1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 #include <linux/spinlock.h> 58 #include <linux/rcupdate.h> 59 #include <linux/mutex.h> 60 #include <linux/gfp.h> 61 #include <linux/pid.h> 62 #include <linux/slab.h> 63 64 #include <linux/audit.h> 65 66 #include <net/sock.h> 67 #include <net/netlink.h> 68 #include <linux/skbuff.h> 69 #ifdef CONFIG_SECURITY 70 #include <linux/security.h> 71 #endif 72 #include <linux/freezer.h> 73 #include <linux/pid_namespace.h> 74 #include <net/netns/generic.h> 75 76 #include "audit.h" 77 78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 79 * (Initialization happens after skb_init is called.) */ 80 #define AUDIT_DISABLED -1 81 #define AUDIT_UNINITIALIZED 0 82 #define AUDIT_INITIALIZED 1 83 static int audit_initialized; 84 85 #define AUDIT_OFF 0 86 #define AUDIT_ON 1 87 #define AUDIT_LOCKED 2 88 u32 audit_enabled; 89 u32 audit_ever_enabled; 90 91 EXPORT_SYMBOL_GPL(audit_enabled); 92 93 /* Default state when kernel boots without any parameters. */ 94 static u32 audit_default; 95 96 /* If auditing cannot proceed, audit_failure selects what happens. */ 97 static u32 audit_failure = AUDIT_FAIL_PRINTK; 98 99 /* private audit network namespace index */ 100 static unsigned int audit_net_id; 101 102 /** 103 * struct audit_net - audit private network namespace data 104 * @sk: communication socket 105 */ 106 struct audit_net { 107 struct sock *sk; 108 }; 109 110 /** 111 * struct auditd_connection - kernel/auditd connection state 112 * @pid: auditd PID 113 * @portid: netlink portid 114 * @net: the associated network namespace 115 * @rcu: RCU head 116 * 117 * Description: 118 * This struct is RCU protected; you must either hold the RCU lock for reading 119 * or the associated spinlock for writing. 120 */ 121 static struct auditd_connection { 122 struct pid *pid; 123 u32 portid; 124 struct net *net; 125 struct rcu_head rcu; 126 } *auditd_conn = NULL; 127 static DEFINE_SPINLOCK(auditd_conn_lock); 128 129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 130 * to that number per second. This prevents DoS attacks, but results in 131 * audit records being dropped. */ 132 static u32 audit_rate_limit; 133 134 /* Number of outstanding audit_buffers allowed. 135 * When set to zero, this means unlimited. */ 136 static u32 audit_backlog_limit = 64; 137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 139 140 /* The identity of the user shutting down the audit system. */ 141 kuid_t audit_sig_uid = INVALID_UID; 142 pid_t audit_sig_pid = -1; 143 u32 audit_sig_sid = 0; 144 145 /* Records can be lost in several ways: 146 0) [suppressed in audit_alloc] 147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 148 2) out of memory in audit_log_move [alloc_skb] 149 3) suppressed due to audit_rate_limit 150 4) suppressed due to audit_backlog_limit 151 */ 152 static atomic_t audit_lost = ATOMIC_INIT(0); 153 154 /* Hash for inode-based rules */ 155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 156 157 static struct kmem_cache *audit_buffer_cache; 158 159 /* queue msgs to send via kauditd_task */ 160 static struct sk_buff_head audit_queue; 161 /* queue msgs due to temporary unicast send problems */ 162 static struct sk_buff_head audit_retry_queue; 163 /* queue msgs waiting for new auditd connection */ 164 static struct sk_buff_head audit_hold_queue; 165 166 /* queue servicing thread */ 167 static struct task_struct *kauditd_task; 168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 169 170 /* waitqueue for callers who are blocked on the audit backlog */ 171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 172 173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 174 .mask = -1, 175 .features = 0, 176 .lock = 0,}; 177 178 static char *audit_feature_names[2] = { 179 "only_unset_loginuid", 180 "loginuid_immutable", 181 }; 182 183 184 /* Serialize requests from userspace. */ 185 DEFINE_MUTEX(audit_cmd_mutex); 186 187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 191 192 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 197 struct audit_buffer { 198 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 201 }; 202 203 struct audit_reply { 204 __u32 portid; 205 struct net *net; 206 struct sk_buff *skb; 207 }; 208 209 /** 210 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 212 * 213 * Description: 214 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 216 int auditd_test_task(struct task_struct *task) 217 { 218 int rc; 219 struct auditd_connection *ac; 220 221 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 225 226 return rc; 227 } 228 229 /** 230 * auditd_pid_vnr - Return the auditd PID relative to the namespace 231 * 232 * Description: 233 * Returns the PID in relation to the namespace, 0 on failure. 234 */ 235 static pid_t auditd_pid_vnr(void) 236 { 237 pid_t pid; 238 const struct auditd_connection *ac; 239 240 rcu_read_lock(); 241 ac = rcu_dereference(auditd_conn); 242 if (!ac || !ac->pid) 243 pid = 0; 244 else 245 pid = pid_vnr(ac->pid); 246 rcu_read_unlock(); 247 248 return pid; 249 } 250 251 /** 252 * audit_get_sk - Return the audit socket for the given network namespace 253 * @net: the destination network namespace 254 * 255 * Description: 256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 257 * that a reference is held for the network namespace while the sock is in use. 258 */ 259 static struct sock *audit_get_sk(const struct net *net) 260 { 261 struct audit_net *aunet; 262 263 if (!net) 264 return NULL; 265 266 aunet = net_generic(net, audit_net_id); 267 return aunet->sk; 268 } 269 270 void audit_panic(const char *message) 271 { 272 switch (audit_failure) { 273 case AUDIT_FAIL_SILENT: 274 break; 275 case AUDIT_FAIL_PRINTK: 276 if (printk_ratelimit()) 277 pr_err("%s\n", message); 278 break; 279 case AUDIT_FAIL_PANIC: 280 panic("audit: %s\n", message); 281 break; 282 } 283 } 284 285 static inline int audit_rate_check(void) 286 { 287 static unsigned long last_check = 0; 288 static int messages = 0; 289 static DEFINE_SPINLOCK(lock); 290 unsigned long flags; 291 unsigned long now; 292 unsigned long elapsed; 293 int retval = 0; 294 295 if (!audit_rate_limit) return 1; 296 297 spin_lock_irqsave(&lock, flags); 298 if (++messages < audit_rate_limit) { 299 retval = 1; 300 } else { 301 now = jiffies; 302 elapsed = now - last_check; 303 if (elapsed > HZ) { 304 last_check = now; 305 messages = 0; 306 retval = 1; 307 } 308 } 309 spin_unlock_irqrestore(&lock, flags); 310 311 return retval; 312 } 313 314 /** 315 * audit_log_lost - conditionally log lost audit message event 316 * @message: the message stating reason for lost audit message 317 * 318 * Emit at least 1 message per second, even if audit_rate_check is 319 * throttling. 320 * Always increment the lost messages counter. 321 */ 322 void audit_log_lost(const char *message) 323 { 324 static unsigned long last_msg = 0; 325 static DEFINE_SPINLOCK(lock); 326 unsigned long flags; 327 unsigned long now; 328 int print; 329 330 atomic_inc(&audit_lost); 331 332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 333 334 if (!print) { 335 spin_lock_irqsave(&lock, flags); 336 now = jiffies; 337 if (now - last_msg > HZ) { 338 print = 1; 339 last_msg = now; 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 } 343 344 if (print) { 345 if (printk_ratelimit()) 346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 347 atomic_read(&audit_lost), 348 audit_rate_limit, 349 audit_backlog_limit); 350 audit_panic(message); 351 } 352 } 353 354 static int audit_log_config_change(char *function_name, u32 new, u32 old, 355 int allow_changes) 356 { 357 struct audit_buffer *ab; 358 int rc = 0; 359 360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 361 if (unlikely(!ab)) 362 return rc; 363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 364 audit_log_session_info(ab); 365 rc = audit_log_task_context(ab); 366 if (rc) 367 allow_changes = 0; /* Something weird, deny request */ 368 audit_log_format(ab, " res=%d", allow_changes); 369 audit_log_end(ab); 370 return rc; 371 } 372 373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 374 { 375 int allow_changes, rc = 0; 376 u32 old = *to_change; 377 378 /* check if we are locked */ 379 if (audit_enabled == AUDIT_LOCKED) 380 allow_changes = 0; 381 else 382 allow_changes = 1; 383 384 if (audit_enabled != AUDIT_OFF) { 385 rc = audit_log_config_change(function_name, new, old, allow_changes); 386 if (rc) 387 allow_changes = 0; 388 } 389 390 /* If we are allowed, make the change */ 391 if (allow_changes == 1) 392 *to_change = new; 393 /* Not allowed, update reason */ 394 else if (rc == 0) 395 rc = -EPERM; 396 return rc; 397 } 398 399 static int audit_set_rate_limit(u32 limit) 400 { 401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 402 } 403 404 static int audit_set_backlog_limit(u32 limit) 405 { 406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 407 } 408 409 static int audit_set_backlog_wait_time(u32 timeout) 410 { 411 return audit_do_config_change("audit_backlog_wait_time", 412 &audit_backlog_wait_time, timeout); 413 } 414 415 static int audit_set_enabled(u32 state) 416 { 417 int rc; 418 if (state > AUDIT_LOCKED) 419 return -EINVAL; 420 421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 422 if (!rc) 423 audit_ever_enabled |= !!state; 424 425 return rc; 426 } 427 428 static int audit_set_failure(u32 state) 429 { 430 if (state != AUDIT_FAIL_SILENT 431 && state != AUDIT_FAIL_PRINTK 432 && state != AUDIT_FAIL_PANIC) 433 return -EINVAL; 434 435 return audit_do_config_change("audit_failure", &audit_failure, state); 436 } 437 438 /** 439 * auditd_conn_free - RCU helper to release an auditd connection struct 440 * @rcu: RCU head 441 * 442 * Description: 443 * Drop any references inside the auditd connection tracking struct and free 444 * the memory. 445 */ 446 static void auditd_conn_free(struct rcu_head *rcu) 447 { 448 struct auditd_connection *ac; 449 450 ac = container_of(rcu, struct auditd_connection, rcu); 451 put_pid(ac->pid); 452 put_net(ac->net); 453 kfree(ac); 454 } 455 456 /** 457 * auditd_set - Set/Reset the auditd connection state 458 * @pid: auditd PID 459 * @portid: auditd netlink portid 460 * @net: auditd network namespace pointer 461 * 462 * Description: 463 * This function will obtain and drop network namespace references as 464 * necessary. Returns zero on success, negative values on failure. 465 */ 466 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 467 { 468 unsigned long flags; 469 struct auditd_connection *ac_old, *ac_new; 470 471 if (!pid || !net) 472 return -EINVAL; 473 474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 475 if (!ac_new) 476 return -ENOMEM; 477 ac_new->pid = get_pid(pid); 478 ac_new->portid = portid; 479 ac_new->net = get_net(net); 480 481 spin_lock_irqsave(&auditd_conn_lock, flags); 482 ac_old = rcu_dereference_protected(auditd_conn, 483 lockdep_is_held(&auditd_conn_lock)); 484 rcu_assign_pointer(auditd_conn, ac_new); 485 spin_unlock_irqrestore(&auditd_conn_lock, flags); 486 487 if (ac_old) 488 call_rcu(&ac_old->rcu, auditd_conn_free); 489 490 return 0; 491 } 492 493 /** 494 * kauditd_print_skb - Print the audit record to the ring buffer 495 * @skb: audit record 496 * 497 * Whatever the reason, this packet may not make it to the auditd connection 498 * so write it via printk so the information isn't completely lost. 499 */ 500 static void kauditd_printk_skb(struct sk_buff *skb) 501 { 502 struct nlmsghdr *nlh = nlmsg_hdr(skb); 503 char *data = nlmsg_data(nlh); 504 505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 507 } 508 509 /** 510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 511 * @skb: audit record 512 * 513 * Description: 514 * This should only be used by the kauditd_thread when it fails to flush the 515 * hold queue. 516 */ 517 static void kauditd_rehold_skb(struct sk_buff *skb) 518 { 519 /* put the record back in the queue at the same place */ 520 skb_queue_head(&audit_hold_queue, skb); 521 } 522 523 /** 524 * kauditd_hold_skb - Queue an audit record, waiting for auditd 525 * @skb: audit record 526 * 527 * Description: 528 * Queue the audit record, waiting for an instance of auditd. When this 529 * function is called we haven't given up yet on sending the record, but things 530 * are not looking good. The first thing we want to do is try to write the 531 * record via printk and then see if we want to try and hold on to the record 532 * and queue it, if we have room. If we want to hold on to the record, but we 533 * don't have room, record a record lost message. 534 */ 535 static void kauditd_hold_skb(struct sk_buff *skb) 536 { 537 /* at this point it is uncertain if we will ever send this to auditd so 538 * try to send the message via printk before we go any further */ 539 kauditd_printk_skb(skb); 540 541 /* can we just silently drop the message? */ 542 if (!audit_default) { 543 kfree_skb(skb); 544 return; 545 } 546 547 /* if we have room, queue the message */ 548 if (!audit_backlog_limit || 549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 550 skb_queue_tail(&audit_hold_queue, skb); 551 return; 552 } 553 554 /* we have no other options - drop the message */ 555 audit_log_lost("kauditd hold queue overflow"); 556 kfree_skb(skb); 557 } 558 559 /** 560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 561 * @skb: audit record 562 * 563 * Description: 564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 565 * but for some reason we are having problems sending it audit records so 566 * queue the given record and attempt to resend. 567 */ 568 static void kauditd_retry_skb(struct sk_buff *skb) 569 { 570 /* NOTE: because records should only live in the retry queue for a 571 * short period of time, before either being sent or moved to the hold 572 * queue, we don't currently enforce a limit on this queue */ 573 skb_queue_tail(&audit_retry_queue, skb); 574 } 575 576 /** 577 * auditd_reset - Disconnect the auditd connection 578 * 579 * Description: 580 * Break the auditd/kauditd connection and move all the queued records into the 581 * hold queue in case auditd reconnects. 582 */ 583 static void auditd_reset(void) 584 { 585 unsigned long flags; 586 struct sk_buff *skb; 587 struct auditd_connection *ac_old; 588 589 /* if it isn't already broken, break the connection */ 590 spin_lock_irqsave(&auditd_conn_lock, flags); 591 ac_old = rcu_dereference_protected(auditd_conn, 592 lockdep_is_held(&auditd_conn_lock)); 593 rcu_assign_pointer(auditd_conn, NULL); 594 spin_unlock_irqrestore(&auditd_conn_lock, flags); 595 596 if (ac_old) 597 call_rcu(&ac_old->rcu, auditd_conn_free); 598 599 /* flush all of the main and retry queues to the hold queue */ 600 while ((skb = skb_dequeue(&audit_retry_queue))) 601 kauditd_hold_skb(skb); 602 while ((skb = skb_dequeue(&audit_queue))) 603 kauditd_hold_skb(skb); 604 } 605 606 /** 607 * auditd_send_unicast_skb - Send a record via unicast to auditd 608 * @skb: audit record 609 * 610 * Description: 611 * Send a skb to the audit daemon, returns positive/zero values on success and 612 * negative values on failure; in all cases the skb will be consumed by this 613 * function. If the send results in -ECONNREFUSED the connection with auditd 614 * will be reset. This function may sleep so callers should not hold any locks 615 * where this would cause a problem. 616 */ 617 static int auditd_send_unicast_skb(struct sk_buff *skb) 618 { 619 int rc; 620 u32 portid; 621 struct net *net; 622 struct sock *sk; 623 struct auditd_connection *ac; 624 625 /* NOTE: we can't call netlink_unicast while in the RCU section so 626 * take a reference to the network namespace and grab local 627 * copies of the namespace, the sock, and the portid; the 628 * namespace and sock aren't going to go away while we hold a 629 * reference and if the portid does become invalid after the RCU 630 * section netlink_unicast() should safely return an error */ 631 632 rcu_read_lock(); 633 ac = rcu_dereference(auditd_conn); 634 if (!ac) { 635 rcu_read_unlock(); 636 rc = -ECONNREFUSED; 637 goto err; 638 } 639 net = get_net(ac->net); 640 sk = audit_get_sk(net); 641 portid = ac->portid; 642 rcu_read_unlock(); 643 644 rc = netlink_unicast(sk, skb, portid, 0); 645 put_net(net); 646 if (rc < 0) 647 goto err; 648 649 return rc; 650 651 err: 652 if (rc == -ECONNREFUSED) 653 auditd_reset(); 654 return rc; 655 } 656 657 /** 658 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 659 * @sk: the sending sock 660 * @portid: the netlink destination 661 * @queue: the skb queue to process 662 * @retry_limit: limit on number of netlink unicast failures 663 * @skb_hook: per-skb hook for additional processing 664 * @err_hook: hook called if the skb fails the netlink unicast send 665 * 666 * Description: 667 * Run through the given queue and attempt to send the audit records to auditd, 668 * returns zero on success, negative values on failure. It is up to the caller 669 * to ensure that the @sk is valid for the duration of this function. 