xref: /openbmc/linux/kernel/audit_tree.c (revision a17922de)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9 
10 struct audit_tree;
11 struct audit_chunk;
12 
13 struct audit_tree {
14 	refcount_t count;
15 	int goner;
16 	struct audit_chunk *root;
17 	struct list_head chunks;
18 	struct list_head rules;
19 	struct list_head list;
20 	struct list_head same_root;
21 	struct rcu_head head;
22 	char pathname[];
23 };
24 
25 struct audit_chunk {
26 	struct list_head hash;
27 	struct fsnotify_mark mark;
28 	struct list_head trees;		/* with root here */
29 	int dead;
30 	int count;
31 	atomic_long_t refs;
32 	struct rcu_head head;
33 	struct node {
34 		struct list_head list;
35 		struct audit_tree *owner;
36 		unsigned index;		/* index; upper bit indicates 'will prune' */
37 	} owners[];
38 };
39 
40 static LIST_HEAD(tree_list);
41 static LIST_HEAD(prune_list);
42 static struct task_struct *prune_thread;
43 
44 /*
45  * One struct chunk is attached to each inode of interest.
46  * We replace struct chunk on tagging/untagging.
47  * Rules have pointer to struct audit_tree.
48  * Rules have struct list_head rlist forming a list of rules over
49  * the same tree.
50  * References to struct chunk are collected at audit_inode{,_child}()
51  * time and used in AUDIT_TREE rule matching.
52  * These references are dropped at the same time we are calling
53  * audit_free_names(), etc.
54  *
55  * Cyclic lists galore:
56  * tree.chunks anchors chunk.owners[].list			hash_lock
57  * tree.rules anchors rule.rlist				audit_filter_mutex
58  * chunk.trees anchors tree.same_root				hash_lock
59  * chunk.hash is a hash with middle bits of watch.inode as
60  * a hash function.						RCU, hash_lock
61  *
62  * tree is refcounted; one reference for "some rules on rules_list refer to
63  * it", one for each chunk with pointer to it.
64  *
65  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
66  * of watch contributes 1 to .refs).
67  *
68  * node.index allows to get from node.list to containing chunk.
69  * MSB of that sucker is stolen to mark taggings that we might have to
70  * revert - several operations have very unpleasant cleanup logics and
71  * that makes a difference.  Some.
72  */
73 
74 static struct fsnotify_group *audit_tree_group;
75 
76 static struct audit_tree *alloc_tree(const char *s)
77 {
78 	struct audit_tree *tree;
79 
80 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
81 	if (tree) {
82 		refcount_set(&tree->count, 1);
83 		tree->goner = 0;
84 		INIT_LIST_HEAD(&tree->chunks);
85 		INIT_LIST_HEAD(&tree->rules);
86 		INIT_LIST_HEAD(&tree->list);
87 		INIT_LIST_HEAD(&tree->same_root);
88 		tree->root = NULL;
89 		strcpy(tree->pathname, s);
90 	}
91 	return tree;
92 }
93 
94 static inline void get_tree(struct audit_tree *tree)
95 {
96 	refcount_inc(&tree->count);
97 }
98 
99 static inline void put_tree(struct audit_tree *tree)
100 {
101 	if (refcount_dec_and_test(&tree->count))
102 		kfree_rcu(tree, head);
103 }
104 
105 /* to avoid bringing the entire thing in audit.h */
106 const char *audit_tree_path(struct audit_tree *tree)
107 {
108 	return tree->pathname;
109 }
110 
111 static void free_chunk(struct audit_chunk *chunk)
112 {
113 	int i;
114 
115 	for (i = 0; i < chunk->count; i++) {
116 		if (chunk->owners[i].owner)
117 			put_tree(chunk->owners[i].owner);
118 	}
119 	kfree(chunk);
120 }
121 
122 void audit_put_chunk(struct audit_chunk *chunk)
123 {
124 	if (atomic_long_dec_and_test(&chunk->refs))
125 		free_chunk(chunk);
126 }
127 
128 static void __put_chunk(struct rcu_head *rcu)
129 {
130 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
