xref: /openbmc/linux/kernel/audit.c (revision fd589a8f)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/inotify.h>
59 #include <linux/freezer.h>
60 #include <linux/tty.h>
61 
62 #include "audit.h"
63 
64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
65  * (Initialization happens after skb_init is called.) */
66 #define AUDIT_DISABLED		-1
67 #define AUDIT_UNINITIALIZED	0
68 #define AUDIT_INITIALIZED	1
69 static int	audit_initialized;
70 
71 #define AUDIT_OFF	0
72 #define AUDIT_ON	1
73 #define AUDIT_LOCKED	2
74 int		audit_enabled;
75 int		audit_ever_enabled;
76 
77 /* Default state when kernel boots without any parameters. */
78 static int	audit_default;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static int	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /*
84  * If audit records are to be written to the netlink socket, audit_pid
85  * contains the pid of the auditd process and audit_nlk_pid contains
86  * the pid to use to send netlink messages to that process.
87  */
88 int		audit_pid;
89 static int	audit_nlk_pid;
90 
91 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
92  * to that number per second.  This prevents DoS attacks, but results in
93  * audit records being dropped. */
94 static int	audit_rate_limit;
95 
96 /* Number of outstanding audit_buffers allowed. */
97 static int	audit_backlog_limit = 64;
98 static int	audit_backlog_wait_time = 60 * HZ;
99 static int	audit_backlog_wait_overflow = 0;
100 
101 /* The identity of the user shutting down the audit system. */
102 uid_t		audit_sig_uid = -1;
103 pid_t		audit_sig_pid = -1;
104 u32		audit_sig_sid = 0;
105 
106 /* Records can be lost in several ways:
107    0) [suppressed in audit_alloc]
108    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
109    2) out of memory in audit_log_move [alloc_skb]
110    3) suppressed due to audit_rate_limit
111    4) suppressed due to audit_backlog_limit
112 */
113 static atomic_t    audit_lost = ATOMIC_INIT(0);
114 
115 /* The netlink socket. */
116 static struct sock *audit_sock;
117 
118 /* Hash for inode-based rules */
119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
120 
121 /* The audit_freelist is a list of pre-allocated audit buffers (if more
122  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
123  * being placed on the freelist). */
124 static DEFINE_SPINLOCK(audit_freelist_lock);
125 static int	   audit_freelist_count;
126 static LIST_HEAD(audit_freelist);
127 
128 static struct sk_buff_head audit_skb_queue;
129 /* queue of skbs to send to auditd when/if it comes back */
130 static struct sk_buff_head audit_skb_hold_queue;
131 static struct task_struct *kauditd_task;
132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
134 
135 /* Serialize requests from userspace. */
136 DEFINE_MUTEX(audit_cmd_mutex);
137 
138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
139  * audit records.  Since printk uses a 1024 byte buffer, this buffer
140  * should be at least that large. */
141 #define AUDIT_BUFSIZ 1024
142 
143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
144  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
145 #define AUDIT_MAXFREE  (2*NR_CPUS)
146 
147 /* The audit_buffer is used when formatting an audit record.  The caller
148  * locks briefly to get the record off the freelist or to allocate the
149  * buffer, and locks briefly to send the buffer to the netlink layer or
150  * to place it on a transmit queue.  Multiple audit_buffers can be in
151  * use simultaneously. */
152 struct audit_buffer {
153 	struct list_head     list;
154 	struct sk_buff       *skb;	/* formatted skb ready to send */
155 	struct audit_context *ctx;	/* NULL or associated context */
156 	gfp_t		     gfp_mask;
157 };
158 
159 struct audit_reply {
160 	int pid;
161 	struct sk_buff *skb;
162 };
163 
164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
165 {
166 	if (ab) {
167 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
168 		nlh->nlmsg_pid = pid;
169 	}
170 }
171 
172 void audit_panic(const char *message)
173 {
174 	switch (audit_failure)
175 	{
176 	case AUDIT_FAIL_SILENT:
177 		break;
178 	case AUDIT_FAIL_PRINTK:
179 		if (printk_ratelimit())
180 			printk(KERN_ERR "audit: %s\n", message);
181 		break;
182 	case AUDIT_FAIL_PANIC:
183 		/* test audit_pid since printk is always losey, why bother? */
184 		if (audit_pid)
185 			panic("audit: %s\n", message);
186 		break;
187 	}
188 }
189 
190 static inline int audit_rate_check(void)
191 {
192 	static unsigned long	last_check = 0;
193 	static int		messages   = 0;
194 	static DEFINE_SPINLOCK(lock);
195 	unsigned long		flags;
196 	unsigned long		now;
197 	unsigned long		elapsed;
198 	int			retval	   = 0;
199 
200 	if (!audit_rate_limit) return 1;
201 
202 	spin_lock_irqsave(&lock, flags);
203 	if (++messages < audit_rate_limit) {
204 		retval = 1;
205 	} else {
206 		now     = jiffies;
207 		elapsed = now - last_check;
208 		if (elapsed > HZ) {
209 			last_check = now;
210 			messages   = 0;
211 			retval     = 1;
212 		}
213 	}
214 	spin_unlock_irqrestore(&lock, flags);
215 
216 	return retval;
217 }
218 
219 /**
220  * audit_log_lost - conditionally log lost audit message event
221  * @message: the message stating reason for lost audit message
222  *
223  * Emit at least 1 message per second, even if audit_rate_check is
224  * throttling.
225  * Always increment the lost messages counter.