670 * 671 */ 672 static int kauditd_send_queue(struct sock *sk, u32 portid, 673 struct sk_buff_head *queue, 674 unsigned int retry_limit, 675 void (*skb_hook)(struct sk_buff *skb), 676 void (*err_hook)(struct sk_buff *skb)) 677 { 678 int rc = 0; 679 struct sk_buff *skb; 680 static unsigned int failed = 0; 681 682 /* NOTE: kauditd_thread takes care of all our locking, we just use 683 * the netlink info passed to us (e.g. sk and portid) */ 684 685 while ((skb = skb_dequeue(queue))) { 686 /* call the skb_hook for each skb we touch */ 687 if (skb_hook) 688 (*skb_hook)(skb); 689 690 /* can we send to anyone via unicast? */ 691 if (!sk) { 692 if (err_hook) 693 (*err_hook)(skb); 694 continue; 695 } 696 697 /* grab an extra skb reference in case of error */ 698 skb_get(skb); 699 rc = netlink_unicast(sk, skb, portid, 0); 700 if (rc < 0) { 701 /* fatal failure for our queue flush attempt? */ 702 if (++failed >= retry_limit || 703 rc == -ECONNREFUSED || rc == -EPERM) { 704 /* yes - error processing for the queue */ 705 sk = NULL; 706 if (err_hook) 707 (*err_hook)(skb); 708 if (!skb_hook) 709 goto out; 710 /* keep processing with the skb_hook */ 711 continue; 712 } else 713 /* no - requeue to preserve ordering */ 714 skb_queue_head(queue, skb); 715 } else { 716 /* it worked - drop the extra reference and continue */ 717 consume_skb(skb); 718 failed = 0; 719 } 720 } 721 722 out: 723 return (rc >= 0 ? 0 : rc); 724 } 725 726 /* 727 * kauditd_send_multicast_skb - Send a record to any multicast listeners 728 * @skb: audit record 729 * 730 * Description: 731 * Write a multicast message to anyone listening in the initial network 732 * namespace. This function doesn't consume an skb as might be expected since 733 * it has to copy it anyways. 734 */ 735 static void kauditd_send_multicast_skb(struct sk_buff *skb) 736 { 737 struct sk_buff *copy; 738 struct sock *sock = audit_get_sk(&init_net); 739 struct nlmsghdr *nlh; 740 741 /* NOTE: we are not taking an additional reference for init_net since 742 * we don't have to worry about it going away */ 743 744 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 745 return; 746 747 /* 748 * The seemingly wasteful skb_copy() rather than bumping the refcount 749 * using skb_get() is necessary because non-standard mods are made to 750 * the skb by the original kaudit unicast socket send routine. The 751 * existing auditd daemon assumes this breakage. Fixing this would 752 * require co-ordinating a change in the established protocol between 753 * the kaudit kernel subsystem and the auditd userspace code. There is 754 * no reason for new multicast clients to continue with this 755 * non-compliance. 756 */ 757 copy = skb_copy(skb, GFP_KERNEL); 758 if (!copy) 759 return; 760 nlh = nlmsg_hdr(copy); 761 nlh->nlmsg_len = skb->len; 762 763 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 764 } 765 766 /** 767 * kauditd_thread - Worker thread to send audit records to userspace 768 * @dummy: unused 769 */ 770 static int kauditd_thread(void *dummy) 771 { 772 int rc; 773 u32 portid = 0; 774 struct net *net = NULL; 775 struct sock *sk = NULL; 776 struct auditd_connection *ac; 777 778 #define UNICAST_RETRIES 5 779 780 set_freezable(); 781 while (!kthread_should_stop()) { 782 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 783 rcu_read_lock(); 784 ac = rcu_dereference(auditd_conn); 785 if (!ac) { 786 rcu_read_unlock(); 787 goto main_queue; 788 } 789 net = get_net(ac->net); 790 sk = audit_get_sk(net); 791 portid = ac->portid; 792 rcu_read_unlock(); 793 794 /* attempt to flush the hold queue */ 795 rc = kauditd_send_queue(sk, portid, 796 &audit_hold_queue, UNICAST_RETRIES, 797 NULL, kauditd_rehold_skb); 798 if (rc < 0) { 799 sk = NULL; 800 auditd_reset(); 801 goto main_queue; 802 } 803 804 /* attempt to flush the retry queue */ 805 rc = kauditd_send_queue(sk, portid, 806 &audit_retry_queue, UNICAST_RETRIES, 807 NULL, kauditd_hold_skb); 808 if (rc < 0) { 809 sk = NULL; 810 auditd_reset(); 811 goto main_queue; 812 } 813 814 main_queue: 815 /* process the main queue - do the multicast send and attempt 816 * unicast, dump failed record sends to the retry queue; if 817 * sk == NULL due to previous failures we will just do the 818 * multicast send and move the record to the retry queue */ 819 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 820 kauditd_send_multicast_skb, 821 kauditd_retry_skb); 822 if (sk == NULL || rc < 0) 823 auditd_reset(); 824 sk = NULL; 825 826 /* drop our netns reference, no auditd sends past this line */ 827 if (net) { 828 put_net(net); 829 net = NULL; 830 } 831 832 /* we have processed all the queues so wake everyone */ 833 wake_up(&audit_backlog_wait); 834 835 /* NOTE: we want to wake up if there is anything on the queue, 836 * regardless of if an auditd is connected, as we need to 837 * do the multicast send and rotate records from the 838 * main queue to the retry/hold queues */ 839 wait_event_freezable(kauditd_wait, 840 (skb_queue_len(&audit_queue) ? 1 : 0)); 841 } 842 843 return 0; 844 } 845 846 int audit_send_list(void *_dest) 847 { 848 struct audit_netlink_list *dest = _dest; 849 struct sk_buff *skb; 850 struct sock *sk = audit_get_sk(dest->net); 851 852 /* wait for parent to finish and send an ACK */ 853 mutex_lock(&audit_cmd_mutex); 854 mutex_unlock(&audit_cmd_mutex); 855 856 while ((skb = __skb_dequeue(&dest->q)) != NULL) 857 netlink_unicast(sk, skb, dest->portid, 0); 858 859 put_net(dest->net); 860 kfree(dest); 861 862 return 0; 863 } 864 865 struct sk_buff *audit_make_reply(int seq, int type, int done, 866 int multi, const void *payload, int size) 867 { 868 struct sk_buff *skb; 869 struct nlmsghdr *nlh; 870 void *data; 871 int flags = multi ? NLM_F_MULTI : 0; 872 int t = done ? NLMSG_DONE : type; 873 874 skb = nlmsg_new(size, GFP_KERNEL); 875 if (!skb) 876 return NULL; 877 878 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 879 if (!nlh) 880 goto out_kfree_skb; 881 data = nlmsg_data(nlh); 882 memcpy(data, payload, size); 883 return skb; 884 885 out_kfree_skb: 886 kfree_skb(skb); 887 return NULL; 888 } 889 890 static int audit_send_reply_thread(void *arg) 891 { 892 struct audit_reply *reply = (struct audit_reply *)arg; 893 struct sock *sk = audit_get_sk(reply->net); 894 895 mutex_lock(&audit_cmd_mutex); 896 mutex_unlock(&audit_cmd_mutex); 897 898 /* Ignore failure. It'll only happen if the sender goes away, 899 because our timeout is set to infinite. */ 900 netlink_unicast(sk, reply->skb, reply->portid, 0); 901 put_net(reply->net); 902 kfree(reply); 903 return 0; 904 } 905 906 /** 907 * audit_send_reply - send an audit reply message via netlink 908 * @request_skb: skb of request we are replying to (used to target the reply) 909 * @seq: sequence number 910 * @type: audit message type 911 * @done: done (last) flag 912 * @multi: multi-part message flag 913 * @payload: payload data 914 * @size: payload size 915 * 916 * Allocates an skb, builds the netlink message, and sends it to the port id. 917 * No failure notifications. 918 */ 919 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 920 int multi, const void *payload, int size) 921 { 922 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 923 struct sk_buff *skb; 924 struct task_struct *tsk; 925 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 926 GFP_KERNEL); 927 928 if (!reply) 929 return; 930 931 skb = audit_make_reply(seq, type, done, multi, payload, size); 932 if (!skb) 933 goto out; 934 935 reply->net = get_net(net); 936 reply->portid = NETLINK_CB(request_skb).portid; 937 reply->skb = skb; 938 939 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 940 if (!IS_ERR(tsk)) 941 return; 942 kfree_skb(skb); 943 out: 944 kfree(reply); 945 } 946 947 /* 948 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 949 * control messages. 