xref: /openbmc/linux/kernel/audit.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70 
71 #include "audit.h"
72 
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74  * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED		-1
76 #define AUDIT_UNINITIALIZED	0
77 #define AUDIT_INITIALIZED	1
78 static int	audit_initialized;
79 
80 #define AUDIT_OFF	0
81 #define AUDIT_ON	1
82 #define AUDIT_LOCKED	2
83 u32		audit_enabled;
84 u32		audit_ever_enabled;
85 
86 EXPORT_SYMBOL_GPL(audit_enabled);
87 
88 /* Default state when kernel boots without any parameters. */
89 static u32	audit_default;
90 
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32	audit_failure = AUDIT_FAIL_PRINTK;
93 
94 /*
95  * If audit records are to be written to the netlink socket, audit_pid
96  * contains the pid of the auditd process and audit_nlk_portid contains
97  * the portid to use to send netlink messages to that process.
98  */
99 int		audit_pid;
100 static __u32	audit_nlk_portid;
101 
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103  * to that number per second.  This prevents DoS attacks, but results in
104  * audit records being dropped. */
105 static u32	audit_rate_limit;
106 
107 /* Number of outstanding audit_buffers allowed.
108  * When set to zero, this means unlimited. */
109 static u32	audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32	audit_backlog_wait_overflow = 0;
114 
115 /* The identity of the user shutting down the audit system. */
116 kuid_t		audit_sig_uid = INVALID_UID;
117 pid_t		audit_sig_pid = -1;
118 u32		audit_sig_sid = 0;
119 
120 /* Records can be lost in several ways:
121    0) [suppressed in audit_alloc]
122    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123    2) out of memory in audit_log_move [alloc_skb]
124    3) suppressed due to audit_rate_limit
125    4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t    audit_lost = ATOMIC_INIT(0);
128 
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132 
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135 
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138  * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int	   audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142 
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149 
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 				   .mask = -1,
152 				   .features = 0,
153 				   .lock = 0,};
154 
155 static char *audit_feature_names[2] = {
156 	"only_unset_loginuid",
157 	"loginuid_immutable",
158 };
159 
160 
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163 
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165  * audit records.  Since printk uses a 1024 byte buffer, this buffer
166  * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168 
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE  (2*NR_CPUS)
172 
173 /* The audit_buffer is used when formatting an audit record.  The caller
174  * locks briefly to get the record off the freelist or to allocate the
175  * buffer, and locks briefly to send the buffer to the netlink layer or
176  * to place it on a transmit queue.  Multiple audit_buffers can be in
177  * use simultaneously. */
178 struct audit_buffer {
179 	struct list_head     list;
180 	struct sk_buff       *skb;	/* formatted skb ready to send */
181 	struct audit_context *ctx;	/* NULL or associated context */
182 	gfp_t		     gfp_mask;
183 };
184 
185 struct audit_reply {
186 	__u32 portid;
187 	struct net *net;
188 	struct sk_buff *skb;
189 };
190 
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 	if (ab) {
194 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 		nlh->nlmsg_pid = portid;
196 	}
197 }
198 
199 void audit_panic(const char *message)
200 {
201 	switch (audit_failure) {
202 	case AUDIT_FAIL_SILENT:
203 		break;
204 	case AUDIT_FAIL_PRINTK:
205 		if (printk_ratelimit())
206 			pr_err("%s\n", message);
207 		break;
208 	case AUDIT_FAIL_PANIC:
209 		/* test audit_pid since printk is always losey, why bother? */
210 		if (audit_pid)
211 			panic("audit: %s\n", message);
212 		break;
213 	}
214 }
215 
216 static inline int audit_rate_check(void)
217 {
218 	static unsigned long	last_check = 0;
219 	static int		messages   = 0;
220 	static DEFINE_SPINLOCK(lock);
221 	unsigned long		flags;
222 	unsigned long		now;
223 	unsigned long		elapsed;
224 	int			retval	   = 0;
225 
226 	if (!audit_rate_limit) return 1;
227 
228 	spin_lock_irqsave(&lock, flags);
229 	if (++messages < audit_rate_limit) {
230 		retval = 1;
231 	} else {
232 		now     = jiffies;
233 		elapsed = now - last_check;
234 		if (elapsed > HZ) {
235 			last_check = now;
236 			messages   = 0;
237 			retval     = 1;
238 		}
239 	}
240 	spin_unlock_irqrestore(&lock, flags);
241 
242 	return retval;
243 }
244 
245 /**
246  * audit_log_lost - conditionally log lost audit message event
247  * @message: the message stating reason for lost audit message
248  *
249  * Emit at least 1 message per second, even if audit_rate_check is
250  * throttling.