226 */
227 void audit_log_lost(const char *message)
228 {
229 	static unsigned long	last_msg = 0;
230 	static DEFINE_SPINLOCK(lock);
231 	unsigned long		flags;
232 	unsigned long		now;
233 	int			print;
234 
235 	atomic_inc(&audit_lost);
236 
237 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
238 
239 	if (!print) {
240 		spin_lock_irqsave(&lock, flags);
241 		now = jiffies;
242 		if (now - last_msg > HZ) {
243 			print = 1;
244 			last_msg = now;
245 		}
246 		spin_unlock_irqrestore(&lock, flags);
247 	}
248 
249 	if (print) {
250 		if (printk_ratelimit())
251 			printk(KERN_WARNING
252 				"audit: audit_lost=%d audit_rate_limit=%d "
253 				"audit_backlog_limit=%d\n",
254 				atomic_read(&audit_lost),
255 				audit_rate_limit,
256 				audit_backlog_limit);
257 		audit_panic(message);
258 	}
259 }
260 
261 static int audit_log_config_change(char *function_name, int new, int old,
262 				   uid_t loginuid, u32 sessionid, u32 sid,
263 				   int allow_changes)
264 {
265 	struct audit_buffer *ab;
266 	int rc = 0;
267 
268 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
269 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
270 			 old, loginuid, sessionid);
271 	if (sid) {
272 		char *ctx = NULL;
273 		u32 len;
274 
275 		rc = security_secid_to_secctx(sid, &ctx, &len);
276 		if (rc) {
277 			audit_log_format(ab, " sid=%u", sid);
278 			allow_changes = 0; /* Something weird, deny request */
279 		} else {
280 			audit_log_format(ab, " subj=%s", ctx);
281 			security_release_secctx(ctx, len);
282 		}
283 	}
284 	audit_log_format(ab, " res=%d", allow_changes);
285 	audit_log_end(ab);
286 	return rc;
287 }
288 
289 static int audit_do_config_change(char *function_name, int *to_change,
290 				  int new, uid_t loginuid, u32 sessionid,
291 				  u32 sid)
292 {
293 	int allow_changes, rc = 0, old = *to_change;
294 
295 	/* check if we are locked */
296 	if (audit_enabled == AUDIT_LOCKED)
297 		allow_changes = 0;
298 	else
299 		allow_changes = 1;
300 
301 	if (audit_enabled != AUDIT_OFF) {
302 		rc = audit_log_config_change(function_name, new, old, loginuid,
303 					     sessionid, sid, allow_changes);
304 		if (rc)
305 			allow_changes = 0;
306 	}
307 
308 	/* If we are allowed, make the change */
309 	if (allow_changes == 1)
310 		*to_change = new;
311 	/* Not allowed, update reason */
312 	else if (rc == 0)
313 		rc = -EPERM;
314 	return rc;
315 }
316 
317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
318 				u32 sid)
319 {
320 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
321 				      limit, loginuid, sessionid, sid);
322 }
323 
324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
325 				   u32 sid)
326 {
327 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
328 				      limit, loginuid, sessionid, sid);
329 }
330 
331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
332 {
333 	int rc;
334 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
335 		return -EINVAL;
336 
337 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
338 				     loginuid, sessionid, sid);
339 
340 	if (!rc)
341 		audit_ever_enabled |= !!state;
342 
343 	return rc;
344 }
345 
346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
347 {
348 	if (state != AUDIT_FAIL_SILENT
349 	    && state != AUDIT_FAIL_PRINTK
350 	    && state != AUDIT_FAIL_PANIC)
351 		return -EINVAL;
352 
353 	return audit_do_config_change("audit_failure", &audit_failure, state,
354 				      loginuid, sessionid, sid);
355 }
356 
357 /*
358  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
359  * already have been sent via prink/syslog and so if these messages are dropped
360  * it is not a huge concern since we already passed the audit_log_lost()
361  * notification and stuff.  This is just nice to get audit messages during
362  * boot before auditd is running or messages generated while auditd is stopped.
363  * This only holds messages is audit_default is set, aka booting with audit=1
364  * or building your kernel that way.
365  */
366 static void audit_hold_skb(struct sk_buff *skb)
367 {
368 	if (audit_default &&
369 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
370 		skb_queue_tail(&audit_skb_hold_queue, skb);
371 	else
372 		kfree_skb(skb);
373 }
374 
375 /*
376  * For one reason or another this nlh isn't getting delivered to the userspace
377  * audit daemon, just send it to printk.
378  */
379 static void audit_printk_skb(struct sk_buff *skb)
380 {
381 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
382 	char *data = NLMSG_DATA(nlh);
383 
384 	if (nlh->nlmsg_type != AUDIT_EOE) {
385 		if (printk_ratelimit())
386 			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
387 		else
388 			audit_log_lost("printk limit exceeded\n");
389 	}
390 
391 	audit_hold_skb(skb);
392 }
393 
394 static void kauditd_send_skb(struct sk_buff *skb)
395 {
396 	int err;
397 	/* take a reference in case we can't send it and we want to hold it */
398 	skb_get(skb);
399 	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
400 	if (err < 0) {
401 		BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
402 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
403 		audit_log_lost("auditd dissapeared\n");
404 		audit_pid = 0;
405 		/* we might get lucky and get this in the next auditd */
406 		audit_hold_skb(skb);
407 	} else
408 		/* drop the extra reference if sent ok */
409 		kfree_skb(skb);
410 }
411 
412 static int kauditd_thread(void *dummy)
413 {
414 	struct sk_buff *skb;
415 
416 	set_freezable();
417 	while (!kthread_should_stop()) {
418 		/*
419 		 * if auditd just started drain the queue of messages already
420 		 * sent to syslog/printk.  remember loss here is ok.  we already
421 		 * called audit_log_lost() if it didn't go out normally.  so the
422 		 * race between the skb_dequeue and the next check for audit_pid
423 		 * doesn't matter.
