1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/inotify.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 65 * (Initialization happens after skb_init is called.) */ 66 #define AUDIT_DISABLED -1 67 #define AUDIT_UNINITIALIZED 0 68 #define AUDIT_INITIALIZED 1 69 static int audit_initialized; 70 71 #define AUDIT_OFF 0 72 #define AUDIT_ON 1 73 #define AUDIT_LOCKED 2 74 int audit_enabled; 75 int audit_ever_enabled; 76 77 /* Default state when kernel boots without any parameters. */ 78 static int audit_default; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static int audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* 84 * If audit records are to be written to the netlink socket, audit_pid 85 * contains the pid of the auditd process and audit_nlk_pid contains 86 * the pid to use to send netlink messages to that process. 87 */ 88 int audit_pid; 89 static int audit_nlk_pid; 90 91 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 92 * to that number per second. This prevents DoS attacks, but results in 93 * audit records being dropped. */ 94 static int audit_rate_limit; 95 96 /* Number of outstanding audit_buffers allowed. */ 97 static int audit_backlog_limit = 64; 98 static int audit_backlog_wait_time = 60 * HZ; 99 static int audit_backlog_wait_overflow = 0; 100 101 /* The identity of the user shutting down the audit system. */ 102 uid_t audit_sig_uid = -1; 103 pid_t audit_sig_pid = -1; 104 u32 audit_sig_sid = 0; 105 106 /* Records can be lost in several ways: 107 0) [suppressed in audit_alloc] 108 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 109 2) out of memory in audit_log_move [alloc_skb] 110 3) suppressed due to audit_rate_limit 111 4) suppressed due to audit_backlog_limit 112 */ 113 static atomic_t audit_lost = ATOMIC_INIT(0); 114 115 /* The netlink socket. */ 116 static struct sock *audit_sock; 117 118 /* Hash for inode-based rules */ 119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 120 121 /* The audit_freelist is a list of pre-allocated audit buffers (if more 122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 123 * being placed on the freelist). */ 124 static DEFINE_SPINLOCK(audit_freelist_lock); 125 static int audit_freelist_count; 126 static LIST_HEAD(audit_freelist); 127 128 static struct sk_buff_head audit_skb_queue; 129 /* queue of skbs to send to auditd when/if it comes back */ 130 static struct sk_buff_head audit_skb_hold_queue; 131 static struct task_struct *kauditd_task; 132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 134 135 /* Serialize requests from userspace. */ 136 DEFINE_MUTEX(audit_cmd_mutex); 137 138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 139 * audit records. Since printk uses a 1024 byte buffer, this buffer 140 * should be at least that large. */ 141 #define AUDIT_BUFSIZ 1024 142 143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 145 #define AUDIT_MAXFREE (2*NR_CPUS) 146 147 /* The audit_buffer is used when formatting an audit record. The caller 148 * locks briefly to get the record off the freelist or to allocate the 149 * buffer, and locks briefly to send the buffer to the netlink layer or 150 * to place it on a transmit queue. Multiple audit_buffers can be in 151 * use simultaneously. */ 152 struct audit_buffer { 153 struct list_head list; 154 struct sk_buff *skb; /* formatted skb ready to send */ 155 struct audit_context *ctx; /* NULL or associated context */ 156 gfp_t gfp_mask; 157 }; 158 159 struct audit_reply { 160 int pid; 161 struct sk_buff *skb; 162 }; 163 164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 165 { 166 if (ab) { 167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 168 nlh->nlmsg_pid = pid; 169 } 170 } 171 172 void audit_panic(const char *message) 173 { 174 switch (audit_failure) 175 { 176 case AUDIT_FAIL_SILENT: 177 break; 178 case AUDIT_FAIL_PRINTK: 179 if (printk_ratelimit()) 180 printk(KERN_ERR "audit: %s\n", message); 181 break; 182 case AUDIT_FAIL_PANIC: 183 /* test audit_pid since printk is always losey, why bother? */ 184 if (audit_pid) 185 panic("audit: %s\n", message); 186 break; 187 } 188 } 189 190 static inline int audit_rate_check(void) 191 { 192 static unsigned long last_check = 0; 193 static int messages = 0; 194 static DEFINE_SPINLOCK(lock); 195 unsigned long flags; 196 unsigned long now; 197 unsigned long elapsed; 198 int retval = 0; 199 200 if (!audit_rate_limit) return 1; 201 202 spin_lock_irqsave(&lock, flags); 203 if (++messages < audit_rate_limit) { 204 retval = 1; 205 } else { 206 now = jiffies; 207 elapsed = now - last_check; 208 if (elapsed > HZ) { 209 last_check = now; 210 messages = 0; 211 retval = 1; 212 } 213 } 214 spin_unlock_irqrestore(&lock, flags); 215 216 return retval; 217 } 218 219 /** 220 * audit_log_lost - conditionally log lost audit message event 221 * @message: the message stating reason for lost audit message 222 * 223 * Emit at least 1 message per second, even if audit_rate_check is 224 * throttling. 225 * Always increment the lost messages counter. 