xref: /openbmc/linux/kernel/audit_tree.c (revision 25985edc)
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7 
8 struct audit_tree;
9 struct audit_chunk;
10 
11 struct audit_tree {
12 	atomic_t count;
13 	int goner;
14 	struct audit_chunk *root;
15 	struct list_head chunks;
16 	struct list_head rules;
17 	struct list_head list;
18 	struct list_head same_root;
19 	struct rcu_head head;
20 	char pathname[];
21 };
22 
23 struct audit_chunk {
24 	struct list_head hash;
25 	struct fsnotify_mark mark;
26 	struct list_head trees;		/* with root here */
27 	int dead;
28 	int count;
29 	atomic_long_t refs;
30 	struct rcu_head head;
31 	struct node {
32 		struct list_head list;
33 		struct audit_tree *owner;
34 		unsigned index;		/* index; upper bit indicates 'will prune' */
35 	} owners[];
36 };
37 
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 
41 /*
42  * One struct chunk is attached to each inode of interest.
43  * We replace struct chunk on tagging/untagging.
44  * Rules have pointer to struct audit_tree.
45  * Rules have struct list_head rlist forming a list of rules over
46  * the same tree.
47  * References to struct chunk are collected at audit_inode{,_child}()
48  * time and used in AUDIT_TREE rule matching.
49  * These references are dropped at the same time we are calling
50  * audit_free_names(), etc.
51  *
52  * Cyclic lists galore:
53  * tree.chunks anchors chunk.owners[].list			hash_lock
54  * tree.rules anchors rule.rlist				audit_filter_mutex
55  * chunk.trees anchors tree.same_root				hash_lock
56  * chunk.hash is a hash with middle bits of watch.inode as
57  * a hash function.						RCU, hash_lock
58  *
59  * tree is refcounted; one reference for "some rules on rules_list refer to
60  * it", one for each chunk with pointer to it.
61  *
62  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63  * of watch contributes 1 to .refs).
64  *
65  * node.index allows to get from node.list to containing chunk.
66  * MSB of that sucker is stolen to mark taggings that we might have to
67  * revert - several operations have very unpleasant cleanup logics and
68  * that makes a difference.  Some.
69  */
70 
71 static struct fsnotify_group *audit_tree_group;
72 
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75 	struct audit_tree *tree;
76 
77 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 	if (tree) {
79 		atomic_set(&tree->count, 1);
80 		tree->goner = 0;
81 		INIT_LIST_HEAD(&tree->chunks);
82 		INIT_LIST_HEAD(&tree->rules);
83 		INIT_LIST_HEAD(&tree->list);
84 		INIT_LIST_HEAD(&tree->same_root);
85 		tree->root = NULL;
86 		strcpy(tree->pathname, s);
87 	}
88 	return tree;
89 }
90 
91 static inline void get_tree(struct audit_tree *tree)
92 {
93 	atomic_inc(&tree->count);
94 }
95 
96 static void __put_tree(struct rcu_head *rcu)
97 {
98 	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
99 	kfree(tree);
100 }
101 
102 static inline void put_tree(struct audit_tree *tree)
103 {
104 	if (atomic_dec_and_test(&tree->count))
105 		call_rcu(&tree->head, __put_tree);
106 }
107 
108 /* to avoid bringing the entire thing in audit.h */
109 const char *audit_tree_path(struct audit_tree *tree)
110 {
111 	return tree->pathname;
112 }
113 
114 static void free_chunk(struct audit_chunk *chunk)
115 {
116 	int i;
117 
118 	for (i = 0; i < chunk->count; i++) {
119 		if (chunk->owners[i].owner)
120 			put_tree(chunk->owners[i].owner);
121 	}
122 	kfree(chunk);
123 }
124 
125 void audit_put_chunk(struct audit_chunk *chunk)
126 {
127 	if (atomic_long_dec_and_test(&chunk->refs))
128 		free_chunk(chunk);
129 }
130 