424 		 *
425 		 * if you ever find kauditd to be too slow we can get a perf win
426 		 * by doing our own locking and keeping better track if there
427 		 * are messages in this queue.  I don't see the need now, but
428 		 * in 5 years when I want to play with this again I'll see this
429 		 * note and still have no friggin idea what i'm thinking today.
430 		 */
431 		if (audit_default && audit_pid) {
432 			skb = skb_dequeue(&audit_skb_hold_queue);
433 			if (unlikely(skb)) {
434 				while (skb && audit_pid) {
435 					kauditd_send_skb(skb);
436 					skb = skb_dequeue(&audit_skb_hold_queue);
437 				}
438 			}
439 		}
440 
441 		skb = skb_dequeue(&audit_skb_queue);
442 		wake_up(&audit_backlog_wait);
443 		if (skb) {
444 			if (audit_pid)
445 				kauditd_send_skb(skb);
446 			else
447 				audit_printk_skb(skb);
448 		} else {
449 			DECLARE_WAITQUEUE(wait, current);
450 			set_current_state(TASK_INTERRUPTIBLE);
451 			add_wait_queue(&kauditd_wait, &wait);
452 
453 			if (!skb_queue_len(&audit_skb_queue)) {
454 				try_to_freeze();
455 				schedule();
456 			}
457 
458 			__set_current_state(TASK_RUNNING);
459 			remove_wait_queue(&kauditd_wait, &wait);
460 		}
461 	}
462 	return 0;
463 }
464 
465 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
466 {
467 	struct task_struct *tsk;
468 	int err;
469 
470 	read_lock(&tasklist_lock);
471 	tsk = find_task_by_vpid(pid);
472 	err = -ESRCH;
473 	if (!tsk)
474 		goto out;
475 	err = 0;
476 
477 	spin_lock_irq(&tsk->sighand->siglock);
478 	if (!tsk->signal->audit_tty)
479 		err = -EPERM;
480 	spin_unlock_irq(&tsk->sighand->siglock);
481 	if (err)
482 		goto out;
483 
484 	tty_audit_push_task(tsk, loginuid, sessionid);
485 out:
486 	read_unlock(&tasklist_lock);
487 	return err;
488 }
489 
490 int audit_send_list(void *_dest)
491 {
492 	struct audit_netlink_list *dest = _dest;
493 	int pid = dest->pid;
494 	struct sk_buff *skb;
495 
496 	/* wait for parent to finish and send an ACK */
497 	mutex_lock(&audit_cmd_mutex);
498 	mutex_unlock(&audit_cmd_mutex);
499 
500 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
501 		netlink_unicast(audit_sock, skb, pid, 0);
502 
503 	kfree(dest);
504 
505 	return 0;
506 }
507 
508 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
509 				 int multi, void *payload, int size)
510 {
511 	struct sk_buff	*skb;
512 	struct nlmsghdr	*nlh;
513 	void		*data;
514 	int		flags = multi ? NLM_F_MULTI : 0;
515 	int		t     = done  ? NLMSG_DONE  : type;
516 
517 	skb = nlmsg_new(size, GFP_KERNEL);
518 	if (!skb)
519 		return NULL;
520 
521 	nlh	= NLMSG_NEW(skb, pid, seq, t, size, flags);
522 	data	= NLMSG_DATA(nlh);
523 	memcpy(data, payload, size);
524 	return skb;
525 
526 nlmsg_failure:			/* Used by NLMSG_NEW */
527 	if (skb)
528 		kfree_skb(skb);
529 	return NULL;
530 }
531 
532 static int audit_send_reply_thread(void *arg)
533 {
534 	struct audit_reply *reply = (struct audit_reply *)arg;
535 
536 	mutex_lock(&audit_cmd_mutex);
537 	mutex_unlock(&audit_cmd_mutex);
538 
539 	/* Ignore failure. It'll only happen if the sender goes away,
540 	   because our timeout is set to infinite. */
541 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
542 	kfree(reply);
543 	return 0;
544 }
545 /**
546  * audit_send_reply - send an audit reply message via netlink
547  * @pid: process id to send reply to
548  * @seq: sequence number
549  * @type: audit message type
550  * @done: done (last) flag
551  * @multi: multi-part message flag
552  * @payload: payload data
553  * @size: payload size
554  *
555  * Allocates an skb, builds the netlink message, and sends it to the pid.
556  * No failure notifications.
557  */
558 void audit_send_reply(int pid, int seq, int type, int done, int multi,
559 		      void *payload, int size)
560 {
561 	struct sk_buff *skb;
562 	struct task_struct *tsk;
563 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
564 					    GFP_KERNEL);
565 
566 	if (!reply)
567 		return;
568 
569 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
570 	if (!skb)
571 		goto out;
572 
573 	reply->pid = pid;
574 	reply->skb = skb;
575 
576 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
577 	if (!IS_ERR(tsk))
578 		return;
579 	kfree_skb(skb);
580 out:
581 	kfree(reply);
582 }
583 
584 /*
585  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
586  * control messages.