226 */ 227 void audit_log_lost(const char *message) 228 { 229 static unsigned long last_msg = 0; 230 static DEFINE_SPINLOCK(lock); 231 unsigned long flags; 232 unsigned long now; 233 int print; 234 235 atomic_inc(&audit_lost); 236 237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 238 239 if (!print) { 240 spin_lock_irqsave(&lock, flags); 241 now = jiffies; 242 if (now - last_msg > HZ) { 243 print = 1; 244 last_msg = now; 245 } 246 spin_unlock_irqrestore(&lock, flags); 247 } 248 249 if (print) { 250 if (printk_ratelimit()) 251 printk(KERN_WARNING 252 "audit: audit_lost=%d audit_rate_limit=%d " 253 "audit_backlog_limit=%d\n", 254 atomic_read(&audit_lost), 255 audit_rate_limit, 256 audit_backlog_limit); 257 audit_panic(message); 258 } 259 } 260 261 static int audit_log_config_change(char *function_name, int new, int old, 262 uid_t loginuid, u32 sessionid, u32 sid, 263 int allow_changes) 264 { 265 struct audit_buffer *ab; 266 int rc = 0; 267 268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 270 old, loginuid, sessionid); 271 if (sid) { 272 char *ctx = NULL; 273 u32 len; 274 275 rc = security_secid_to_secctx(sid, &ctx, &len); 276 if (rc) { 277 audit_log_format(ab, " sid=%u", sid); 278 allow_changes = 0; /* Something weird, deny request */ 279 } else { 280 audit_log_format(ab, " subj=%s", ctx); 281 security_release_secctx(ctx, len); 282 } 283 } 284 audit_log_format(ab, " res=%d", allow_changes); 285 audit_log_end(ab); 286 return rc; 287 } 288 289 static int audit_do_config_change(char *function_name, int *to_change, 290 int new, uid_t loginuid, u32 sessionid, 291 u32 sid) 292 { 293 int allow_changes, rc = 0, old = *to_change; 294 295 /* check if we are locked */ 296 if (audit_enabled == AUDIT_LOCKED) 297 allow_changes = 0; 298 else 299 allow_changes = 1; 300 301 if (audit_enabled != AUDIT_OFF) { 302 rc = audit_log_config_change(function_name, new, old, loginuid, 303 sessionid, sid, allow_changes); 304 if (rc) 305 allow_changes = 0; 306 } 307 308 /* If we are allowed, make the change */ 309 if (allow_changes == 1) 310 *to_change = new; 311 /* Not allowed, update reason */ 312 else if (rc == 0) 313 rc = -EPERM; 314 return rc; 315 } 316 317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 318 u32 sid) 319 { 320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 321 limit, loginuid, sessionid, sid); 322 } 323 324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 325 u32 sid) 326 { 327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 328 limit, loginuid, sessionid, sid); 329 } 330 331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 332 { 333 int rc; 334 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 335 return -EINVAL; 336 337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 338 loginuid, sessionid, sid); 339 340 if (!rc) 341 audit_ever_enabled |= !!state; 342 343 return rc; 344 } 345 346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 347 { 348 if (state != AUDIT_FAIL_SILENT 349 && state != AUDIT_FAIL_PRINTK 350 && state != AUDIT_FAIL_PANIC) 351 return -EINVAL; 352 353 return audit_do_config_change("audit_failure", &audit_failure, state, 354 loginuid, sessionid, sid); 355 } 356 357 /* 358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 359 * already have been sent via prink/syslog and so if these messages are dropped 360 * it is not a huge concern since we already passed the audit_log_lost() 361 * notification and stuff. This is just nice to get audit messages during 362 * boot before auditd is running or messages generated while auditd is stopped. 363 * This only holds messages is audit_default is set, aka booting with audit=1 364 * or building your kernel that way. 365 */ 366 static void audit_hold_skb(struct sk_buff *skb) 367 { 368 if (audit_default && 369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 370 skb_queue_tail(&audit_skb_hold_queue, skb); 371 else 372 kfree_skb(skb); 373 } 374 375 /* 376 * For one reason or another this nlh isn't getting delivered to the userspace 377 * audit daemon, just send it to printk. 378 */ 379 static void audit_printk_skb(struct sk_buff *skb) 380 { 381 struct nlmsghdr *nlh = nlmsg_hdr(skb); 382 char *data = NLMSG_DATA(nlh); 383 384 if (nlh->nlmsg_type != AUDIT_EOE) { 385 if (printk_ratelimit()) 386 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); 387 else 388 audit_log_lost("printk limit exceeded\n"); 389 } 390 391 audit_hold_skb(skb); 392 } 393 394 static void kauditd_send_skb(struct sk_buff *skb) 395 { 396 int err; 397 /* take a reference in case we can't send it and we want to hold it */ 398 skb_get(skb); 399 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 400 if (err < 0) { 401 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 402 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 403 audit_log_lost("auditd dissapeared\n"); 404 audit_pid = 0; 405 /* we might get lucky and get this in the next auditd */ 406 audit_hold_skb(skb); 407 } else 408 /* drop the extra reference if sent ok */ 409 kfree_skb(skb); 410 } 411 412 static int kauditd_thread(void *dummy) 413 { 414 struct sk_buff *skb; 415 416 set_freezable(); 417 while (!kthread_should_stop()) { 418 /* 419 * if auditd just started drain the queue of messages already 420 * sent to syslog/printk. remember loss here is ok. we already 421 * called audit_log_lost() if it didn't go out normally. so the 422 * race between the skb_dequeue and the next check for audit_pid 423 * doesn't matter. 