950 */ 951 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 952 { 953 int err = 0; 954 955 /* Only support initial user namespace for now. */ 956 /* 957 * We return ECONNREFUSED because it tricks userspace into thinking 958 * that audit was not configured into the kernel. Lots of users 959 * configure their PAM stack (because that's what the distro does) 960 * to reject login if unable to send messages to audit. If we return 961 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 962 * configured in and will let login proceed. If we return EPERM 963 * userspace will reject all logins. This should be removed when we 964 * support non init namespaces!! 965 */ 966 if (current_user_ns() != &init_user_ns) 967 return -ECONNREFUSED; 968 969 switch (msg_type) { 970 case AUDIT_LIST: 971 case AUDIT_ADD: 972 case AUDIT_DEL: 973 return -EOPNOTSUPP; 974 case AUDIT_GET: 975 case AUDIT_SET: 976 case AUDIT_GET_FEATURE: 977 case AUDIT_SET_FEATURE: 978 case AUDIT_LIST_RULES: 979 case AUDIT_ADD_RULE: 980 case AUDIT_DEL_RULE: 981 case AUDIT_SIGNAL_INFO: 982 case AUDIT_TTY_GET: 983 case AUDIT_TTY_SET: 984 case AUDIT_TRIM: 985 case AUDIT_MAKE_EQUIV: 986 /* Only support auditd and auditctl in initial pid namespace 987 * for now. */ 988 if (task_active_pid_ns(current) != &init_pid_ns) 989 return -EPERM; 990 991 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 992 err = -EPERM; 993 break; 994 case AUDIT_USER: 995 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 996 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 997 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 998 err = -EPERM; 999 break; 1000 default: /* bad msg */ 1001 err = -EINVAL; 1002 } 1003 1004 return err; 1005 } 1006 1007 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 1008 { 1009 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1010 pid_t pid = task_tgid_nr(current); 1011 1012 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1013 *ab = NULL; 1014 return; 1015 } 1016 1017 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 1018 if (unlikely(!*ab)) 1019 return; 1020 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 1021 audit_log_session_info(*ab); 1022 audit_log_task_context(*ab); 1023 } 1024 1025 int is_audit_feature_set(int i) 1026 { 1027 return af.features & AUDIT_FEATURE_TO_MASK(i); 1028 } 1029 1030 1031 static int audit_get_feature(struct sk_buff *skb) 1032 { 1033 u32 seq; 1034 1035 seq = nlmsg_hdr(skb)->nlmsg_seq; 1036 1037 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1038 1039 return 0; 1040 } 1041 1042 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1043 u32 old_lock, u32 new_lock, int res) 1044 { 1045 struct audit_buffer *ab; 1046 1047 if (audit_enabled == AUDIT_OFF) 1048 return; 1049 1050 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1051 audit_log_task_info(ab, current); 1052 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1053 audit_feature_names[which], !!old_feature, !!new_feature, 1054 !!old_lock, !!new_lock, res); 1055 audit_log_end(ab); 1056 } 1057 1058 static int audit_set_feature(struct sk_buff *skb) 1059 { 1060 struct audit_features *uaf; 1061 int i; 1062 1063 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1064 uaf = nlmsg_data(nlmsg_hdr(skb)); 1065 1066 /* if there is ever a version 2 we should handle that here */ 1067 1068 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1069 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1070 u32 old_feature, new_feature, old_lock, new_lock; 1071 1072 /* if we are not changing this feature, move along */ 1073 if (!(feature & uaf->mask)) 1074 continue; 1075 1076 old_feature = af.features & feature; 1077 new_feature = uaf->features & feature; 1078 new_lock = (uaf->lock | af.lock) & feature; 1079 old_lock = af.lock & feature; 1080 1081 /* are we changing a locked feature? */ 1082 if (old_lock && (new_feature != old_feature)) { 1083 audit_log_feature_change(i, old_feature, new_feature, 1084 old_lock, new_lock, 0); 1085 return -EPERM; 1086 } 1087 } 1088 /* nothing invalid, do the changes */ 1089 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1090 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1091 u32 old_feature, new_feature, old_lock, new_lock; 1092 1093 /* if we are not changing this feature, move along */ 1094 if (!(feature & uaf->mask)) 1095 continue; 1096 1097 old_feature = af.features & feature; 1098 new_feature = uaf->features & feature; 1099 old_lock = af.lock & feature; 1100 new_lock = (uaf->lock | af.lock) & feature; 1101 1102 if (new_feature != old_feature) 1103 audit_log_feature_change(i, old_feature, new_feature, 1104 old_lock, new_lock, 1); 1105 1106 if (new_feature) 1107 af.features |= feature; 1108 else 1109 af.features &= ~feature; 1110 af.lock |= new_lock; 1111 } 1112 1113 return 0; 1114 } 1115 1116 static int audit_replace(struct pid *pid) 1117 { 1118 pid_t pvnr; 1119 struct sk_buff *skb; 1120 1121 pvnr = pid_vnr(pid); 1122 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1123 if (!skb) 1124 return -ENOMEM; 1125 return auditd_send_unicast_skb(skb); 1126 } 1127 1128 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1129 { 1130 u32 seq; 1131 void *data; 1132 int err; 1133 struct audit_buffer *ab; 1134 u16 msg_type = nlh->nlmsg_type; 1135 struct audit_sig_info *sig_data; 1136 char *ctx = NULL; 1137 u32 len; 1138 1139 err = audit_netlink_ok(skb, msg_type); 1140 if (err) 1141 return err; 1142 1143 seq = nlh->nlmsg_seq; 1144 data = nlmsg_data(nlh); 1145 1146 switch (msg_type) { 1147 case AUDIT_GET: { 1148 struct audit_status s; 1149 memset(&s, 0, sizeof(s)); 1150 s.enabled = audit_enabled; 1151 s.failure = audit_failure; 1152 /* NOTE: use pid_vnr() so the PID is relative to the current 1153 * namespace */ 1154 s.pid = auditd_pid_vnr(); 1155 s.rate_limit = audit_rate_limit; 1156 s.backlog_limit = audit_backlog_limit; 1157 s.lost = atomic_read(&audit_lost); 1158 s.backlog = skb_queue_len(&audit_queue); 1159 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1160 s.backlog_wait_time = audit_backlog_wait_time; 1161 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1162 break; 1163 } 1164 case AUDIT_SET: { 1165 struct audit_status s; 1166 memset(&s, 0, sizeof(s)); 1167 /* guard against past and future API changes */ 1168 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1169 if (s.mask & AUDIT_STATUS_ENABLED) { 1170 err = audit_set_enabled(s.enabled); 1171 if (err < 0) 1172 return err; 1173 } 1174 if (s.mask & AUDIT_STATUS_FAILURE) { 1175 err = audit_set_failure(s.failure); 1176 if (err < 0) 1177 return err; 1178 } 1179 if (s.mask & AUDIT_STATUS_PID) { 1180 /* NOTE: we are using the vnr PID functions below 1181 * because the s.pid value is relative to the 1182 * namespace of the caller; at present this 1183 * doesn't matter much since you can really only 1184 * run auditd from the initial pid namespace, but 1185 * something to keep in mind if this changes */ 1186 pid_t new_pid = s.pid; 1187 pid_t auditd_pid; 1188 struct pid *req_pid = task_tgid(current); 1189 1190 /* sanity check - PID values must match */ 1191 if (new_pid != pid_vnr(req_pid)) 1192 return -EINVAL; 1193 1194 /* test the auditd connection */ 1195 audit_replace(req_pid); 1196 1197 auditd_pid = auditd_pid_vnr(); 1198 /* only the current auditd can unregister itself */ 1199 if ((!new_pid) && (new_pid != auditd_pid)) { 1200 audit_log_config_change("audit_pid", new_pid, 1201 auditd_pid, 0); 1202 return -EACCES; 1203 } 1204 /* replacing a healthy auditd is not allowed */ 1205 if (auditd_pid && new_pid) { 1206 audit_log_config_change("audit_pid", new_pid, 1207 auditd_pid, 0); 1208 return -EEXIST; 1209 } 1210 1211 if (new_pid) { 1212 /* register a new auditd connection */ 1213 err = auditd_set(req_pid, 1214 NETLINK_CB(skb).portid, 1215 sock_net(NETLINK_CB(skb).sk)); 1216 if (audit_enabled != AUDIT_OFF) 1217 audit_log_config_change("audit_pid", 1218 new_pid, 1219 auditd_pid, 1220 err ? 