1 #include "audit.h" 2 #include <linux/fsnotify_backend.h> 3 #include <linux/namei.h> 4 #include <linux/mount.h> 5 #include <linux/kthread.h> 6 #include <linux/slab.h> 7 8 struct audit_tree; 9 struct audit_chunk; 10 11 struct audit_tree { 12 atomic_t count; 13 int goner; 14 struct audit_chunk *root; 15 struct list_head chunks; 16 struct list_head rules; 17 struct list_head list; 18 struct list_head same_root; 19 struct rcu_head head; 20 char pathname[]; 21 }; 22 23 struct audit_chunk { 24 struct list_head hash; 25 struct fsnotify_mark mark; 26 struct list_head trees; /* with root here */ 27 int dead; 28 int count; 29 atomic_long_t refs; 30 struct rcu_head head; 31 struct node { 32 struct list_head list; 33 struct audit_tree *owner; 34 unsigned index; /* index; upper bit indicates 'will prune' */ 35 } owners[]; 36 }; 37 38 static LIST_HEAD(tree_list); 39 static LIST_HEAD(prune_list); 40 41 /* 42 * One struct chunk is attached to each inode of interest. 43 * We replace struct chunk on tagging/untagging. 44 * Rules have pointer to struct audit_tree. 45 * Rules have struct list_head rlist forming a list of rules over 46 * the same tree. 47 * References to struct chunk are collected at audit_inode{,_child}() 48 * time and used in AUDIT_TREE rule matching. 49 * These references are dropped at the same time we are calling 50 * audit_free_names(), etc. 51 * 52 * Cyclic lists galore: 53 * tree.chunks anchors chunk.owners[].list hash_lock 54 * tree.rules anchors rule.rlist audit_filter_mutex 55 * chunk.trees anchors tree.same_root hash_lock 56 * chunk.hash is a hash with middle bits of watch.inode as 57 * a hash function. RCU, hash_lock 58 * 59 * tree is refcounted; one reference for "some rules on rules_list refer to 60 * it", one for each chunk with pointer to it. 61 * 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount 63 * of watch contributes 1 to .refs). 64 * 65 * node.index allows to get from node.list to containing chunk. 66 * MSB of that sucker is stolen to mark taggings that we might have to 67 * revert - several operations have very unpleasant cleanup logics and 68 * that makes a difference. Some. 69 */ 70 71 static struct fsnotify_group *audit_tree_group; 72 73 static struct audit_tree *alloc_tree(const char *s) 74 { 75 struct audit_tree *tree; 76 77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); 78 if (tree) { 79 atomic_set(&tree->count, 1); 80 tree->goner = 0; 81 INIT_LIST_HEAD(&tree->chunks); 82 INIT_LIST_HEAD(&tree->rules); 83 INIT_LIST_HEAD(&tree->list); 84 INIT_LIST_HEAD(&tree->same_root); 85 tree->root = NULL; 86 strcpy(tree->pathname, s); 87 } 88 return tree; 89 } 90 91 static inline void get_tree(struct audit_tree *tree) 92 { 93 atomic_inc(&tree->count); 94 } 95 96 static void __put_tree(struct rcu_head *rcu) 97 { 98 struct audit_tree *tree = container_of(rcu, struct audit_tree, head); 99 kfree(tree); 100 } 101 102 static inline void put_tree(struct audit_tree *tree) 103 { 104 if (atomic_dec_and_test(&tree->count)) 105 call_rcu(&tree->head, __put_tree); 106 } 107 108 /* to avoid bringing the entire thing in audit.h */ 109 const char *audit_tree_path(struct audit_tree *tree) 110 { 111 return tree->pathname; 112 } 113 114 static void free_chunk(struct audit_chunk *chunk) 115 { 116 int i; 117 118 for (i = 0; i < chunk->count; i++) { 119 if (chunk->owners[i].owner) 120 put_tree(chunk->owners[i].owner); 121 } 122 kfree(chunk); 123 } 124 125 void audit_put_chunk(struct audit_chunk *chunk) 126 { 127 if (atomic_long_dec_and_test(&chunk->refs)) 128 free_chunk(chunk); 129 } 130 131 static void __put_chunk(struct rcu_head *rcu) 132 { 133 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); 134 audit_put_chunk(chunk); 135 } 136 137 static void audit_tree_destroy_watch(struct fsnotify_mark *entry) 138 { 139 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark); 140 call_rcu(&chunk->head, __put_chunk); 141 } 142 143 static struct audit_chunk *alloc_chunk(int count) 144 { 145 struct audit_chunk *chunk; 146 size_t size; 147 int i; 148 149 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); 150 chunk = kzalloc(size, GFP_KERNEL); 151 if (!chunk) 152 return NULL; 153 154 INIT_LIST_HEAD(&chunk->hash); 155 INIT_LIST_HEAD(&chunk->trees); 156 chunk->count = count; 157 atomic_long_set(&chunk->refs, 1); 158 for (i = 0; i < count; i++) { 159 INIT_LIST_HEAD(&chunk->owners[i].list); 160 chunk->owners[i].index = i; 161 } 162 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch); 163 return chunk; 164 } 165 166 enum {HASH_SIZE = 128}; 167 static struct list_head chunk_hash_heads[HASH_SIZE]; 168 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); 169 170 static inline struct list_head *chunk_hash(const struct inode *inode) 171 { 172 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES; 173 return chunk_hash_heads + n % HASH_SIZE; 174 } 175 176 /* hash_lock & entry->lock is held by caller */ 177 static void insert_hash(struct audit_chunk *chunk) 178 { 179 struct fsnotify_mark *entry = &chunk->mark; 180 struct list_head *list; 181 182 if (!entry->i.inode) 183 return; 184 list = chunk_hash(entry->i.inode); 185 list_add_rcu(&chunk->hash, list); 186 } 187 188 /* called under rcu_read_lock */ 189 struct audit_chunk *audit_tree_lookup(const struct inode *inode) 190 { 191 struct list_head *list = chunk_hash(inode); 192 struct audit_chunk *p; 193 194 list_for_each_entry_rcu(p, list, hash) { 195 /* mark.inode may have gone NULL, but who cares? */ 196 if (p->mark.i.inode == inode) { 197 atomic_long_inc(&p->refs); 198 return p; 199 } 200 } 201 return NULL; 202 } 203 204 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) 205 { 206 int n; 207 for (n = 0; n < chunk->count; n++) 208 if (chunk->owners[n].owner == tree) 209 return 1; 210 return 0; 211 } 212 213 /* tagging and untagging inodes with trees */ 214 215 static struct audit_chunk *find_chunk(struct node *p) 216 { 217 int index = p->index & ~(1U<<31); 218 p -= index; 219 return container_of(p, struct audit_chunk, owners[0]); 220 } 221 222 static void untag_chunk(struct node *p) 223 { 224 struct audit_chunk *chunk = find_chunk(p); 225 struct fsnotify_mark *entry = &chunk->mark; 226 struct audit_chunk *new = NULL; 227 struct audit_tree *owner; 228 int size = chunk->count - 1; 229 int i, j; 230 231 fsnotify_get_mark(entry); 232 233 spin_unlock(&hash_lock); 234 235 if (size) 236 new = alloc_chunk(size); 237 238 spin_lock(&entry->lock); 239 if (chunk->dead || !entry->i.inode) { 240 spin_unlock(&entry->lock); 241 if (new) 242 free_chunk(new); 243 goto out; 244 } 245 246 owner = p->owner; 247 248 if (!size) { 249 chunk->dead = 1; 250 spin_lock(&hash_lock); 251 list_del_init(&chunk->trees); 252 if (owner->root == chunk) 253 owner->root = NULL; 254 list_del_init(&p->list); 255 list_del_rcu(&chunk->hash); 256 spin_unlock(&hash_lock); 257 spin_unlock(&entry->lock); 258 fsnotify_destroy_mark(entry); 259 fsnotify_put_mark(entry); 260 goto out; 261 } 262 263 if (!new) 264 goto Fallback; 265 266 