131 	audit_put_chunk(chunk);
132 }
133 
134 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
135 {
136 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
137 	call_rcu(&chunk->head, __put_chunk);
138 }
139 
140 static struct audit_chunk *alloc_chunk(int count)
141 {
142 	struct audit_chunk *chunk;
143 	size_t size;
144 	int i;
145 
146 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
147 	chunk = kzalloc(size, GFP_KERNEL);
148 	if (!chunk)
149 		return NULL;
150 
151 	INIT_LIST_HEAD(&chunk->hash);
152 	INIT_LIST_HEAD(&chunk->trees);
153 	chunk->count = count;
154 	atomic_long_set(&chunk->refs, 1);
155 	for (i = 0; i < count; i++) {
156 		INIT_LIST_HEAD(&chunk->owners[i].list);
157 		chunk->owners[i].index = i;
158 	}
159 	fsnotify_init_mark(&chunk->mark, audit_tree_group);
160 	chunk->mark.mask = FS_IN_IGNORED;
161 	return chunk;
162 }
163 
164 enum {HASH_SIZE = 128};
165 static struct list_head chunk_hash_heads[HASH_SIZE];
166 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
167 
168 /* Function to return search key in our hash from inode. */
169 static unsigned long inode_to_key(const struct inode *inode)
170 {
171 	return (unsigned long)inode;
172 }
173 
174 /*
175  * Function to return search key in our hash from chunk. Key 0 is special and
176  * should never be present in the hash.
177  */
178 static unsigned long chunk_to_key(struct audit_chunk *chunk)
179 {
180 	/*
181 	 * We have a reference to the mark so it should be attached to a
182 	 * connector.
183 	 */
184 	if (WARN_ON_ONCE(!chunk->mark.connector))
185 		return 0;
186 	return (unsigned long)chunk->mark.connector->inode;
187 }
188 
189 static inline struct list_head *chunk_hash(unsigned long key)
190 {
191 	unsigned long n = key / L1_CACHE_BYTES;
192 	return chunk_hash_heads + n % HASH_SIZE;
193 }
194 
195 /* hash_lock & entry->lock is held by caller */
196 static void insert_hash(struct audit_chunk *chunk)
197 {
198 	unsigned long key = chunk_to_key(chunk);
199 	struct list_head *list;
200 
201 	if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
202 		return;
203 	list = chunk_hash(key);
204 	list_add_rcu(&chunk->hash, list);
205 }
206 
207 /* called under rcu_read_lock */
208 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
209 {
210 	unsigned long key = inode_to_key(inode);
211 	struct list_head *list = chunk_hash(key);
212 	struct audit_chunk *p;
213 
214 	list_for_each_entry_rcu(p, list, hash) {
215 		if (chunk_to_key(p) == key) {
216 			atomic_long_inc(&p->refs);
217 			return p;
218 		}
219 	}
220 	return NULL;
221 }
222 
223 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
224 {
225 	int n;
226 	for (n = 0; n < chunk->count; n++)
227 		if (chunk->owners[n].owner == tree)
228 			return true;
229 	return false;
230 }
231 
232 /* tagging and untagging inodes with trees */
233 
234 static struct audit_chunk *find_chunk(struct node *p)
235 {
236 	int index = p->index & ~(1U<<31);
237 	p -= index;
238 	return container_of(p, struct audit_chunk, owners[0]);
239 }
240 
241 static void untag_chunk(struct node *p)
242 {
243 	struct audit_chunk *chunk = find_chunk(p);
244 	struct fsnotify_mark *entry = &chunk->mark;
245 	struct audit_chunk *new = NULL;
246 	struct audit_tree *owner;
247 	int size = chunk->count - 1;
248 	int i, j;
249 
250 	fsnotify_get_mark(entry);
251 
252 	spin_unlock(&hash_lock);
253 
254 	if (size)
255 		new = alloc_chunk(size);
256 
257 	mutex_lock(&entry->group->mark_mutex);
258 	spin_lock(&entry->lock);
259 	/*
260 	 * mark_mutex protects mark from getting detached and thus also from
261 	 * mark->connector->inode getting NULL.