0 : 1); 1221 if (err) 1222 return err; 1223 1224 /* try to process any backlog */ 1225 wake_up_interruptible(&kauditd_wait); 1226 } else { 1227 if (audit_enabled != AUDIT_OFF) 1228 audit_log_config_change("audit_pid", 1229 new_pid, 1230 auditd_pid, 1); 1231 1232 /* unregister the auditd connection */ 1233 auditd_reset(); 1234 } 1235 } 1236 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1237 err = audit_set_rate_limit(s.rate_limit); 1238 if (err < 0) 1239 return err; 1240 } 1241 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1242 err = audit_set_backlog_limit(s.backlog_limit); 1243 if (err < 0) 1244 return err; 1245 } 1246 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1247 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1248 return -EINVAL; 1249 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1250 return -EINVAL; 1251 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1252 if (err < 0) 1253 return err; 1254 } 1255 if (s.mask == AUDIT_STATUS_LOST) { 1256 u32 lost = atomic_xchg(&audit_lost, 0); 1257 1258 audit_log_config_change("lost", 0, lost, 1); 1259 return lost; 1260 } 1261 break; 1262 } 1263 case AUDIT_GET_FEATURE: 1264 err = audit_get_feature(skb); 1265 if (err) 1266 return err; 1267 break; 1268 case AUDIT_SET_FEATURE: 1269 err = audit_set_feature(skb); 1270 if (err) 1271 return err; 1272 break; 1273 case AUDIT_USER: 1274 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1275 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1276 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1277 return 0; 1278 1279 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1280 if (err == 1) { /* match or error */ 1281 err = 0; 1282 if (msg_type == AUDIT_USER_TTY) { 1283 err = tty_audit_push(); 1284 if (err) 1285 break; 1286 } 1287 audit_log_common_recv_msg(&ab, msg_type); 1288 if (msg_type != AUDIT_USER_TTY) 1289 audit_log_format(ab, " msg='%.*s'", 1290 AUDIT_MESSAGE_TEXT_MAX, 1291 (char *)data); 1292 else { 1293 int size; 1294 1295 audit_log_format(ab, " data="); 1296 size = nlmsg_len(nlh); 1297 if (size > 0 && 1298 ((unsigned char *)data)[size - 1] == '\0') 1299 size--; 1300 audit_log_n_untrustedstring(ab, data, size); 1301 } 1302 audit_log_end(ab); 1303 } 1304 break; 1305 case AUDIT_ADD_RULE: 1306 case AUDIT_DEL_RULE: 1307 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1308 return -EINVAL; 1309 if (audit_enabled == AUDIT_LOCKED) { 1310 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1311 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1312 audit_log_end(ab); 1313 return -EPERM; 1314 } 1315 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1316 break; 1317 case AUDIT_LIST_RULES: 1318 err = audit_list_rules_send(skb, seq); 1319 break; 1320 case AUDIT_TRIM: 1321 audit_trim_trees(); 1322 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1323 audit_log_format(ab, " op=trim res=1"); 1324 audit_log_end(ab); 1325 break; 1326 case AUDIT_MAKE_EQUIV: { 1327 void *bufp = data; 1328 u32 sizes[2]; 1329 size_t msglen = nlmsg_len(nlh); 1330 char *old, *new; 1331 1332 err = -EINVAL; 1333 if (msglen < 2 * sizeof(u32)) 1334 break; 1335 memcpy(sizes, bufp, 2 * sizeof(u32)); 1336 bufp += 2 * sizeof(u32); 1337 msglen -= 2 * sizeof(u32); 1338 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1339 if (IS_ERR(old)) { 1340 err = PTR_ERR(old); 1341 break; 1342 } 1343 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1344 if (IS_ERR(new)) { 1345 err = PTR_ERR(new); 1346 kfree(old); 1347 break; 1348 } 1349 /* OK, here comes... */ 1350 err = audit_tag_tree(old, new); 1351 1352 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1353 1354 audit_log_format(ab, " op=make_equiv old="); 1355 audit_log_untrustedstring(ab, old); 1356 audit_log_format(ab, " new="); 1357 audit_log_untrustedstring(ab, new); 1358 audit_log_format(ab, " res=%d", !err); 1359 audit_log_end(ab); 1360 kfree(old); 1361 kfree(new); 1362 break; 1363 } 1364 case AUDIT_SIGNAL_INFO: 1365 len = 0; 1366 if (audit_sig_sid) { 1367 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1368 if (err) 1369 return err; 1370 } 1371 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1372 if (!sig_data) { 1373 if (audit_sig_sid) 1374 security_release_secctx(ctx, len); 1375 return -ENOMEM; 1376 } 1377 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1378 sig_data->pid = audit_sig_pid; 1379 if (audit_sig_sid) { 1380 memcpy(sig_data->ctx, ctx, len); 1381 security_release_secctx(ctx, len); 1382 } 1383 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1384 sig_data, sizeof(*sig_data) + len); 1385 kfree(sig_data); 1386 break; 1387 case AUDIT_TTY_GET: { 1388 struct audit_tty_status s; 1389 unsigned int t; 1390 1391 t = READ_ONCE(current->signal->audit_tty); 1392 s.enabled = t & AUDIT_TTY_ENABLE; 1393 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1394 1395 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1396 break; 1397 } 1398 case AUDIT_TTY_SET: { 1399 struct audit_tty_status s, old; 1400 struct audit_buffer *ab; 1401 unsigned int t; 1402 1403 memset(&s, 0, sizeof(s)); 1404 /* guard against past and future API changes */ 1405 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1406 /* check if new data is valid */ 1407 if ((s.enabled != 0 && s.enabled != 1) || 1408 (s.log_passwd != 0 && s.log_passwd != 1)) 1409 err = -EINVAL; 1410 1411 if (err) 1412 t = READ_ONCE(current->signal->audit_tty); 1413 else { 1414 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1415 t = xchg(¤t->signal->audit_tty, t); 1416 } 1417 old.enabled = t & AUDIT_TTY_ENABLE; 1418 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1419 1420 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1421 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1422 " old-log_passwd=%d new-log_passwd=%d res=%d", 1423 old.enabled, s.enabled, old.log_passwd, 1424 s.log_passwd, !err); 1425 audit_log_end(ab); 1426 break; 1427 } 1428 default: 1429 err = -EINVAL; 1430 break; 1431 } 1432 1433 return err < 0 ? err : 0; 1434 } 1435 1436 /** 1437 * audit_receive - receive messages from a netlink control socket 1438 * @skb: the message buffer 1439 * 1440 * Parse the provided skb and deal with any messages that may be present, 1441 * malformed skbs are discarded. 1442 */ 1443 static void audit_receive(struct sk_buff *skb) 1444 { 1445 struct nlmsghdr *nlh; 1446 /* 1447 * len MUST be signed for nlmsg_next to be able to dec it below 0 1448 * if the nlmsg_len was not aligned 1449 */ 1450 int len; 1451 int err; 1452 1453 nlh = nlmsg_hdr(skb); 1454 len = skb->len; 1455 1456 mutex_lock(&audit_cmd_mutex); 1457 while (nlmsg_ok(nlh, len)) { 1458 err = audit_receive_msg(skb, nlh); 1459 /* if err or if this message says it wants a response */ 1460 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1461 netlink_ack(skb, nlh, err, NULL); 1462 1463 nlh = nlmsg_next(nlh, &len); 1464 } 1465 mutex_unlock(&audit_cmd_mutex); 1466 } 1467 1468 /* Run custom bind function on netlink socket group connect or bind requests. */ 1469 static int audit_bind(struct net *net, int group) 1470 { 1471 if (!capable(CAP_AUDIT_READ)) 1472 return -EPERM; 1473 1474 return 0; 1475 } 1476 1477 static int __net_init audit_net_init(struct net *net) 1478 { 1479 struct netlink_kernel_cfg cfg = { 1480 .input = audit_receive, 1481 .bind = audit_bind, 1482 .flags = NL_CFG_F_NONROOT_RECV, 1483 .groups = AUDIT_NLGRP_MAX, 1484 }; 1485 1486 struct audit_net *aunet = net_generic(net, audit_net_id); 1487 1488 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1489 if (aunet->sk == NULL) { 1490 audit_panic("cannot initialize netlink socket in namespace"); 1491 return -ENOMEM; 1492 } 1493 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1494 1495 return 0; 1496 } 1497 1498 static void __net_exit audit_net_exit(struct net *net) 1499 { 1500 struct audit_net *aunet = net_generic(net, audit_net_id); 1501 1502 /* NOTE: you would think that we would want to check the auditd 1503 * connection and potentially reset it here if it lives in this 1504 * namespace, but since the auditd connection tracking struct holds a 1505 * reference to this namespace (see auditd_set()) we are only ever 1506 * going to get here after that connection has been released */ 1507 1508 netlink_kernel_release(aunet->sk); 1509 } 1510 1511 static struct pernet_operations audit_net_ops __net_initdata = { 1512 .init = audit_net_init, 1513 .exit = audit_net_exit, 1514 .id = &audit_net_id, 1515 .size = sizeof(struct audit_net), 1516 }; 1517 1518 /* Initialize audit support at boot time. */ 1519 static int __init audit_init(void) 1520 { 1521 int i; 1522 1523 if (audit_initialized == AUDIT_DISABLED) 1524 return 0; 1525 1526 audit_buffer_cache = kmem_cache_create("audit_buffer", 1527 sizeof(struct audit_buffer), 1528 0, SLAB_PANIC, NULL); 1529 1530 skb_queue_head_init(&audit_queue); 1531 skb_queue_head_init(&audit_retry_queue); 1532 skb_queue_head_init(&audit_hold_queue); 1533 1534 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1535 INIT_LIST_HEAD(&audit_inode_hash[i]); 1536 1537 pr_info("initializing netlink subsys (%s)\n", 1538 audit_default ? "enabled" : "disabled"); 1539 register_pernet_subsys(&audit_net_ops); 1540 1541 audit_initialized = AUDIT_INITIALIZED; 1542 audit_enabled = audit_default; 1543 audit_ever_enabled |= !!audit_default; 1544 1545 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1546 if (IS_ERR(kauditd_task)) { 1547 int err = PTR_ERR(kauditd_task); 1548 panic("audit: failed to start the kauditd thread (%d)\n", err); 1549 } 1550 1551 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1552 "state=initialized audit_enabled=%u res=1", 1553 audit_enabled); 1554 1555 return 0; 1556 } 1557 __initcall(audit_init); 1558 1559 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1560 static int __init audit_enable(char *str) 1561 { 1562 audit_default = !!simple_strtol(str, NULL, 0); 1563 if (!audit_default) 1564 audit_initialized = AUDIT_DISABLED; 1565 1566 pr_info("%s\n", audit_default ? 