424 * 425 * if you ever find kauditd to be too slow we can get a perf win 426 * by doing our own locking and keeping better track if there 427 * are messages in this queue. I don't see the need now, but 428 * in 5 years when I want to play with this again I'll see this 429 * note and still have no friggin idea what i'm thinking today. 430 */ 431 if (audit_default && audit_pid) { 432 skb = skb_dequeue(&audit_skb_hold_queue); 433 if (unlikely(skb)) { 434 while (skb && audit_pid) { 435 kauditd_send_skb(skb); 436 skb = skb_dequeue(&audit_skb_hold_queue); 437 } 438 } 439 } 440 441 skb = skb_dequeue(&audit_skb_queue); 442 wake_up(&audit_backlog_wait); 443 if (skb) { 444 if (audit_pid) 445 kauditd_send_skb(skb); 446 else 447 audit_printk_skb(skb); 448 } else { 449 DECLARE_WAITQUEUE(wait, current); 450 set_current_state(TASK_INTERRUPTIBLE); 451 add_wait_queue(&kauditd_wait, &wait); 452 453 if (!skb_queue_len(&audit_skb_queue)) { 454 try_to_freeze(); 455 schedule(); 456 } 457 458 __set_current_state(TASK_RUNNING); 459 remove_wait_queue(&kauditd_wait, &wait); 460 } 461 } 462 return 0; 463 } 464 465 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 466 { 467 struct task_struct *tsk; 468 int err; 469 470 read_lock(&tasklist_lock); 471 tsk = find_task_by_vpid(pid); 472 err = -ESRCH; 473 if (!tsk) 474 goto out; 475 err = 0; 476 477 spin_lock_irq(&tsk->sighand->siglock); 478 if (!tsk->signal->audit_tty) 479 err = -EPERM; 480 spin_unlock_irq(&tsk->sighand->siglock); 481 if (err) 482 goto out; 483 484 tty_audit_push_task(tsk, loginuid, sessionid); 485 out: 486 read_unlock(&tasklist_lock); 487 return err; 488 } 489 490 int audit_send_list(void *_dest) 491 { 492 struct audit_netlink_list *dest = _dest; 493 int pid = dest->pid; 494 struct sk_buff *skb; 495 496 /* wait for parent to finish and send an ACK */ 497 mutex_lock(&audit_cmd_mutex); 498 mutex_unlock(&audit_cmd_mutex); 499 500 while ((skb = __skb_dequeue(&dest->q)) != NULL) 501 netlink_unicast(audit_sock, skb, pid, 0); 502 503 kfree(dest); 504 505 return 0; 506 } 507 508 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 509 int multi, void *payload, int size) 510 { 511 struct sk_buff *skb; 512 struct nlmsghdr *nlh; 513 void *data; 514 int flags = multi ? NLM_F_MULTI : 0; 515 int t = done ? NLMSG_DONE : type; 516 517 skb = nlmsg_new(size, GFP_KERNEL); 518 if (!skb) 519 return NULL; 520 521 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags); 522 data = NLMSG_DATA(nlh); 523 memcpy(data, payload, size); 524 return skb; 525 526 nlmsg_failure: /* Used by NLMSG_NEW */ 527 if (skb) 528 kfree_skb(skb); 529 return NULL; 530 } 531 532 static int audit_send_reply_thread(void *arg) 533 { 534 struct audit_reply *reply = (struct audit_reply *)arg; 535 536 mutex_lock(&audit_cmd_mutex); 537 mutex_unlock(&audit_cmd_mutex); 538 539 /* Ignore failure. It'll only happen if the sender goes away, 540 because our timeout is set to infinite. */ 541 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 542 kfree(reply); 543 return 0; 544 } 545 /** 546 * audit_send_reply - send an audit reply message via netlink 547 * @pid: process id to send reply to 548 * @seq: sequence number 549 * @type: audit message type 550 * @done: done (last) flag 551 * @multi: multi-part message flag 552 * @payload: payload data 553 * @size: payload size 554 * 555 * Allocates an skb, builds the netlink message, and sends it to the pid. 556 * No failure notifications. 557 */ 558 void audit_send_reply(int pid, int seq, int type, int done, int multi, 559 void *payload, int size) 560 { 561 struct sk_buff *skb; 562 struct task_struct *tsk; 563 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 564 GFP_KERNEL); 565 566 if (!reply) 567 return; 568 569 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 570 if (!skb) 571 goto out; 572 573 reply->pid = pid; 574 reply->skb = skb; 575 576 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 577 if (!IS_ERR(tsk)) 578 return; 579 kfree_skb(skb); 580 out: 581 kfree(reply); 582 } 583 584 /* 585 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 586 * control messages. 587 */ 588 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 589 { 590 int err = 0; 591 592 switch (msg_type) { 593 case AUDIT_GET: 594 case AUDIT_LIST: 595 case AUDIT_LIST_RULES: 596 case AUDIT_SET: 597 case AUDIT_ADD: 598 case AUDIT_ADD_RULE: 599 case AUDIT_DEL: 600 case AUDIT_DEL_RULE: 601 case AUDIT_SIGNAL_INFO: 602 case AUDIT_TTY_GET: 603 case AUDIT_TTY_SET: 604 case AUDIT_TRIM: 605 case AUDIT_MAKE_EQUIV: 606 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 607 err = -EPERM; 608 break; 609 case AUDIT_USER: 610 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 611 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 612 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 613 err = -EPERM; 614 break; 615 default: /* bad msg */ 616 err = -EINVAL; 617 } 618 619 return err; 620 } 621 622 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 623 u32 pid, u32 uid, uid_t auid, u32 ses, 624 u32 sid) 625 { 626 int rc = 0; 627 char *ctx = NULL; 628 u32 len; 629 630 if (!audit_enabled) { 631 *ab = NULL; 632 return rc; 633 } 634 635 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 636 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 637 pid, uid, auid, ses); 638 if (sid) { 639 rc = security_secid_to_secctx(sid, &ctx, &len); 640 if (rc) 641 audit_log_format(*ab, " ssid=%u", sid); 642 else { 643 audit_log_format(*ab, " subj=%s", ctx); 644 security_release_secctx(ctx, len); 645 } 646 } 647 648 return rc; 649 } 650 651 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 652 { 653 u32 uid, pid, seq, sid; 654 void *data; 655 struct audit_status *status_get, status_set; 656 int err; 657 struct audit_buffer *ab; 658 u16 msg_type = nlh->nlmsg_type; 659 uid_t loginuid; /* loginuid of sender */ 660 u32 sessionid; 661 struct audit_sig_info *sig_data; 662 char *ctx = NULL; 663 u32 len; 664 665 err = audit_netlink_ok(skb, msg_type); 666 if (err) 667 return err; 668 669 /* As soon as there's any sign of userspace auditd, 670 * start kauditd to talk to it */ 671 if (!kauditd_task) 672 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 673 if (IS_ERR(kauditd_task)) { 674 err = PTR_ERR(kauditd_task); 675 kauditd_task = NULL; 676 return err; 677 } 678 679 pid = NETLINK_CREDS(skb)->pid; 680 uid = NETLINK_CREDS(skb)->uid; 681 loginuid = NETLINK_CB(skb).loginuid; 682 sessionid = NETLINK_CB(skb).sessionid; 683 sid = NETLINK_CB(skb).sid; 684 seq = nlh->nlmsg_seq; 685 data = NLMSG_DATA(nlh); 686 687 switch (msg_type) { 688 case AUDIT_GET: 689 status_set.enabled = audit_enabled; 690 status_set.failure = audit_failure; 691 status_set.pid = audit_pid; 692 status_set.rate_limit = audit_rate_limit; 693 status_set.backlog_limit = audit_backlog_limit; 694 status_set.lost = atomic_read(&audit_lost); 695 status_set.backlog = skb_queue_len(&audit_skb_queue); 696 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 697 &status_set, sizeof(status_set)); 698 break; 699 case AUDIT_SET: 700 if (nlh->nlmsg_len < sizeof(struct audit_status)) 701 return -EINVAL; 702 status_get = (struct audit_status *)data; 703 if (status_get->mask & AUDIT_STATUS_ENABLED) { 704 err = audit_set_enabled(status_get->enabled, 705 loginuid, sessionid, sid); 706 if (err < 0) 707 return err; 708 } 709 if (status_get->mask & AUDIT_STATUS_FAILURE) { 710 err = audit_set_failure(status_get->failure, 711 loginuid, sessionid, sid); 712 if (err < 0) 713 return err; 714 } 715 if (status_get->mask & AUDIT_STATUS_PID) { 716 int new_pid = status_get->pid; 717 718 if (audit_enabled != AUDIT_OFF) 719 audit_log_config_change("audit_pid", new_pid, 720 audit_pid, loginuid, 721 sessionid, sid, 1); 722 723 audit_pid = new_pid; 724 audit_nlk_pid = NETLINK_CB(skb).pid; 725 } 726 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 727 err = audit_set_rate_limit(status_get->rate_limit, 728 loginuid, sessionid, sid); 729 if (err < 0) 730 return err; 731 } 732 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 733 err = audit_set_backlog_limit(status_get->backlog_limit, 734 loginuid, sessionid, sid); 735 break; 736 case AUDIT_USER: 737 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 738 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 739 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 740 return 0; 741 742 err = audit_filter_user(&NETLINK_CB(skb)); 743 if (err == 1) { 744 err = 0; 745 if (msg_type == AUDIT_USER_TTY) { 746 err = audit_prepare_user_tty(pid, loginuid, 747 sessionid); 748 if (err) 749 break; 750 } 751 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 752 loginuid, sessionid, sid); 753 754 if (msg_type != AUDIT_USER_TTY) 755 audit_log_format(ab, " msg='%.1024s'", 756 (char *)data); 757 else { 758 int size; 759 760 audit_log_format(ab, " msg="); 761 size = nlmsg_len(nlh); 762 if (size > 0 && 763 ((unsigned char *)data)[size - 1] == '\0') 764 size--; 765 audit_log_n_untrustedstring(ab, data, size); 766 } 767 audit_set_pid(ab, pid); 768 audit_log_end(ab); 769 } 770 break; 771 case AUDIT_ADD: 772 case AUDIT_DEL: 773 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 774 return -EINVAL; 775 if (audit_enabled == AUDIT_LOCKED) { 776 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 777 uid, loginuid, sessionid, sid); 778 779 audit_log_format(ab, " audit_enabled=%d res=0", 780 audit_enabled); 781 audit_log_end(ab); 782 return -EPERM; 783 } 784 /* fallthrough */ 785 case AUDIT_LIST: 786 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 787 uid, seq, data, nlmsg_len(nlh), 788 loginuid, sessionid, sid); 789 break; 790 case AUDIT_ADD_RULE: 791 case AUDIT_DEL_RULE: 792 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 793 return -EINVAL; 794 if (audit_enabled == AUDIT_LOCKED) { 795 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 796 uid, loginuid, sessionid, sid); 797 798 audit_log_format(ab, " audit_enabled=%d res=0", 799 audit_enabled); 800 audit_log_end(ab); 801 return -EPERM; 802 } 803 /* fallthrough */ 804 case AUDIT_LIST_RULES: 805 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 806 uid, seq, data, nlmsg_len(nlh), 807 loginuid, sessionid, sid); 808 break; 809 case AUDIT_TRIM: 810 audit_trim_trees(); 811 812 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 813 uid, loginuid, sessionid, sid); 814 815 audit_log_format(ab, " op=trim res=1"); 816 audit_log_end(ab); 817 break; 818 case AUDIT_MAKE_EQUIV: { 819 void *bufp = data; 820 u32 sizes[2]; 821 size_t msglen = nlmsg_len(nlh); 822 char *old, *new; 823 824 err = -EINVAL; 825 if (msglen < 2 * sizeof(u32)) 826 break; 827 memcpy(sizes, bufp, 2 * sizeof(u32)); 828 bufp += 2 * sizeof(u32); 829 msglen -= 2 * sizeof(u32); 830 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 831 if (IS_ERR(old)) { 832 err = PTR_ERR(old); 833 break; 834 } 835 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 836 if (IS_ERR(new)) { 837 err = PTR_ERR(new); 838 kfree(old); 839 break; 840 } 841 /* OK, here comes... */ 842 err = audit_tag_tree(old, new); 843 844 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 845 uid, loginuid, sessionid, sid); 846 847 audit_log_format(ab, " op=make_equiv old="); 848 audit_log_untrustedstring(ab, old); 849 audit_log_format(ab, " new="); 850 audit_log_untrustedstring(ab, new); 851 audit_log_format(ab, " res=%d", !err); 852 audit_log_end(ab); 853 kfree(old); 854 kfree(new); 855 break; 856 } 857 case AUDIT_SIGNAL_INFO: 858 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 859 if (err) 860 return err; 861 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 862 if (!sig_data) { 863 security_release_secctx(ctx, len); 864 return -ENOMEM; 865 } 866 sig_data->uid = audit_sig_uid; 867 sig_data->pid = audit_sig_pid; 868 memcpy(sig_data->ctx, ctx, len); 869 security_release_secctx(ctx, len); 870 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 871 0, 0, sig_data, sizeof(*sig_data) + len); 872 kfree(sig_data); 873 break; 874 case AUDIT_TTY_GET: { 875 struct audit_tty_status s; 876 struct task_struct *tsk; 877 878 read_lock(&tasklist_lock); 879 tsk = find_task_by_vpid(pid); 880 if (!tsk) 881 err = -ESRCH; 882 else { 883 spin_lock_irq(&tsk->sighand->siglock); 884 s.enabled = tsk->signal->audit_tty != 0; 885 spin_unlock_irq(&tsk->sighand->siglock); 886 } 887 read_unlock(&tasklist_lock); 888 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 889 &s, sizeof(s)); 890 break; 891 } 892 case AUDIT_TTY_SET: { 893 struct audit_tty_status *s; 894 struct task_struct *tsk; 895 896 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 897 return -EINVAL; 898 s = data; 899 if (s->enabled != 0 && s->enabled != 1) 900 return -EINVAL; 901 read_lock(&tasklist_lock); 902 tsk = find_task_by_vpid(pid); 903 if (!tsk) 904 err = -ESRCH; 905 else { 906 spin_lock_irq(&tsk->sighand->siglock); 907 tsk->signal->audit_tty = s->enabled != 0; 908 spin_unlock_irq(&tsk->sighand->siglock); 909 } 910 read_unlock(&tasklist_lock); 911 break; 912 } 913 default: 914 err = -EINVAL; 915 break; 916 } 917 918 return err < 0 ? err : 0; 919 } 920 921 /* 922 * Get message from skb. Each message is processed by audit_receive_msg. 923 * Malformed skbs with wrong length are discarded silently. 924 */ 925 static void audit_receive_skb(struct sk_buff *skb) 926 { 927 struct nlmsghdr *nlh; 928 /* 929 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0 930 * if the nlmsg_len was not aligned 931 */ 932 int len; 933 int err; 934 935 nlh = nlmsg_hdr(skb); 936 len = skb->len; 937 938 while (NLMSG_OK(nlh, len)) { 939 err = audit_receive_msg(skb, nlh); 940 /* if err or if this message says it wants a response */ 941 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 942 netlink_ack(skb, nlh, err); 943 944 nlh = NLMSG_NEXT(nlh, len); 945 } 946 } 947 948 /* Receive messages from netlink socket. */ 949 static void audit_receive(struct sk_buff *skb) 950 { 951 mutex_lock(&audit_cmd_mutex); 952 audit_receive_skb(skb); 953 mutex_unlock(&audit_cmd_mutex); 954 } 955 956 /* Initialize audit support at boot time. */ 957 static int __init audit_init(void) 958 { 959 int i; 960 961 if (audit_initialized == AUDIT_DISABLED) 962 return 0; 963 964 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 965 audit_default ? "enabled" : "disabled"); 966 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 967 audit_receive, NULL, THIS_MODULE); 968 if (!audit_sock) 969 audit_panic("cannot initialize netlink socket"); 970 else 971 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 972 973 skb_queue_head_init(&audit_skb_queue); 974 skb_queue_head_init(&audit_skb_hold_queue); 975 audit_initialized = AUDIT_INITIALIZED; 976 audit_enabled = audit_default; 977 audit_ever_enabled |= !!audit_default; 978 979 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 980 981 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 982 INIT_LIST_HEAD(&audit_inode_hash[i]); 983 984 return 0; 985 } 986 __initcall(audit_init); 987 988 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 989 static int __init audit_enable(char *str) 990 { 991 audit_default = !!simple_strtol(str, NULL, 0); 992 if (!audit_default) 993 