fsnotify_duplicate_mark(&new->mark, entry); 267 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) { 268 free_chunk(new); 269 goto Fallback; 270 } 271 272 chunk->dead = 1; 273 spin_lock(&hash_lock); 274 list_replace_init(&chunk->trees, &new->trees); 275 if (owner->root == chunk) { 276 list_del_init(&owner->same_root); 277 owner->root = NULL; 278 } 279 280 for (i = j = 0; j <= size; i++, j++) { 281 struct audit_tree *s; 282 if (&chunk->owners[j] == p) { 283 list_del_init(&p->list); 284 i--; 285 continue; 286 } 287 s = chunk->owners[j].owner; 288 new->owners[i].owner = s; 289 new->owners[i].index = chunk->owners[j].index - j + i; 290 if (!s) /* result of earlier fallback */ 291 continue; 292 get_tree(s); 293 list_replace_init(&chunk->owners[j].list, &new->owners[i].list); 294 } 295 296 list_replace_rcu(&chunk->hash, &new->hash); 297 list_for_each_entry(owner, &new->trees, same_root) 298 owner->root = new; 299 spin_unlock(&hash_lock); 300 spin_unlock(&entry->lock); 301 fsnotify_destroy_mark(entry); 302 fsnotify_put_mark(entry); 303 goto out; 304 305 Fallback: 306 // do the best we can 307 spin_lock(&hash_lock); 308 if (owner->root == chunk) { 309 list_del_init(&owner->same_root); 310 owner->root = NULL; 311 } 312 list_del_init(&p->list); 313 p->owner = NULL; 314 put_tree(owner); 315 spin_unlock(&hash_lock); 316 spin_unlock(&entry->lock); 317 out: 318 fsnotify_put_mark(entry); 319 spin_lock(&hash_lock); 320 } 321 322 static int create_chunk(struct inode *inode, struct audit_tree *tree) 323 { 324 struct fsnotify_mark *entry; 325 struct audit_chunk *chunk = alloc_chunk(1); 326 if (!chunk) 327 return -ENOMEM; 328 329 entry = &chunk->mark; 330 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) { 331 free_chunk(chunk); 332 return -ENOSPC; 333 } 334 335 spin_lock(&entry->lock); 336 spin_lock(&hash_lock); 337 if (tree->goner) { 338 spin_unlock(&hash_lock); 339 chunk->dead = 1; 340 spin_unlock(&entry->lock); 341 fsnotify_destroy_mark(entry); 342 fsnotify_put_mark(entry); 343 return 0; 344 } 345 chunk->owners[0].index = (1U << 31); 346 chunk->owners[0].owner = tree; 347 get_tree(tree); 348 list_add(&chunk->owners[0].list, &tree->chunks); 349 if (!tree->root) { 350 tree->root = chunk; 351 list_add(&tree->same_root, &chunk->trees); 352 } 353 insert_hash(chunk); 354 spin_unlock(&hash_lock); 355 spin_unlock(&entry->lock); 356 return 0; 357 } 358 359 /* the first tagged inode becomes root of tree */ 360 static int tag_chunk(struct inode *inode, struct audit_tree *tree) 361 { 362 struct fsnotify_mark *old_entry, *chunk_entry; 363 struct audit_tree *owner; 364 struct audit_chunk *chunk, *old; 365 struct node *p; 366 int n; 367 368 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode); 369 if (!old_entry) 370 return create_chunk(inode, tree); 371 372 old = container_of(old_entry, struct audit_chunk, mark); 373 374 /* are we already there? */ 375 spin_lock(&hash_lock); 376 for (n = 0; n < old->count; n++) { 377 if (old->owners[n].owner == tree) { 378 spin_unlock(&hash_lock); 379 fsnotify_put_mark(old_entry); 380 return 0; 381 } 382 } 383 spin_unlock(&hash_lock); 384 385 chunk = alloc_chunk(old->count + 1); 386 if (!chunk) { 387 fsnotify_put_mark(old_entry); 388 return -ENOMEM; 389 } 390 391 chunk_entry = &chunk->mark; 392 393 spin_lock(&old_entry->lock); 394 if (!old_entry->i.inode) { 395 /* old_entry is being shot, lets just lie */ 396 spin_unlock(&old_entry->lock); 397 fsnotify_put_mark(old_entry); 398 free_chunk(chunk); 399 return -ENOENT; 400 } 401 402 