587  */
588 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
589 {
590 	int err = 0;
591 
592 	switch (msg_type) {
593 	case AUDIT_GET:
594 	case AUDIT_LIST:
595 	case AUDIT_LIST_RULES:
596 	case AUDIT_SET:
597 	case AUDIT_ADD:
598 	case AUDIT_ADD_RULE:
599 	case AUDIT_DEL:
600 	case AUDIT_DEL_RULE:
601 	case AUDIT_SIGNAL_INFO:
602 	case AUDIT_TTY_GET:
603 	case AUDIT_TTY_SET:
604 	case AUDIT_TRIM:
605 	case AUDIT_MAKE_EQUIV:
606 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
607 			err = -EPERM;
608 		break;
609 	case AUDIT_USER:
610 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
611 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
612 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
613 			err = -EPERM;
614 		break;
615 	default:  /* bad msg */
616 		err = -EINVAL;
617 	}
618 
619 	return err;
620 }
621 
622 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
623 				     u32 pid, u32 uid, uid_t auid, u32 ses,
624 				     u32 sid)
625 {
626 	int rc = 0;
627 	char *ctx = NULL;
628 	u32 len;
629 
630 	if (!audit_enabled) {
631 		*ab = NULL;
632 		return rc;
633 	}
634 
635 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
636 	audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
637 			 pid, uid, auid, ses);
638 	if (sid) {
639 		rc = security_secid_to_secctx(sid, &ctx, &len);
640 		if (rc)
641 			audit_log_format(*ab, " ssid=%u", sid);
642 		else {
643 			audit_log_format(*ab, " subj=%s", ctx);
644 			security_release_secctx(ctx, len);
645 		}
646 	}
647 
648 	return rc;
649 }
650 
651 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
652 {
653 	u32			uid, pid, seq, sid;
654 	void			*data;
655 	struct audit_status	*status_get, status_set;
656 	int			err;
657 	struct audit_buffer	*ab;
658 	u16			msg_type = nlh->nlmsg_type;
659 	uid_t			loginuid; /* loginuid of sender */
660 	u32			sessionid;
661 	struct audit_sig_info   *sig_data;
662 	char			*ctx = NULL;
663 	u32			len;
664 
665 	err = audit_netlink_ok(skb, msg_type);
666 	if (err)
667 		return err;
668 
669 	/* As soon as there's any sign of userspace auditd,
670 	 * start kauditd to talk to it */
671 	if (!kauditd_task)
672 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
673 	if (IS_ERR(kauditd_task)) {
674 		err = PTR_ERR(kauditd_task);
675 		kauditd_task = NULL;
676 		return err;
677 	}
678 
679 	pid  = NETLINK_CREDS(skb)->pid;
680 	uid  = NETLINK_CREDS(skb)->uid;
681 	loginuid = NETLINK_CB(skb).loginuid;
682 	sessionid = NETLINK_CB(skb).sessionid;
683 	sid  = NETLINK_CB(skb).sid;
684 	seq  = nlh->nlmsg_seq;
685 	data = NLMSG_DATA(nlh);
686 
687 	switch (msg_type) {
688 	case AUDIT_GET:
689 		status_set.enabled	 = audit_enabled;
690 		status_set.failure	 = audit_failure;
691 		status_set.pid		 = audit_pid;
692 		status_set.rate_limit	 = audit_rate_limit;
693 		status_set.backlog_limit = audit_backlog_limit;
694 		status_set.lost		 = atomic_read(&audit_lost);
695 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
696 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
697 				 &status_set, sizeof(status_set));
698 		break;
699 	case AUDIT_SET:
700 		if (nlh->nlmsg_len < sizeof(struct audit_status))
701 			return -EINVAL;
702 		status_get   = (struct audit_status *)data;
703 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
704 			err = audit_set_enabled(status_get->enabled,
705 						loginuid, sessionid, sid);
706 			if (err < 0)
707 				return err;
708 		}
709 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
710 			err = audit_set_failure(status_get->failure,
711 						loginuid, sessionid, sid);
712 			if (err < 0)
713 				return err;
714 		}
715 		if (status_get->mask & AUDIT_STATUS_PID) {
716 			int new_pid = status_get->pid;
717 
718 			if (audit_enabled != AUDIT_OFF)
719 				audit_log_config_change("audit_pid", new_pid,
720 							audit_pid, loginuid,
721 							sessionid, sid, 1);
722 
723 			audit_pid = new_pid;
724 			audit_nlk_pid = NETLINK_CB(skb).pid;
725 		}
726 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
727 			err = audit_set_rate_limit(status_get->rate_limit,
728 						   loginuid, sessionid, sid);
729 			if (err < 0)
730 				return err;
731 		}
732 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
733 			err = audit_set_backlog_limit(status_get->backlog_limit,
734 						      loginuid, sessionid, sid);
735 		break;
736 	case AUDIT_USER:
737 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
738 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
739 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
740 			return 0;
741 
742 		err = audit_filter_user(&NETLINK_CB(skb));
743 		if (err == 1) {
744 			err = 0;
745 			if (msg_type == AUDIT_USER_TTY) {
746 				err = audit_prepare_user_tty(pid, loginuid,
747 							     sessionid);
748 				if (err)
749 					break;
750 			}
751 			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
752 						  loginuid, sessionid, sid);
753 