251  * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 	static unsigned long	last_msg = 0;
256 	static DEFINE_SPINLOCK(lock);
257 	unsigned long		flags;
258 	unsigned long		now;
259 	int			print;
260 
261 	atomic_inc(&audit_lost);
262 
263 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264 
265 	if (!print) {
266 		spin_lock_irqsave(&lock, flags);
267 		now = jiffies;
268 		if (now - last_msg > HZ) {
269 			print = 1;
270 			last_msg = now;
271 		}
272 		spin_unlock_irqrestore(&lock, flags);
273 	}
274 
275 	if (print) {
276 		if (printk_ratelimit())
277 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 				atomic_read(&audit_lost),
279 				audit_rate_limit,
280 				audit_backlog_limit);
281 		audit_panic(message);
282 	}
283 }
284 
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 				   int allow_changes)
287 {
288 	struct audit_buffer *ab;
289 	int rc = 0;
290 
291 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 	if (unlikely(!ab))
293 		return rc;
294 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 	audit_log_session_info(ab);
296 	rc = audit_log_task_context(ab);
297 	if (rc)
298 		allow_changes = 0; /* Something weird, deny request */
299 	audit_log_format(ab, " res=%d", allow_changes);
300 	audit_log_end(ab);
301 	return rc;
302 }
303 
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 	int allow_changes, rc = 0;
307 	u32 old = *to_change;
308 
309 	/* check if we are locked */
310 	if (audit_enabled == AUDIT_LOCKED)
311 		allow_changes = 0;
312 	else
313 		allow_changes = 1;
314 
315 	if (audit_enabled != AUDIT_OFF) {
316 		rc = audit_log_config_change(function_name, new, old, allow_changes);
317 		if (rc)
318 			allow_changes = 0;
319 	}
320 
321 	/* If we are allowed, make the change */
322 	if (allow_changes == 1)
323 		*to_change = new;
324 	/* Not allowed, update reason */
325 	else if (rc == 0)
326 		rc = -EPERM;
327 	return rc;
328 }
329 
330 static int audit_set_rate_limit(u32 limit)
331 {
332 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334 
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339 
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 	return audit_do_config_change("audit_backlog_wait_time",
343 				      &audit_backlog_wait_time_master, timeout);
344 }
345 
346 static int audit_set_enabled(u32 state)
347 {
348 	int rc;
349 	if (state > AUDIT_LOCKED)
350 		return -EINVAL;
351 
352 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
353 	if (!rc)
354 		audit_ever_enabled |= !!state;
355 
356 	return rc;
357 }
358 
359 static int audit_set_failure(u32 state)
360 {
361 	if (state != AUDIT_FAIL_SILENT
362 	    && state != AUDIT_FAIL_PRINTK
363 	    && state != AUDIT_FAIL_PANIC)
364 		return -EINVAL;
365 
366 	return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368 
369 /*
370  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
371  * already have been sent via prink/syslog and so if these messages are dropped
372  * it is not a huge concern since we already passed the audit_log_lost()
373  * notification and stuff.  This is just nice to get audit messages during
374  * boot before auditd is running or messages generated while auditd is stopped.
375  * This only holds messages is audit_default is set, aka booting with audit=1
376  * or building your kernel that way.
377  */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 	if (audit_default &&
381 	    (!audit_backlog_limit ||
382 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 		skb_queue_tail(&audit_skb_hold_queue, skb);
384 	else
385 		kfree_skb(skb);
386 }
387 
388 /*
389  * For one reason or another this nlh isn't getting delivered to the userspace
390  * audit daemon, just send it to printk.
391  */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 	char *data = nlmsg_data(nlh);
396 
397 	if (nlh->nlmsg_type != AUDIT_EOE) {
398 		if (printk_ratelimit())
399 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 		else
401 			audit_log_lost("printk limit exceeded");
402 	}
403 
404 	audit_hold_skb(skb);
405 }
406 
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 	int err;
410 	/* take a reference in case we can't send it and we want to hold it */
411 	skb_get(skb);
412 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
413 	if (err < 0) {
414 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
415 		if (audit_pid) {
416 			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
417 			audit_log_lost("auditd disappeared");
418 			audit_pid = 0;
419 			audit_sock = NULL;
420 		}
421 		/* we might get lucky and get this in the next auditd */
422 		audit_hold_skb(skb);
423 	} else
424 		/* drop the extra reference if sent ok */
425 		consume_skb(skb);
426 }
427 
428 /*
429  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
430  *
431  * This function doesn't consume an skb as might be expected since it has to
432  * copy it anyways.
433  */
434 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
435 {
436 	struct sk_buff		*copy;
437 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
438 	struct sock		*sock = aunet->nlsk;
439 
440 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
441 		return;
442 
443 	/*
444 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
445 	 * using skb_get() is necessary because non-standard mods are made to
446 	 * the skb by the original kaudit unicast socket send routine.  The
447 	 * existing auditd daemon assumes this breakage.  Fixing this would
448 	 * require co-ordinating a change in the established protocol between
449 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
450 	 * no reason for new multicast clients to continue with this
451 	 * non-compliance.
452 	 */
453 	copy = skb_copy(skb, gfp_mask);
454 	if (!copy)
455 		return;
456 
457 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
458 }
459 
460 /*
461  * flush_hold_queue - empty the hold queue if auditd appears
462  *
463  * If auditd just started, drain the queue of messages already
464  * sent to syslog/printk.  Remember loss here is ok.  We already
465  * called audit_log_lost() if it didn't go out normally.  so the
466  * race between the skb_dequeue and the next check for audit_pid
467  * doesn't matter.
468  *
469  * If you ever find kauditd to be too slow we can get a perf win
470  * by doing our own locking and keeping better track if there
471  * are messages in this queue.  I don't see the need now, but
472  * in 5 years when I want to play with this again I'll see this
473  * note and still have no friggin idea what i'm thinking today.
474  */
475 static void flush_hold_queue(void)
476 {
477 	struct sk_buff *skb;
478 
479 	if (!audit_default || !audit_pid)
480 		return;
481 
482 	skb = skb_dequeue(&audit_skb_hold_queue);
483 	if (likely(!skb))
484 		return;
485 
486 	while (skb && audit_pid) {
487 		kauditd_send_skb(skb);
488 		skb = skb_dequeue(&audit_skb_hold_queue);
489 	}
490 
491 	/*
492 	 * if auditd just disappeared but we
493 	 * dequeued an skb we need to drop ref
494 	 */
495 	if (skb)
496 		consume_skb(skb);
497 }
498 
499 static int kauditd_thread(void *dummy)
500 {
501 	set_freezable();
502 	while (!kthread_should_stop()) {
503 		struct sk_buff *skb;
504 
505 		flush_hold_queue();
506 
507 		skb = skb_dequeue(&audit_skb_queue);
508 
509 		if (skb) {
510 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
511 				wake_up(&audit_backlog_wait);
512 			if (audit_pid)
513 				kauditd_send_skb(skb);
514 			else
515 				audit_printk_skb(skb);
516 			continue;
517 		}
518 
519 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
520 	}
521 	return 0;
522 }
523 
524 int audit_send_list(void *_dest)
525 {
526 	struct audit_netlink_list *dest = _dest;
527 	struct sk_buff *skb;
528 	struct net *net = dest->net;
529 	struct audit_net *aunet = net_generic(net, audit_net_id);
530 
531 	/* wait for parent to finish and send an ACK */
532 	mutex_lock(&audit_cmd_mutex);
533 	mutex_unlock(&audit_cmd_mutex);
534 
535 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
536 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
537 
538 	put_net(net);
539 	kfree(dest);
540 
541 	return 0;
542 }
543 
544 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
545 				 int multi, const void *payload, int size)
546 {
547 	struct sk_buff	*skb;
548 	struct nlmsghdr	*nlh;
549 	void		*data;
550 	int		flags = multi ? NLM_F_MULTI : 0;
551 	int		t     = done  ? NLMSG_DONE  : type;
552 
553 	skb = nlmsg_new(size, GFP_KERNEL);
554 	if (!skb)
555 		return NULL;
556 
557 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
558 	if (!nlh)
559 		goto out_kfree_skb;
560 	data = nlmsg_data(nlh);
561 	memcpy(data, payload, size);
562 	return skb;
563 
564 out_kfree_skb:
565 	kfree_skb(skb);
566 	return NULL;
567 }
568 
569 static int audit_send_reply_thread(void *arg)
570 {
571 	struct audit_reply *reply = (struct audit_reply *)arg;
572 	struct net *net = reply->net;
573 	struct audit_net *aunet = net_generic(net, audit_net_id);
574 
575 	mutex_lock(&audit_cmd_mutex);
576 	mutex_unlock(&audit_cmd_mutex);
577 
578 	/* Ignore failure. It'll only happen if the sender goes away,
579 	   because our timeout is set to infinite. */
580 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
581 	put_net(net);
582 	kfree(reply);
583 	return 0;
584 }
585 /**
586  * audit_send_reply - send an audit reply message via netlink
587  * @request_skb: skb of request we are replying to (used to target the reply)
588  * @seq: sequence number
589  * @type: audit message type
590  * @done: done (last) flag
591  * @multi: multi-part message flag
592  * @payload: payload data
593  * @size: payload size
594  *
595  * Allocates an skb, builds the netlink message, and sends it to the port id.