fsnotify_duplicate_mark(chunk_entry, old_entry); 403 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) { 404 spin_unlock(&old_entry->lock); 405 free_chunk(chunk); 406 fsnotify_put_mark(old_entry); 407 return -ENOSPC; 408 } 409 410 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */ 411 spin_lock(&chunk_entry->lock); 412 spin_lock(&hash_lock); 413 414 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */ 415 if (tree->goner) { 416 spin_unlock(&hash_lock); 417 chunk->dead = 1; 418 spin_unlock(&chunk_entry->lock); 419 spin_unlock(&old_entry->lock); 420 421 fsnotify_destroy_mark(chunk_entry); 422 423 fsnotify_put_mark(chunk_entry); 424 fsnotify_put_mark(old_entry); 425 return 0; 426 } 427 list_replace_init(&old->trees, &chunk->trees); 428 for (n = 0, p = chunk->owners; n < old->count; n++, p++) { 429 struct audit_tree *s = old->owners[n].owner; 430 p->owner = s; 431 p->index = old->owners[n].index; 432 if (!s) /* result of fallback in untag */ 433 continue; 434 get_tree(s); 435 list_replace_init(&old->owners[n].list, &p->list); 436 } 437 p->index = (chunk->count - 1) | (1U<<31); 438 p->owner = tree; 439 get_tree(tree); 440 list_add(&p->list, &tree->chunks); 441 list_replace_rcu(&old->hash, &chunk->hash); 442 list_for_each_entry(owner, &chunk->trees, same_root) 443 owner->root = chunk; 444 old->dead = 1; 445 if (!tree->root) { 446 tree->root = chunk; 447 list_add(&tree->same_root, &chunk->trees); 448 } 449 spin_unlock(&hash_lock); 450 spin_unlock(&chunk_entry->lock); 451 spin_unlock(&old_entry->lock); 452 fsnotify_destroy_mark(old_entry); 453 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */ 454 fsnotify_put_mark(old_entry); /* and kill it */ 455 return 0; 456 } 457 458 static void kill_rules(struct audit_tree *tree) 459 { 460 struct audit_krule *rule, *next; 461 struct audit_entry *entry; 462 struct audit_buffer *ab; 463 464 list_for_each_entry_safe(rule, next, &tree->rules, rlist) { 465 entry = container_of(rule, struct audit_entry, rule); 466 467 list_del_init(&rule->rlist); 468 if (rule->tree) { 469 /* not a half-baked one */ 470 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 471 audit_log_format(ab, "op="); 472 audit_log_string(ab, "remove rule"); 473 audit_log_format(ab, " dir="); 474 audit_log_untrustedstring(ab, rule->tree->pathname); 475 audit_log_key(ab, rule->filterkey); 476 audit_log_format(ab, " list=%d res=1", rule->listnr); 477 audit_log_end(ab); 478 rule->tree = NULL; 479 list_del_rcu(&entry->list); 480 list_del(&entry->rule.list); 481 call_rcu(&entry->rcu, audit_free_rule_rcu); 482 } 483 } 484 } 485 486 /* 487 * finish killing struct audit_tree 488 */ 489 static void prune_one(struct audit_tree *victim) 490 { 491 spin_lock(&hash_lock); 492 while (!list_empty(&victim->chunks)) { 493 struct node *p; 494 495 p = list_entry(victim->chunks.next, struct node, list); 496 497 untag_chunk(p); 498 } 499 spin_unlock(&hash_lock); 500 put_tree(victim); 501 } 502 503 /* trim the uncommitted chunks from tree */ 504 505 static void trim_marked(struct audit_tree *tree) 506 { 507 struct list_head *p, *q; 508 spin_lock(&hash_lock); 509 if (tree->goner) { 510 spin_unlock(&hash_lock); 511 return; 512 } 513 /* reorder */ 514 for (p = tree->chunks.next; p != &tree->chunks; p = q) { 515 struct node *node = list_entry(p, struct node, list); 516 q = p->next; 517 if (node->index & (1U<<31)) { 518 list_del_init(p); 519 list_add(p, &tree->chunks); 520 } 521 } 522 523 while (!list_empty(&tree->chunks)) { 524 struct node *node; 525 526 node = list_entry(tree->chunks.next, struct node, list); 527 528 /* have we run out of marked? */ 529 if (!