754 			if (msg_type != AUDIT_USER_TTY)
755 				audit_log_format(ab, " msg='%.1024s'",
756 						 (char *)data);
757 			else {
758 				int size;
759 
760 				audit_log_format(ab, " msg=");
761 				size = nlmsg_len(nlh);
762 				if (size > 0 &&
763 				    ((unsigned char *)data)[size - 1] == '\0')
764 					size--;
765 				audit_log_n_untrustedstring(ab, data, size);
766 			}
767 			audit_set_pid(ab, pid);
768 			audit_log_end(ab);
769 		}
770 		break;
771 	case AUDIT_ADD:
772 	case AUDIT_DEL:
773 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
774 			return -EINVAL;
775 		if (audit_enabled == AUDIT_LOCKED) {
776 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
777 						  uid, loginuid, sessionid, sid);
778 
779 			audit_log_format(ab, " audit_enabled=%d res=0",
780 					 audit_enabled);
781 			audit_log_end(ab);
782 			return -EPERM;
783 		}
784 		/* fallthrough */
785 	case AUDIT_LIST:
786 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
787 					   uid, seq, data, nlmsg_len(nlh),
788 					   loginuid, sessionid, sid);
789 		break;
790 	case AUDIT_ADD_RULE:
791 	case AUDIT_DEL_RULE:
792 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
793 			return -EINVAL;
794 		if (audit_enabled == AUDIT_LOCKED) {
795 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
796 						  uid, loginuid, sessionid, sid);
797 
798 			audit_log_format(ab, " audit_enabled=%d res=0",
799 					 audit_enabled);
800 			audit_log_end(ab);
801 			return -EPERM;
802 		}
803 		/* fallthrough */
804 	case AUDIT_LIST_RULES:
805 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
806 					   uid, seq, data, nlmsg_len(nlh),
807 					   loginuid, sessionid, sid);
808 		break;
809 	case AUDIT_TRIM:
810 		audit_trim_trees();
811 
812 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
813 					  uid, loginuid, sessionid, sid);
814 
815 		audit_log_format(ab, " op=trim res=1");
816 		audit_log_end(ab);
817 		break;
818 	case AUDIT_MAKE_EQUIV: {
819 		void *bufp = data;
820 		u32 sizes[2];
821 		size_t msglen = nlmsg_len(nlh);
822 		char *old, *new;
823 
824 		err = -EINVAL;
825 		if (msglen < 2 * sizeof(u32))
826 			break;
827 		memcpy(sizes, bufp, 2 * sizeof(u32));
828 		bufp += 2 * sizeof(u32);
829 		msglen -= 2 * sizeof(u32);
830 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
831 		if (IS_ERR(old)) {
832 			err = PTR_ERR(old);
833 			break;
834 		}
835 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
836 		if (IS_ERR(new)) {
837 			err = PTR_ERR(new);
838 			kfree(old);
839 			break;
840 		}
841 		/* OK, here comes... */
842 		err = audit_tag_tree(old, new);
843 
844 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
845 					  uid, loginuid, sessionid, sid);
846 
847 		audit_log_format(ab, " op=make_equiv old=");
848 		audit_log_untrustedstring(ab, old);
849 		audit_log_format(ab, " new=");
850 		audit_log_untrustedstring(ab, new);
851 		audit_log_format(ab, " res=%d", !err);
852 		audit_log_end(ab);
853 		kfree(old);
854 		kfree(new);
855 		break;
856 	}
857 	case AUDIT_SIGNAL_INFO:
858 		err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
859 		if (err)
860 			return err;
861 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
862 		if (!sig_data) {
863 			security_release_secctx(ctx, len);
864 			return -ENOMEM;
865 		}
866 		sig_data->uid = audit_sig_uid;
867 		sig_data->pid = audit_sig_pid;
868 		memcpy(sig_data->ctx, ctx, len);
869 		security_release_secctx(ctx, len);
870 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
871 				0, 0, sig_data, sizeof(*sig_data) + len);
872 		kfree(sig_data);
873 		break;
874 	case AUDIT_TTY_GET: {
875 		struct audit_tty_status s;
876 		struct task_struct *tsk;
877 
878 		read_lock(&tasklist_lock);
879 		tsk = find_task_by_vpid(pid);
880 		if (!tsk)
881 			err = -ESRCH;
882 		else {
883 			spin_lock_irq(&tsk->sighand->siglock);
884 			s.enabled = tsk->signal->audit_tty != 0;
885 			spin_unlock_irq(&tsk->sighand->siglock);
886 		}
887 		read_unlock(&tasklist_lock);
888 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
889 				 &s, sizeof(s));
890 		break;
891 	}
892 	case AUDIT_TTY_SET: {
893 		struct audit_tty_status *s;
894 		struct task_struct *tsk;
895 
896 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
897 			return -EINVAL;
898 		s = data;
899 		if (s->enabled != 0 && s->enabled != 1)
900 			return -EINVAL;
901 		read_lock(&tasklist_lock);
902 		tsk = find_task_by_vpid(pid);
903 		if (!tsk)
904 			err = -ESRCH;
905 		else {
906 			spin_lock_irq(&tsk->sighand->siglock);
907 			tsk->signal->audit_tty = s->enabled != 0;
908 			spin_unlock_irq(&tsk->sighand->siglock);
909 		}
910 		read_unlock(&tasklist_lock);
911 		break;
912 	}
913 	default:
914 		err = -EINVAL;
915 		break;
916 	}
917 
918 	return err < 0 ? err : 0;
919 }
920 
921 /*
922  * Get message from skb.  Each message is processed by audit_receive_msg.
923  * Malformed skbs with wrong length are discarded silently.