596  * No failure notifications.
597  */
598 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
599 			     int multi, const void *payload, int size)
600 {
601 	u32 portid = NETLINK_CB(request_skb).portid;
602 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
603 	struct sk_buff *skb;
604 	struct task_struct *tsk;
605 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
606 					    GFP_KERNEL);
607 
608 	if (!reply)
609 		return;
610 
611 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
612 	if (!skb)
613 		goto out;
614 
615 	reply->net = get_net(net);
616 	reply->portid = portid;
617 	reply->skb = skb;
618 
619 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
620 	if (!IS_ERR(tsk))
621 		return;
622 	kfree_skb(skb);
623 out:
624 	kfree(reply);
625 }
626 
627 /*
628  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
629  * control messages.
630  */
631 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
632 {
633 	int err = 0;
634 
635 	/* Only support initial user namespace for now. */
636 	/*
637 	 * We return ECONNREFUSED because it tricks userspace into thinking
638 	 * that audit was not configured into the kernel.  Lots of users
639 	 * configure their PAM stack (because that's what the distro does)
640 	 * to reject login if unable to send messages to audit.  If we return
641 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
642 	 * configured in and will let login proceed.  If we return EPERM
643 	 * userspace will reject all logins.  This should be removed when we
644 	 * support non init namespaces!!
645 	 */
646 	if (current_user_ns() != &init_user_ns)
647 		return -ECONNREFUSED;
648 
649 	switch (msg_type) {
650 	case AUDIT_LIST:
651 	case AUDIT_ADD:
652 	case AUDIT_DEL:
653 		return -EOPNOTSUPP;
654 	case AUDIT_GET:
655 	case AUDIT_SET:
656 	case AUDIT_GET_FEATURE:
657 	case AUDIT_SET_FEATURE:
658 	case AUDIT_LIST_RULES:
659 	case AUDIT_ADD_RULE:
660 	case AUDIT_DEL_RULE:
661 	case AUDIT_SIGNAL_INFO:
662 	case AUDIT_TTY_GET:
663 	case AUDIT_TTY_SET:
664 	case AUDIT_TRIM:
665 	case AUDIT_MAKE_EQUIV:
666 		/* Only support auditd and auditctl in initial pid namespace
667 		 * for now. */
668 		if (task_active_pid_ns(current) != &init_pid_ns)
669 			return -EPERM;
670 
671 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
672 			err = -EPERM;
673 		break;
674 	case AUDIT_USER:
675 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
676 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
677 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
678 			err = -EPERM;
679 		break;
680 	default:  /* bad msg */
681 		err = -EINVAL;
682 	}
683 
684 	return err;
685 }
686 
687 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
688 {
689 	int rc = 0;
690 	uid_t uid = from_kuid(&init_user_ns, current_uid());
691 	pid_t pid = task_tgid_nr(current);
692 
693 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
694 		*ab = NULL;
695 		return rc;
696 	}
697 
698 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
699 	if (unlikely(!*ab))
700 		return rc;
701 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
702 	audit_log_session_info(*ab);
703 	audit_log_task_context(*ab);
704 
705 	return rc;
706 }
707 
708 int is_audit_feature_set(int i)
709 {
710 	return af.features & AUDIT_FEATURE_TO_MASK(i);
711 }
712 
713 
714 static int audit_get_feature(struct sk_buff *skb)
715 {
716 	u32 seq;
717 
718 	seq = nlmsg_hdr(skb)->nlmsg_seq;
719 
720 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
721 
722 	return 0;
723 }
724 
725 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
726 				     u32 old_lock, u32 new_lock, int res)
727 {
728 	struct audit_buffer *ab;
729 
730 	if (audit_enabled == AUDIT_OFF)
731 		return;
732 
733 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
734 	audit_log_task_info(ab, current);
735 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
736 			 audit_feature_names[which], !!old_feature, !!new_feature,
737 			 !!old_lock, !!new_lock, res);
738 	audit_log_end(ab);
739 }
740 
741 static int audit_set_feature(struct sk_buff *skb)
742 {
743 	struct audit_features *uaf;
744 	int i;
745 
746 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
747 	uaf = nlmsg_data(nlmsg_hdr(skb));
748 
749 	/* if there is ever a version 2 we should handle that here */
750 
751 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
752 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
753 		u32 old_feature, new_feature, old_lock, new_lock;
754 
755 		/* if we are not changing this feature, move along */
756 		if (!(feature & uaf->mask))
757 			continue;
758 
759 		old_feature = af.features & feature;
760 		new_feature = uaf->features & feature;
761 		new_lock = (uaf->lock | af.lock) & feature;
762 		old_lock = af.lock & feature;
763 
764 		/* are we changing a locked feature? */
765 		if (old_lock && (new_feature != old_feature)) {
766 			audit_log_feature_change(i, old_feature, new_feature,
767 						 old_lock, new_lock, 0);
768 			return -EPERM;
769 		}
770 	}
771 	/* nothing invalid, do the changes */
772 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
773 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
774 		u32 old_feature, new_feature, old_lock, new_lock;
775 
776 		/* if we are not changing this feature, move along */
777 		if (!(feature & uaf->mask))
778 			continue;
779 
780 		old_feature = af.features & feature;
781 		new_feature = uaf->features & feature;
782 		old_lock = af.lock & feature;
783 		new_lock = (uaf->lock | af.lock) & feature;
784 
785 		if (new_feature != old_feature)
786 			audit_log_feature_change(i, old_feature, new_feature,
787 						 old_lock, new_lock, 1);
788 
789 		if (new_feature)
790 			af.features |= feature;
791 		else
792 			af.features &= ~feature;
793 		af.lock |= new_lock;
794 	}
795 
796 	return 0;
797 }
798 