1567 "enabled (after initialization)" : "disabled (until reboot)"); 1568 1569 return 1; 1570 } 1571 __setup("audit=", audit_enable); 1572 1573 /* Process kernel command-line parameter at boot time. 1574 * audit_backlog_limit=<n> */ 1575 static int __init audit_backlog_limit_set(char *str) 1576 { 1577 u32 audit_backlog_limit_arg; 1578 1579 pr_info("audit_backlog_limit: "); 1580 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1581 pr_cont("using default of %u, unable to parse %s\n", 1582 audit_backlog_limit, str); 1583 return 1; 1584 } 1585 1586 audit_backlog_limit = audit_backlog_limit_arg; 1587 pr_cont("%d\n", audit_backlog_limit); 1588 1589 return 1; 1590 } 1591 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1592 1593 static void audit_buffer_free(struct audit_buffer *ab) 1594 { 1595 if (!ab) 1596 return; 1597 1598 kfree_skb(ab->skb); 1599 kmem_cache_free(audit_buffer_cache, ab); 1600 } 1601 1602 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1603 gfp_t gfp_mask, int type) 1604 { 1605 struct audit_buffer *ab; 1606 1607 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1608 if (!ab) 1609 return NULL; 1610 1611 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1612 if (!ab->skb) 1613 goto err; 1614 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1615 goto err; 1616 1617 ab->ctx = ctx; 1618 ab->gfp_mask = gfp_mask; 1619 1620 return ab; 1621 1622 err: 1623 audit_buffer_free(ab); 1624 return NULL; 1625 } 1626 1627 /** 1628 * audit_serial - compute a serial number for the audit record 1629 * 1630 * Compute a serial number for the audit record. Audit records are 1631 * written to user-space as soon as they are generated, so a complete 1632 * audit record may be written in several pieces. The timestamp of the 1633 * record and this serial number are used by the user-space tools to 1634 * determine which pieces belong to the same audit record. The 1635 * (timestamp,serial) tuple is unique for each syscall and is live from 1636 * syscall entry to syscall exit. 1637 * 1638 * NOTE: Another possibility is to store the formatted records off the 1639 * audit context (for those records that have a context), and emit them 1640 * all at syscall exit. However, this could delay the reporting of 1641 * significant errors until syscall exit (or never, if the system 1642 * halts). 1643 */ 1644 unsigned int audit_serial(void) 1645 { 1646 static atomic_t serial = ATOMIC_INIT(0); 1647 1648 return atomic_add_return(1, &serial); 1649 } 1650 1651 static inline void audit_get_stamp(struct audit_context *ctx, 1652 struct timespec64 *t, unsigned int *serial) 1653 { 1654 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1655 ktime_get_real_ts64(t); 1656 *serial = audit_serial(); 1657 } 1658 } 1659 1660 /** 1661 * audit_log_start - obtain an audit buffer 1662 * @ctx: audit_context (may be NULL) 1663 * @gfp_mask: type of allocation 1664 * @type: audit message type 1665 * 1666 * Returns audit_buffer pointer on success or NULL on error. 1667 * 1668 * Obtain an audit buffer. This routine does locking to obtain the 1669 * audit buffer, but then no locking is required for calls to 1670 * audit_log_*format. If the task (ctx) is a task that is currently in a 1671 * syscall, then the syscall is marked as auditable and an audit record 1672 * will be written at syscall exit. If there is no associated task, then 1673 * task context (ctx) should be NULL. 1674 */ 1675 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1676 int type) 1677 { 1678 struct audit_buffer *ab; 1679 struct timespec64 t; 1680 unsigned int uninitialized_var(serial); 1681 1682 if (audit_initialized != AUDIT_INITIALIZED) 1683 return NULL; 1684 1685 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1686 return NULL; 1687 1688 /* NOTE: don't ever fail/sleep on these two conditions: 1689 * 1. auditd generated record - since we need auditd to drain the 1690 * queue; also, when we are checking for auditd, compare PIDs using 1691 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1692 * using a PID anchored in the caller's namespace 1693 * 2. generator holding the audit_cmd_mutex - we don't want to block 1694 * while holding the mutex */ 1695 if (!(auditd_test_task(current) || 1696 (current == __mutex_owner(&audit_cmd_mutex)))) { 1697 long stime = audit_backlog_wait_time; 1698 1699 while (audit_backlog_limit && 1700 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1701 /* wake kauditd to try and flush the queue */ 1702 wake_up_interruptible(&kauditd_wait); 1703 1704 /* sleep if we are allowed and we haven't exhausted our 1705 * backlog wait limit */ 1706 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1707 DECLARE_WAITQUEUE(wait, current); 1708 1709 add_wait_queue_exclusive(&audit_backlog_wait, 1710 &wait); 1711 set_current_state(TASK_UNINTERRUPTIBLE); 1712 stime = schedule_timeout(stime); 1713 remove_wait_queue(&audit_backlog_wait, &wait); 1714 } else { 1715 if (audit_rate_check() && printk_ratelimit()) 1716 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1717 skb_queue_len(&audit_queue), 1718 audit_backlog_limit); 1719 audit_log_lost("backlog limit exceeded"); 1720 return NULL; 1721 } 1722 } 1723 } 1724 1725 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1726 if (!ab) { 1727 audit_log_lost("out of memory in audit_log_start"); 1728 return NULL; 1729 } 1730 1731 audit_get_stamp(ab->ctx, &t, &serial); 1732 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1733 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1734 1735 return ab; 1736 } 1737 1738 /** 1739 * audit_expand - expand skb in the audit buffer 1740 * @ab: audit_buffer 1741 * @extra: space to add at tail of the skb 1742 * 1743 * Returns 0 (no space) on failed expansion, or available space if 1744 * successful. 1745 */ 1746 static inline int audit_expand(struct audit_buffer *ab, int extra) 1747 { 1748 struct sk_buff *skb = ab->skb; 1749 int oldtail = skb_tailroom(skb); 1750 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1751 int newtail = skb_tailroom(skb); 1752 1753 if (ret < 0) { 1754 audit_log_lost("out of memory in audit_expand"); 1755 return 0; 1756 } 1757 1758 skb->truesize += newtail - oldtail; 1759 return newtail; 1760 } 1761 1762 /* 1763 * Format an audit message into the audit buffer. If there isn't enough 1764 * room in the audit buffer, more room will be allocated and vsnprint 1765 * will be called a second time. Currently, we assume that a printk 1766 * can't format message larger than 1024 bytes, so we don't either. 1767 */ 1768 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1769 va_list args) 1770 { 1771 int len, avail; 1772 struct sk_buff *skb; 1773 va_list args2; 1774 1775 if (!ab) 1776 return; 1777 1778 BUG_ON(!ab->skb); 1779 skb = ab->skb; 1780 avail = skb_tailroom(skb); 1781 if (avail == 0) { 1782 avail = audit_expand(ab, AUDIT_BUFSIZ); 1783 if (!avail) 1784 goto out; 1785 } 1786 va_copy(args2, args); 1787 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1788 if (len >= avail) { 1789 /* The printk buffer is 1024 bytes long, so if we get 1790 * here and AUDIT_BUFSIZ is at least 1024, then we can 1791 * log everything that printk could have logged. */ 1792 avail = audit_expand(ab, 1793 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1794 if (!avail) 1795 goto out_va_end; 1796 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1797 } 1798 if (len > 0) 1799 skb_put(skb, len); 1800 out_va_end: 1801 va_end(args2); 1802 out: 1803 return; 1804 } 1805 1806 /** 1807 * audit_log_format - format a message into the audit buffer. 