924  */
925 static void audit_receive_skb(struct sk_buff *skb)
926 {
927 	struct nlmsghdr *nlh;
928 	/*
929 	 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
930 	 * if the nlmsg_len was not aligned
931 	 */
932 	int len;
933 	int err;
934 
935 	nlh = nlmsg_hdr(skb);
936 	len = skb->len;
937 
938 	while (NLMSG_OK(nlh, len)) {
939 		err = audit_receive_msg(skb, nlh);
940 		/* if err or if this message says it wants a response */
941 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
942 			netlink_ack(skb, nlh, err);
943 
944 		nlh = NLMSG_NEXT(nlh, len);
945 	}
946 }
947 
948 /* Receive messages from netlink socket. */
949 static void audit_receive(struct sk_buff  *skb)
950 {
951 	mutex_lock(&audit_cmd_mutex);
952 	audit_receive_skb(skb);
953 	mutex_unlock(&audit_cmd_mutex);
954 }
955 
956 /* Initialize audit support at boot time. */
957 static int __init audit_init(void)
958 {
959 	int i;
960 
961 	if (audit_initialized == AUDIT_DISABLED)
962 		return 0;
963 
964 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
965 	       audit_default ? "enabled" : "disabled");
966 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
967 					   audit_receive, NULL, THIS_MODULE);
968 	if (!audit_sock)
969 		audit_panic("cannot initialize netlink socket");
970 	else
971 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
972 
973 	skb_queue_head_init(&audit_skb_queue);
974 	skb_queue_head_init(&audit_skb_hold_queue);
975 	audit_initialized = AUDIT_INITIALIZED;
976 	audit_enabled = audit_default;
977 	audit_ever_enabled |= !!audit_default;
978 
979 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
980 
981 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
982 		INIT_LIST_HEAD(&audit_inode_hash[i]);
983 
984 	return 0;
985 }
986 __initcall(audit_init);
987 
988 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
989 static int __init audit_enable(char *str)
990 {
991 	audit_default = !!simple_strtol(str, NULL, 0);
992 	if (!audit_default)
993 		audit_initialized = AUDIT_DISABLED;
994 
995 	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
996 
997 	if (audit_initialized == AUDIT_INITIALIZED) {
998 		audit_enabled = audit_default;
999 		audit_ever_enabled |= !!audit_default;
1000 	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
1001 		printk(" (after initialization)");
1002 	} else {
1003 		printk(" (until reboot)");
1004 	}
1005 	printk("\n");
1006 
1007 	return 1;
1008 }
1009 
1010 __setup("audit=", audit_enable);
1011 
1012 static void audit_buffer_free(struct audit_buffer *ab)
1013 {
1014 	unsigned long flags;
1015 
1016 	if (!ab)
1017 		return;
1018 
1019 	if (ab->skb)
1020 		kfree_skb(ab->skb);
1021 
1022 	spin_lock_irqsave(&audit_freelist_lock, flags);
1023 	if (audit_freelist_count > AUDIT_MAXFREE)
1024 		kfree(ab);
1025 	else {
1026 		audit_freelist_count++;
1027 		list_add(&ab->list, &audit_freelist);
1028 	}
1029 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1030 }
1031 
1032 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1033 						gfp_t gfp_mask, int type)
1034 {
1035 	unsigned long flags;
1036 	struct audit_buffer *ab = NULL;
1037 	struct nlmsghdr *nlh;
1038 
1039 	spin_lock_irqsave(&audit_freelist_lock, flags);
1040 	if (!list_empty(&audit_freelist)) {
1041 		ab = list_entry(audit_freelist.next,
1042 				struct audit_buffer, list);
1043 		list_del(&ab->list);
1044 		--audit_freelist_count;
1045 	}
1046 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1047 
1048 	if (!ab) {
1049 		ab = kmalloc(sizeof(*ab), gfp_mask);
1050 		if (!ab)
1051 			goto err;
1052 	}
1053 
1054 	ab->ctx = ctx;
1055 	ab->gfp_mask = gfp_mask;
1056 
1057 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1058 	if (!ab->skb)
1059 		goto nlmsg_failure;
1060 
1061 	nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
1062 
1063 	return ab;
1064 
1065 nlmsg_failure:                  /* Used by NLMSG_NEW */
1066 	kfree_skb(ab->skb);
1067 	ab->skb = NULL;
1068 err:
1069 	audit_buffer_free(ab);
1070 	return NULL;
1071 }
1072 
1073 /**
1074  * audit_serial - compute a serial number for the audit record
1075  *
1076  * Compute a serial number for the audit record.  Audit records are
1077  * written to user-space as soon as they are generated, so a complete
1078  * audit record may be written in several pieces.  The timestamp of the
1079  * record and this serial number are used by the user-space tools to
1080  * determine which pieces belong to the same audit record.  The
1081  * (timestamp,serial) tuple is unique for each syscall and is live from
1082  * syscall entry to syscall exit.
1083  *
1084  * NOTE: Another possibility is to store the formatted records off the
1085  * audit context (for those records that have a context), and emit them
1086  * all at syscall exit.  However, this could delay the reporting of
1087  * significant errors until syscall exit (or never, if the system
1088  * halts).
1089  */
1090 unsigned int audit_serial(void)
1091 {
1092 	static DEFINE_SPINLOCK(serial_lock);
1093 	static unsigned int serial = 0;
1094 
1095 	unsigned long flags;
1096 	unsigned int ret;
1097 
1098 	spin_lock_irqsave(&serial_lock, flags);
1099 	do {
1100 		ret = ++serial;
1101 	} while (unlikely(!ret));
1102 	spin_unlock_irqrestore(&serial_lock, flags);
1103 
1104 	return ret;
1105 }
1106 
1107 static inline void audit_get_stamp(struct audit_context *ctx,
1108 				   struct timespec *t, unsigned int *serial)
1109 {
1110 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1111 		*t = CURRENT_TIME;
1112 		*serial = audit_serial();
1113 	}
1114 }
1115 
1116 /* Obtain an audit buffer.  This routine does locking to obtain the
1117  * audit buffer, but then no locking is required for calls to
1118  * audit_log_*format.  If the tsk is a task that is currently in a
1119  * syscall, then the syscall is marked as auditable and an audit record
1120  * will be written at syscall exit.  If there is no associated task, tsk
1121  * should be NULL. */
1122 
1123 /**
1124  * audit_log_start - obtain an audit buffer
1125  * @ctx: audit_context (may be NULL)
1126  * @gfp_mask: type of allocation
1127  * @type: audit message type
1128  *
1129  * Returns audit_buffer pointer on success or NULL on error.
1130  *
1131  * Obtain an audit buffer.  This routine does locking to obtain the
1132  * audit buffer, but then no locking is required for calls to
1133  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1134  * syscall, then the syscall is marked as auditable and an audit record
1135  * will be written at syscall exit.  If there is no associated task, then
1136  * task context (ctx) should be NULL.