799 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
800 {
801 	u32			seq;
802 	void			*data;
803 	int			err;
804 	struct audit_buffer	*ab;
805 	u16			msg_type = nlh->nlmsg_type;
806 	struct audit_sig_info   *sig_data;
807 	char			*ctx = NULL;
808 	u32			len;
809 
810 	err = audit_netlink_ok(skb, msg_type);
811 	if (err)
812 		return err;
813 
814 	/* As soon as there's any sign of userspace auditd,
815 	 * start kauditd to talk to it */
816 	if (!kauditd_task) {
817 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
818 		if (IS_ERR(kauditd_task)) {
819 			err = PTR_ERR(kauditd_task);
820 			kauditd_task = NULL;
821 			return err;
822 		}
823 	}
824 	seq  = nlh->nlmsg_seq;
825 	data = nlmsg_data(nlh);
826 
827 	switch (msg_type) {
828 	case AUDIT_GET: {
829 		struct audit_status	s;
830 		memset(&s, 0, sizeof(s));
831 		s.enabled		= audit_enabled;
832 		s.failure		= audit_failure;
833 		s.pid			= audit_pid;
834 		s.rate_limit		= audit_rate_limit;
835 		s.backlog_limit		= audit_backlog_limit;
836 		s.lost			= atomic_read(&audit_lost);
837 		s.backlog		= skb_queue_len(&audit_skb_queue);
838 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
839 		s.backlog_wait_time	= audit_backlog_wait_time_master;
840 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
841 		break;
842 	}
843 	case AUDIT_SET: {
844 		struct audit_status	s;
845 		memset(&s, 0, sizeof(s));
846 		/* guard against past and future API changes */
847 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
848 		if (s.mask & AUDIT_STATUS_ENABLED) {
849 			err = audit_set_enabled(s.enabled);
850 			if (err < 0)
851 				return err;
852 		}
853 		if (s.mask & AUDIT_STATUS_FAILURE) {
854 			err = audit_set_failure(s.failure);
855 			if (err < 0)
856 				return err;
857 		}
858 		if (s.mask & AUDIT_STATUS_PID) {
859 			int new_pid = s.pid;
860 
861 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
862 				return -EACCES;
863 			if (audit_enabled != AUDIT_OFF)
864 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
865 			audit_pid = new_pid;
866 			audit_nlk_portid = NETLINK_CB(skb).portid;
867 			audit_sock = skb->sk;
868 		}
869 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
870 			err = audit_set_rate_limit(s.rate_limit);
871 			if (err < 0)
872 				return err;
873 		}
874 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
875 			err = audit_set_backlog_limit(s.backlog_limit);
876 			if (err < 0)
877 				return err;
878 		}
879 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
880 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
881 				return -EINVAL;
882 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
883 				return -EINVAL;
884 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
885 			if (err < 0)
886 				return err;
887 		}
888 		break;
889 	}
890 	case AUDIT_GET_FEATURE:
891 		err = audit_get_feature(skb);
892 		if (err)
893 			return err;
894 		break;
895 	case AUDIT_SET_FEATURE:
896 		err = audit_set_feature(skb);
897 		if (err)
898 			return err;
899 		break;
900 	case AUDIT_USER:
901 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
902 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
903 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
904 			return 0;
905 
906 		err = audit_filter_user(msg_type);
907 		if (err == 1) { /* match or error */
908 			err = 0;
909 			if (msg_type == AUDIT_USER_TTY) {
910 				err = tty_audit_push_current();
911 				if (err)
912 					break;
913 			}
914 			mutex_unlock(&audit_cmd_mutex);
915 			audit_log_common_recv_msg(&ab, msg_type);
916 			if (msg_type != AUDIT_USER_TTY)
917 				audit_log_format(ab, " msg='%.*s'",
918 						 AUDIT_MESSAGE_TEXT_MAX,
919 						 (char *)data);
920 			else {
921 				int size;
922 
923 				audit_log_format(ab, " data=");
924 				size = nlmsg_len(nlh);
925 				if (size > 0 &&
926 				    ((unsigned char *)data)[size - 1] == '\0')
927 					size--;
928 				audit_log_n_untrustedstring(ab, data, size);
929 			}
930 			audit_set_portid(ab, NETLINK_CB(skb).portid);
931 			audit_log_end(ab);
932 			mutex_lock(&audit_cmd_mutex);
933 		}
934 		break;
935 	case AUDIT_ADD_RULE:
936 	case AUDIT_DEL_RULE:
937 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
938 			return -EINVAL;
939 		if (audit_enabled == AUDIT_LOCKED) {
940 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
941 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
942 			audit_log_end(ab);
943 			return -EPERM;
944 		}
945 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
946 					   seq, data, nlmsg_len(nlh));
947 		break;
948 	case AUDIT_LIST_RULES:
949 		err = audit_list_rules_send(skb, seq);
950 		break;
951 	case AUDIT_TRIM:
952 		audit_trim_trees();
953 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
954 		audit_log_format(ab, " op=trim res=1");
955 		audit_log_end(ab);
956 		break;
957 	case AUDIT_MAKE_EQUIV: {
958 		void *bufp = data;
959 		u32 sizes[2];
960 		size_t msglen = nlmsg_len(nlh);
961 		char *old, *new;
962 
963 		err = -EINVAL;
964 		if (msglen < 2 * sizeof(u32))
965 			break;
966 		memcpy(sizes, bufp, 2 * sizeof(u32));
967 		bufp += 2 * sizeof(u32);
968 		msglen -= 2 * sizeof(u32);
969 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
970 		if (IS_ERR(old)) {
971 			err = PTR_ERR(old);
972 			break;
973 		}
974 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
975 		if (IS_ERR(new)) {
976 			err = PTR_ERR(new);
977 			kfree(old);
978 			break;
979 		}
980 		/* OK, here comes... */
981 		err = audit_tag_tree(old, new);
982 
983 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
984 
985 		audit_log_format(ab, " op=make_equiv old=");
986 		audit_log_untrustedstring(ab, old);
987 		audit_log_format(ab, " new=");
988 		audit_log_untrustedstring(ab, new);
989 		audit_log_format(ab, " res=%d", !err);
990 		audit_log_end(ab);
991 		kfree(old);
992 		kfree(new);