1808 * @ab: audit_buffer 1809 * @fmt: format string 1810 * @...: optional parameters matching @fmt string 1811 * 1812 * All the work is done in audit_log_vformat. 1813 */ 1814 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1815 { 1816 va_list args; 1817 1818 if (!ab) 1819 return; 1820 va_start(args, fmt); 1821 audit_log_vformat(ab, fmt, args); 1822 va_end(args); 1823 } 1824 1825 /** 1826 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1827 * @ab: the audit_buffer 1828 * @buf: buffer to convert to hex 1829 * @len: length of @buf to be converted 1830 * 1831 * No return value; failure to expand is silently ignored. 1832 * 1833 * This function will take the passed buf and convert it into a string of 1834 * ascii hex digits. The new string is placed onto the skb. 1835 */ 1836 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1837 size_t len) 1838 { 1839 int i, avail, new_len; 1840 unsigned char *ptr; 1841 struct sk_buff *skb; 1842 1843 if (!ab) 1844 return; 1845 1846 BUG_ON(!ab->skb); 1847 skb = ab->skb; 1848 avail = skb_tailroom(skb); 1849 new_len = len<<1; 1850 if (new_len >= avail) { 1851 /* Round the buffer request up to the next multiple */ 1852 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1853 avail = audit_expand(ab, new_len); 1854 if (!avail) 1855 return; 1856 } 1857 1858 ptr = skb_tail_pointer(skb); 1859 for (i = 0; i < len; i++) 1860 ptr = hex_byte_pack_upper(ptr, buf[i]); 1861 *ptr = 0; 1862 skb_put(skb, len << 1); /* new string is twice the old string */ 1863 } 1864 1865 /* 1866 * Format a string of no more than slen characters into the audit buffer, 1867 * enclosed in quote marks. 1868 */ 1869 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1870 size_t slen) 1871 { 1872 int avail, new_len; 1873 unsigned char *ptr; 1874 struct sk_buff *skb; 1875 1876 if (!ab) 1877 return; 1878 1879 BUG_ON(!ab->skb); 1880 skb = ab->skb; 1881 avail = skb_tailroom(skb); 1882 new_len = slen + 3; /* enclosing quotes + null terminator */ 1883 if (new_len > avail) { 1884 avail = audit_expand(ab, new_len); 1885 if (!avail) 1886 return; 1887 } 1888 ptr = skb_tail_pointer(skb); 1889 *ptr++ = '"'; 1890 memcpy(ptr, string, slen); 1891 ptr += slen; 1892 *ptr++ = '"'; 1893 *ptr = 0; 1894 skb_put(skb, slen + 2); /* don't include null terminator */ 1895 } 1896 1897 /** 1898 * audit_string_contains_control - does a string need to be logged in hex 1899 * @string: string to be checked 1900 * @len: max length of the string to check 1901 */ 1902 bool audit_string_contains_control(const char *string, size_t len) 1903 { 1904 const unsigned char *p; 1905 for (p = string; p < (const unsigned char *)string + len; p++) { 1906 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1907 return true; 1908 } 1909 return false; 1910 } 1911 1912 /** 1913 * audit_log_n_untrustedstring - log a string that may contain random characters 1914 * @ab: audit_buffer 1915 * @len: length of string (not including trailing null) 1916 * @string: string to be logged 1917 * 1918 * This code will escape a string that is passed to it if the string 1919 * contains a control character, unprintable character, double quote mark, 1920 * or a space. Unescaped strings will start and end with a double quote mark. 1921 * Strings that are escaped are printed in hex (2 digits per char). 1922 * 1923 * The caller specifies the number of characters in the string to log, which may 1924 * or may not be the entire string. 1925 */ 1926 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1927 size_t len) 1928 { 1929 if (audit_string_contains_control(string, len)) 1930 audit_log_n_hex(ab, string, len); 1931 else 1932 audit_log_n_string(ab, string, len); 1933 } 1934 1935 /** 1936 * audit_log_untrustedstring - log a string that may contain random characters 1937 * @ab: audit_buffer 1938 * @string: string to be logged 1939 * 1940 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1941 * determine string length. 1942 */ 1943 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1944 { 1945 audit_log_n_untrustedstring(ab, string, strlen(string)); 1946 } 1947 1948 /* This is a helper-function to print the escaped d_path */ 1949 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1950 const struct path *path) 1951 { 1952 char *p, *pathname; 1953 1954 if (prefix) 1955 audit_log_format(ab, "%s", prefix); 1956 1957 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1958 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1959 if (!pathname) { 1960 audit_log_string(ab, "<no_memory>"); 1961 return; 1962 } 1963 p = d_path(path, pathname, PATH_MAX+11); 1964 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1965 /* FIXME: can we save some information here? */ 1966 audit_log_string(ab, "<too_long>"); 1967 } else 1968 audit_log_untrustedstring(ab, p); 1969 kfree(pathname); 1970 } 1971 1972 void audit_log_session_info(struct audit_buffer *ab) 1973 { 1974 unsigned int sessionid = audit_get_sessionid(current); 1975 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1976 1977 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1978 } 1979 1980 void audit_log_key(struct audit_buffer *ab, char *key) 1981 { 1982 audit_log_format(ab, " key="); 1983 if (key) 1984 audit_log_untrustedstring(ab, key); 1985 else 1986 audit_log_format(ab, "(null)"); 1987 } 1988 1989 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1990 { 1991 int i; 1992 1993 audit_log_format(ab, " %s=", prefix); 1994 CAP_FOR_EACH_U32(i) { 1995 audit_log_format(ab, "%08x", 1996 cap->cap[CAP_LAST_U32 - i]); 1997 } 1998 } 1999 2000 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 2001 { 2002 kernel_cap_t *perm = &name->fcap.permitted; 2003 kernel_cap_t *inh = &name->fcap.inheritable; 2004 int log = 0; 2005 2006 if (!cap_isclear(*perm)) { 2007 audit_log_cap(ab, "cap_fp", perm); 2008 log = 1; 2009 } 2010 if (!cap_isclear(*inh)) { 2011 audit_log_cap(ab, "cap_fi", inh); 2012 log = 1; 2013 } 2014 2015 if (log) 2016 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 2017 name->fcap.fE, name->fcap_ver); 2018 } 2019 2020 static inline int audit_copy_fcaps(struct audit_names *name, 2021 const struct dentry *dentry) 2022 { 2023 struct cpu_vfs_cap_data caps; 2024 int rc; 2025 2026 if (!dentry) 2027 return 0; 2028 2029 rc = get_vfs_caps_from_disk(dentry, &caps); 2030 if (rc) 2031 return rc; 2032 2033 name->fcap.permitted = caps.permitted; 2034 name->fcap.inheritable = caps.inheritable; 2035 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2036 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2037 VFS_CAP_REVISION_SHIFT; 2038 2039 return 0; 2040 } 2041 2042 /* Copy inode data into an audit_names. */ 2043 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2044 struct inode *inode) 2045 { 2046 name->ino = inode->i_ino; 2047 name->dev = inode->i_sb->s_dev; 2048 name->mode = inode->i_mode; 2049 name->uid = inode->i_uid; 2050 name->gid = inode->i_gid; 2051 name->rdev = inode->i_rdev; 2052 security_inode_getsecid(inode, &name->osid); 2053 audit_copy_fcaps(name, dentry); 2054 } 2055 2056 /** 2057 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2058 * @context: audit_context for the task 2059 * @n: audit_names structure with reportable details 2060 * @path: optional path to report instead of audit_names->name 2061 * @record_num: record number to report when handling a list of names 2062 * @call_panic: optional pointer to int that will be updated if secid fails 2063 */ 2064 void audit_log_name(struct audit_context *context, struct audit_names *n, 2065 const struct path *path, int record_num, int *call_panic) 2066 { 2067 struct audit_buffer *ab; 2068 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2069 if (!ab) 2070 return; 2071 2072 audit_log_format(ab, "item=%d", record_num); 2073 2074 if (path) 2075 audit_log_d_path(ab, " name=", path); 2076 else if (n->name) { 2077 switch (n->name_len) { 2078 case AUDIT_NAME_FULL: 2079 /* log the full path */ 2080 audit_log_format(ab, " name="); 2081 audit_log_untrustedstring(ab, n->name->name); 2082 break; 2083 case 0: 2084 /* name was specified as a relative path and the 2085 * directory component is the cwd */ 2086 audit_log_d_path(ab, " name=", &context->pwd); 2087 break; 2088 default: 2089 /* log the name's directory component */ 2090 audit_log_format(ab, " name="); 2091 audit_log_n_untrustedstring(ab, n->name->name, 2092 n->name_len); 2093 } 2094 } else 2095 audit_log_format(ab, " name=(null)"); 2096 2097 if (n->ino != AUDIT_INO_UNSET) 2098 audit_log_format(ab, " inode=%lu" 2099 " dev=%02x:%02x mode=%#ho" 2100 " ouid=%u ogid=%u rdev=%02x:%02x", 2101 n->ino, 2102 MAJOR(n->dev), 2103 MINOR(n->dev), 2104 n->mode, 2105 from_kuid(&init_user_ns, n->uid), 2106 from_kgid(&init_user_ns, n->gid), 2107 MAJOR(n->rdev), 2108 MINOR(n->rdev)); 2109 if (n->osid != 0) { 2110 char *ctx = NULL; 2111 u32 len; 2112 if (security_secid_to_secctx( 2113 n->osid, &ctx, &len)) { 2114 audit_log_format(ab, " osid=%u", n->osid); 2115 if (call_panic) 2116 *call_panic = 2; 2117 } else { 2118 audit_log_format(ab, " obj=%s", ctx); 2119 security_release_secctx(ctx, len); 2120 } 2121 } 2122 2123 /* log the audit_names record type */ 2124 audit_log_format(ab, " nametype="); 2125 switch(n->type) { 2126 case AUDIT_TYPE_NORMAL: 2127 audit_log_format(ab, "NORMAL"); 2128 break; 2129 case AUDIT_TYPE_PARENT: 2130 audit_log_format(ab, "PARENT"); 2131 break; 2132 case AUDIT_TYPE_CHILD_DELETE: 2133 audit_log_format(ab, "DELETE"); 2134 break; 2135 case AUDIT_TYPE_CHILD_CREATE: 2136 audit_log_format(ab, "CREATE"); 2137 break; 2138 default: 2139 audit_log_format(ab, "UNKNOWN"); 2140 break; 2141 } 2142 2143 audit_log_fcaps(ab, n); 2144 audit_log_end(ab); 2145 } 2146 2147 int audit_log_task_context(struct audit_buffer *ab) 2148 { 2149 char *ctx = NULL; 2150 unsigned len; 2151 int error; 2152 u32 sid; 2153 2154 security_task_getsecid(current, &sid); 2155 if (!sid) 2156 return 0; 2157 2158 error = security_secid_to_secctx(sid, &ctx, &len); 2159 if (error) { 2160 if (error != -EINVAL) 2161 goto error_path; 2162 return 0; 2163 } 2164 2165 audit_log_format(ab, " subj=%s", ctx); 2166 security_release_secctx(ctx, len); 2167 return 0; 2168 2169 error_path: 2170 audit_panic("error in audit_log_task_context"); 2171 return error; 2172 } 2173 EXPORT_SYMBOL(audit_log_task_context); 2174 2175 void audit_log_d_path_exe(struct audit_buffer *ab, 2176 struct mm_struct *mm) 2177 { 2178 struct file *exe_file; 2179 2180 if (!mm) 2181 goto out_null; 2182 2183 exe_file = get_mm_exe_file(mm); 2184 if (!exe_file) 2185 goto out_null; 2186 2187 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2188 fput(exe_file); 2189 return; 2190 out_null: 2191 audit_log_format(ab, " exe=(null)"); 2192 } 2193 2194 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2195 { 2196 struct tty_struct *tty = NULL; 2197 unsigned long flags; 2198 2199 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2200 if (tsk->signal) 2201 tty = tty_kref_get(tsk->signal->tty); 2202 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2203 return tty; 2204 } 2205 2206 void audit_put_tty(struct tty_struct *tty) 2207 { 2208 tty_kref_put(tty); 2209 } 2210 2211 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2212 { 2213 const struct cred *cred; 2214 char comm[sizeof(tsk->comm)]; 2215 struct tty_struct *tty; 2216 2217 if (!ab) 2218 return; 2219 2220 /* tsk == current */ 2221 cred = current_cred(); 2222 tty = audit_get_tty(tsk); 2223 audit_log_format(ab, 2224 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2225 " euid=%u suid=%u fsuid=%u" 2226 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2227 task_ppid_nr(tsk), 2228 task_tgid_nr(tsk), 2229 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2230 from_kuid(&init_user_ns, cred->uid), 2231 from_kgid(&init_user_ns, cred->gid), 2232 from_kuid(&init_user_ns, cred->euid), 2233 from_kuid(&init_user_ns, cred->suid), 2234 from_kuid(&init_user_ns, cred->fsuid), 2235 from_kgid(&init_user_ns, cred->egid), 2236 from_kgid(&init_user_ns, cred->sgid), 2237 from_kgid(&init_user_ns, cred->fsgid), 2238 tty ? tty_name(tty) : "(none)", 2239 audit_get_sessionid(tsk)); 2240 audit_put_tty(tty); 2241 audit_log_format(ab, " comm="); 2242 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2243 audit_log_d_path_exe(ab, tsk->mm); 2244 audit_log_task_context(ab); 2245 } 2246 EXPORT_SYMBOL(audit_log_task_info); 2247 2248 /** 2249 * audit_log_link_denied - report a link restriction denial 2250 * @operation: specific link operation 2251 * @link: the path that triggered the restriction 2252 */ 2253 void audit_log_link_denied(const char *operation, const struct path *link) 2254 { 2255 struct audit_buffer *ab; 2256 struct audit_names *name; 2257 2258 name = kzalloc(sizeof(*name), GFP_NOFS); 2259 if (!name) 2260 return; 2261 2262 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2263 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2264 AUDIT_ANOM_LINK); 2265 if (!ab) 2266 goto out; 2267 audit_log_format(ab, "op=%s", operation); 2268 audit_log_task_info(ab, current); 2269 audit_log_format(ab, " res=0"); 2270 audit_log_end(ab); 2271 2272 /* Generate AUDIT_PATH record with object. */ 2273 name->type = AUDIT_TYPE_NORMAL; 2274 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2275 audit_log_name(current->audit_context, name, link, 0, NULL); 2276 out: 2277 kfree(name); 2278 } 2279 2280 /** 2281 * audit_log_end - end one audit record 2282 * @ab: the audit_buffer 2283 * 2284 * We can not do a netlink send inside an irq context because it blocks (last 2285 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2286 * queue and a tasklet is scheduled to remove them from the queue outside the 2287 * irq context. May be called in any context. 2288 */ 2289 void audit_log_end(struct audit_buffer *ab) 2290 { 2291 struct sk_buff *skb; 2292 struct nlmsghdr *nlh; 2293 2294 if (!ab) 2295 return; 2296 2297 if (audit_rate_check()) { 2298 skb = ab->skb; 2299 ab->skb = NULL; 2300 2301 /* setup the netlink header, see the comments in 2302 * kauditd_send_multicast_skb() for length quirks */ 2303 nlh = nlmsg_hdr(skb); 2304 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2305 2306 /* queue the netlink packet and poke the kauditd thread */ 2307 skb_queue_tail(&audit_queue, skb); 2308 wake_up_interruptible(&kauditd_wait); 2309 } else 2310 audit_log_lost("rate limit exceeded"); 2311 2312 audit_buffer_free(ab); 2313 } 2314 2315 /** 2316 * audit_log - Log an audit record 2317 * @ctx: audit context 2318 * @gfp_mask: type of allocation 2319 * @type: audit message type 2320 * @fmt: format string to use 2321 * @...: variable parameters matching the format string 2322 * 2323 * This is a convenience function that calls audit_log_start, 2324 * audit_log_vformat, and audit_log_end. It may be called 2325 * in any context. 2326 */ 2327 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2328 const char *fmt, ...) 2329 { 2330 struct audit_buffer *ab; 2331 va_list args; 2332 2333 ab = audit_log_start(ctx, gfp_mask, type); 2334 if (ab) { 2335 va_start(args, fmt); 2336 audit_log_vformat(ab, fmt, args); 2337 va_end(args); 2338 audit_log_end(ab); 2339 } 2340 } 2341 2342 #ifdef CONFIG_SECURITY 2343 /** 2344 * audit_log_secctx - Converts and logs SELinux context 2345 * @ab: audit_buffer 2346 * @secid: security number 2347 * 2348 * This is a helper function that calls security_secid_to_secctx to convert 2349 * secid to secctx and then adds the (converted) SELinux context to the audit 2350 * log by calling audit_log_format, thus also preventing leak of internal secid 2351 * to userspace. If secid cannot be converted audit_panic is called. 2352 */ 2353 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2354 { 2355 u32 len; 2356 char *secctx; 2357 2358 if (security_secid_to_secctx(secid, &secctx, &len)) { 2359 audit_panic("Cannot convert secid to context"); 2360 } else { 2361 audit_log_format(ab, " obj=%s", secctx); 2362 security_release_secctx(secctx, len); 2363 } 2364 } 2365 EXPORT_SYMBOL(audit_log_secctx); 2366 #endif 2367 2368 EXPORT_SYMBOL(audit_log_start); 2369 EXPORT_SYMBOL(audit_log_end); 2370 EXPORT_SYMBOL(audit_log_format); 2371 EXPORT_SYMBOL(audit_log); 2372