131 static void __put_chunk(struct rcu_head *rcu)
132 {
133 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
134 	audit_put_chunk(chunk);
135 }
136 
137 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
138 {
139 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
140 	call_rcu(&chunk->head, __put_chunk);
141 }
142 
143 static struct audit_chunk *alloc_chunk(int count)
144 {
145 	struct audit_chunk *chunk;
146 	size_t size;
147 	int i;
148 
149 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
150 	chunk = kzalloc(size, GFP_KERNEL);
151 	if (!chunk)
152 		return NULL;
153 
154 	INIT_LIST_HEAD(&chunk->hash);
155 	INIT_LIST_HEAD(&chunk->trees);
156 	chunk->count = count;
157 	atomic_long_set(&chunk->refs, 1);
158 	for (i = 0; i < count; i++) {
159 		INIT_LIST_HEAD(&chunk->owners[i].list);
160 		chunk->owners[i].index = i;
161 	}
162 	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
163 	return chunk;
164 }
165 
166 enum {HASH_SIZE = 128};
167 static struct list_head chunk_hash_heads[HASH_SIZE];
168 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
169 
170 static inline struct list_head *chunk_hash(const struct inode *inode)
171 {
172 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
173 	return chunk_hash_heads + n % HASH_SIZE;
174 }
175 
176 /* hash_lock & entry->lock is held by caller */
177 static void insert_hash(struct audit_chunk *chunk)
178 {
179 	struct fsnotify_mark *entry = &chunk->mark;
180 	struct list_head *list;
181 
182 	if (!entry->i.inode)
183 		return;
184 	list = chunk_hash(entry->i.inode);
185 	list_add_rcu(&chunk->hash, list);
186 }
187 
188 /* called under rcu_read_lock */
189 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
190 {
191 	struct list_head *list = chunk_hash(inode);
192 	struct audit_chunk *p;
193 
194 	list_for_each_entry_rcu(p, list, hash) {
195 		/* mark.inode may have gone NULL, but who cares? */
196 		if (p->mark.i.inode == inode) {
197 			atomic_long_inc(&p->refs);
198 			return p;
199 		}
200 	}
201 	return NULL;
202 }
203 
204 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
205 {
206 	int n;
207 	for (n = 0; n < chunk->count; n++)
208 		if (chunk->owners[n].owner == tree)
209 			return 1;
210 	return 0;
211 }
212 
213 /* tagging and untagging inodes with trees */
214 
215 static struct audit_chunk *find_chunk(struct node *p)
216 {
217 	int index = p->index & ~(1U<<31);
218 	p -= index;
219 	return container_of(p, struct audit_chunk, owners[0]);
220 }
221 
222 static void untag_chunk(struct node *p)
223 {
224 	struct audit_chunk *chunk = find_chunk(p);
225 	struct fsnotify_mark *entry = &chunk->mark;
226 	struct audit_chunk *new = NULL;
227 	struct audit_tree *owner;
228 	int size = chunk->count - 1;
229 	int i, j;
230 
231 	fsnotify_get_mark(entry);
232 
233 	spin_unlock(&hash_lock);
234 
235 	if (size)
236 		new = alloc_chunk(size);
237 
238 	spin_lock(&entry->lock);
239 	if (chunk->dead || !entry->i.inode) {
240 		spin_unlock(&entry->lock);
241 		if (new)
242 			free_chunk(new);
243 		goto out;
244 	}
245 
246 	owner = p->owner;
247 
248 	if (!size) {
249 		chunk->dead = 1;
250 		spin_lock(&hash_lock);
251 		list_del_init(&chunk->trees);
252 		if (owner->root == chunk)
253 			owner->root = NULL;
254 		list_del_init(&p->list);
255 		list_del_rcu(&chunk->hash);
256 		spin_unlock(&hash_lock);
257 		spin_unlock(&entry->lock);
258 		fsnotify_destroy_mark(entry);
259 		fsnotify_put_mark(entry);
260 		goto out;
261 	}
262 
263 	if (!new)
264 		goto Fallback;
265 
266 	fsnotify_duplicate_mark(&new->mark, entry);
267 	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
268 		free_chunk(new);