993 		break;
994 	}
995 	case AUDIT_SIGNAL_INFO:
996 		len = 0;
997 		if (audit_sig_sid) {
998 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
999 			if (err)
1000 				return err;
1001 		}
1002 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1003 		if (!sig_data) {
1004 			if (audit_sig_sid)
1005 				security_release_secctx(ctx, len);
1006 			return -ENOMEM;
1007 		}
1008 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1009 		sig_data->pid = audit_sig_pid;
1010 		if (audit_sig_sid) {
1011 			memcpy(sig_data->ctx, ctx, len);
1012 			security_release_secctx(ctx, len);
1013 		}
1014 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1015 				 sig_data, sizeof(*sig_data) + len);
1016 		kfree(sig_data);
1017 		break;
1018 	case AUDIT_TTY_GET: {
1019 		struct audit_tty_status s;
1020 		struct task_struct *tsk = current;
1021 
1022 		spin_lock(&tsk->sighand->siglock);
1023 		s.enabled = tsk->signal->audit_tty;
1024 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1025 		spin_unlock(&tsk->sighand->siglock);
1026 
1027 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1028 		break;
1029 	}
1030 	case AUDIT_TTY_SET: {
1031 		struct audit_tty_status s, old;
1032 		struct task_struct *tsk = current;
1033 		struct audit_buffer	*ab;
1034 
1035 		memset(&s, 0, sizeof(s));
1036 		/* guard against past and future API changes */
1037 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1038 		/* check if new data is valid */
1039 		if ((s.enabled != 0 && s.enabled != 1) ||
1040 		    (s.log_passwd != 0 && s.log_passwd != 1))
1041 			err = -EINVAL;
1042 
1043 		spin_lock(&tsk->sighand->siglock);
1044 		old.enabled = tsk->signal->audit_tty;
1045 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1046 		if (!err) {
1047 			tsk->signal->audit_tty = s.enabled;
1048 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1049 		}
1050 		spin_unlock(&tsk->sighand->siglock);
1051 
1052 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1053 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1054 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1055 				 old.enabled, s.enabled, old.log_passwd,
1056 				 s.log_passwd, !err);
1057 		audit_log_end(ab);
1058 		break;
1059 	}
1060 	default:
1061 		err = -EINVAL;
1062 		break;
1063 	}
1064 
1065 	return err < 0 ? err : 0;
1066 }
1067 
1068 /*
1069  * Get message from skb.  Each message is processed by audit_receive_msg.
1070  * Malformed skbs with wrong length are discarded silently.
1071  */
1072 static void audit_receive_skb(struct sk_buff *skb)
1073 {
1074 	struct nlmsghdr *nlh;
1075 	/*
1076 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1077 	 * if the nlmsg_len was not aligned
1078 	 */
1079 	int len;
1080 	int err;
1081 
1082 	nlh = nlmsg_hdr(skb);
1083 	len = skb->len;
1084 
1085 	while (nlmsg_ok(nlh, len)) {
1086 		err = audit_receive_msg(skb, nlh);
1087 		/* if err or if this message says it wants a response */
1088 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1089 			netlink_ack(skb, nlh, err);
1090 
1091 		nlh = nlmsg_next(nlh, &len);
1092 	}
1093 }
1094 
1095 /* Receive messages from netlink socket. */
1096 static void audit_receive(struct sk_buff  *skb)
1097 {
1098 	mutex_lock(&audit_cmd_mutex);
1099 	audit_receive_skb(skb);
1100 	mutex_unlock(&audit_cmd_mutex);
1101 }
1102 
1103 /* Run custom bind function on netlink socket group connect or bind requests. */
1104 static int audit_bind(struct net *net, int group)
1105 {
1106 	if (!capable(CAP_AUDIT_READ))
1107 		return -EPERM;
1108 
1109 	return 0;
1110 }
1111 
1112 static int __net_init audit_net_init(struct net *net)
1113 {
1114 	struct netlink_kernel_cfg cfg = {
1115 		.input	= audit_receive,
1116 		.bind	= audit_bind,
1117 		.flags	= NL_CFG_F_NONROOT_RECV,
1118 		.groups	= AUDIT_NLGRP_MAX,
1119 	};
1120 
1121 	struct audit_net *aunet = net_generic(net, audit_net_id);
1122 
1123 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1124 	if (aunet->nlsk == NULL) {
1125 		audit_panic("cannot initialize netlink socket in namespace");
1126 		return -ENOMEM;
1127 	}
1128 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1129 	return 0;
1130 }
1131 
1132 static void __net_exit audit_net_exit(struct net *net)
1133 {
1134 	struct audit_net *aunet = net_generic(net, audit_net_id);
1135 	struct sock *sock = aunet->nlsk;
1136 	if (sock == audit_sock) {
1137 		audit_pid = 0;
1138 		audit_sock = NULL;
1139 	}
1140 
1141 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1142 	synchronize_net();
1143 	netlink_kernel_release(sock);
1144 }
1145 
1146 static struct pernet_operations audit_net_ops __net_initdata = {
1147 	.init = audit_net_init,
1148 	.exit = audit_net_exit,
1149 	.id = &audit_net_id,
1150 	.size = sizeof(struct audit_net),
1151 };
1152 
1153 /* Initialize audit support at boot time. */
1154 static int __init audit_init(void)
1155 {
1156 	int i;
1157 
1158 	if (audit_initialized == AUDIT_DISABLED)
1159 		return 0;
1160 
1161 	pr_info("initializing netlink subsys (%s)\n",
1162 		audit_default ? "enabled" : "disabled");
1163 	register_pernet_subsys(&audit_net_ops);
1164 
1165 	skb_queue_head_init(&audit_skb_queue);
1166 	skb_queue_head_init(&audit_skb_hold_queue);
1167 	audit_initialized = AUDIT_INITIALIZED;
1168 	audit_enabled = audit_default;
1169 	audit_ever_enabled |= !!audit_default;
1170 
1171 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1172 
1173 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1174 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1175 
1176 	return 0;
1177 }
1178 __initcall(audit_init);
1179 
1180 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1181 static int __init audit_enable(char *str)
1182 {
1183 	audit_default = !!simple_strtol(str, NULL, 0);
1184 	if (!audit_default)
1185 		audit_initialized = AUDIT_DISABLED;
1186 
1187 	pr_info("%s\n", audit_default ?
