1 #include "audit.h" 2 #include <linux/fsnotify_backend.h> 3 #include <linux/namei.h> 4 #include <linux/mount.h> 5 #include <linux/kthread.h> 6 #include <linux/slab.h> 7 8 struct audit_tree; 9 struct audit_chunk; 10 11 struct audit_tree { 12 atomic_t count; 13 int goner; 14 struct audit_chunk *root; 15 struct list_head chunks; 16 struct list_head rules; 17 struct list_head list; 18 struct list_head same_root; 19 struct rcu_head head; 20 char pathname[]; 21 }; 22 23 struct audit_chunk { 24 struct list_head hash; 25 struct fsnotify_mark mark; 26 struct list_head trees; /* with root here */ 27 int dead; 28 int count; 29 atomic_long_t refs; 30 struct rcu_head head; 31 struct node { 32 struct list_head list; 33 struct audit_tree *owner; 34 unsigned index; /* index; upper bit indicates 'will prune' */ 35 } owners[]; 36 }; 37 38 static LIST_HEAD(tree_list); 39 static LIST_HEAD(prune_list); 40 static struct task_struct *prune_thread; 41 42 /* 43 * One struct chunk is attached to each inode of interest. 44 * We replace struct chunk on tagging/untagging. 45 * Rules have pointer to struct audit_tree. 46 * Rules have struct list_head rlist forming a list of rules over 47 * the same tree. 48 * References to struct chunk are collected at audit_inode{,_child}() 49 * time and used in AUDIT_TREE rule matching. 50 * These references are dropped at the same time we are calling 51 * audit_free_names(), etc. 52 * 53 * Cyclic lists galore: 54 * tree.chunks anchors chunk.owners[].list hash_lock 55 * tree.rules anchors rule.rlist audit_filter_mutex 56 * chunk.trees anchors tree.same_root hash_lock 57 * chunk.hash is a hash with middle bits of watch.inode as 58 * a hash function. RCU, hash_lock 59 * 60 * tree is refcounted; one reference for "some rules on rules_list refer to 61 * it", one for each chunk with pointer to it. 62 * 63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount 64 * of watch contributes 1 to .refs). 65 * 66 * node.index allows to get from node.list to containing chunk. 67 * MSB of that sucker is stolen to mark taggings that we might have to 68 * revert - several operations have very unpleasant cleanup logics and 69 * that makes a difference. Some. 70 */ 71 72 static struct fsnotify_group *audit_tree_group; 73 74 static struct audit_tree *alloc_tree(const char *s) 75 { 76 struct audit_tree *tree; 77 78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); 79 if (tree) { 80 atomic_set(&tree->count, 1); 81 tree->goner = 0; 82 INIT_LIST_HEAD(&tree->chunks); 83 INIT_LIST_HEAD(&tree->rules); 84 INIT_LIST_HEAD(&tree->list); 85 INIT_LIST_HEAD(&tree->same_root); 86 tree->root = NULL; 87 strcpy(tree->pathname, s); 88 } 89 return tree; 90 } 91 92 static inline void get_tree(struct audit_tree *tree) 93 { 94 atomic_inc(&tree->count); 95 } 96 97 static inline void put_tree(struct audit_tree *tree) 98 { 99 if (atomic_dec_and_test(&tree->count)) 100 kfree_rcu(tree, head); 101 } 102 103 /* to avoid bringing the entire thing in audit.h */ 104 const char *audit_tree_path(struct audit_tree *tree) 105 { 106 return tree->pathname; 107 } 108 109 static void free_chunk(struct audit_chunk *chunk) 110 { 111 int i; 112 113 for (i = 0; i < chunk->count; i++) { 114 if (chunk->owners[i].owner) 115 put_tree(chunk->owners[i].owner); 116 } 117 kfree(chunk); 118 } 119 120 void audit_put_chunk(struct audit_chunk *chunk) 121 { 122 if (atomic_long_dec_and_test(&chunk->refs)) 123 free_chunk(chunk); 124 } 125 126 static void __put_chunk(struct rcu_head *rcu) 127 { 128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); 129 audit_put_chunk(chunk); 130 } 131 