audit_initialized = AUDIT_DISABLED; 994 995 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); 996 997 if (audit_initialized == AUDIT_INITIALIZED) { 998 audit_enabled = audit_default; 999 audit_ever_enabled |= !!audit_default; 1000 } else if (audit_initialized == AUDIT_UNINITIALIZED) { 1001 printk(" (after initialization)"); 1002 } else { 1003 printk(" (until reboot)"); 1004 } 1005 printk("\n"); 1006 1007 return 1; 1008 } 1009 1010 __setup("audit=", audit_enable); 1011 1012 static void audit_buffer_free(struct audit_buffer *ab) 1013 { 1014 unsigned long flags; 1015 1016 if (!ab) 1017 return; 1018 1019 if (ab->skb) 1020 kfree_skb(ab->skb); 1021 1022 spin_lock_irqsave(&audit_freelist_lock, flags); 1023 if (audit_freelist_count > AUDIT_MAXFREE) 1024 kfree(ab); 1025 else { 1026 audit_freelist_count++; 1027 list_add(&ab->list, &audit_freelist); 1028 } 1029 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1030 } 1031 1032 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1033 gfp_t gfp_mask, int type) 1034 { 1035 unsigned long flags; 1036 struct audit_buffer *ab = NULL; 1037 struct nlmsghdr *nlh; 1038 1039 spin_lock_irqsave(&audit_freelist_lock, flags); 1040 if (!list_empty(&audit_freelist)) { 1041 ab = list_entry(audit_freelist.next, 1042 struct audit_buffer, list); 1043 list_del(&ab->list); 1044 --audit_freelist_count; 1045 } 1046 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1047 1048 if (!ab) { 1049 ab = kmalloc(sizeof(*ab), gfp_mask); 1050 if (!ab) 1051 goto err; 1052 } 1053 1054 ab->ctx = ctx; 1055 ab->gfp_mask = gfp_mask; 1056 1057 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1058 if (!ab->skb) 1059 goto nlmsg_failure; 1060 1061 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0); 1062 1063 return ab; 1064 1065 nlmsg_failure: /* Used by NLMSG_NEW */ 1066 kfree_skb(ab->skb); 1067 ab->skb = NULL; 1068 err: 1069 audit_buffer_free(ab); 1070 return NULL; 1071 } 1072 1073 /** 1074 * audit_serial - compute a serial number for the audit record 1075 * 1076 * Compute a serial number for the audit record. Audit records are 1077 * written to user-space as soon as they are generated, so a complete 1078 * audit record may be written in several pieces. The timestamp of the 1079 * record and this serial number are used by the user-space tools to 1080 * determine which pieces belong to the same audit record. The 1081 * (timestamp,serial) tuple is unique for each syscall and is live from 1082 * syscall entry to syscall exit. 1083 * 1084 * NOTE: Another possibility is to store the formatted records off the 1085 * audit context (for those records that have a context), and emit them 1086 * all at syscall exit. However, this could delay the reporting of 1087 * significant errors until syscall exit (or never, if the system 1088 * halts). 1089 */ 1090 unsigned int audit_serial(void) 1091 { 1092 static DEFINE_SPINLOCK(serial_lock); 1093 static unsigned int serial = 0; 1094 1095 unsigned long flags; 1096 unsigned int ret; 1097 1098 spin_lock_irqsave(&serial_lock, flags); 1099 do { 1100 ret = ++serial; 1101 } while (unlikely(!ret)); 1102 spin_unlock_irqrestore(&serial_lock, flags); 1103 1104 return ret; 1105 } 1106 1107 static inline void audit_get_stamp(struct audit_context *ctx, 1108 struct timespec *t, unsigned int *serial) 1109 { 1110 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1111 *t = CURRENT_TIME; 1112 *serial = audit_serial(); 1113 } 1114 } 1115 1116 /* Obtain an audit buffer. This routine does locking to obtain the 1117 * audit buffer, but then no locking is required for calls to 1118 * audit_log_*format. If the tsk is a task that is currently in a 1119 * syscall, then the syscall is marked as auditable and an audit record 1120 * will be written at syscall exit. If there is no associated task, tsk 1121 * should be NULL. */ 1122 1123 /** 1124 * audit_log_start - obtain an audit buffer 1125 * @ctx: audit_context (may be NULL) 1126 * @gfp_mask: type of allocation 1127 * @type: audit message type 1128 * 1129 * Returns audit_buffer pointer on success or NULL on error. 1130 * 1131 * Obtain an audit buffer. This routine does locking to obtain the 1132 * audit buffer, but then no locking is required for calls to 1133 * audit_log_*format. If the task (ctx) is a task that is currently in a 1134 * syscall, then the syscall is marked as auditable and an audit record 1135 * will be written at syscall exit. If there is no associated task, then 1136 * task context (ctx) should be NULL. 1137 */ 1138 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1139 int type) 1140 { 1141 struct audit_buffer *ab = NULL; 1142 struct timespec t; 1143 unsigned int uninitialized_var(serial); 1144 int reserve; 1145 unsigned long timeout_start = jiffies; 1146 1147 if (audit_initialized != AUDIT_INITIALIZED) 1148 return NULL; 1149 1150 if (unlikely(audit_filter_type(type))) 1151 return NULL; 1152 1153 if (gfp_mask & __GFP_WAIT) 1154 reserve = 0; 1155 else 1156 reserve = 5; /* Allow atomic callers to go up to five 1157 entries over the normal backlog limit */ 1158 1159 while (audit_backlog_limit 1160 