1188 		"enabled (after initialization)" : "disabled (until reboot)");
1189 
1190 	return 1;
1191 }
1192 __setup("audit=", audit_enable);
1193 
1194 /* Process kernel command-line parameter at boot time.
1195  * audit_backlog_limit=<n> */
1196 static int __init audit_backlog_limit_set(char *str)
1197 {
1198 	u32 audit_backlog_limit_arg;
1199 
1200 	pr_info("audit_backlog_limit: ");
1201 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1202 		pr_cont("using default of %u, unable to parse %s\n",
1203 			audit_backlog_limit, str);
1204 		return 1;
1205 	}
1206 
1207 	audit_backlog_limit = audit_backlog_limit_arg;
1208 	pr_cont("%d\n", audit_backlog_limit);
1209 
1210 	return 1;
1211 }
1212 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1213 
1214 static void audit_buffer_free(struct audit_buffer *ab)
1215 {
1216 	unsigned long flags;
1217 
1218 	if (!ab)
1219 		return;
1220 
1221 	if (ab->skb)
1222 		kfree_skb(ab->skb);
1223 
1224 	spin_lock_irqsave(&audit_freelist_lock, flags);
1225 	if (audit_freelist_count > AUDIT_MAXFREE)
1226 		kfree(ab);
1227 	else {
1228 		audit_freelist_count++;
1229 		list_add(&ab->list, &audit_freelist);
1230 	}
1231 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1232 }
1233 
1234 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1235 						gfp_t gfp_mask, int type)
1236 {
1237 	unsigned long flags;
1238 	struct audit_buffer *ab = NULL;
1239 	struct nlmsghdr *nlh;
1240 
1241 	spin_lock_irqsave(&audit_freelist_lock, flags);
1242 	if (!list_empty(&audit_freelist)) {
1243 		ab = list_entry(audit_freelist.next,
1244 				struct audit_buffer, list);
1245 		list_del(&ab->list);
1246 		--audit_freelist_count;
1247 	}
1248 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1249 
1250 	if (!ab) {
1251 		ab = kmalloc(sizeof(*ab), gfp_mask);
1252 		if (!ab)
1253 			goto err;
1254 	}
1255 
1256 	ab->ctx = ctx;
1257 	ab->gfp_mask = gfp_mask;
1258 
1259 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1260 	if (!ab->skb)
1261 		goto err;
1262 
1263 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1264 	if (!nlh)
1265 		goto out_kfree_skb;
1266 
1267 	return ab;
1268 
1269 out_kfree_skb:
1270 	kfree_skb(ab->skb);
1271 	ab->skb = NULL;
1272 err:
1273 	audit_buffer_free(ab);
1274 	return NULL;
1275 }
1276 
1277 /**
1278  * audit_serial - compute a serial number for the audit record
1279  *
1280  * Compute a serial number for the audit record.  Audit records are
1281  * written to user-space as soon as they are generated, so a complete
1282  * audit record may be written in several pieces.  The timestamp of the
1283  * record and this serial number are used by the user-space tools to
1284  * determine which pieces belong to the same audit record.  The
1285  * (timestamp,serial) tuple is unique for each syscall and is live from
1286  * syscall entry to syscall exit.
1287  *
1288  * NOTE: Another possibility is to store the formatted records off the
1289  * audit context (for those records that have a context), and emit them
1290  * all at syscall exit.  However, this could delay the reporting of
1291  * significant errors until syscall exit (or never, if the system
1292  * halts).
1293  */
1294 unsigned int audit_serial(void)
1295 {
1296 	static atomic_t serial = ATOMIC_INIT(0);
1297 
1298 	return atomic_add_return(1, &serial);
1299 }
1300 
1301 static inline void audit_get_stamp(struct audit_context *ctx,
1302 				   struct timespec *t, unsigned int *serial)
1303 {
1304 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1305 		*t = CURRENT_TIME;
1306 		*serial = audit_serial();
1307 	}
1308 }
1309 
1310 /*
1311  * Wait for auditd to drain the queue a little
1312  */
1313 static long wait_for_auditd(long sleep_time)
1314 {
1315 	DECLARE_WAITQUEUE(wait, current);
1316 	set_current_state(TASK_UNINTERRUPTIBLE);
1317 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1318 
1319 	if (audit_backlog_limit &&
1320 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1321 		sleep_time = schedule_timeout(sleep_time);
1322 
1323 	__set_current_state(TASK_RUNNING);
1324 	remove_wait_queue(&audit_backlog_wait, &wait);
1325 
1326 	return sleep_time;
1327 }
1328 
1329 /**
1330  * audit_log_start - obtain an audit buffer
1331  * @ctx: audit_context (may be NULL)
1332  * @gfp_mask: type of allocation
1333  * @type: audit message type
1334  *
1335  * Returns audit_buffer pointer on success or NULL on error.
