1 #include "audit.h" 2 #include <linux/inotify.h> 3 #include <linux/namei.h> 4 #include <linux/mount.h> 5 6 struct audit_tree; 7 struct audit_chunk; 8 9 struct audit_tree { 10 atomic_t count; 11 int goner; 12 struct audit_chunk *root; 13 struct list_head chunks; 14 struct list_head rules; 15 struct list_head list; 16 struct list_head same_root; 17 struct rcu_head head; 18 char pathname[]; 19 }; 20 21 struct audit_chunk { 22 struct list_head hash; 23 struct inotify_watch watch; 24 struct list_head trees; /* with root here */ 25 int dead; 26 int count; 27 atomic_long_t refs; 28 struct rcu_head head; 29 struct node { 30 struct list_head list; 31 struct audit_tree *owner; 32 unsigned index; /* index; upper bit indicates 'will prune' */ 33 } owners[]; 34 }; 35 36 static LIST_HEAD(tree_list); 37 static LIST_HEAD(prune_list); 38 39 /* 40 * One struct chunk is attached to each inode of interest. 41 * We replace struct chunk on tagging/untagging. 42 * Rules have pointer to struct audit_tree. 43 * Rules have struct list_head rlist forming a list of rules over 44 * the same tree. 45 * References to struct chunk are collected at audit_inode{,_child}() 46 * time and used in AUDIT_TREE rule matching. 47 * These references are dropped at the same time we are calling 48 * audit_free_names(), etc. 49 * 50 * Cyclic lists galore: 51 * tree.chunks anchors chunk.owners[].list hash_lock 52 * tree.rules anchors rule.rlist audit_filter_mutex 53 * chunk.trees anchors tree.same_root hash_lock 54 * chunk.hash is a hash with middle bits of watch.inode as 55 * a hash function. RCU, hash_lock 56 * 57 * tree is refcounted; one reference for "some rules on rules_list refer to 58 * it", one for each chunk with pointer to it. 59 * 60 * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount 61 * of watch contributes 1 to .refs). 62 * 63 * node.index allows to get from node.list to containing chunk. 64 * MSB of that sucker is stolen to mark taggings that we might have to 65 * revert - several operations have very unpleasant cleanup logics and 66 * that makes a difference. Some. 67 */ 68 69 static struct inotify_handle *rtree_ih; 70 71 static struct audit_tree *alloc_tree(const char *s) 72 { 73 struct audit_tree *tree; 74 75 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); 76 if (tree) { 77 atomic_set(&tree->count, 1); 78 tree->goner = 0; 79 INIT_LIST_HEAD(&tree->chunks); 80 INIT_LIST_HEAD(&tree->rules); 81 INIT_LIST_HEAD(&tree->list); 82 INIT_LIST_HEAD(&tree->same_root); 83 tree->root = NULL; 84 strcpy(tree->pathname, s); 85 } 86 return tree; 87 } 88 89 static inline void get_tree(struct audit_tree *tree) 90 { 91 atomic_inc(&tree->count); 92 } 93 94 static void __put_tree(struct rcu_head *rcu) 95 { 96 struct audit_tree *tree = container_of(rcu, struct audit_tree, head); 97 kfree(tree); 98 } 99 100 static inline void put_tree(struct audit_tree *tree) 101 { 102 if (atomic_dec_and_test(&tree->count)) 103 call_rcu(&tree->head, __put_tree); 104 } 105 106 /* to avoid bringing the entire thing in audit.h */ 107 const char *audit_tree_path(struct audit_tree *tree) 108 { 109 return tree->pathname; 110 } 111 112 static struct audit_chunk *alloc_chunk(int count) 113 { 114 struct audit_chunk *chunk; 115 size_t size; 116 int i; 117 118 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); 119 chunk = kzalloc(size, GFP_KERNEL); 120 if (!chunk) 