269 		goto Fallback;
270 	}
271 
272 	chunk->dead = 1;
273 	spin_lock(&hash_lock);
274 	list_replace_init(&chunk->trees, &new->trees);
275 	if (owner->root == chunk) {
276 		list_del_init(&owner->same_root);
277 		owner->root = NULL;
278 	}
279 
280 	for (i = j = 0; j <= size; i++, j++) {
281 		struct audit_tree *s;
282 		if (&chunk->owners[j] == p) {
283 			list_del_init(&p->list);
284 			i--;
285 			continue;
286 		}
287 		s = chunk->owners[j].owner;
288 		new->owners[i].owner = s;
289 		new->owners[i].index = chunk->owners[j].index - j + i;
290 		if (!s) /* result of earlier fallback */
291 			continue;
292 		get_tree(s);
293 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
294 	}
295 
296 	list_replace_rcu(&chunk->hash, &new->hash);
297 	list_for_each_entry(owner, &new->trees, same_root)
298 		owner->root = new;
299 	spin_unlock(&hash_lock);
300 	spin_unlock(&entry->lock);
301 	fsnotify_destroy_mark(entry);
302 	fsnotify_put_mark(entry);
303 	goto out;
304 
305 Fallback:
306 	// do the best we can
307 	spin_lock(&hash_lock);
308 	if (owner->root == chunk) {
309 		list_del_init(&owner->same_root);
310 		owner->root = NULL;
311 	}
312 	list_del_init(&p->list);
313 	p->owner = NULL;
314 	put_tree(owner);
315 	spin_unlock(&hash_lock);
316 	spin_unlock(&entry->lock);
317 out:
318 	fsnotify_put_mark(entry);
319 	spin_lock(&hash_lock);
320 }
321 
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
323 {
324 	struct fsnotify_mark *entry;
325 	struct audit_chunk *chunk = alloc_chunk(1);
326 	if (!chunk)
327 		return -ENOMEM;
328 
329 	entry = &chunk->mark;
330 	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
331 		free_chunk(chunk);
332 		return -ENOSPC;
333 	}
334 
335 	spin_lock(&entry->lock);
336 	spin_lock(&hash_lock);
337 	if (tree->goner) {
338 		spin_unlock(&hash_lock);
339 		chunk->dead = 1;
340 		spin_unlock(&entry->lock);
341 		fsnotify_destroy_mark(entry);
342 		fsnotify_put_mark(entry);
343 		return 0;
344 	}
345 	chunk->owners[0].index = (1U << 31);
346 	chunk->owners[0].owner = tree;
347 	get_tree(tree);
348 	list_add(&chunk->owners[0].list, &tree->chunks);
349 	if (!tree->root) {
350 		tree->root = chunk;
351 		list_add(&tree->same_root, &chunk->trees);
352 	}
353 	insert_hash(chunk);
354 	spin_unlock(&hash_lock);
355 	spin_unlock(&entry->lock);
356 	return 0;
357 }
358 
359 /* the first tagged inode becomes root of tree */
360 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
361 {
362 	struct fsnotify_mark *old_entry, *chunk_entry;
363 	struct audit_tree *owner;
364 	struct audit_chunk *chunk, *old;
365 	struct node *p;
366 	int n;
367 
368 	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
369 	if (!old_entry)
370 		return create_chunk(inode, tree);
371 
372 	old = container_of(old_entry, struct audit_chunk, mark);
373 
374 	/* are we already there? */
375 	spin_lock(&hash_lock);
376 	for (n = 0; n < old->count; n++) {
377 		if (old->owners[n].owner == tree) {
378 			spin_unlock(&hash_lock);
379 			fsnotify_put_mark(old_entry);
380 			return 0;
381 		}
382 	}
383 	spin_unlock(&hash_lock);
384 
385 	chunk = alloc_chunk(old->count + 1);
386 	if (!chunk) {
387 		fsnotify_put_mark(old_entry);
388 		return -ENOMEM;
389 	}
390 
391 	chunk_entry = &chunk->mark;
392 
393 	spin_lock(&old_entry->lock);
394 	if (!old_entry->i.inode) {
395 		/* old_entry is being shot, lets just lie */
396 		spin_unlock(&old_entry->lock);
397 		fsnotify_put_mark(old_entry);
398 		free_chunk(chunk);
399 		return -ENOENT;
400 	}
401 
402 	fsnotify_duplicate_mark(chunk_entry, old_entry);
403 	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
