_filter_mutex);
812 
813 		err = kern_path(tree->pathname, 0, &path2);
814 		if (!err) {
815 			good_one = path_is_under(&path1, &path2);
816 			path_put(&path2);
817 		}
818 
819 		if (!good_one) {
820 			put_tree(tree);
821 			mutex_lock(&audit_filter_mutex);
822 			continue;
823 		}
824 
825 		failed = iterate_mounts(tag_mount, tree, tagged);
826 		if (failed) {
827 			put_tree(tree);
828 			mutex_lock(&audit_filter_mutex);
829 			break;
830 		}
831 
832 		mutex_lock(&audit_filter_mutex);
833 		spin_lock(&hash_lock);
834 		if (!tree->goner) {
835 			list_del(&tree->list);
836 			list_add(&tree->list, &tree_list);
837 		}
838 		spin_unlock(&hash_lock);
839 		put_tree(tree);
840 	}
841 
842 	while (barrier.prev != &tree_list) {
843 		struct audit_tree *tree;
844 
845 		tree = container_of(barrier.prev, struct audit_tree, list);
846 		get_tree(tree);
847 		list_del(&tree->list);
848 		list_add(&tree->list, &barrier);
849 		mutex_unlock(&audit_filter_mutex);
850 
851 		if (!failed) {
852 			struct node *node;
853 			spin_lock(&hash_lock);
854 			list_for_each_entry(node, &tree->chunks, list)
855 				node->index &= ~(1U<<31);
856 			spin_unlock(&hash_lock);
857 		} else {
858 			trim_marked(tree);
859 		}
860 
861 		put_tree(tree);
862 		mutex_lock(&audit_filter_mutex);
863 	}
864 	list_del(&barrier);
865 	list_del(&cursor);
866 	mutex_unlock(&audit_filter_mutex);
867 	path_put(&path1);
868 	drop_collected_mounts(tagged);
869 	return failed;
870 }
871 
872 
873 static void audit_schedule_prune(void)
874 {
875 	wake_up_process(prune_thread);
876 }
877 
878 /*
879  * ... and that one is done if evict_chunk() decides to delay until the end
880  * of syscall.  Runs synchronously.
881  */
882 void audit_kill_trees(struct list_head *list)
883 {
884 	mutex_lock(&audit_cmd_mutex);
885 	mutex_lock(&audit_filter_mutex);
886 
887 	while (!list_empty(list)) {
888 		struct audit_tree *victim;
889 
890 		victim = list_entry(list->next, struct audit_tree, list);
891 		kill_rules(victim);
892 		list_del_init(&victim->list);
893 
894 		mutex_unlock(&audit_filter_mutex);
895 
896 		prune_one(victim);
897 
898 		mutex_lock(&audit_filter_mutex);
899 	}
900 
901 	mutex_unlock(&audit_filter_mutex);
902 	mutex_unlock(&audit_cmd_mutex);
903 }
904 
905 /*
906  *  Here comes the stuff asynchronous to auditctl operations
907  */
908 
909 static void evict_chunk(struct audit_chunk *chunk)
910 {
911 	struct audit_tree *owner;
912 	struct list_head *postponed = audit_killed_trees();
913 	int need_prune = 0;
914 	int n;
915 
916 	if (chunk->dead)
917 		return;
918 
919 	chunk->dead = 1;
920 	mutex_lock(&audit_filter_mutex);
921 	spin_lock(&hash_lock);
922 	while (!list_empty(&chunk->trees)) {
923 		owner = list_entry(chunk->trees.next,
924 				   struct audit_tree, same_root);
925 		owner->goner = 1;
926 		owner->root = NULL;
927 		list_del_init(&owner->same_root);
928 		spin_unlock(&hash_lock);
929 		if (!postponed) {
930 			kill_rules(owner);
931 			list_move(&owner->list, &prune_list);
932 			need_prune = 1;
933 		} else {
934 			list_move(&owner->list, postponed);
935 		}
936 		spin_lock(&hash_lock);
937 	}
938 	list_del_rcu(&chunk->hash);
939 	for (n = 0; n < chunk->count; n++)
940 		list_del_init(&chunk->owners[n].list);
941 	spin_unlock(&hash_lock);
942 	mutex_unlock(&audit_filter_mutex);
943 	if (need_prune)
944 		audit_schedule_prune();
945 }
946 
947 static int audit_tree_handle_event(struct fsnotify_group *group,
948 				   struct inode *to_tell,
949 				   struct fsnotify_mark *inode_mark,
950 				   struct fsnotify_mark *vfsmount_mark,
951 				   u32 mask, void *data, int data_type,
952 				   const unsigned char *file_name, u32 cookie)
953 {
954 	return 0;
955 }
956 
957 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
958 {
959 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
960 
961 	evict_chunk(chunk);
962 
963 	/*
964 	 * We are guaranteed to have at least one reference to the mark from
965 	 * either the inode or the caller of fsnotify_destroy_mark().
966 	 */
967 	BUG_ON(atomic_read(&entry->refcnt) < 1);
968 }
969 
970 static const struct fsnotify_ops audit_tree_ops = {
971 	.handle_event = audit_tree_handle_event,
972 	.freeing_mark = audit_tree_freeing_mark,
973 };
974 
975 static int __init audit_tree_init(void)
976 {
977 	int i;
978 
979 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
980 	if (IS_ERR(audit_tree_group))
981 		audit_panic("cannot initialize fsnotify group for rectree watches");
982 
983 	for (i = 0; i < HASH_SIZE; i++)
984 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
985 
986 	return 0;
987 }
988 __initcall(audit_tree_init);
989