121 return NULL; 122 123 INIT_LIST_HEAD(&chunk->hash); 124 INIT_LIST_HEAD(&chunk->trees); 125 chunk->count = count; 126 atomic_long_set(&chunk->refs, 1); 127 for (i = 0; i < count; i++) { 128 INIT_LIST_HEAD(&chunk->owners[i].list); 129 chunk->owners[i].index = i; 130 } 131 inotify_init_watch(&chunk->watch); 132 return chunk; 133 } 134 135 static void free_chunk(struct audit_chunk *chunk) 136 { 137 int i; 138 139 for (i = 0; i < chunk->count; i++) { 140 if (chunk->owners[i].owner) 141 put_tree(chunk->owners[i].owner); 142 } 143 kfree(chunk); 144 } 145 146 void audit_put_chunk(struct audit_chunk *chunk) 147 { 148 if (atomic_long_dec_and_test(&chunk->refs)) 149 free_chunk(chunk); 150 } 151 152 static void __put_chunk(struct rcu_head *rcu) 153 { 154 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); 155 audit_put_chunk(chunk); 156 } 157 158 enum {HASH_SIZE = 128}; 159 static struct list_head chunk_hash_heads[HASH_SIZE]; 160 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); 161 162 static inline struct list_head *chunk_hash(const struct inode *inode) 163 { 164 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES; 165 return chunk_hash_heads + n % HASH_SIZE; 166 } 167 168 /* hash_lock is held by caller */ 169 static void insert_hash(struct audit_chunk *chunk) 170 { 171 struct list_head *list = chunk_hash(chunk->watch.inode); 172 list_add_rcu(&chunk->hash, list); 173 } 174 175 /* called under rcu_read_lock */ 176 struct audit_chunk *audit_tree_lookup(const struct inode *inode) 177 { 178 struct list_head *list = chunk_hash(inode); 179 struct audit_chunk *p; 180 181 list_for_each_entry_rcu(p, list, hash) { 182 if (p->watch.inode == inode) { 183 atomic_long_inc(&p->refs); 184 return p; 185 } 186 } 187 return NULL; 188 } 189 190 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) 191 { 192 int n; 193 for (n = 0; n < chunk->count; n++) 194 if (chunk->owners[n].owner == tree) 195 return 1; 196 return 0; 197 } 198 199 /* tagging and untagging inodes with trees */ 200 201 static struct audit_chunk *find_chunk(struct node *p) 202 { 203 int index = p->index & ~(1U<<31); 204 p -= index; 205 return container_of(p, struct audit_chunk, owners[0]); 206 } 207 208 static void untag_chunk(struct node *p) 209 { 210 struct audit_chunk *chunk = find_chunk(p); 211 struct audit_chunk *new; 212 struct audit_tree *owner; 213 int size = chunk->count - 1; 214 int i, j; 215 216 if (!pin_inotify_watch(&chunk->watch)) { 217 /* 218 * Filesystem is shutting down; all watches are getting 219 * evicted, just take it off the node list for this 220 * tree and let the eviction logics take care of the 221 * rest. 222 */ 223 owner = p->owner; 224 if (owner->root == chunk) { 225 list_del_init(&owner->same_root); 226 owner->root = NULL; 227 } 228 list_del_init(&p->list); 229 p->owner = NULL; 230 put_tree(owner); 231 return; 232 } 233 234 spin_unlock(&hash_lock); 235 236 /* 237 * pin_inotify_watch() succeeded, so the watch won't go away 238 * from under us. 239 */ 240 mutex_lock(&chunk->watch.inode->inotify_mutex); 241 if (chunk->dead) { 242 mutex_unlock(&chunk->watch.inode->inotify_mutex); 243 goto out; 244 } 245 246 owner = p->owner; 247 248 if (!size) { 249 chunk->dead = 1; 250 spin_lock(&hash_lock); 251 list_del_init(&chunk->trees); 252 if (owner->root == chunk) 253 owner->root = NULL; 254 list_del_init(&p->list); 255 list_del_rcu(&chunk->hash); 