404 		spin_unlock(&old_entry->lock);
405 		free_chunk(chunk);
406 		fsnotify_put_mark(old_entry);
407 		return -ENOSPC;
408 	}
409 
410 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
411 	spin_lock(&chunk_entry->lock);
412 	spin_lock(&hash_lock);
413 
414 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
415 	if (tree->goner) {
416 		spin_unlock(&hash_lock);
417 		chunk->dead = 1;
418 		spin_unlock(&chunk_entry->lock);
419 		spin_unlock(&old_entry->lock);
420 
421 		fsnotify_destroy_mark(chunk_entry);
422 
423 		fsnotify_put_mark(chunk_entry);
424 		fsnotify_put_mark(old_entry);
425 		return 0;
426 	}
427 	list_replace_init(&old->trees, &chunk->trees);
428 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
429 		struct audit_tree *s = old->owners[n].owner;
430 		p->owner = s;
431 		p->index = old->owners[n].index;
432 		if (!s) /* result of fallback in untag */
433 			continue;
434 		get_tree(s);
435 		list_replace_init(&old->owners[n].list, &p->list);
436 	}
437 	p->index = (chunk->count - 1) | (1U<<31);
438 	p->owner = tree;
439 	get_tree(tree);
440 	list_add(&p->list, &tree->chunks);
441 	list_replace_rcu(&old->hash, &chunk->hash);
442 	list_for_each_entry(owner, &chunk->trees, same_root)
443 		owner->root = chunk;
444 	old->dead = 1;
445 	if (!tree->root) {
446 		tree->root = chunk;
447 		list_add(&tree->same_root, &chunk->trees);
448 	}
449 	spin_unlock(&hash_lock);
450 	spin_unlock(&chunk_entry->lock);
451 	spin_unlock(&old_entry->lock);
452 	fsnotify_destroy_mark(old_entry);
453 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
454 	fsnotify_put_mark(old_entry); /* and kill it */
455 	return 0;
456 }
457 
458 static void kill_rules(struct audit_tree *tree)
459 {
460 	struct audit_krule *rule, *next;
461 	struct audit_entry *entry;
462 	struct audit_buffer *ab;
463 
464 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
465 		entry = container_of(rule, struct audit_entry, rule);
466 
467 		list_del_init(&rule->rlist);
468 		if (rule->tree) {
469 			/* not a half-baked one */
470 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
471 			audit_log_format(ab, "op=");
472 			audit_log_string(ab, "remove rule");
473 			audit_log_format(ab, " dir=");
474 			audit_log_untrustedstring(ab, rule->tree->pathname);
475 			audit_log_key(ab, rule->filterkey);
476 			audit_log_format(ab, " list=%d res=1", rule->listnr);
477 			audit_log_end(ab);
478 			rule->tree = NULL;
479 			list_del_rcu(&entry->list);
480 			list_del(&entry->rule.list);
481 			call_rcu(&entry->rcu, audit_free_rule_rcu);
482 		}
483 	}
484 }
485 
486 /*
487  * finish killing struct audit_tree
488  */
489 static void prune_one(struct audit_tree *victim)
490 {
491 	spin_lock(&hash_lock);
492 	while (!list_empty(&victim->chunks)) {
493 		struct node *p;
494 
495 		p = list_entry(victim->chunks.next, struct node, list);
496 
497 		untag_chunk(p);
498 	}
499 	spin_unlock(&hash_lock);
500 	put_tree(victim);
501 }
502 
503 /* trim the uncommitted chunks from tree */
504 
505 static void trim_marked(struct audit_tree *tree)
506 {
507 	struct list_head *p, *q;
508 	spin_lock(&hash_lock);
509 	if (tree->goner) {
510 		spin_unlock(&hash_lock);
511 		return;
512 	}
513 	/* reorder */
514 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
515 		struct node *node = list_entry(p, struct node, list);
516 		q = p->next;
517 		if (node->index & (1U<<31)) {
518 			list_del_init(p);
519 			list_add(p, &tree->chunks);
520 		}
521 	}
522 
523 	while (!list_empty(&tree->chunks)) {
524 		struct node *node;
525 
526 		node = list_entry(tree->chunks.next, struct node, list);