262 	 */
263 	if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
264 		spin_unlock(&entry->lock);
265 		mutex_unlock(&entry->group->mark_mutex);
266 		if (new)
267 			fsnotify_put_mark(&new->mark);
268 		goto out;
269 	}
270 
271 	owner = p->owner;
272 
273 	if (!size) {
274 		chunk->dead = 1;
275 		spin_lock(&hash_lock);
276 		list_del_init(&chunk->trees);
277 		if (owner->root == chunk)
278 			owner->root = NULL;
279 		list_del_init(&p->list);
280 		list_del_rcu(&chunk->hash);
281 		spin_unlock(&hash_lock);
282 		spin_unlock(&entry->lock);
283 		mutex_unlock(&entry->group->mark_mutex);
284 		fsnotify_destroy_mark(entry, audit_tree_group);
285 		goto out;
286 	}
287 
288 	if (!new)
289 		goto Fallback;
290 
291 	if (fsnotify_add_inode_mark_locked(&new->mark, entry->connector->inode,
292 					   1)) {
293 		fsnotify_put_mark(&new->mark);
294 		goto Fallback;
295 	}
296 
297 	chunk->dead = 1;
298 	spin_lock(&hash_lock);
299 	list_replace_init(&chunk->trees, &new->trees);
300 	if (owner->root == chunk) {
301 		list_del_init(&owner->same_root);
302 		owner->root = NULL;
303 	}
304 
305 	for (i = j = 0; j <= size; i++, j++) {
306 		struct audit_tree *s;
307 		if (&chunk->owners[j] == p) {
308 			list_del_init(&p->list);
309 			i--;
310 			continue;
311 		}
312 		s = chunk->owners[j].owner;
313 		new->owners[i].owner = s;
314 		new->owners[i].index = chunk->owners[j].index - j + i;
315 		if (!s) /* result of earlier fallback */
316 			continue;
317 		get_tree(s);
318 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
319 	}
320 
321 	list_replace_rcu(&chunk->hash, &new->hash);
322 	list_for_each_entry(owner, &new->trees, same_root)
323 		owner->root = new;
324 	spin_unlock(&hash_lock);
325 	spin_unlock(&entry->lock);
326 	mutex_unlock(&entry->group->mark_mutex);
327 	fsnotify_destroy_mark(entry, audit_tree_group);
328 	fsnotify_put_mark(&new->mark);	/* drop initial reference */
329 	goto out;
330 
331 Fallback:
332 	// do the best we can
333 	spin_lock(&hash_lock);
334 	if (owner->root == chunk) {
335 		list_del_init(&owner->same_root);
336 		owner->root = NULL;
337 	}
338 	list_del_init(&p->list);
339 	p->owner = NULL;
340 	put_tree(owner);
341 	spin_unlock(&hash_lock);
342 	spin_unlock(&entry->lock);
343 	mutex_unlock(&entry->group->mark_mutex);
344 out:
345 	fsnotify_put_mark(entry);
346 	spin_lock(&hash_lock);
347 }
348 
349 static int create_chunk(struct inode *inode, struct audit_tree *tree)
350 {
351 	struct fsnotify_mark *entry;
352 	struct audit_chunk *chunk = alloc_chunk(1);
353 	if (!chunk)
354 		return -ENOMEM;
355 
356 	entry = &chunk->mark;
357 	if (fsnotify_add_inode_mark(entry, inode, 0)) {
358 		fsnotify_put_mark(entry);
359 		return -ENOSPC;
360 	}
361 
362 	spin_lock(&entry->lock);
363 	spin_lock(&hash_lock);
364 	if (tree->goner) {
365 		spin_unlock(&hash_lock);
366 		chunk->dead = 1;
367 		spin_unlock(&entry->lock);
368 		fsnotify_destroy_mark(entry, audit_tree_group);
369 		fsnotify_put_mark(entry);
370 		return 0;
371 	}
372 	chunk->owners[0].index = (1U << 31);
373 	chunk->owners[0].owner = tree;
374 	get_tree(tree);
375 	list_add(&chunk->owners[0].list, &tree->chunks);
376 	if (!tree->root) {
377 		tree->root = chunk;
378 		list_add(&tree->same_root, &chunk->trees);
379 	}
380 	insert_hash(chunk);
381 	spin_unlock(&hash_lock);
382 	spin_unlock(&entry->lock);
383 	fsnotify_put_mark(entry);	/* drop initial reference */
384 	return 0;
385 }
386 
387 /* the first tagged inode becomes root of tree */
388 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