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1161 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1162 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1163 1164 /* Wait for auditd to drain the queue a little */ 1165 DECLARE_WAITQUEUE(wait, current); 1166 set_current_state(TASK_INTERRUPTIBLE); 1167 add_wait_queue(&audit_backlog_wait, &wait); 1168 1169 if (audit_backlog_limit && 1170 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1171 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1172 1173 __set_current_state(TASK_RUNNING); 1174 remove_wait_queue(&audit_backlog_wait, &wait); 1175 continue; 1176 } 1177 if (audit_rate_check() && printk_ratelimit()) 1178 printk(KERN_WARNING 1179 "audit: audit_backlog=%d > " 1180 "audit_backlog_limit=%d\n", 1181 skb_queue_len(&audit_skb_queue), 1182 audit_backlog_limit); 1183 audit_log_lost("backlog limit exceeded"); 1184 audit_backlog_wait_time = audit_backlog_wait_overflow; 1185 wake_up(&audit_backlog_wait); 1186 return NULL; 1187 } 1188 1189 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1190 if (!ab) { 1191 audit_log_lost("out of memory in audit_log_start"); 1192 return NULL; 1193 } 1194 1195 audit_get_stamp(ab->ctx, &t, &serial); 1196 1197 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1198 t.tv_sec, t.tv_nsec/1000000, serial); 1199 return ab; 1200 } 1201 1202 /** 1203 * audit_expand - expand skb in the audit buffer 1204 * @ab: audit_buffer 1205 * @extra: space to add at tail of the skb 1206 * 1207 * Returns 0 (no space) on failed expansion, or available space if 1208 * successful. 1209 */ 1210 static inline int audit_expand(struct audit_buffer *ab, int extra) 1211 { 1212 struct sk_buff *skb = ab->skb; 1213 int oldtail = skb_tailroom(skb); 1214 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1215 int newtail = skb_tailroom(skb); 1216 1217 if (ret < 0) { 1218 audit_log_lost("out of memory in audit_expand"); 1219 return 0; 1220 } 1221 1222 skb->truesize += newtail - oldtail; 1223 return newtail; 1224 } 1225 1226 /* 1227 * Format an audit message into the audit buffer. If there isn't enough 1228 * room in the audit buffer, more room will be allocated and vsnprint 1229 * will be called a second time. Currently, we assume that a printk 1230 * can't format message larger than 1024 bytes, so we don't either. 1231 */ 1232 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1233 va_list args) 1234 { 1235 int len, avail; 1236 struct sk_buff *skb; 1237 va_list args2; 1238 1239 if (!ab) 1240 return; 1241 1242 BUG_ON(!ab->skb); 1243 skb = ab->skb; 1244 avail = skb_tailroom(skb); 1245 if (avail == 0) { 1246 avail = audit_expand(ab, AUDIT_BUFSIZ); 1247 if (!avail) 1248 goto out; 1249 } 1250 va_copy(args2, args); 1251 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1252 if (len >= avail) { 1253 /* The printk buffer is 1024 bytes long, so if we get 1254 * here and AUDIT_BUFSIZ is at least 1024, then we can 1255 * log everything that printk could have logged. */ 1256 avail = audit_expand(ab, 1257 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1258 if (!avail) 1259 goto out; 1260 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1261 } 1262 va_end(args2); 1263 if (len > 0) 1264 skb_put(skb, len); 1265 out: 1266 return; 1267 } 1268 1269 /** 1270 * audit_log_format - format a message into the audit buffer. 1271 * @ab: audit_buffer 1272 * @fmt: format string 1273 * @...: optional parameters matching @fmt string 1274 * 1275 * All the work is done in audit_log_vformat. 1276 */ 1277 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1278 { 1279 va_list args; 1280 1281 if (!ab) 1282 return; 1283 va_start(args, fmt); 1284 audit_log_vformat(ab, fmt, args); 1285 va_end(args); 1286 } 1287 1288 /** 1289 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1290 * @ab: the audit_buffer 1291 * @buf: buffer to convert to hex 1292 * @len: length of @buf to be converted 1293 * 1294 * No return value; failure to expand is silently ignored. 1295 * 1296 * This function will take the passed buf and convert it into a string of 1297 * ascii hex digits. The new string is placed onto the skb. 1298 */ 1299 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1300 size_t len) 1301 { 1302 int i, avail, new_len; 1303 unsigned char *ptr; 1304 struct sk_buff *skb; 1305 static const unsigned char *hex = "0123456789ABCDEF"; 1306 1307 if (!ab) 1308 return; 1309 1310 BUG_ON(!ab->skb); 1311 skb = ab->skb; 1312 avail = skb_tailroom(skb); 1313 new_len = len<<1; 1314 if (new_len >= avail) { 1315 /* Round the buffer request up to the next multiple */ 1316 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1317 avail = audit_expand(ab, new_len); 1318 if (!avail) 1319 return; 1320 } 1321 1322 ptr = skb_tail_pointer(skb); 1323 for (i=0; i<len; i++) { 1324 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1325 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1326 } 1327 *ptr = 0; 1328 skb_put(skb, len << 1); /* new string is twice the old string */ 1329 } 1330 1331 /* 1332 * Format a string of no more than slen characters into the audit buffer, 1333 * enclosed in quote marks. 