132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry) 133 { 134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark); 135 call_rcu(&chunk->head, __put_chunk); 136 } 137 138 static struct audit_chunk *alloc_chunk(int count) 139 { 140 struct audit_chunk *chunk; 141 size_t size; 142 int i; 143 144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); 145 chunk = kzalloc(size, GFP_KERNEL); 146 if (!chunk) 147 return NULL; 148 149 INIT_LIST_HEAD(&chunk->hash); 150 INIT_LIST_HEAD(&chunk->trees); 151 chunk->count = count; 152 atomic_long_set(&chunk->refs, 1); 153 for (i = 0; i < count; i++) { 154 INIT_LIST_HEAD(&chunk->owners[i].list); 155 chunk->owners[i].index = i; 156 } 157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch); 158 chunk->mark.mask = FS_IN_IGNORED; 159 return chunk; 160 } 161 162 enum {HASH_SIZE = 128}; 163 static struct list_head chunk_hash_heads[HASH_SIZE]; 164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); 165 166 static inline struct list_head *chunk_hash(const struct inode *inode) 167 { 168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES; 169 return chunk_hash_heads + n % HASH_SIZE; 170 } 171 172 /* hash_lock & entry->lock is held by caller */ 173 static void insert_hash(struct audit_chunk *chunk) 174 { 175 struct fsnotify_mark *entry = &chunk->mark; 176 struct list_head *list; 177 178 if (!entry->inode) 179 return; 180 list = chunk_hash(entry->inode); 181 list_add_rcu(&chunk->hash, list); 182 } 183 184 /* called under rcu_read_lock */ 185 struct audit_chunk *audit_tree_lookup(const struct inode *inode) 186 { 187 struct list_head *list = chunk_hash(inode); 188 struct audit_chunk *p; 189 190 list_for_each_entry_rcu(p, list, hash) { 191 /* mark.inode may have gone NULL, but who cares? */ 192 if (p->mark.inode == inode) { 193 atomic_long_inc(&p->refs); 194 return p; 195 } 196 } 197 return NULL; 198 } 199 200 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) 201 { 202 int n; 203 for (n = 0; n < chunk->count; n++) 204 if (chunk->owners[n].owner == tree) 205 return 1; 206 return 0; 207 } 208 209 /* tagging and untagging inodes with trees */ 210 211 static struct audit_chunk *find_chunk(struct node *p) 212 { 213 int index = p->index & ~(1U<<31); 214 p -= index; 215 return container_of(p, struct audit_chunk, owners[0]); 216 } 217 218 static void untag_chunk(struct node *p) 219 { 220 struct audit_chunk *chunk = find_chunk(p); 221 struct fsnotify_mark *entry = &chunk->mark; 222 struct audit_chunk *new = NULL; 223 struct audit_tree *owner; 224 int size = chunk->count - 1; 225 int i, j; 226 227 fsnotify_get_mark(entry); 228 229 spin_unlock(&hash_lock); 230 231 if (size) 232 new = alloc_chunk(size); 233 234 spin_lock(&entry->lock); 235 if (chunk->dead || !entry->inode) { 236 spin_unlock(&entry->lock); 237 if (new) 238 free_chunk(new); 239 goto out; 240 } 241 242 owner = p->owner; 243 244 if (!size) { 245 chunk->dead = 1; 246 spin_lock(&hash_lock); 247 list_del_init(&chunk->trees); 248 if (owner->root == chunk) 249 owner->root = NULL; 250 list_del_init(&p->list); 251 list_del_rcu(&chunk->hash); 252 spin_unlock(&hash_lock); 253 spin_unlock(&entry->lock); 254 fsnotify_destroy_mark(entry, audit_tree_group); 255 goto out; 256 } 257 258 if (!new) 259 goto Fallback; 260 261 fsnotify_duplicate_mark(&new->mark, entry); 262 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) { 263 fsnotify_put_mark(&new->mark); 264 goto Fallback; 265 } 266 267 chunk->dead = 1; 268 spin_lock(&hash_lock); 269 list_replace_init(&chunk->trees, &new->trees); 270 if (owner->root == chunk) { 271 list_del_init(&owner->same_root); 272 owner->root = NULL; 273 } 274 275 for (i = j = 0; j <= size; i++, j++) { 276 struct audit_tree *s; 277 if (&chunk->owners[j] == p) { 278 list_del_init(&p->list); 279 i--; 280 continue; 281 } 282 s = chunk->owners[j].owner; 283 new->owners[i].owner = s; 284 new->owners[i].index = chunk->owners[j].index - j + i; 285 if (!s) /* result of earlier fallback */ 286 continue; 287 get_tree(s); 288 list_replace_init(&chunk->owners[j].list, &new->owners[i].list); 289 } 290 291 list_replace_rcu(&chunk->hash, &new->hash); 292 list_for_each_entry(owner, &new->trees, same_root) 293 owner->root = new; 294 spin_unlock(&hash_lock); 295 spin_unlock(&entry->lock); 296 fsnotify_destroy_mark(entry, audit_tree_group); 297 fsnotify_put_mark(&new->mark); /* drop initial reference */ 298 goto out; 299 300 Fallback: 301 // do the best we can 302 spin_lock(&hash_lock); 303 if (owner->root == chunk) { 304 list_del_init(&owner->same_root); 305 owner->root = NULL; 306 } 307 list_del_init(&p->list); 308 p->owner = NULL; 309 put_tree(owner); 310 spin_unlock(&hash_lock); 311 spin_unlock(&entry->lock); 312 out: 313 fsnotify_put_mark(entry); 314 spin_lock(&hash_lock); 315 } 316 317 static int create_chunk(struct inode *inode, struct audit_tree *tree) 318 { 319 struct fsnotify_mark *entry; 320 struct audit_chunk *chunk = alloc_chunk(1); 321 if (!chunk) 322 return -ENOMEM; 323 324 entry = &chunk->mark; 325 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) { 326 fsnotify_put_mark(entry); 327 return -ENOSPC; 328 } 329 330 spin_lock(&entry->lock); 331 spin_lock(&hash_lock); 332 if (tree->goner) { 333 spin_unlock(&hash_lock); 334 chunk->dead = 1; 335 spin_unlock(&entry->lock); 336 fsnotify_destroy_mark(entry, audit_tree_group); 337 fsnotify_put_mark(entry); 338 return 0; 339 } 340 chunk->owners[0].index = (1U << 31); 341 chunk->owners[0].owner = tree; 342 get_tree(tree); 343 list_add(&chunk->owners[0].list, &tree->chunks); 344 if (!tree->root) { 345 tree->root = chunk; 346 list_add(&tree->same_root, &chunk->trees); 347 } 348 insert_hash(chunk); 349 spin_unlock(&hash_lock); 350 spin_unlock(&entry->lock); 351 fsnotify_put_mark(entry); /* drop initial reference */ 352 return 0; 353 } 354 355 /* the first tagged inode becomes root of tree */ 356 static int tag_chunk(struct inode *inode, struct audit_tree *tree) 357 { 358 struct fsnotify_mark *old_entry, *chunk_entry; 359 struct audit_tree *owner; 360 struct audit_chunk *chunk, *old; 361 struct node *p; 362 int n; 363 364 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode); 365 if (!old_entry) 366 return create_chunk(inode, tree); 367 368 old = container_of(old_entry, struct audit_chunk, mark); 369 370 /* are we already there? */ 371 spin_lock(&hash_lock); 372 for (n = 0; n < old->count; n++) { 373 if (old->owners[n].owner == tree) { 374 spin_unlock(&hash_lock); 375 fsnotify_put_mark(old_entry); 376 return 0; 377 } 378 } 379 spin_unlock(&hash_lock); 380 381 chunk = alloc_chunk(old->count + 1); 382 if (!chunk) { 383 fsnotify_put_mark(old_entry); 384 return -ENOMEM; 385 } 386 387 chunk_entry = &chunk->mark; 388 389 spin_lock(&old_entry->lock); 390 if (!old_entry->inode) { 391 /* old_entry is being shot, lets just lie */ 392 spin_unlock(&old_entry->lock); 393 fsnotify_put_mark(old_entry); 394 free_chunk(chunk); 395 return -ENOENT; 396 } 397 398 fsnotify_duplicate_mark(chunk_entry, old_entry); 399 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) { 400 spin_unlock(&old_entry->lock); 401 fsnotify_put_mark(chunk_entry); 402 fsnotify_put_mark(old_entry); 403 return -ENOSPC; 404 } 405 406 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */ 407 spin_lock(&chunk_entry->lock); 