389 {
390 	struct fsnotify_mark *old_entry, *chunk_entry;
391 	struct audit_tree *owner;
392 	struct audit_chunk *chunk, *old;
393 	struct node *p;
394 	int n;
395 
396 	old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
397 				       audit_tree_group);
398 	if (!old_entry)
399 		return create_chunk(inode, tree);
400 
401 	old = container_of(old_entry, struct audit_chunk, mark);
402 
403 	/* are we already there? */
404 	spin_lock(&hash_lock);
405 	for (n = 0; n < old->count; n++) {
406 		if (old->owners[n].owner == tree) {
407 			spin_unlock(&hash_lock);
408 			fsnotify_put_mark(old_entry);
409 			return 0;
410 		}
411 	}
412 	spin_unlock(&hash_lock);
413 
414 	chunk = alloc_chunk(old->count + 1);
415 	if (!chunk) {
416 		fsnotify_put_mark(old_entry);
417 		return -ENOMEM;
418 	}
419 
420 	chunk_entry = &chunk->mark;
421 
422 	mutex_lock(&old_entry->group->mark_mutex);
423 	spin_lock(&old_entry->lock);
424 	/*
425 	 * mark_mutex protects mark from getting detached and thus also from
426 	 * mark->connector->inode getting NULL.
427 	 */
428 	if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
429 		/* old_entry is being shot, lets just lie */
430 		spin_unlock(&old_entry->lock);
431 		mutex_unlock(&old_entry->group->mark_mutex);
432 		fsnotify_put_mark(old_entry);
433 		fsnotify_put_mark(&chunk->mark);
434 		return -ENOENT;
435 	}
436 
437 	if (fsnotify_add_inode_mark_locked(chunk_entry,
438 			     old_entry->connector->inode, 1)) {
439 		spin_unlock(&old_entry->lock);
440 		mutex_unlock(&old_entry->group->mark_mutex);
441 		fsnotify_put_mark(chunk_entry);
442 		fsnotify_put_mark(old_entry);
443 		return -ENOSPC;
444 	}
445 
446 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
447 	spin_lock(&chunk_entry->lock);
448 	spin_lock(&hash_lock);
449 
450 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
451 	if (tree->goner) {
452 		spin_unlock(&hash_lock);
453 		chunk->dead = 1;
454 		spin_unlock(&chunk_entry->lock);
455 		spin_unlock(&old_entry->lock);
456 		mutex_unlock(&old_entry->group->mark_mutex);
457 
458 		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
459 
460 		fsnotify_put_mark(chunk_entry);
461 		fsnotify_put_mark(old_entry);
462 		return 0;
463 	}
464 	list_replace_init(&old->trees, &chunk->trees);
465 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
466 		struct audit_tree *s = old->owners[n].owner;
467 		p->owner = s;
468 		p->index = old->owners[n].index;
469 		if (!s) /* result of fallback in untag */
470 			continue;
471 		get_tree(s);
472 		list_replace_init(&old->owners[n].list, &p->list);
473 	}
474 	p->index = (chunk->count - 1) | (1U<<31);
475 	p->owner = tree;
476 	get_tree(tree);
477 	list_add(&p->list, &tree->chunks);
478 	list_replace_rcu(&old->hash, &chunk->hash);
479 	list_for_each_entry(owner, &chunk->trees, same_root)
480 		owner->root = chunk;
481 	old->dead = 1;
482 	if (!tree->root) {
483 		tree->root = chunk;
484 		list_add(&tree->same_root, &chunk->trees);
485 	}
486 	spin_unlock(&hash_lock);
487 	spin_unlock(&chunk_entry->lock);
488 	spin_unlock(&old_entry->lock);
489 	mutex_unlock(&old_entry->group->mark_mutex);
490 	fsnotify_destroy_mark(old_entry, audit_tree_group);
491 	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
492 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
493 	return 0;
494 }
495 
496 static void audit_tree_log_remove_rule(struct audit_krule *rule)
497 {
498 	struct audit_buffer *ab;
499 
500 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
501 	if (unlikely(!ab))
502 		return;