1336  *
1337  * Obtain an audit buffer.  This routine does locking to obtain the
1338  * audit buffer, but then no locking is required for calls to
1339  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1340  * syscall, then the syscall is marked as auditable and an audit record
1341  * will be written at syscall exit.  If there is no associated task, then
1342  * task context (ctx) should be NULL.
1343  */
1344 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1345 				     int type)
1346 {
1347 	struct audit_buffer	*ab	= NULL;
1348 	struct timespec		t;
1349 	unsigned int		uninitialized_var(serial);
1350 	int reserve = 5; /* Allow atomic callers to go up to five
1351 			    entries over the normal backlog limit */
1352 	unsigned long timeout_start = jiffies;
1353 
1354 	if (audit_initialized != AUDIT_INITIALIZED)
1355 		return NULL;
1356 
1357 	if (unlikely(audit_filter_type(type)))
1358 		return NULL;
1359 
1360 	if (gfp_mask & __GFP_WAIT) {
1361 		if (audit_pid && audit_pid == current->pid)
1362 			gfp_mask &= ~__GFP_WAIT;
1363 		else
1364 			reserve = 0;
1365 	}
1366 
1367 	while (audit_backlog_limit
1368 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1369 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1370 			long sleep_time;
1371 
1372 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1373 			if (sleep_time > 0) {
1374 				sleep_time = wait_for_auditd(sleep_time);
1375 				if (sleep_time > 0)
1376 					continue;
1377 			}
1378 		}
1379 		if (audit_rate_check() && printk_ratelimit())
1380 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1381 				skb_queue_len(&audit_skb_queue),
1382 				audit_backlog_limit);
1383 		audit_log_lost("backlog limit exceeded");
1384 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1385 		wake_up(&audit_backlog_wait);
1386 		return NULL;
1387 	}
1388 
1389 	if (!reserve)
1390 		audit_backlog_wait_time = audit_backlog_wait_time_master;
1391 
1392 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1393 	if (!ab) {
1394 		audit_log_lost("out of memory in audit_log_start");
1395 		return NULL;
1396 	}
1397 
1398 	audit_get_stamp(ab->ctx, &t, &serial);
1399 
1400 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1401 			 t.tv_sec, t.tv_nsec/1000000, serial);
1402 	return ab;
1403 }
1404 
1405 /**
1406  * audit_expand - expand skb in the audit buffer
1407  * @ab: audit_buffer
1408  * @extra: space to add at tail of the skb
1409  *
1410  * Returns 0 (no space) on failed expansion, or available space if
1411  * successful.
1412  */
1413 static inline int audit_expand(struct audit_buffer *ab, int extra)
1414 {
1415 	struct sk_buff *skb = ab->skb;
1416 	int oldtail = skb_tailroom(skb);
1417 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1418 	int newtail = skb_tailroom(skb);
1419 
1420 	if (ret < 0) {
1421 		audit_log_lost("out of memory in audit_expand");
1422 		return 0;
1423 	}
1424 
1425 	skb->truesize += newtail - oldtail;
1426 	return newtail;
1427 }
1428 
1429 /*
1430  * Format an audit message into the audit buffer.  If there isn't enough
1431  * room in the audit buffer, more room will be allocated and vsnprint
1432  * will be called a second time.  Currently, we assume that a printk
1433  * can't format message larger than 1024 bytes, so we don't either.
1434  */
1435 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1436 			      va_list args)
1437 {
1438 	int len, avail;
1439 	struct sk_buff *skb;
1440 	va_list args2;
1441 
1442 	if (!ab)
1443 		return;
1444 
1445 	BUG_ON(!ab->skb);
1446 	skb = ab->skb;
1447 	avail = skb_tailroom(skb);
1448 	if (avail == 0) {
1449 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1450 		if (!avail)
1451 			goto out;
1452 	}
1453 	va_copy(args2, args);
1454 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1455 	if (len >= avail) {
1456 		/* The printk buffer is 1024 bytes long, so if we get
1457 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1458 		 * log everything that printk could have logged. */
1459 		avail = audit_expand(ab,
1460 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1461 		if (!avail)
1462 			goto out_va_end;
1463 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1464 	}
1465 	if (len > 0)
1466 		skb_put(skb, len);
1467 out_va_end:
1468 	va_end(args2);
1469 out:
1470 	return;
1471 }
1472 
1473 /**
1474  * audit_log_format - format a message into the audit buffer.
1475  * @ab: audit_buffer
1476  * @fmt: format string
1477  * @...: optional parameters matching @fmt string
1478  *
1479  * All the work is done in audit_log_vformat.
1480  */
1481 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1482 {
1483 	va_list args;
1484 
1485 	if (!ab)
1486 		return;
1487 	va_start(args, fmt);
1488 	audit_log_vformat(ab, fmt, args);
1489 	va_end(args);
1490 }
1491 
1492 /**
1493  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1494  * @ab: the audit_buffer
1495  * @buf: buffer to convert to hex
1496  * @len: length of @buf to be converted
1497  *
1498  * No return value; failure to expand is silently ignored.
1499  *
1500  * This function will take the passed buf and convert it into a string of
1501  * ascii hex digits. The new string is placed onto the skb.
1502  */
1503 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1504 		size_t len)
1505 {
1506 	int i, avail, new_len;
1507 	unsigned char *ptr;
1508 	struct sk_buff *skb;
1509 
1510 	if (!ab)
1511 		return;
1512 
1513 	BUG_ON(!ab->skb);
1514 	skb = ab->skb;
1515 	avail = skb_tailroom(skb);
1516 	new_len = len<<1;
1517 	if (new_len >= avail) {
1518 		/* Round the buffer request up to the next multiple */
1519 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1520 		avail = audit_expand(ab, new_len);
1521 		if (!avail)
1522 			return;
1523 	}
1524 
1525 	ptr = skb_tail_pointer(skb);
1526 	for (i = 0; i < len; i++)
1527 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1528 	*ptr = 0;
1529 	skb_put(skb, len << 1); /* new string is twice the old string */
1530 }
1531 
1532 /*
1533  * Format a string of no more than slen characters into the audit buffer,
1534  * enclosed in quote marks.