527 
528 		/* have we run out of marked? */
529 		if (!(node->index & (1U<<31)))
530 			break;
531 
532 		untag_chunk(node);
533 	}
534 	if (!tree->root && !tree->goner) {
535 		tree->goner = 1;
536 		spin_unlock(&hash_lock);
537 		mutex_lock(&audit_filter_mutex);
538 		kill_rules(tree);
539 		list_del_init(&tree->list);
540 		mutex_unlock(&audit_filter_mutex);
541 		prune_one(tree);
542 	} else {
543 		spin_unlock(&hash_lock);
544 	}
545 }
546 
547 static void audit_schedule_prune(void);
548 
549 /* called with audit_filter_mutex */
550 int audit_remove_tree_rule(struct audit_krule *rule)
551 {
552 	struct audit_tree *tree;
553 	tree = rule->tree;
554 	if (tree) {
555 		spin_lock(&hash_lock);
556 		list_del_init(&rule->rlist);
557 		if (list_empty(&tree->rules) && !tree->goner) {
558 			tree->root = NULL;
559 			list_del_init(&tree->same_root);
560 			tree->goner = 1;
561 			list_move(&tree->list, &prune_list);
562 			rule->tree = NULL;
563 			spin_unlock(&hash_lock);
564 			audit_schedule_prune();
565 			return 1;
566 		}
567 		rule->tree = NULL;
568 		spin_unlock(&hash_lock);
569 		return 1;
570 	}
571 	return 0;
572 }
573 
574 static int compare_root(struct vfsmount *mnt, void *arg)
575 {
576 	return mnt->mnt_root->d_inode == arg;
577 }
578 
579 void audit_trim_trees(void)
580 {
581 	struct list_head cursor;
582 
583 	mutex_lock(&audit_filter_mutex);
584 	list_add(&cursor, &tree_list);
585 	while (cursor.next != &tree_list) {
586 		struct audit_tree *tree;
587 		struct path path;
588 		struct vfsmount *root_mnt;
589 		struct node *node;
590 		int err;
591 
592 		tree = container_of(cursor.next, struct audit_tree, list);
593 		get_tree(tree);
594 		list_del(&cursor);
595 		list_add(&cursor, &tree->list);
596 		mutex_unlock(&audit_filter_mutex);
597 
598 		err = kern_path(tree->pathname, 0, &path);
599 		if (err)
600 			goto skip_it;
601 
602 		root_mnt = collect_mounts(&path);
603 		path_put(&path);
604 		if (!root_mnt)
605 			goto skip_it;
606 
607 		spin_lock(&hash_lock);
608 		list_for_each_entry(node, &tree->chunks, list) {
609 			struct audit_chunk *chunk = find_chunk(node);
610 			/* this could be NULL if the watch is dying else where... */
611 			struct inode *inode = chunk->mark.i.inode;
612 			node->index |= 1U<<31;
613 			if (iterate_mounts(compare_root, inode, root_mnt))
614 				node->index &= ~(1U<<31);
615 		}
616 		spin_unlock(&hash_lock);
617 		trim_marked(tree);
618 		put_tree(tree);
619 		drop_collected_mounts(root_mnt);
620 skip_it:
621 		mutex_lock(&audit_filter_mutex);
622 	}
623 	list_del(&cursor);
624 	mutex_unlock(&audit_filter_mutex);
625 }
626 
627 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
628 {
629 
630 	if (pathname[0] != '/' ||
631 	    rule->listnr != AUDIT_FILTER_EXIT ||
632 	    op != Audit_equal ||
633 	    rule->inode_f || rule->watch || rule->tree)
634 		return -EINVAL;
635 	rule->tree = alloc_tree(pathname);
636 	if (!rule->tree)
637 		return -ENOMEM;
638 	return 0;
639 }
640 
641 void audit_put_tree(struct audit_tree *tree)
642 {
643 	put_tree(tree);
644 }
645 
646 static int tag_mount(struct vfsmount *mnt, void *arg)
647 {
648 	return tag_chunk(mnt->mnt_root->d_inode, arg);
649 }
650 
651 /* called with audit_filter_mutex */
652 int audit_add_tree_rule(struct audit_krule *rule)
653 {
654 	struct audit_tree *seed = rule->tree, *tree;
655 	struct path path;
656 	struct vfsmount *mnt;
657 	int err;
658 
659 	list_for_each_entry(tree, &tree_list, list) {
660 		if (!strcmp(seed->pathname, tree->pathname)) {
661 			put_tree(seed);
662 			rule->tree = tree;
663 			list_add(&rule->rlist, &tree->rules);