503 	audit_log_format(ab, "op=remove_rule");
504 	audit_log_format(ab, " dir=");
505 	audit_log_untrustedstring(ab, rule->tree->pathname);
506 	audit_log_key(ab, rule->filterkey);
507 	audit_log_format(ab, " list=%d res=1", rule->listnr);
508 	audit_log_end(ab);
509 }
510 
511 static void kill_rules(struct audit_tree *tree)
512 {
513 	struct audit_krule *rule, *next;
514 	struct audit_entry *entry;
515 
516 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
517 		entry = container_of(rule, struct audit_entry, rule);
518 
519 		list_del_init(&rule->rlist);
520 		if (rule->tree) {
521 			/* not a half-baked one */
522 			audit_tree_log_remove_rule(rule);
523 			if (entry->rule.exe)
524 				audit_remove_mark(entry->rule.exe);
525 			rule->tree = NULL;
526 			list_del_rcu(&entry->list);
527 			list_del(&entry->rule.list);
528 			call_rcu(&entry->rcu, audit_free_rule_rcu);
529 		}
530 	}
531 }
532 
533 /*
534  * finish killing struct audit_tree
535  */
536 static void prune_one(struct audit_tree *victim)
537 {
538 	spin_lock(&hash_lock);
539 	while (!list_empty(&victim->chunks)) {
540 		struct node *p;
541 
542 		p = list_entry(victim->chunks.next, struct node, list);
543 
544 		untag_chunk(p);
545 	}
546 	spin_unlock(&hash_lock);
547 	put_tree(victim);
548 }
549 
550 /* trim the uncommitted chunks from tree */
551 
552 static void trim_marked(struct audit_tree *tree)
553 {
554 	struct list_head *p, *q;
555 	spin_lock(&hash_lock);
556 	if (tree->goner) {
557 		spin_unlock(&hash_lock);
558 		return;
559 	}
560 	/* reorder */
561 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
562 		struct node *node = list_entry(p, struct node, list);
563 		q = p->next;
564 		if (node->index & (1U<<31)) {
565 			list_del_init(p);
566 			list_add(p, &tree->chunks);
567 		}
568 	}
569 
570 	while (!list_empty(&tree->chunks)) {
571 		struct node *node;
572 
573 		node = list_entry(tree->chunks.next, struct node, list);
574 
575 		/* have we run out of marked? */
576 		if (!(node->index & (1U<<31)))
577 			break;
578 
579 		untag_chunk(node);
580 	}
581 	if (!tree->root && !tree->goner) {
582 		tree->goner = 1;
583 		spin_unlock(&hash_lock);
584 		mutex_lock(&audit_filter_mutex);
585 		kill_rules(tree);
586 		list_del_init(&tree->list);
587 		mutex_unlock(&audit_filter_mutex);
588 		prune_one(tree);
589 	} else {
590 		spin_unlock(&hash_lock);
591 	}
592 }
593 
594 static void audit_schedule_prune(void);
595 
596 /* called with audit_filter_mutex */
597 int audit_remove_tree_rule(struct audit_krule *rule)
598 {
599 	struct audit_tree *tree;
600 	tree = rule->tree;
601 	if (tree) {
602 		spin_lock(&hash_lock);
603 		list_del_init(&rule->rlist);
604 		if (list_empty(&tree->rules) && !tree->goner) {
605 			tree->root = NULL;
606 			list_del_init(&tree->same_root);
607 			tree->goner = 1;
608 			list_move(&tree->list, &prune_list);
609 			rule->tree = NULL;
610 			spin_unlock(&hash_lock);
611 			audit_schedule_prune();
612 			return 1;
613 		}
614 		rule->tree = NULL;
615 		spin_unlock(&hash_lock);
616 		return 1;
617 	}
618 	return 0;
619 }
620 
621 static int compare_root(struct vfsmount *mnt, void *arg)
622 {
623 	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
624 	       (unsigned long)arg;
625 }
626 
627 void audit_trim_trees(void)
628 {
629 	struct list_head cursor;
630 
631 	mutex_lock(&audit_filter_mutex);
632 	list_add(&cursor, &tree_list);
633 	while (cursor.next != &tree_list) {
634 		struct audit_tree *tree;
635 		struct path path;
636 		struct vfsmount *root_mnt;
637 		struct node *node;