1334 */ 1335 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1336 size_t slen) 1337 { 1338 int avail, new_len; 1339 unsigned char *ptr; 1340 struct sk_buff *skb; 1341 1342 if (!ab) 1343 return; 1344 1345 BUG_ON(!ab->skb); 1346 skb = ab->skb; 1347 avail = skb_tailroom(skb); 1348 new_len = slen + 3; /* enclosing quotes + null terminator */ 1349 if (new_len > avail) { 1350 avail = audit_expand(ab, new_len); 1351 if (!avail) 1352 return; 1353 } 1354 ptr = skb_tail_pointer(skb); 1355 *ptr++ = '"'; 1356 memcpy(ptr, string, slen); 1357 ptr += slen; 1358 *ptr++ = '"'; 1359 *ptr = 0; 1360 skb_put(skb, slen + 2); /* don't include null terminator */ 1361 } 1362 1363 /** 1364 * audit_string_contains_control - does a string need to be logged in hex 1365 * @string: string to be checked 1366 * @len: max length of the string to check 1367 */ 1368 int audit_string_contains_control(const char *string, size_t len) 1369 { 1370 const unsigned char *p; 1371 for (p = string; p < (const unsigned char *)string + len; p++) { 1372 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1373 return 1; 1374 } 1375 return 0; 1376 } 1377 1378 /** 1379 * audit_log_n_untrustedstring - log a string that may contain random characters 1380 * @ab: audit_buffer 1381 * @len: length of string (not including trailing null) 1382 * @string: string to be logged 1383 * 1384 * This code will escape a string that is passed to it if the string 1385 * contains a control character, unprintable character, double quote mark, 1386 * or a space. Unescaped strings will start and end with a double quote mark. 1387 * Strings that are escaped are printed in hex (2 digits per char). 1388 * 1389 * The caller specifies the number of characters in the string to log, which may 1390 * or may not be the entire string. 1391 */ 1392 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1393 size_t len) 1394 { 1395 if (audit_string_contains_control(string, len)) 1396 audit_log_n_hex(ab, string, len); 1397 else 1398 audit_log_n_string(ab, string, len); 1399 } 1400 1401 /** 1402 * audit_log_untrustedstring - log a string that may contain random characters 1403 * @ab: audit_buffer 1404 * @string: string to be logged 1405 * 1406 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1407 * determine string length. 1408 */ 1409 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1410 { 1411 audit_log_n_untrustedstring(ab, string, strlen(string)); 1412 } 1413 1414 /* This is a helper-function to print the escaped d_path */ 1415 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1416 struct path *path) 1417 { 1418 char *p, *pathname; 1419 1420 if (prefix) 1421 audit_log_format(ab, " %s", prefix); 1422 1423 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1424 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1425 if (!pathname) { 1426 audit_log_string(ab, "<no_memory>"); 1427 return; 1428 } 1429 p = d_path(path, pathname, PATH_MAX+11); 1430 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1431 /* FIXME: can we save some information here? */ 1432 audit_log_string(ab, "<too_long>"); 1433 } else 1434 audit_log_untrustedstring(ab, p); 1435 kfree(pathname); 1436 } 1437 1438 void audit_log_key(struct audit_buffer *ab, char *key) 1439 { 1440 audit_log_format(ab, " key="); 1441 if (key) 1442 audit_log_untrustedstring(ab, key); 1443 else 1444 audit_log_format(ab, "(null)"); 1445 } 1446 1447 /** 1448 * audit_log_end - end one audit record 1449 * @ab: the audit_buffer 1450 * 1451 * The netlink_* functions cannot be called inside an irq context, so 1452 * the audit buffer is placed on a queue and a tasklet is scheduled to 1453 * remove them from the queue outside the irq context. May be called in 1454 * any context. 1455 */ 1456 void audit_log_end(struct audit_buffer *ab) 1457 { 1458 if (!ab) 1459 return; 1460 if (!audit_rate_check()) { 1461 audit_log_lost("rate limit exceeded"); 1462 } else { 1463 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1464 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1465 1466 if (audit_pid) { 1467 skb_queue_tail(&audit_skb_queue, ab->skb); 1468 wake_up_interruptible(&kauditd_wait); 1469 } else { 1470 audit_printk_skb(ab->skb); 1471 } 1472 ab->skb = NULL; 1473 } 1474 audit_buffer_free(ab); 1475 } 1476 1477 /** 1478 * audit_log - Log an audit record 1479 * @ctx: audit context 1480 * @gfp_mask: type of allocation 1481 * @type: audit message type 1482 * @fmt: format string to use 1483 * @...: variable parameters matching the format string 1484 * 1485 * This is a convenience function that calls audit_log_start, 1486 * audit_log_vformat, and audit_log_end. It may be called 1487 * in any context. 1488 */ 1489 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1490 const char *fmt, ...) 1491 { 1492 struct audit_buffer *ab; 1493 va_list args; 1494 1495 ab = audit_log_start(ctx, gfp_mask, type); 1496 if (ab) { 1497 va_start(args, fmt); 1498 audit_log_vformat(ab, fmt, args); 1499 va_end(args); 1500 audit_log_end(ab); 1501 } 1502 } 1503 1504 EXPORT_SYMBOL(audit_log_start); 1505 EXPORT_SYMBOL(audit_log_end); 1506 EXPORT_SYMBOL(audit_log_format); 1507 EXPORT_SYMBOL(audit_log); 1508