(node->index & (1U<<31))) 530 break; 531 532 untag_chunk(node); 533 } 534 if (!tree->root && !tree->goner) { 535 tree->goner = 1; 536 spin_unlock(&hash_lock); 537 mutex_lock(&audit_filter_mutex); 538 kill_rules(tree); 539 list_del_init(&tree->list); 540 mutex_unlock(&audit_filter_mutex); 541 prune_one(tree); 542 } else { 543 spin_unlock(&hash_lock); 544 } 545 } 546 547 static void audit_schedule_prune(void); 548 549 /* called with audit_filter_mutex */ 550 int audit_remove_tree_rule(struct audit_krule *rule) 551 { 552 struct audit_tree *tree; 553 tree = rule->tree; 554 if (tree) { 555 spin_lock(&hash_lock); 556 list_del_init(&rule->rlist); 557 if (list_empty(&tree->rules) && !tree->goner) { 558 tree->root = NULL; 559 list_del_init(&tree->same_root); 560 tree->goner = 1; 561 list_move(&tree->list, &prune_list); 562 rule->tree = NULL; 563 spin_unlock(&hash_lock); 564 audit_schedule_prune(); 565 return 1; 566 } 567 rule->tree = NULL; 568 spin_unlock(&hash_lock); 569 return 1; 570 } 571 return 0; 572 } 573 574 static int compare_root(struct vfsmount *mnt, void *arg) 575 { 576 return mnt->mnt_root->d_inode == arg; 577 } 578 579 void audit_trim_trees(void) 580 { 581 struct list_head cursor; 582 583 mutex_lock(&audit_filter_mutex); 584 list_add(&cursor, &tree_list); 585 while (cursor.next != &tree_list) { 586 struct audit_tree *tree; 587 struct path path; 588 struct vfsmount *root_mnt; 589 struct node *node; 590 int err; 591 592 tree = container_of(cursor.next, struct audit_tree, list); 593 get_tree(tree); 594 list_del(&cursor); 595 list_add(&cursor, &tree->list); 596 mutex_unlock(&audit_filter_mutex); 597 598 err = kern_path(tree->pathname, 0, &path); 599 if (err) 600 goto skip_it; 601 602 root_mnt = collect_mounts(&path); 603 path_put(&path); 604 if (!root_mnt) 605 goto skip_it; 606 607 spin_lock(&hash_lock); 608 list_for_each_entry(node, &tree->chunks, list) { 609 struct audit_chunk *chunk = find_chunk(node); 610 /* this could be NULL if the watch is dieing else where... */ 611 struct inode *inode = chunk->mark.i.inode; 612 node->index |= 1U<<31; 613 if (iterate_mounts(compare_root, inode, root_mnt)) 614 node->index &= ~(1U<<31); 615 } 616 spin_unlock(&hash_lock); 617 trim_marked(tree); 618 put_tree(tree); 619 drop_collected_mounts(root_mnt); 620 skip_it: 621 mutex_lock(&audit_filter_mutex); 622 } 623 list_del(&cursor); 624 mutex_unlock(&audit_filter_mutex); 625 } 626 627 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) 628 { 629 630 if (pathname[0] != '/' || 631 rule->listnr != AUDIT_FILTER_EXIT || 632 op != Audit_equal || 633 rule->inode_f || rule->watch || rule->tree) 634 return -EINVAL; 635 rule->tree = alloc_tree(pathname); 636 if (!rule->tree) 637 return -ENOMEM; 638 return 0; 639 } 640 641 void audit_put_tree(struct audit_tree *tree) 642 { 643 put_tree(tree); 644 } 645 646 static int tag_mount(struct vfsmount *mnt, void *arg) 647 { 648 return tag_chunk(mnt->mnt_root->d_inode, arg); 649 } 650 651 /* called with audit_filter_mutex */ 652 int audit_add_tree_rule(struct audit_krule *rule) 653 { 654 struct audit_tree *seed = rule->tree, *tree; 655 struct path path; 656 struct vfsmount *mnt; 657 int err; 658 659 list_for_each_entry(tree, &tree_list, list) { 660 if (!strcmp(seed->pathname, tree->pathname)) { 661 put_tree(seed); 662 rule->tree = tree; 663 list_add(&rule->rlist, &tree->rules); 664 return 0; 665 } 666 } 667 tree = seed; 668 list_add(&tree->list, &tree_list); 669 list_add(&rule->rlist, &tree->rules); 670 /* do not set rule->tree yet */ 671 mutex_unlock(&audit_filter_mutex); 672 673 err = kern_path(tree->pathname, 0, &path); 674 if (err) 675 goto Err; 676 mnt = collect_mounts(&path); 677 path_put(&path); 678 if (!mnt) { 679 err = -ENOMEM; 680 goto Err; 681 } 682 683 get_tree(tree); 684 err = iterate_mounts(tag_mount, tree, mnt); 685 drop_collected_mounts(mnt); 686 687 if (!err) { 688 struct node *node; 689 spin_lock(&hash_lock); 690 list_for_each_entry(node, &tree->chunks, list) 691 node->index &= ~(1U<<31); 692 spin_unlock(&hash_lock); 693 } else { 694 trim_marked(tree); 695 goto Err; 696 } 697 698 mutex_lock(&audit_filter_mutex); 699 if (list_empty(&rule->rlist)) { 700 put_tree(tree); 701 return -ENOENT; 702 } 703 rule->tree = tree; 704 put_tree(tree); 705 706 return 0; 707 Err: 708 mutex_lock(&audit_filter_mutex); 709 list_del_init(&tree->list); 710 list_del_init(&tree->rules); 711 put_tree(tree); 712 return err; 713 } 714 715 int audit_tag_tree(char *old, char *new) 716 { 717 struct list_head cursor, barrier; 718 int failed = 0; 719 struct path path1, path2; 720 struct vfsmount *tagged; 721 int err; 722 723 err = kern_path(new, 0, &path2); 724 if (err) 725 return err; 726 tagged = collect_mounts(&path2); 727 path_put(&path2); 728 if (!tagged) 729 return -ENOMEM; 730 731 err = kern_path(old, 0, &path1); 732 if (err) { 733 drop_collected_mounts(tagged); 734 return err; 735 } 736 737 mutex_lock(&audit_filter_mutex); 738 list_add(&barrier, &tree_list); 739 list_add(&cursor, &barrier); 740 741 while (cursor.next != &tree_list) { 742 struct audit_tree *tree; 743 int good_one = 0; 744 745 tree = container_of(cursor.next, struct audit_tree, list); 746 get_tree(tree); 747 list_del(&cursor); 748 list_add(&cursor, &tree->list); 749 mutex_unlock(&audit_filter_mutex); 750 751 err = kern_path(tree->pathname, 0, &path2); 752 if (!err) { 753 good_one = path_is_under(&path1, &path2); 754 path_put(&path2); 755 } 756 757 if (!good_one) { 758 put_tree(tree); 759 mutex_lock(&audit_filter_mutex); 760 continue; 761 } 762 763 failed = iterate_mounts(tag_mount, tree, tagged); 764 if (failed) { 765 put_tree(tree); 766 mutex_lock(&audit_filter_mutex); 767 break; 768 } 769 770 mutex_lock(&audit_filter_mutex); 771 spin_lock(&hash_lock); 772 if (!tree->goner) { 773 list_del(&tree->list); 774 list_add(&tree->list, &tree_list); 775 } 776 spin_unlock(&hash_lock); 777 put_tree(tree); 778 } 779 780 while (barrier.prev != &tree_list) { 781 struct audit_tree *tree; 782 783 tree = container_of(barrier.prev, struct audit_tree, list); 784 get_tree(tree); 785 list_del(&tree->list); 786 list_add(&tree->list, &barrier); 787 mutex_unlock(&audit_filter_mutex); 788 789 if (!failed) { 790 struct node *node; 791 spin_lock(&hash_lock); 792 list_for_each_entry(node, &tree->chunks, list) 793 node->index &= ~(1U<<31); 794 spin_unlock(&hash_lock); 795 } else { 796 trim_marked(tree); 797 } 798 799 put_tree(tree); 800 mutex_lock(&audit_filter_mutex); 801 } 802 list_del(&barrier); 803 list_del(&cursor); 804 mutex_unlock(&audit_filter_mutex); 805 path_put(&path1); 806 drop_collected_mounts(tagged); 807 return failed; 808 } 809 810 /* 811 * That gets run when evict_chunk() ends up needing to kill audit_tree. 812 * Runs from a separate thread. 