408 spin_lock(&hash_lock); 409 410 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */ 411 if (tree->goner) { 412 spin_unlock(&hash_lock); 413 chunk->dead = 1; 414 spin_unlock(&chunk_entry->lock); 415 spin_unlock(&old_entry->lock); 416 417 fsnotify_destroy_mark(chunk_entry, audit_tree_group); 418 419 fsnotify_put_mark(chunk_entry); 420 fsnotify_put_mark(old_entry); 421 return 0; 422 } 423 list_replace_init(&old->trees, &chunk->trees); 424 for (n = 0, p = chunk->owners; n < old->count; n++, p++) { 425 struct audit_tree *s = old->owners[n].owner; 426 p->owner = s; 427 p->index = old->owners[n].index; 428 if (!s) /* result of fallback in untag */ 429 continue; 430 get_tree(s); 431 list_replace_init(&old->owners[n].list, &p->list); 432 } 433 p->index = (chunk->count - 1) | (1U<<31); 434 p->owner = tree; 435 get_tree(tree); 436 list_add(&p->list, &tree->chunks); 437 list_replace_rcu(&old->hash, &chunk->hash); 438 list_for_each_entry(owner, &chunk->trees, same_root) 439 owner->root = chunk; 440 old->dead = 1; 441 if (!tree->root) { 442 tree->root = chunk; 443 list_add(&tree->same_root, &chunk->trees); 444 } 445 spin_unlock(&hash_lock); 446 spin_unlock(&chunk_entry->lock); 447 spin_unlock(&old_entry->lock); 448 fsnotify_destroy_mark(old_entry, audit_tree_group); 449 fsnotify_put_mark(chunk_entry); /* drop initial reference */ 450 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */ 451 return 0; 452 } 453 454 static void audit_tree_log_remove_rule(struct audit_krule *rule) 455 { 456 struct audit_buffer *ab; 457 458 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 459 if (unlikely(!ab)) 460 return; 461 audit_log_format(ab, "op="); 462 audit_log_string(ab, "remove_rule"); 463 audit_log_format(ab, " dir="); 464 audit_log_untrustedstring(ab, rule->tree->pathname); 465 audit_log_key(ab, rule->filterkey); 466 audit_log_format(ab, " list=%d res=1", rule->listnr); 467 audit_log_end(ab); 468 } 469 470 static void kill_rules(struct audit_tree *tree) 471 { 472 struct audit_krule *rule, *next; 473 struct audit_entry *entry; 474 475 list_for_each_entry_safe(rule, next, &tree->rules, rlist) { 476 entry = container_of(rule, struct audit_entry, rule); 477 478 list_del_init(&rule->rlist); 479 if (rule->tree) { 480 /* not a half-baked one */ 481 audit_tree_log_remove_rule(rule); 482 rule->tree = NULL; 483 list_del_rcu(&entry->list); 484 list_del(&entry->rule.list); 485 call_rcu(&entry->rcu, audit_free_rule_rcu); 486 } 487 } 488 } 489 490 /* 491 * finish killing struct audit_tree 492 */ 493 static void prune_one(struct audit_tree *victim) 494 { 495 spin_lock(&hash_lock); 496 while (!list_empty(&victim->chunks)) { 497 struct node *p; 498 499 p = list_entry(victim->chunks.next, struct node, list); 500 501 untag_chunk(p); 502 } 503 spin_unlock(&hash_lock); 504 put_tree(victim); 505 } 506 507 /* trim the uncommitted chunks from tree */ 508 509 static void trim_marked(struct audit_tree *tree) 510 { 511 struct list_head *p, *q; 512 spin_lock(&hash_lock); 513 if (tree->goner) { 514 spin_unlock(&hash_lock); 515 return; 516 } 517 /* reorder */ 518 for (p = tree->chunks.next; p != &tree->chunks; p = q) { 519 struct node *node = list_entry(p, struct node, list); 520 q = p->next; 521 if (node->index & (1U<<31)) { 522 list_del_init(p); 523 list_add(p, &tree->chunks); 524 } 525 } 526 527 while (!list_empty(&tree->chunks)) { 528 struct node *node; 529 530 node = list_entry(tree->chunks.next, struct node, list); 531 532 /* have we run out of marked? */ 533 if (!