638 		int err;
639 
640 		tree = container_of(cursor.next, struct audit_tree, list);
641 		get_tree(tree);
642 		list_del(&cursor);
643 		list_add(&cursor, &tree->list);
644 		mutex_unlock(&audit_filter_mutex);
645 
646 		err = kern_path(tree->pathname, 0, &path);
647 		if (err)
648 			goto skip_it;
649 
650 		root_mnt = collect_mounts(&path);
651 		path_put(&path);
652 		if (IS_ERR(root_mnt))
653 			goto skip_it;
654 
655 		spin_lock(&hash_lock);
656 		list_for_each_entry(node, &tree->chunks, list) {
657 			struct audit_chunk *chunk = find_chunk(node);
658 			/* this could be NULL if the watch is dying else where... */
659 			node->index |= 1U<<31;
660 			if (iterate_mounts(compare_root,
661 					   (void *)chunk_to_key(chunk),
662 					   root_mnt))
663 				node->index &= ~(1U<<31);
664 		}
665 		spin_unlock(&hash_lock);
666 		trim_marked(tree);
667 		drop_collected_mounts(root_mnt);
668 skip_it:
669 		put_tree(tree);
670 		mutex_lock(&audit_filter_mutex);
671 	}
672 	list_del(&cursor);
673 	mutex_unlock(&audit_filter_mutex);
674 }
675 
676 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
677 {
678 
679 	if (pathname[0] != '/' ||
680 	    rule->listnr != AUDIT_FILTER_EXIT ||
681 	    op != Audit_equal ||
682 	    rule->inode_f || rule->watch || rule->tree)
683 		return -EINVAL;
684 	rule->tree = alloc_tree(pathname);
685 	if (!rule->tree)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 void audit_put_tree(struct audit_tree *tree)
691 {
692 	put_tree(tree);
693 }
694 
695 static int tag_mount(struct vfsmount *mnt, void *arg)
696 {
697 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
698 }
699 
700 /*
701  * That gets run when evict_chunk() ends up needing to kill audit_tree.
702  * Runs from a separate thread.
703  */
704 static int prune_tree_thread(void *unused)
705 {
706 	for (;;) {
707 		if (list_empty(&prune_list)) {
708 			set_current_state(TASK_INTERRUPTIBLE);
709 			schedule();
710 		}
711 
712 		audit_ctl_lock();
713 		mutex_lock(&audit_filter_mutex);
714 
715 		while (!list_empty(&prune_list)) {
716 			struct audit_tree *victim;
717 
718 			victim = list_entry(prune_list.next,
719 					struct audit_tree, list);
720 			list_del_init(&victim->list);
721 
722 			mutex_unlock(&audit_filter_mutex);
723 
724 			prune_one(victim);
725 
726 			mutex_lock(&audit_filter_mutex);
727 		}
728 
729 		mutex_unlock(&audit_filter_mutex);
730 		audit_ctl_unlock();
731 	}
732 	return 0;
733 }
734 
735 static int audit_launch_prune(void)
736 {
737 	if (prune_thread)
738 		return 0;
739 	prune_thread = kthread_run(prune_tree_thread, NULL,
740 				"audit_prune_tree");
741 	if (IS_ERR(prune_thread)) {
742 		pr_err("cannot start thread audit_prune_tree");
743 		prune_thread = NULL;
744 		return -ENOMEM;
745 	}
746 	return 0;
747 }
748 
749 /* called with audit_filter_mutex */
750 int audit_add_tree_rule(struct audit_krule *rule)
751 {
752 	struct audit_tree *seed = rule->tree, *tree;
753 	struct path path;
754 	struct vfsmount *mnt;
755 	int err;
756 
757 	rule->tree = NULL;
758 	list_for_each_entry(tree, &tree_list, list) {
759 		if (!strcmp(seed->pathname, tree->pathname)) {
760 			put_tree(seed);
761 			rule->tree = tree;
762 			list_add(&rule->rlist, &tree->rules);
763 			return 0;
764 		}
765 	}
766 	tree = seed;
767 	list_add(&tree->list, &tree_list);
768 	list_add(&rule->rlist, &tree->rules);
769 	/* do not set rule->tree yet */
770 	mutex_unlock(&audit_filter_mutex);
771 
772 	if (unlikely(!prune_thread)) {
773 		err = audit_launch_prune();
774 		if (err)
775 			goto Err;