813 */ 814 static int prune_tree_thread(void *unused) 815 { 816 mutex_lock(&audit_cmd_mutex); 817 mutex_lock(&audit_filter_mutex); 818 819 while (!list_empty(&prune_list)) { 820 struct audit_tree *victim; 821 822 victim = list_entry(prune_list.next, struct audit_tree, list); 823 list_del_init(&victim->list); 824 825 mutex_unlock(&audit_filter_mutex); 826 827 prune_one(victim); 828 829 mutex_lock(&audit_filter_mutex); 830 } 831 832 mutex_unlock(&audit_filter_mutex); 833 mutex_unlock(&audit_cmd_mutex); 834 return 0; 835 } 836 837 static void audit_schedule_prune(void) 838 { 839 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 840 } 841 842 /* 843 * ... and that one is done if evict_chunk() decides to delay until the end 844 * of syscall. Runs synchronously. 845 */ 846 void audit_kill_trees(struct list_head *list) 847 { 848 mutex_lock(&audit_cmd_mutex); 849 mutex_lock(&audit_filter_mutex); 850 851 while (!list_empty(list)) { 852 struct audit_tree *victim; 853 854 victim = list_entry(list->next, struct audit_tree, list); 855 kill_rules(victim); 856 list_del_init(&victim->list); 857 858 mutex_unlock(&audit_filter_mutex); 859 860 prune_one(victim); 861 862 mutex_lock(&audit_filter_mutex); 863 } 864 865 mutex_unlock(&audit_filter_mutex); 866 mutex_unlock(&audit_cmd_mutex); 867 } 868 869 /* 870 * Here comes the stuff asynchronous to auditctl operations 871 */ 872 873 static void evict_chunk(struct audit_chunk *chunk) 874 { 875 struct audit_tree *owner; 876 struct list_head *postponed = audit_killed_trees(); 877 int need_prune = 0; 878 int n; 879 880 if (chunk->dead) 881 return; 882 883 chunk->dead = 1; 884 mutex_lock(&audit_filter_mutex); 885 spin_lock(&hash_lock); 886 while (!list_empty(&chunk->trees)) { 887 owner = list_entry(chunk->trees.next, 888 struct audit_tree, same_root); 889 owner->goner = 1; 890 owner->root = NULL; 891 list_del_init(&owner->same_root); 892 spin_unlock(&hash_lock); 893 if (!postponed) { 894 kill_rules(owner); 895 list_move(&owner->list, &prune_list); 896 need_prune = 1; 897 } else { 898 list_move(&owner->list, postponed); 899 } 900 spin_lock(&hash_lock); 901 } 902 list_del_rcu(&chunk->hash); 903 for (n = 0; n < chunk->count; n++) 904 list_del_init(&chunk->owners[n].list); 905 spin_unlock(&hash_lock); 906 if (need_prune) 907 audit_schedule_prune(); 908 mutex_unlock(&audit_filter_mutex); 909 } 910 911 static int audit_tree_handle_event(struct fsnotify_group *group, 912 struct fsnotify_mark *inode_mark, 913 struct fsnotify_mark *vfsmonut_mark, 914 struct fsnotify_event *event) 915 { 916 BUG(); 917 return -EOPNOTSUPP; 918 } 919 920 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group) 921 { 922 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark); 923 924 evict_chunk(chunk); 925 fsnotify_put_mark(entry); 926 } 927 928 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode, 929 struct fsnotify_mark *inode_mark, 930 struct fsnotify_mark *vfsmount_mark, 931 __u32 mask, void *data, int data_type) 932 { 933 return false; 934 } 935 936 static const struct fsnotify_ops audit_tree_ops = { 937 .handle_event = audit_tree_handle_event, 938 .should_send_event = audit_tree_send_event, 939 .free_group_priv = NULL, 940 .free_event_priv = NULL, 941 .freeing_mark = audit_tree_freeing_mark, 942 }; 943 944 static int __init audit_tree_init(void) 945 { 946 int i; 947 948 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); 949 if (IS_ERR(audit_tree_group)) 950 audit_panic("cannot initialize fsnotify group for rectree watches"); 951 952 for (i = 0; i < HASH_SIZE; i++) 953 INIT_LIST_HEAD(&chunk_hash_heads[i]); 954 955 return 0; 956 } 957 __initcall(audit_tree_init); 958