1137  */
1138 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1139 				     int type)
1140 {
1141 	struct audit_buffer	*ab	= NULL;
1142 	struct timespec		t;
1143 	unsigned int		uninitialized_var(serial);
1144 	int reserve;
1145 	unsigned long timeout_start = jiffies;
1146 
1147 	if (audit_initialized != AUDIT_INITIALIZED)
1148 		return NULL;
1149 
1150 	if (unlikely(audit_filter_type(type)))
1151 		return NULL;
1152 
1153 	if (gfp_mask & __GFP_WAIT)
1154 		reserve = 0;
1155 	else
1156 		reserve = 5; /* Allow atomic callers to go up to five
1157 				entries over the normal backlog limit */
1158 
1159 	while (audit_backlog_limit
1160 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1161 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1162 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1163 
1164 			/* Wait for auditd to drain the queue a little */
1165 			DECLARE_WAITQUEUE(wait, current);
1166 			set_current_state(TASK_INTERRUPTIBLE);
1167 			add_wait_queue(&audit_backlog_wait, &wait);
1168 
1169 			if (audit_backlog_limit &&
1170 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1171 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1172 
1173 			__set_current_state(TASK_RUNNING);
1174 			remove_wait_queue(&audit_backlog_wait, &wait);
1175 			continue;
1176 		}
1177 		if (audit_rate_check() && printk_ratelimit())
1178 			printk(KERN_WARNING
1179 			       "audit: audit_backlog=%d > "
1180 			       "audit_backlog_limit=%d\n",
1181 			       skb_queue_len(&audit_skb_queue),
1182 			       audit_backlog_limit);
1183 		audit_log_lost("backlog limit exceeded");
1184 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1185 		wake_up(&audit_backlog_wait);
1186 		return NULL;
1187 	}
1188 
1189 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1190 	if (!ab) {
1191 		audit_log_lost("out of memory in audit_log_start");
1192 		return NULL;
1193 	}
1194 
1195 	audit_get_stamp(ab->ctx, &t, &serial);
1196 
1197 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1198 			 t.tv_sec, t.tv_nsec/1000000, serial);
1199 	return ab;
1200 }
1201 
1202 /**
1203  * audit_expand - expand skb in the audit buffer
1204  * @ab: audit_buffer
1205  * @extra: space to add at tail of the skb
1206  *
1207  * Returns 0 (no space) on failed expansion, or available space if
1208  * successful.
1209  */
1210 static inline int audit_expand(struct audit_buffer *ab, int extra)
1211 {
1212 	struct sk_buff *skb = ab->skb;
1213 	int oldtail = skb_tailroom(skb);
1214 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1215 	int newtail = skb_tailroom(skb);
1216 
1217 	if (ret < 0) {
1218 		audit_log_lost("out of memory in audit_expand");
1219 		return 0;
1220 	}
1221 
1222 	skb->truesize += newtail - oldtail;
1223 	return newtail;
1224 }
1225 
1226 /*
1227  * Format an audit message into the audit buffer.  If there isn't enough
1228  * room in the audit buffer, more room will be allocated and vsnprint
1229  * will be called a second time.  Currently, we assume that a printk
1230  * can't format message larger than 1024 bytes, so we don't either.
1231  */
1232 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1233 			      va_list args)
1234 {
1235 	int len, avail;
1236 	struct sk_buff *skb;
1237 	va_list args2;
1238 
1239 	if (!ab)
1240 		return;
1241 
1242 	BUG_ON(!ab->skb);
1243 	skb = ab->skb;
1244 	avail = skb_tailroom(skb);
1245 	if (avail == 0) {
1246 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1247 		if (!avail)
1248 			goto out;
1249 	}
1250 	va_copy(args2, args);
1251 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1252 	if (len >= avail) {
1253 		/* The printk buffer is 1024 bytes long, so if we get
1254 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1255 		 * log everything that printk could have logged. */
1256 		avail = audit_expand(ab,
1257 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1258 		if (!avail)
1259 			goto out;
1260 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1261 	}
1262 	va_end(args2);
1263 	if (len > 0)
1264 		skb_put(skb, len);
1265 out:
1266 	return;
1267 }
1268 
1269 /**
1270  * audit_log_format - format a message into the audit buffer.
1271  * @ab: audit_buffer
1272  * @fmt: format string
1273  * @...: optional parameters matching @fmt string
1274  *
1275  * All the work is done in audit_log_vformat.
1276  */
1277 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1278 {
1279 	va_list args;
1280 
1281 	if (!ab)
1282 		return;
1283 	va_start(args, fmt);
1284 	audit_log_vformat(ab, fmt, args);
1285 	va_end(args);
1286 }
1287 
1288 /**
1289  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1290  * @ab: the audit_buffer
1291  * @buf: buffer to convert to hex
1292  * @len: length of @buf to be converted
1293  *
1294  * No return value; failure to expand is silently ignored.
1295  *
1296  * This function will take the passed buf and convert it into a string of
1297  * ascii hex digits. The new string is placed onto the skb.
1298  */
1299 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1300 		size_t len)
1301 {
1302 	int i, avail, new_len;
1303 	unsigned char *ptr;
1304 	struct sk_buff *skb;
1305 	static const unsigned char *hex = "0123456789ABCDEF";
1306 
1307 	if (!ab)
1308 		return;
1309 
1310 	BUG_ON(!ab->skb);
1311 	skb = ab->skb;
1312 	avail = skb_tailroom(skb);
1313 	new_len = len<<1;
1314 	if (new_len >= avail) {
1315 		/* Round the buffer request up to the next multiple */
1316 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1317 		avail = audit_expand(ab, new_len);
1318 		if (!avail)
1319 			return;
1320 	}
1321 
1322 	ptr = skb_tail_pointer(skb);
1323 	for (i=0; i<len; i++) {
1324 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1325 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1326 	}
1327 	*ptr = 0;
1328 	skb_put(skb, len << 1); /* new string is twice the old string */
1329 }
1330 
1331 /*
1332  * Format a string of no more than slen characters into the audit buffer,
1333  * enclosed in quote marks.