(node->index & (1U<<31))) 534 break; 535 536 untag_chunk(node); 537 } 538 if (!tree->root && !tree->goner) { 539 tree->goner = 1; 540 spin_unlock(&hash_lock); 541 mutex_lock(&audit_filter_mutex); 542 kill_rules(tree); 543 list_del_init(&tree->list); 544 mutex_unlock(&audit_filter_mutex); 545 prune_one(tree); 546 } else { 547 spin_unlock(&hash_lock); 548 } 549 } 550 551 static void audit_schedule_prune(void); 552 553 /* called with audit_filter_mutex */ 554 int audit_remove_tree_rule(struct audit_krule *rule) 555 { 556 struct audit_tree *tree; 557 tree = rule->tree; 558 if (tree) { 559 spin_lock(&hash_lock); 560 list_del_init(&rule->rlist); 561 if (list_empty(&tree->rules) && !tree->goner) { 562 tree->root = NULL; 563 list_del_init(&tree->same_root); 564 tree->goner = 1; 565 list_move(&tree->list, &prune_list); 566 rule->tree = NULL; 567 spin_unlock(&hash_lock); 568 audit_schedule_prune(); 569 return 1; 570 } 571 rule->tree = NULL; 572 spin_unlock(&hash_lock); 573 return 1; 574 } 575 return 0; 576 } 577 578 static int compare_root(struct vfsmount *mnt, void *arg) 579 { 580 return d_backing_inode(mnt->mnt_root) == arg; 581 } 582 583 void audit_trim_trees(void) 584 { 585 struct list_head cursor; 586 587 mutex_lock(&audit_filter_mutex); 588 list_add(&cursor, &tree_list); 589 while (cursor.next != &tree_list) { 590 struct audit_tree *tree; 591 struct path path; 592 struct vfsmount *root_mnt; 593 struct node *node; 594 int err; 595 596 tree = container_of(cursor.next, struct audit_tree, list); 597 get_tree(tree); 598 list_del(&cursor); 599 list_add(&cursor, &tree->list); 600 mutex_unlock(&audit_filter_mutex); 601 602 err = kern_path(tree->pathname, 0, &path); 603 if (err) 604 goto skip_it; 605 606 root_mnt = collect_mounts(&path); 607 path_put(&path); 608 if (IS_ERR(root_mnt)) 609 goto skip_it; 610 611 spin_lock(&hash_lock); 612 list_for_each_entry(node, &tree->chunks, list) { 613 struct audit_chunk *chunk = find_chunk(node); 614 /* this could be NULL if the watch is dying else where... */ 615 struct inode *inode = chunk->mark.inode; 616 node->index |= 1U<<31; 617 if (iterate_mounts(compare_root, inode, root_mnt)) 618 node->index &= ~(1U<<31); 619 } 620 spin_unlock(&hash_lock); 621 trim_marked(tree); 622 drop_collected_mounts(root_mnt); 623 skip_it: 624 put_tree(tree); 625 mutex_lock(&audit_filter_mutex); 626 } 627 list_del(&cursor); 628 mutex_unlock(&audit_filter_mutex); 629 } 630 631 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) 632 { 633 634 if (pathname[0] != '/' || 635 rule->listnr != AUDIT_FILTER_EXIT || 636 op != Audit_equal || 637 rule->inode_f || rule->watch || rule->tree) 638 return -EINVAL; 639 rule->tree = alloc_tree(pathname); 640 if (!rule->tree) 641 return -ENOMEM; 642 return 0; 643 } 644 645 void audit_put_tree(struct audit_tree *tree) 646 { 647 put_tree(tree); 648 } 649 650 static int tag_mount(struct vfsmount *mnt, void *arg) 651 { 652 return tag_chunk(d_backing_inode(mnt->mnt_root), arg); 653 } 654 655 /* 656 * That gets run when evict_chunk() ends up needing to kill audit_tree. 657 * Runs from a separate thread. 658 */ 659 static int prune_tree_thread(void *unused) 660 { 661 for (;;) { 662 set_current_state(TASK_INTERRUPTIBLE); 663 if (list_empty(&prune_list)) 664 schedule(); 665 __set_current_state(TASK_RUNNING); 666 667 mutex_lock(&audit_cmd_mutex); 668 mutex_lock(&audit_filter_mutex); 669 670 while (!list_empty(&prune_list)) { 671 struct audit_tree *victim; 672 673 victim = list_entry(prune_list.next, 674 struct audit_tree, list); 675 list_del_init(&victim->list); 676 677 mutex_unlock(&audit_filter_mutex); 678 679 prune_one(victim); 680 681 mutex_lock(&audit_filter_mutex); 682 } 683 684 mutex_unlock(&audit_filter_mutex); 685 mutex_unlock(&audit_cmd_mutex); 