256 spin_unlock(&hash_lock); 257 inotify_evict_watch(&chunk->watch); 258 mutex_unlock(&chunk->watch.inode->inotify_mutex); 259 put_inotify_watch(&chunk->watch); 260 goto out; 261 } 262 263 new = alloc_chunk(size); 264 if (!new) 265 goto Fallback; 266 if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) { 267 free_chunk(new); 268 goto Fallback; 269 } 270 271 chunk->dead = 1; 272 spin_lock(&hash_lock); 273 list_replace_init(&chunk->trees, &new->trees); 274 if (owner->root == chunk) { 275 list_del_init(&owner->same_root); 276 owner->root = NULL; 277 } 278 279 for (i = j = 0; i < size; i++, j++) { 280 struct audit_tree *s; 281 if (&chunk->owners[j] == p) { 282 list_del_init(&p->list); 283 i--; 284 continue; 285 } 286 s = chunk->owners[j].owner; 287 new->owners[i].owner = s; 288 new->owners[i].index = chunk->owners[j].index - j + i; 289 if (!s) /* result of earlier fallback */ 290 continue; 291 get_tree(s); 292 list_replace_init(&chunk->owners[i].list, &new->owners[j].list); 293 } 294 295 list_replace_rcu(&chunk->hash, &new->hash); 296 list_for_each_entry(owner, &new->trees, same_root) 297 owner->root = new; 298 spin_unlock(&hash_lock); 299 inotify_evict_watch(&chunk->watch); 300 mutex_unlock(&chunk->watch.inode->inotify_mutex); 301 put_inotify_watch(&chunk->watch); 302 goto out; 303 304 Fallback: 305 // do the best we can 306 spin_lock(&hash_lock); 307 if (owner->root == chunk) { 308 list_del_init(&owner->same_root); 309 owner->root = NULL; 310 } 311 list_del_init(&p->list); 312 p->owner = NULL; 313 put_tree(owner); 314 spin_unlock(&hash_lock); 315 mutex_unlock(&chunk->watch.inode->inotify_mutex); 316 out: 317 unpin_inotify_watch(&chunk->watch); 318 spin_lock(&hash_lock); 319 } 320 321 static int create_chunk(struct inode *inode, struct audit_tree *tree) 322 { 323 struct audit_chunk *chunk = alloc_chunk(1); 324 if (!chunk) 325 return -ENOMEM; 326 327 if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) { 328 free_chunk(chunk); 329 return -ENOSPC; 330 } 331 332 mutex_lock(&inode->inotify_mutex); 333 spin_lock(&hash_lock); 334 if (tree->goner) { 335 spin_unlock(&hash_lock); 336 chunk->dead = 1; 337 inotify_evict_watch(&chunk->watch); 338 mutex_unlock(&inode->inotify_mutex); 339 put_inotify_watch(&chunk->watch); 340 return 0; 341 } 342 chunk->owners[0].index = (1U << 31); 343 chunk->owners[0].owner = tree; 344 get_tree(tree); 345 list_add(&chunk->owners[0].list, &tree->chunks); 346 if (!tree->root) { 347 tree->root = chunk; 348 list_add(&tree->same_root, &chunk->trees); 349 } 350 insert_hash(chunk); 351 spin_unlock(&hash_lock); 352 mutex_unlock(&inode->inotify_mutex); 353 return 0; 354 } 355 356 /* the first tagged inode becomes root of tree */ 357 static int tag_chunk(struct inode *inode, struct audit_tree *tree) 358 { 359 struct inotify_watch *watch; 360 struct audit_tree *owner; 361 struct audit_chunk *chunk, *old; 362 struct node *p; 363 int n; 364 365 if (inotify_find_watch(rtree_ih, inode, &watch) < 0) 366 return create_chunk(inode, tree); 367 368 old = container_of(watch, struct audit_chunk, watch); 369 370 /* are we already there? */ 371 spin_lock(&hash_lock); 372 for (n = 0; n < old->count; n++) { 373 if (old->owners[n].owner == tree) { 374 spin_unlock(&hash_lock); 375 put_inotify_watch(watch); 376 return 0; 377 } 378 } 379 spin_unlock(&hash_lock); 380 381 chunk = alloc_chunk(old->count + 1); 382 if (!chunk) 383 return -ENOMEM; 384 385 mutex_lock(&inode->inotify_mutex); 386 if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) { 387 mutex_unlock(&inode->inotify_mutex); 388 put_inotify_watch(&old->watch); 389 free_chunk(chunk); 390 return -ENOSPC; 391 } 392 spin_lock(&hash_lock); 393 if (tree->goner) { 394 spin_unlock(&hash_lock); 395 chunk->dead = 1; 396 inotify_evict_watch(&chunk->watch); 397 mutex_unlock(&inode->inotify_mutex); 398 put_inotify_watch(&old->watch); 399 put_inotify_watch(&chunk->watch); 400 return 0; 401 } 402 list_replace_init(&old->trees, &chunk->trees); 403 for (n = 0, p = chunk->owners; n < old->count; n++, p++) { 404 struct audit_tree *s = old->owners[n].owner; 405 p->owner = s; 406 p->index = old->owners[n].index; 407 if (!s) /* result of fallback in untag */ 408 continue; 409 get_tree(s); 410 list_replace_init(&old->owners[n].list, &p->list); 411 } 412 p->index = (chunk->count - 1) | (1U<<31); 413 p->owner = tree; 414 get_tree(tree); 415 list_add(&p->list, &tree->chunks); 416 list_replace_rcu(&old->hash, &chunk->hash); 417 list_for_each_entry(owner, &chunk->trees, same_root) 418 owner->root = chunk; 419 old->dead = 1; 420 if (!tree->root) { 421 tree->root = chunk; 422 list_add(&tree->same_root, &chunk->trees); 423 } 424 spin_unlock(&hash_lock); 425 inotify_evict_watch(&old->watch); 426 mutex_unlock(&inode->inotify_mutex); 427 put_inotify_watch(&old->watch); 428 return 0; 429 } 430 431 static void kill_rules(struct audit_tree *tree) 432 { 433 struct audit_krule *rule, *next; 434 struct audit_entry *entry; 435 struct audit_buffer *ab; 436 437 list_for_each_entry_safe(rule, next, &tree->rules, rlist) { 438 entry = container_of(rule, struct audit_entry, rule); 439 440 list_del_init(&rule->rlist); 441 if (rule->tree) { 442 /* not a half-baked one */ 443 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 444 audit_log_format(ab, "op=remove rule dir="); 445 audit_log_untrustedstring(ab, rule->tree->pathname); 446 if (rule->filterkey) { 447 audit_log_format(ab, " key="); 448 audit_log_untrustedstring(ab, rule->filterkey); 449 } else 450 audit_log_format(ab, " key=(null)"); 451 audit_log_format(ab, " list=%d res=1", rule->listnr); 452 audit_log_end(ab); 453 rule->tree = NULL; 454 list_del_rcu(&entry->list); 455 list_del(&entry->rule.list); 456 call_rcu(&entry->rcu, audit_free_rule_rcu); 457 } 458 } 459 } 460 461 /* 462 * finish killing struct audit_tree 463 */ 464 static void prune_one(struct audit_tree *victim) 465 { 466 spin_lock(&hash_lock); 467 while (!list_empty(&victim->chunks)) { 468 struct node *p; 469 470 p = list_entry(victim->chunks.next, struct node, list); 471 472 untag_chunk(p); 473 } 474 spin_unlock(&hash_lock); 475 put_tree(victim); 476 } 477 478 /* trim the uncommitted chunks from tree */ 479 480 static void trim_marked(struct audit_tree *tree) 481 { 482 struct list_head *p, *q; 483 spin_lock(&hash_lock); 484 if (tree->goner) { 485 spin_unlock(&hash_lock); 486 return; 487 } 488 /* reorder */ 489 for (p = tree->chunks.next; p != &tree->chunks; p = q) { 490 struct node *node = list_entry(p, struct node, list); 491 q = p->next; 492 if (node->index & (1U<<31)) { 493 list_del_init(p); 494 list_add(p, &tree->chunks); 495 } 496 } 497 498 while (!list_empty(&tree->chunks)) { 499 struct node *node; 500 501 node = list_entry(tree->chunks.next, struct node, list); 502 503 /* have we run out of marked? */ 504 if (!