776 	}
777 
778 	err = kern_path(tree->pathname, 0, &path);
779 	if (err)
780 		goto Err;
781 	mnt = collect_mounts(&path);
782 	path_put(&path);
783 	if (IS_ERR(mnt)) {
784 		err = PTR_ERR(mnt);
785 		goto Err;
786 	}
787 
788 	get_tree(tree);
789 	err = iterate_mounts(tag_mount, tree, mnt);
790 	drop_collected_mounts(mnt);
791 
792 	if (!err) {
793 		struct node *node;
794 		spin_lock(&hash_lock);
795 		list_for_each_entry(node, &tree->chunks, list)
796 			node->index &= ~(1U<<31);
797 		spin_unlock(&hash_lock);
798 	} else {
799 		trim_marked(tree);
800 		goto Err;
801 	}
802 
803 	mutex_lock(&audit_filter_mutex);
804 	if (list_empty(&rule->rlist)) {
805 		put_tree(tree);
806 		return -ENOENT;
807 	}
808 	rule->tree = tree;
809 	put_tree(tree);
810 
811 	return 0;
812 Err:
813 	mutex_lock(&audit_filter_mutex);
814 	list_del_init(&tree->list);
815 	list_del_init(&tree->rules);
816 	put_tree(tree);
817 	return err;
818 }
819 
820 int audit_tag_tree(char *old, char *new)
821 {
822 	struct list_head cursor, barrier;
823 	int failed = 0;
824 	struct path path1, path2;
825 	struct vfsmount *tagged;
826 	int err;
827 
828 	err = kern_path(new, 0, &path2);
829 	if (err)
830 		return err;
831 	tagged = collect_mounts(&path2);
832 	path_put(&path2);
833 	if (IS_ERR(tagged))
834 		return PTR_ERR(tagged);
835 
836 	err = kern_path(old, 0, &path1);
837 	if (err) {
838 		drop_collected_mounts(tagged);
839 		return err;
840 	}
841 
842 	mutex_lock(&audit_filter_mutex);
843 	list_add(&barrier, &tree_list);
844 	list_add(&cursor, &barrier);
845 
846 	while (cursor.next != &tree_list) {
847 		struct audit_tree *tree;
848 		int good_one = 0;
849 
850 		tree = container_of(cursor.next, struct audit_tree, list);
851 		get_tree(tree);
852 		list_del(&cursor);
853 		list_add(&cursor, &tree->list);
854 		mutex_unlock(&audit_filter_mutex);
855 
856 		err = kern_path(tree->pathname, 0, &path2);
857 		if (!err) {
858 			good_one = path_is_under(&path1, &path2);
859 			path_put(&path2);
860 		}
861 
862 		if (!good_one) {
863 			put_tree(tree);
864 			mutex_lock(&audit_filter_mutex);
865 			continue;
866 		}
867 
868 		failed = iterate_mounts(tag_mount, tree, tagged);
869 		if (failed) {
870 			put_tree(tree);
871 			mutex_lock(&audit_filter_mutex);
872 			break;
873 		}
874 
875 		mutex_lock(&audit_filter_mutex);
876 		spin_lock(&hash_lock);
877 		if (!tree->goner) {
878 			list_del(&tree->list);
879 			list_add(&tree->list, &tree_list);
880 		}
881 		spin_unlock(&hash_lock);
882 		put_tree(tree);
883 	}
884 
885 	while (barrier.prev != &tree_list) {
886 		struct audit_tree *tree;
887 
888 		tree = container_of(barrier.prev, struct audit_tree, list);
889 		get_tree(tree);
890 		list_del(&tree->list);
891 		list_add(&tree->list, &barrier);
892 		mutex_unlock(&audit_filter_mutex);
893 
894 		if (!failed) {
895 			struct node *node;
896 			spin_lock(&hash_lock);
897 			list_for_each_entry(node, &tree->chunks, list)
898 				node->index &= ~(1U<<31);
899 			spin_unlock(&hash_lock);
900 		} else {
901 			trim_marked(tree);
902 		}
903 
904 		put_tree(tree);
905 		mutex_lock(&audit_filter_mutex);
906 	}
907 	list_del(&barrier);
908 	list_del(&cursor);
909 	mutex_unlock(&audit_filter_mutex);
910 	path_put(&path1);
911 	drop_collected_mounts(tagged);
912 	return failed;
913 }
914 
915 
916 static void audit_schedule_prune(void)
917 {
918 	wake_up_process(prune_thread);
919 }
920 
921 /*
922  * ... and that one is done if evict_chunk() decides to delay until the end
923  * of syscall.  Runs synchronously.