686 } 687 return 0; 688 } 689 690 static int audit_launch_prune(void) 691 { 692 if (prune_thread) 693 return 0; 694 prune_thread = kthread_create(prune_tree_thread, NULL, 695 "audit_prune_tree"); 696 if (IS_ERR(prune_thread)) { 697 pr_err("cannot start thread audit_prune_tree"); 698 prune_thread = NULL; 699 return -ENOMEM; 700 } else { 701 wake_up_process(prune_thread); 702 return 0; 703 } 704 } 705 706 /* called with audit_filter_mutex */ 707 int audit_add_tree_rule(struct audit_krule *rule) 708 { 709 struct audit_tree *seed = rule->tree, *tree; 710 struct path path; 711 struct vfsmount *mnt; 712 int err; 713 714 rule->tree = NULL; 715 list_for_each_entry(tree, &tree_list, list) { 716 if (!strcmp(seed->pathname, tree->pathname)) { 717 put_tree(seed); 718 rule->tree = tree; 719 list_add(&rule->rlist, &tree->rules); 720 return 0; 721 } 722 } 723 tree = seed; 724 list_add(&tree->list, &tree_list); 725 list_add(&rule->rlist, &tree->rules); 726 /* do not set rule->tree yet */ 727 mutex_unlock(&audit_filter_mutex); 728 729 if (unlikely(!prune_thread)) { 730 err = audit_launch_prune(); 731 if (err) 732 goto Err; 733 } 734 735 err = kern_path(tree->pathname, 0, &path); 736 if (err) 737 goto Err; 738 mnt = collect_mounts(&path); 739 path_put(&path); 740 if (IS_ERR(mnt)) { 741 err = PTR_ERR(mnt); 742 goto Err; 743 } 744 745 get_tree(tree); 746 err = iterate_mounts(tag_mount, tree, mnt); 747 drop_collected_mounts(mnt); 748 749 if (!err) { 750 struct node *node; 751 spin_lock(&hash_lock); 752 list_for_each_entry(node, &tree->chunks, list) 753 node->index &= ~(1U<<31); 754 spin_unlock(&hash_lock); 755 } else { 756 trim_marked(tree); 757 goto Err; 758 } 759 760 mutex_lock(&audit_filter_mutex); 761 if (list_empty(&rule->rlist)) { 762 put_tree(tree); 763 return -ENOENT; 764 } 765 rule->tree = tree; 766 put_tree(tree); 767 768 return 0; 769 Err: 770 mutex_lock(&audit_filter_mutex); 771 list_del_init(&tree->list); 772 list_del_init(&tree->rules); 773 put_tree(tree); 774 return err; 775 } 776 777 int audit_tag_tree(char *old, char *new) 778 { 779 struct list_head cursor, barrier; 780 int failed = 0; 781 struct path path1, path2; 782 struct vfsmount *tagged; 783 int err; 784 785 err = kern_path(new, 0, &path2); 786 if (err) 787 return err; 788 tagged = collect_mounts(&path2); 789 path_put(&path2); 790 if (IS_ERR(tagged)) 791 return PTR_ERR(tagged); 792 793 err = kern_path(old, 0, &path1); 794 if (err) { 795 drop_collected_mounts(tagged); 796 return err; 797 } 798 799 mutex_lock(&audit_filter_mutex); 800 list_add(&barrier, &tree_list); 801 list_add(&cursor, &barrier); 802 803 while (cursor.next != &tree_list) { 804 struct audit_tree *tree; 805 int good_one = 0; 806 807 tree = container_of(cursor.next, struct audit_tree, list); 808 get_tree(tree); 809 list_del(&cursor); 810 list_add(&cursor, &tree->list); 811 mutex_unlock(&audit_filter_mutex); 812 813 err = kern_path(tree->pathname, 0, &path2); 814 if (!err) { 815 good_one = path_is_under(&path1, &path2); 816 path_put(&path2); 817 } 818 819 if (!good_one) { 820 put_tree(tree); 821 mutex_lock(&audit_filter_mutex); 822 continue; 823 } 824 825 failed = iterate_mounts(tag_mount, tree, tagged); 826 if (failed) { 827 put_tree(tree); 828 mutex_lock(&audit_filter_mutex); 829 break; 830 } 831 832 mutex_lock(&audit_filter_mutex); 833 spin_lock(&hash_lock); 834 if (!tree->goner) { 835 list_del(&tree->list); 836 list_add(&tree->list, &tree_list); 837 } 838 spin_unlock(&hash_lock); 839 put_tree(tree); 840 } 841 842 while (barrier.prev != &tree_list) { 843 struct audit_tree *tree; 844 845 tree = container_of(barrier.prev, struct