(node->index & (1U<<31))) 505 break; 506 507 untag_chunk(node); 508 } 509 if (!tree->root && !tree->goner) { 510 tree->goner = 1; 511 spin_unlock(&hash_lock); 512 mutex_lock(&audit_filter_mutex); 513 kill_rules(tree); 514 list_del_init(&tree->list); 515 mutex_unlock(&audit_filter_mutex); 516 prune_one(tree); 517 } else { 518 spin_unlock(&hash_lock); 519 } 520 } 521 522 /* called with audit_filter_mutex */ 523 int audit_remove_tree_rule(struct audit_krule *rule) 524 { 525 struct audit_tree *tree; 526 tree = rule->tree; 527 if (tree) { 528 spin_lock(&hash_lock); 529 list_del_init(&rule->rlist); 530 if (list_empty(&tree->rules) && !tree->goner) { 531 tree->root = NULL; 532 list_del_init(&tree->same_root); 533 tree->goner = 1; 534 list_move(&tree->list, &prune_list); 535 rule->tree = NULL; 536 spin_unlock(&hash_lock); 537 audit_schedule_prune(); 538 return 1; 539 } 540 rule->tree = NULL; 541 spin_unlock(&hash_lock); 542 return 1; 543 } 544 return 0; 545 } 546 547 void audit_trim_trees(void) 548 { 549 struct list_head cursor; 550 551 mutex_lock(&audit_filter_mutex); 552 list_add(&cursor, &tree_list); 553 while (cursor.next != &tree_list) { 554 struct audit_tree *tree; 555 struct path path; 556 struct vfsmount *root_mnt; 557 struct node *node; 558 struct list_head list; 559 int err; 560 561 tree = container_of(cursor.next, struct audit_tree, list); 562 get_tree(tree); 563 list_del(&cursor); 564 list_add(&cursor, &tree->list); 565 mutex_unlock(&audit_filter_mutex); 566 567 err = kern_path(tree->pathname, 0, &path); 568 if (err) 569 goto skip_it; 570 571 root_mnt = collect_mounts(path.mnt, path.dentry); 572 path_put(&path); 573 if (!root_mnt) 574 goto skip_it; 575 576 list_add_tail(&list, &root_mnt->mnt_list); 577 spin_lock(&hash_lock); 578 list_for_each_entry(node, &tree->chunks, list) { 579 struct audit_chunk *chunk = find_chunk(node); 580 struct inode *inode = chunk->watch.inode; 581 struct vfsmount *mnt; 582 node->index |= 1U<<31; 583 list_for_each_entry(mnt, &list, mnt_list) { 584 if (mnt->mnt_root->d_inode == inode) { 585 node->index &= ~(1U<<31); 586 break; 587 } 588 } 589 } 590 spin_unlock(&hash_lock); 591 trim_marked(tree); 592 put_tree(tree); 593 list_del_init(&list); 594 drop_collected_mounts(root_mnt); 595 skip_it: 596 mutex_lock(&audit_filter_mutex); 597 } 598 list_del(&cursor); 599 mutex_unlock(&audit_filter_mutex); 600 } 601 602 static int is_under(struct vfsmount *mnt, struct dentry *dentry, 603 struct path *path) 604 { 605 if (mnt != path->mnt) { 606 for (;;) { 607 if (mnt->mnt_parent == mnt) 608 return 0; 609 if (mnt->mnt_parent == path->mnt) 610 break; 611 mnt = mnt->mnt_parent; 612 } 613 dentry = mnt->mnt_mountpoint; 614 } 615 return is_subdir(dentry, path->dentry); 616 } 617 618 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) 619 { 620 621 if (pathname[0] != '/' || 622 rule->listnr != AUDIT_FILTER_EXIT || 623 op != Audit_equal || 624 rule->inode_f || rule->watch || rule->tree) 625 return -EINVAL; 626 rule->tree = alloc_tree(pathname); 627 if (!rule->tree) 628 return -ENOMEM; 629 return 0; 630 } 631 632 void audit_put_tree(struct audit_tree *tree) 633 { 634 put_tree(tree); 635 } 636 637 /* called with audit_filter_mutex */ 638 int audit_add_tree_rule(struct audit_krule *rule) 639 { 640 struct audit_tree *seed = rule->tree, *tree; 641 