1334  */
1335 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1336 			size_t slen)
1337 {
1338 	int avail, new_len;
1339 	unsigned char *ptr;
1340 	struct sk_buff *skb;
1341 
1342 	if (!ab)
1343 		return;
1344 
1345 	BUG_ON(!ab->skb);
1346 	skb = ab->skb;
1347 	avail = skb_tailroom(skb);
1348 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1349 	if (new_len > avail) {
1350 		avail = audit_expand(ab, new_len);
1351 		if (!avail)
1352 			return;
1353 	}
1354 	ptr = skb_tail_pointer(skb);
1355 	*ptr++ = '"';
1356 	memcpy(ptr, string, slen);
1357 	ptr += slen;
1358 	*ptr++ = '"';
1359 	*ptr = 0;
1360 	skb_put(skb, slen + 2);	/* don't include null terminator */
1361 }
1362 
1363 /**
1364  * audit_string_contains_control - does a string need to be logged in hex
1365  * @string: string to be checked
1366  * @len: max length of the string to check
1367  */
1368 int audit_string_contains_control(const char *string, size_t len)
1369 {
1370 	const unsigned char *p;
1371 	for (p = string; p < (const unsigned char *)string + len; p++) {
1372 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1373 			return 1;
1374 	}
1375 	return 0;
1376 }
1377 
1378 /**
1379  * audit_log_n_untrustedstring - log a string that may contain random characters
1380  * @ab: audit_buffer
1381  * @len: length of string (not including trailing null)
1382  * @string: string to be logged
1383  *
1384  * This code will escape a string that is passed to it if the string
1385  * contains a control character, unprintable character, double quote mark,
1386  * or a space. Unescaped strings will start and end with a double quote mark.
1387  * Strings that are escaped are printed in hex (2 digits per char).
1388  *
1389  * The caller specifies the number of characters in the string to log, which may
1390  * or may not be the entire string.
1391  */
1392 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1393 				 size_t len)
1394 {
1395 	if (audit_string_contains_control(string, len))
1396 		audit_log_n_hex(ab, string, len);
1397 	else
1398 		audit_log_n_string(ab, string, len);
1399 }
1400 
1401 /**
1402  * audit_log_untrustedstring - log a string that may contain random characters
1403  * @ab: audit_buffer
1404  * @string: string to be logged
1405  *
1406  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1407  * determine string length.
1408  */
1409 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1410 {
1411 	audit_log_n_untrustedstring(ab, string, strlen(string));
1412 }
1413 
1414 /* This is a helper-function to print the escaped d_path */
1415 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1416 		      struct path *path)
1417 {
1418 	char *p, *pathname;
1419 
1420 	if (prefix)
1421 		audit_log_format(ab, " %s", prefix);
1422 
1423 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1424 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1425 	if (!pathname) {
1426 		audit_log_string(ab, "<no_memory>");
1427 		return;
1428 	}
1429 	p = d_path(path, pathname, PATH_MAX+11);
1430 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1431 		/* FIXME: can we save some information here? */
1432 		audit_log_string(ab, "<too_long>");
1433 	} else
1434 		audit_log_untrustedstring(ab, p);
1435 	kfree(pathname);
1436 }
1437 
1438 void audit_log_key(struct audit_buffer *ab, char *key)
1439 {
1440 	audit_log_format(ab, " key=");
1441 	if (key)
1442 		audit_log_untrustedstring(ab, key);
1443 	else
1444 		audit_log_format(ab, "(null)");
1445 }
1446 
1447 /**
1448  * audit_log_end - end one audit record
1449  * @ab: the audit_buffer
1450  *
1451  * The netlink_* functions cannot be called inside an irq context, so
1452  * the audit buffer is placed on a queue and a tasklet is scheduled to
1453  * remove them from the queue outside the irq context.  May be called in
1454  * any context.
1455  */
1456 void audit_log_end(struct audit_buffer *ab)
1457 {
1458 	if (!ab)
1459 		return;
1460 	if (!audit_rate_check()) {
1461 		audit_log_lost("rate limit exceeded");
1462 	} else {
1463 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1464 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1465 
1466 		if (audit_pid) {
1467 			skb_queue_tail(&audit_skb_queue, ab->skb);
1468 			wake_up_interruptible(&kauditd_wait);
1469 		} else {
1470 			audit_printk_skb(ab->skb);
1471 		}
1472 		ab->skb = NULL;
1473 	}
1474 	audit_buffer_free(ab);
1475 }
1476 
1477 /**
1478  * audit_log - Log an audit record
1479  * @ctx: audit context
1480  * @gfp_mask: type of allocation
1481  * @type: audit message type
1482  * @fmt: format string to use
1483  * @...: variable parameters matching the format string
1484  *
1485  * This is a convenience function that calls audit_log_start,
1486  * audit_log_vformat, and audit_log_end.  It may be called
1487  * in any context.
1488  */
1489 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1490 	       const char *fmt, ...)
1491 {
1492 	struct audit_buffer *ab;
1493 	va_list args;
1494 
1495 	ab = audit_log_start(ctx, gfp_mask, type);
1496 	if (ab) {
1497 		va_start(args, fmt);
1498 		audit_log_vformat(ab, fmt, args);
1499 		va_end(args);
1500 		audit_log_end(ab);
1501 	}
1502 }
1503 
1504 EXPORT_SYMBOL(audit_log_start);
1505 EXPORT_SYMBOL(audit_log_end);
1506 EXPORT_SYMBOL(audit_log_format);
1507 EXPORT_SYMBOL(audit_log);
1508