audit_tree, list); 846 get_tree(tree); 847 list_del(&tree->list); 848 list_add(&tree->list, &barrier); 849 mutex_unlock(&audit_filter_mutex); 850 851 if (!failed) { 852 struct node *node; 853 spin_lock(&hash_lock); 854 list_for_each_entry(node, &tree->chunks, list) 855 node->index &= ~(1U<<31); 856 spin_unlock(&hash_lock); 857 } else { 858 trim_marked(tree); 859 } 860 861 put_tree(tree); 862 mutex_lock(&audit_filter_mutex); 863 } 864 list_del(&barrier); 865 list_del(&cursor); 866 mutex_unlock(&audit_filter_mutex); 867 path_put(&path1); 868 drop_collected_mounts(tagged); 869 return failed; 870 } 871 872 873 static void audit_schedule_prune(void) 874 { 875 wake_up_process(prune_thread); 876 } 877 878 /* 879 * ... and that one is done if evict_chunk() decides to delay until the end 880 * of syscall. Runs synchronously. 881 */ 882 void audit_kill_trees(struct list_head *list) 883 { 884 mutex_lock(&audit_cmd_mutex); 885 mutex_lock(&audit_filter_mutex); 886 887 while (!list_empty(list)) { 888 struct audit_tree *victim; 889 890 victim = list_entry(list->next, struct audit_tree, list); 891 kill_rules(victim); 892 list_del_init(&victim->list); 893 894 mutex_unlock(&audit_filter_mutex); 895 896 prune_one(victim); 897 898 mutex_lock(&audit_filter_mutex); 899 } 900 901 mutex_unlock(&audit_filter_mutex); 902 mutex_unlock(&audit_cmd_mutex); 903 } 904 905 /* 906 * Here comes the stuff asynchronous to auditctl operations 907 */ 908 909 static void evict_chunk(struct audit_chunk *chunk) 910 { 911 struct audit_tree *owner; 912 struct list_head *postponed = audit_killed_trees(); 913 int need_prune = 0; 914 int n; 915 916 if (chunk->dead) 917 return; 918 919 chunk->dead = 1; 920 mutex_lock(&audit_filter_mutex); 921 spin_lock(&hash_lock); 922 while (!list_empty(&chunk->trees)) { 923 owner = list_entry(chunk->trees.next, 924 struct audit_tree, same_root); 925 owner->goner = 1; 926 owner->root = NULL; 927 list_del_init(&owner->same_root); 928 spin_unlock(&hash_lock); 929 if (!postponed) { 930 kill_rules(owner); 931 list_move(&owner->list, &prune_list); 932 need_prune = 1; 933 } else { 934 list_move(&owner->list, postponed); 935 } 936 spin_lock(&hash_lock); 937 } 938 list_del_rcu(&chunk->hash); 939 for (n = 0; n < chunk->count; n++) 940 list_del_init(&chunk->owners[n].list); 941 spin_unlock(&hash_lock); 942 mutex_unlock(&audit_filter_mutex); 943 if (need_prune) 944 audit_schedule_prune(); 945 } 946 947 static int audit_tree_handle_event(struct fsnotify_group *group, 948 struct inode *to_tell, 949 struct fsnotify_mark *inode_mark, 950 struct fsnotify_mark *vfsmount_mark, 951 u32 mask, void *data, int data_type, 952 const unsigned char *file_name, u32 cookie) 953 { 954 return 0; 955 } 956 957 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group) 958 { 959 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark); 960 961 evict_chunk(chunk); 962 963 /* 964 * We are guaranteed to have at least one reference to the mark from 965 * either the inode or the caller of fsnotify_destroy_mark(). 966 */ 967 BUG_ON(atomic_read(&entry->refcnt) < 1); 968 } 969 970 static const struct fsnotify_ops audit_tree_ops = { 971 .handle_event = audit_tree_handle_event, 972 .freeing_mark = audit_tree_freeing_mark, 973 }; 974 975 static int __init audit_tree_init(void) 976 { 977 int i; 978 979 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); 980 if (IS_ERR(audit_tree_group)) 981 audit_panic("cannot initialize fsnotify group for rectree watches"); 982 983 for (i = 0; i < HASH_SIZE; i++) 984 INIT_LIST_HEAD(&chunk_hash_heads[i]); 985 986 return 0; 987 } 988 __initcall(audit_tree_init); 989