struct path path; 642 struct vfsmount *mnt, *p; 643 struct list_head list; 644 int err; 645 646 list_for_each_entry(tree, &tree_list, list) { 647 if (!strcmp(seed->pathname, tree->pathname)) { 648 put_tree(seed); 649 rule->tree = tree; 650 list_add(&rule->rlist, &tree->rules); 651 return 0; 652 } 653 } 654 tree = seed; 655 list_add(&tree->list, &tree_list); 656 list_add(&rule->rlist, &tree->rules); 657 /* do not set rule->tree yet */ 658 mutex_unlock(&audit_filter_mutex); 659 660 err = kern_path(tree->pathname, 0, &path); 661 if (err) 662 goto Err; 663 mnt = collect_mounts(path.mnt, path.dentry); 664 path_put(&path); 665 if (!mnt) { 666 err = -ENOMEM; 667 goto Err; 668 } 669 list_add_tail(&list, &mnt->mnt_list); 670 671 get_tree(tree); 672 list_for_each_entry(p, &list, mnt_list) { 673 err = tag_chunk(p->mnt_root->d_inode, tree); 674 if (err) 675 break; 676 } 677 678 list_del(&list); 679 drop_collected_mounts(mnt); 680 681 if (!err) { 682 struct node *node; 683 spin_lock(&hash_lock); 684 list_for_each_entry(node, &tree->chunks, list) 685 node->index &= ~(1U<<31); 686 spin_unlock(&hash_lock); 687 } else { 688 trim_marked(tree); 689 goto Err; 690 } 691 692 mutex_lock(&audit_filter_mutex); 693 if (list_empty(&rule->rlist)) { 694 put_tree(tree); 695 return -ENOENT; 696 } 697 rule->tree = tree; 698 put_tree(tree); 699 700 return 0; 701 Err: 702 mutex_lock(&audit_filter_mutex); 703 list_del_init(&tree->list); 704 list_del_init(&tree->rules); 705 put_tree(tree); 706 return err; 707 } 708 709 int audit_tag_tree(char *old, char *new) 710 { 711 struct list_head cursor, barrier; 712 int failed = 0; 713 struct path path; 714 struct vfsmount *tagged; 715 struct list_head list; 716 struct vfsmount *mnt; 717 struct dentry *dentry; 718 int err; 719 720 err = kern_path(new, 0, &path); 721 if (err) 722 return err; 723 tagged = collect_mounts(path.mnt, path.dentry); 724 path_put(&path); 725 if (!tagged) 726 return -ENOMEM; 727 728 err = kern_path(old, 0, &path); 729 if (err) { 730 drop_collected_mounts(tagged); 731 return err; 732 } 733 mnt = mntget(path.mnt); 734 dentry = dget(path.dentry); 735 path_put(&path); 736 737 if (dentry == tagged->mnt_root && dentry == mnt->mnt_root) 738 follow_up(&mnt, &dentry); 739 740 list_add_tail(&list, &tagged->mnt_list); 741 742 mutex_lock(&audit_filter_mutex); 743 list_add(&barrier, &tree_list); 744 list_add(&cursor, &barrier); 745 746 while (cursor.next != &tree_list) { 747 struct audit_tree *tree; 748 struct vfsmount *p; 749 750 tree = container_of(cursor.next, struct audit_tree, list); 751 get_tree(tree); 752 list_del(&cursor); 753 list_add(&cursor, &tree->list); 754 mutex_unlock(&audit_filter_mutex); 755 756 err = kern_path(tree->pathname, 0, &path); 757 if (err) { 758 put_tree(tree); 759 mutex_lock(&audit_filter_mutex); 760 continue; 761 } 762 763 spin_lock(&vfsmount_lock); 764 if (!is_under(mnt, dentry, &path)) { 765 spin_unlock(&vfsmount_lock); 766 path_put(&path); 767 put_tree(tree); 768 mutex_lock(&audit_filter_mutex); 769 continue; 770 } 771 spin_unlock(&vfsmount_lock); 772 path_put(&path); 773 774 list_for_each_entry(p, &list, mnt_list) { 775 failed = tag_chunk(p->mnt_root->d_inode, tree); 776 if (failed) 777 break; 778 } 779 780 if (failed) { 781 put_tree(tree); 782 mutex_lock(&audit_filter_mutex); 783 break; 784 } 785 786 mutex_lock(&audit_filter_mutex); 787 spin_lock(&hash_lock); 