664 			return 0;
665 		}
666 	}
667 	tree = seed;
668 	list_add(&tree->list, &tree_list);
669 	list_add(&rule->rlist, &tree->rules);
670 	/* do not set rule->tree yet */
671 	mutex_unlock(&audit_filter_mutex);
672 
673 	err = kern_path(tree->pathname, 0, &path);
674 	if (err)
675 		goto Err;
676 	mnt = collect_mounts(&path);
677 	path_put(&path);
678 	if (!mnt) {
679 		err = -ENOMEM;
680 		goto Err;
681 	}
682 
683 	get_tree(tree);
684 	err = iterate_mounts(tag_mount, tree, mnt);
685 	drop_collected_mounts(mnt);
686 
687 	if (!err) {
688 		struct node *node;
689 		spin_lock(&hash_lock);
690 		list_for_each_entry(node, &tree->chunks, list)
691 			node->index &= ~(1U<<31);
692 		spin_unlock(&hash_lock);
693 	} else {
694 		trim_marked(tree);
695 		goto Err;
696 	}
697 
698 	mutex_lock(&audit_filter_mutex);
699 	if (list_empty(&rule->rlist)) {
700 		put_tree(tree);
701 		return -ENOENT;
702 	}
703 	rule->tree = tree;
704 	put_tree(tree);
705 
706 	return 0;
707 Err:
708 	mutex_lock(&audit_filter_mutex);
709 	list_del_init(&tree->list);
710 	list_del_init(&tree->rules);
711 	put_tree(tree);
712 	return err;
713 }
714 
715 int audit_tag_tree(char *old, char *new)
716 {
717 	struct list_head cursor, barrier;
718 	int failed = 0;
719 	struct path path1, path2;
720 	struct vfsmount *tagged;
721 	int err;
722 
723 	err = kern_path(new, 0, &path2);
724 	if (err)
725 		return err;
726 	tagged = collect_mounts(&path2);
727 	path_put(&path2);
728 	if (!tagged)
729 		return -ENOMEM;
730 
731 	err = kern_path(old, 0, &path1);
732 	if (err) {
733 		drop_collected_mounts(tagged);
734 		return err;
735 	}
736 
737 	mutex_lock(&audit_filter_mutex);
738 	list_add(&barrier, &tree_list);
739 	list_add(&cursor, &barrier);
740 
741 	while (cursor.next != &tree_list) {
742 		struct audit_tree *tree;
743 		int good_one = 0;
744 
745 		tree = container_of(cursor.next, struct audit_tree, list);
746 		get_tree(tree);
747 		list_del(&cursor);
748 		list_add(&cursor, &tree->list);
749 		mutex_unlock(&audit_filter_mutex);
750 
751 		err = kern_path(tree->pathname, 0, &path2);
752 		if (!err) {
753 			good_one = path_is_under(&path1, &path2);
754 			path_put(&path2);
755 		}
756 
757 		if (!good_one) {
758 			put_tree(tree);
759 			mutex_lock(&audit_filter_mutex);
760 			continue;
761 		}
762 
763 		failed = iterate_mounts(tag_mount, tree, tagged);
764 		if (failed) {
765 			put_tree(tree);
766 			mutex_lock(&audit_filter_mutex);
767 			break;
768 		}
769 
770 		mutex_lock(&audit_filter_mutex);
771 		spin_lock(&hash_lock);
772 		if (!tree->goner) {
773 			list_del(&tree->list);
774 			list_add(&tree->list, &tree_list);
775 		}
776 		spin_unlock(&hash_lock);
777 		put_tree(tree);
778 	}
779 
780 	while (barrier.prev != &tree_list) {
781 		struct audit_tree *tree;
782 
783 		tree = container_of(barrier.prev, struct audit_tree, list);
784 		get_tree(tree);
785 		list_del(&tree->list);
786 		list_add(&tree->list, &barrier);
787 		mutex_unlock(&audit_filter_mutex);
788 
789 		if (!failed) {
790 			struct node *node;
791 			spin_lock(&hash_lock);
792 			list_for_each_entry(node, &tree->chunks, list)
793 				node->index &= ~(1U<<31);
794 			spin_unlock(&hash_lock);
795 		} else {
796 			trim_marked(tree);
797 		}
798 
799 		put_tree(tree);
800 		mutex_lock(&audit_filter_mutex);
801 	}
802 	list_del(&barrier);
803 	list_del(&cursor);
804 	mutex_unlock(&audit_filter_mutex);
805 	path_put(&path1);
806 	drop_collected_mounts(tagged);
807 	return failed;
808 }
809 
810 /*
811  * That gets run when evict_chunk() ends up needing to kill audit_tree.
812  * Runs from a separate thread.