924  */
925 void audit_kill_trees(struct list_head *list)
926 {
927 	audit_ctl_lock();
928 	mutex_lock(&audit_filter_mutex);
929 
930 	while (!list_empty(list)) {
931 		struct audit_tree *victim;
932 
933 		victim = list_entry(list->next, struct audit_tree, list);
934 		kill_rules(victim);
935 		list_del_init(&victim->list);
936 
937 		mutex_unlock(&audit_filter_mutex);
938 
939 		prune_one(victim);
940 
941 		mutex_lock(&audit_filter_mutex);
942 	}
943 
944 	mutex_unlock(&audit_filter_mutex);
945 	audit_ctl_unlock();
946 }
947 
948 /*
949  *  Here comes the stuff asynchronous to auditctl operations
950  */
951 
952 static void evict_chunk(struct audit_chunk *chunk)
953 {
954 	struct audit_tree *owner;
955 	struct list_head *postponed = audit_killed_trees();
956 	int need_prune = 0;
957 	int n;
958 
959 	if (chunk->dead)
960 		return;
961 
962 	chunk->dead = 1;
963 	mutex_lock(&audit_filter_mutex);
964 	spin_lock(&hash_lock);
965 	while (!list_empty(&chunk->trees)) {
966 		owner = list_entry(chunk->trees.next,
967 				   struct audit_tree, same_root);
968 		owner->goner = 1;
969 		owner->root = NULL;
970 		list_del_init(&owner->same_root);
971 		spin_unlock(&hash_lock);
972 		if (!postponed) {
973 			kill_rules(owner);
974 			list_move(&owner->list, &prune_list);
975 			need_prune = 1;
976 		} else {
977 			list_move(&owner->list, postponed);
978 		}
979 		spin_lock(&hash_lock);
980 	}
981 	list_del_rcu(&chunk->hash);
982 	for (n = 0; n < chunk->count; n++)
983 		list_del_init(&chunk->owners[n].list);
984 	spin_unlock(&hash_lock);
985 	mutex_unlock(&audit_filter_mutex);
986 	if (need_prune)
987 		audit_schedule_prune();
988 }
989 
990 static int audit_tree_handle_event(struct fsnotify_group *group,
991 				   struct inode *to_tell,
992 				   u32 mask, const void *data, int data_type,
993 				   const unsigned char *file_name, u32 cookie,
994 				   struct fsnotify_iter_info *iter_info)
995 {
996 	return 0;
997 }
998 
999 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1000 {
1001 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1002 
1003 	evict_chunk(chunk);
1004 
1005 	/*
1006 	 * We are guaranteed to have at least one reference to the mark from
1007 	 * either the inode or the caller of fsnotify_destroy_mark().
1008 	 */
1009 	BUG_ON(refcount_read(&entry->refcnt) < 1);
1010 }
1011 
1012 static const struct fsnotify_ops audit_tree_ops = {
1013 	.handle_event = audit_tree_handle_event,
1014 	.freeing_mark = audit_tree_freeing_mark,
1015 	.free_mark = audit_tree_destroy_watch,
1016 };
1017 
1018 static int __init audit_tree_init(void)
1019 {
1020 	int i;
1021 
1022 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1023 	if (IS_ERR(audit_tree_group))
1024 		audit_panic("cannot initialize fsnotify group for rectree watches");
1025 
1026 	for (i = 0; i < HASH_SIZE; i++)
1027 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1028 
1029 	return 0;
1030 }
1031 __initcall(audit_tree_init);
1032