788 if (!tree->goner) { 789 list_del(&tree->list); 790 list_add(&tree->list, &tree_list); 791 } 792 spin_unlock(&hash_lock); 793 put_tree(tree); 794 } 795 796 while (barrier.prev != &tree_list) { 797 struct audit_tree *tree; 798 799 tree = container_of(barrier.prev, struct audit_tree, list); 800 get_tree(tree); 801 list_del(&tree->list); 802 list_add(&tree->list, &barrier); 803 mutex_unlock(&audit_filter_mutex); 804 805 if (!failed) { 806 struct node *node; 807 spin_lock(&hash_lock); 808 list_for_each_entry(node, &tree->chunks, list) 809 node->index &= ~(1U<<31); 810 spin_unlock(&hash_lock); 811 } else { 812 trim_marked(tree); 813 } 814 815 put_tree(tree); 816 mutex_lock(&audit_filter_mutex); 817 } 818 list_del(&barrier); 819 list_del(&cursor); 820 list_del(&list); 821 mutex_unlock(&audit_filter_mutex); 822 dput(dentry); 823 mntput(mnt); 824 drop_collected_mounts(tagged); 825 return failed; 826 } 827 828 /* 829 * That gets run when evict_chunk() ends up needing to kill audit_tree. 830 * Runs from a separate thread, with audit_cmd_mutex held. 831 */ 832 void audit_prune_trees(void) 833 { 834 mutex_lock(&audit_filter_mutex); 835 836 while (!list_empty(&prune_list)) { 837 struct audit_tree *victim; 838 839 victim = list_entry(prune_list.next, struct audit_tree, list); 840 list_del_init(&victim->list); 841 842 mutex_unlock(&audit_filter_mutex); 843 844 prune_one(victim); 845 846 mutex_lock(&audit_filter_mutex); 847 } 848 849 mutex_unlock(&audit_filter_mutex); 850 } 851 852 /* 853 * Here comes the stuff asynchronous to auditctl operations 854 */ 855 856 /* inode->inotify_mutex is locked */ 857 static void evict_chunk(struct audit_chunk *chunk) 858 { 859 struct audit_tree *owner; 860 int n; 861 862 if (chunk->dead) 863 return; 864 865 chunk->dead = 1; 866 mutex_lock(&audit_filter_mutex); 867 spin_lock(&hash_lock); 868 while (!list_empty(&chunk->trees)) { 869 owner = list_entry(chunk->trees.next, 870 struct audit_tree, same_root); 871 owner->goner = 1; 872 owner->root = NULL; 873 list_del_init(&owner->same_root); 874 spin_unlock(&hash_lock); 875 kill_rules(owner); 876 list_move(&owner->list, &prune_list); 877 audit_schedule_prune(); 878 spin_lock(&hash_lock); 879 } 880 list_del_rcu(&chunk->hash); 881 for (n = 0; n < chunk->count; n++) 882 list_del_init(&chunk->owners[n].list); 883 spin_unlock(&hash_lock); 884 mutex_unlock(&audit_filter_mutex); 885 } 886 887 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask, 888 u32 cookie, const char *dname, struct inode *inode) 889 { 890 struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch); 891 892 if (mask & IN_IGNORED) { 893 evict_chunk(chunk); 894 put_inotify_watch(watch); 895 } 896 } 897 898 static void destroy_watch(struct inotify_watch *watch) 899 { 900 struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch); 901 call_rcu(&chunk->head, __put_chunk); 902 } 903 904 static const struct inotify_operations rtree_inotify_ops = { 905 .handle_event = handle_event, 906 .destroy_watch = destroy_watch, 907 }; 908 909 static int __init audit_tree_init(void) 910 { 911 int i; 912 913 rtree_ih = inotify_init(&rtree_inotify_ops); 914 if (IS_ERR(rtree_ih)) 915 audit_panic("cannot initialize inotify handle for rectree watches"); 916 917 for (i = 0; i < HASH_SIZE; i++) 918 INIT_LIST_HEAD(&chunk_hash_heads[i]); 919 920 return 0; 921 } 922 __initcall(audit_tree_init); 923