813  */
814 static int prune_tree_thread(void *unused)
815 {
816 	mutex_lock(&audit_cmd_mutex);
817 	mutex_lock(&audit_filter_mutex);
818 
819 	while (!list_empty(&prune_list)) {
820 		struct audit_tree *victim;
821 
822 		victim = list_entry(prune_list.next, struct audit_tree, list);
823 		list_del_init(&victim->list);
824 
825 		mutex_unlock(&audit_filter_mutex);
826 
827 		prune_one(victim);
828 
829 		mutex_lock(&audit_filter_mutex);
830 	}
831 
832 	mutex_unlock(&audit_filter_mutex);
833 	mutex_unlock(&audit_cmd_mutex);
834 	return 0;
835 }
836 
837 static void audit_schedule_prune(void)
838 {
839 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
840 }
841 
842 /*
843  * ... and that one is done if evict_chunk() decides to delay until the end
844  * of syscall.  Runs synchronously.
845  */
846 void audit_kill_trees(struct list_head *list)
847 {
848 	mutex_lock(&audit_cmd_mutex);
849 	mutex_lock(&audit_filter_mutex);
850 
851 	while (!list_empty(list)) {
852 		struct audit_tree *victim;
853 
854 		victim = list_entry(list->next, struct audit_tree, list);
855 		kill_rules(victim);
856 		list_del_init(&victim->list);
857 
858 		mutex_unlock(&audit_filter_mutex);
859 
860 		prune_one(victim);
861 
862 		mutex_lock(&audit_filter_mutex);
863 	}
864 
865 	mutex_unlock(&audit_filter_mutex);
866 	mutex_unlock(&audit_cmd_mutex);
867 }
868 
869 /*
870  *  Here comes the stuff asynchronous to auditctl operations
871  */
872 
873 static void evict_chunk(struct audit_chunk *chunk)
874 {
875 	struct audit_tree *owner;
876 	struct list_head *postponed = audit_killed_trees();
877 	int need_prune = 0;
878 	int n;
879 
880 	if (chunk->dead)
881 		return;
882 
883 	chunk->dead = 1;
884 	mutex_lock(&audit_filter_mutex);
885 	spin_lock(&hash_lock);
886 	while (!list_empty(&chunk->trees)) {
887 		owner = list_entry(chunk->trees.next,
888 				   struct audit_tree, same_root);
889 		owner->goner = 1;
890 		owner->root = NULL;
891 		list_del_init(&owner->same_root);
892 		spin_unlock(&hash_lock);
893 		if (!postponed) {
894 			kill_rules(owner);
895 			list_move(&owner->list, &prune_list);
896 			need_prune = 1;
897 		} else {
898 			list_move(&owner->list, postponed);
899 		}
900 		spin_lock(&hash_lock);
901 	}
902 	list_del_rcu(&chunk->hash);
903 	for (n = 0; n < chunk->count; n++)
904 		list_del_init(&chunk->owners[n].list);
905 	spin_unlock(&hash_lock);
906 	if (need_prune)
907 		audit_schedule_prune();
908 	mutex_unlock(&audit_filter_mutex);
909 }
910 
911 static int audit_tree_handle_event(struct fsnotify_group *group,
912 				   struct fsnotify_mark *inode_mark,
913 				   struct fsnotify_mark *vfsmonut_mark,
914 				   struct fsnotify_event *event)
915 {
916 	BUG();
917 	return -EOPNOTSUPP;
918 }
919 
920 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
921 {
922 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
923 
924 	evict_chunk(chunk);
925 	fsnotify_put_mark(entry);
926 }
927 
928 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
929 				  struct fsnotify_mark *inode_mark,
930 				  struct fsnotify_mark *vfsmount_mark,
931 				  __u32 mask, void *data, int data_type)
932 {
933 	return false;
934 }
935 
936 static const struct fsnotify_ops audit_tree_ops = {
937 	.handle_event = audit_tree_handle_event,
938 	.should_send_event = audit_tree_send_event,
939 	.free_group_priv = NULL,
940 	.free_event_priv = NULL,
941 	.freeing_mark = audit_tree_freeing_mark,
942 };
943 
944 static int __init audit_tree_init(void)
945 {
946 	int i;
947 
948 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
949 	if (IS_ERR(audit_tree_group))
950 		audit_panic("cannot initialize fsnotify group for rectree watches");
951 
952 	for (i = 0; i < HASH_SIZE; i++)
953 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
954 
955 	return 0;
956 }
957 __initcall(audit_tree_init);
958