1535  */
1536 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1537 			size_t slen)
1538 {
1539 	int avail, new_len;
1540 	unsigned char *ptr;
1541 	struct sk_buff *skb;
1542 
1543 	if (!ab)
1544 		return;
1545 
1546 	BUG_ON(!ab->skb);
1547 	skb = ab->skb;
1548 	avail = skb_tailroom(skb);
1549 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1550 	if (new_len > avail) {
1551 		avail = audit_expand(ab, new_len);
1552 		if (!avail)
1553 			return;
1554 	}
1555 	ptr = skb_tail_pointer(skb);
1556 	*ptr++ = '"';
1557 	memcpy(ptr, string, slen);
1558 	ptr += slen;
1559 	*ptr++ = '"';
1560 	*ptr = 0;
1561 	skb_put(skb, slen + 2);	/* don't include null terminator */
1562 }
1563 
1564 /**
1565  * audit_string_contains_control - does a string need to be logged in hex
1566  * @string: string to be checked
1567  * @len: max length of the string to check
1568  */
1569 int audit_string_contains_control(const char *string, size_t len)
1570 {
1571 	const unsigned char *p;
1572 	for (p = string; p < (const unsigned char *)string + len; p++) {
1573 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1574 			return 1;
1575 	}
1576 	return 0;
1577 }
1578 
1579 /**
1580  * audit_log_n_untrustedstring - log a string that may contain random characters
1581  * @ab: audit_buffer
1582  * @len: length of string (not including trailing null)
1583  * @string: string to be logged
1584  *
1585  * This code will escape a string that is passed to it if the string
1586  * contains a control character, unprintable character, double quote mark,
1587  * or a space. Unescaped strings will start and end with a double quote mark.
1588  * Strings that are escaped are printed in hex (2 digits per char).
1589  *
1590  * The caller specifies the number of characters in the string to log, which may
1591  * or may not be the entire string.
1592  */
1593 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1594 				 size_t len)
1595 {
1596 	if (audit_string_contains_control(string, len))
1597 		audit_log_n_hex(ab, string, len);
1598 	else
1599 		audit_log_n_string(ab, string, len);
1600 }
1601 
1602 /**
1603  * audit_log_untrustedstring - log a string that may contain random characters
1604  * @ab: audit_buffer
1605  * @string: string to be logged
1606  *
1607  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1608  * determine string length.
1609  */
1610 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1611 {
1612 	audit_log_n_untrustedstring(ab, string, strlen(string));
1613 }
1614 
1615 /* This is a helper-function to print the escaped d_path */
1616 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1617 		      const struct path *path)
1618 {
1619 	char *p, *pathname;
1620 
1621 	if (prefix)
1622 		audit_log_format(ab, "%s", prefix);
1623 
1624 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1625 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1626 	if (!pathname) {
1627 		audit_log_string(ab, "<no_memory>");
1628 		return;
1629 	}
1630 	p = d_path(path, pathname, PATH_MAX+11);
1631 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1632 		/* FIXME: can we save some information here? */
1633 		audit_log_string(ab, "<too_long>");
1634 	} else
1635 		audit_log_untrustedstring(ab, p);
1636 	kfree(pathname);
1637 }
1638 
1639 void audit_log_session_info(struct audit_buffer *ab)
1640 {
1641 	unsigned int sessionid = audit_get_sessionid(current);
1642 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1643 
1644 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1645 }
1646 
1647 void audit_log_key(struct audit_buffer *ab, char *key)
1648 {
1649 	audit_log_format(ab, " key=");
1650 	if (key)
1651 		audit_log_untrustedstring(ab, key);
1652 	else
1653 		audit_log_format(ab, "(null)");
1654 }
1655 
1656 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1657 {
1658 	int i;
1659 
1660 	audit_log_format(ab, " %s=", prefix);
1661 	CAP_FOR_EACH_U32(i) {
1662 		audit_log_format(ab, "%08x",
1663 				 cap->cap[CAP_LAST_U32 - i]);
1664 	}
1665 }
1666 
1667 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1668 {
1669 	kernel_cap_t *perm = &name->fcap.permitted;
1670 	kernel_cap_t *inh = &name->fcap.inheritable;
1671 	int log = 0;
1672 
1673 	if (!cap_isclear(*perm)) {
1674 		audit_log_cap(ab, "cap_fp", perm);
1675 		log = 1;
1676 	}
1677 	if (!cap_isclear(*inh)) {
1678 		audit_log_cap(ab, "cap_fi", inh);
1679 		log = 1;
1680 	}
1681 
1682 	if (log)
1683 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1684 				 name->fcap.fE, name->fcap_ver);
1685 }
1686 
1687 static inline int audit_copy_fcaps(struct audit_names *name,
1688 				   const struct dentry *dentry)
1689 {
1690 	struct cpu_vfs_cap_data caps;
1691 	int rc;
1692 
1693 	if (!dentry)
1694 		return 0;
1695 
1696 	rc = get_vfs_caps_from_disk(dentry, &caps);
1697 	if (rc)
1698 		return rc;
1699 
1700 	name->fcap.permitted = caps.permitted;
1701 	name->fcap.inheritable = caps.inheritable;
1702 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1703 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1704 				VFS_CAP_REVISION_SHIFT;
1705 
1706 	return 0;
1707 }
1708 
1709 /* Copy inode data into an audit_names. */
1710 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1711 		      const struct inode *inode)
1712 {
1713 	name->ino   = inode->i_ino;
1714 	name->dev   = inode->i_sb->s_dev;
1715 	name->mode  = inode->i_mode;
1716 	name->uid   = inode->i_uid;
1717 	name->gid   = inode->i_gid;
1718 	name->rdev  = inode->i_rdev;
1719 	security_inode_getsecid(inode, &name->osid);
1720 	audit_copy_fcaps(name, dentry);
1721 }
1722 
1723 /**
1724  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1725  * @context: audit_context for the task
1726  * @n: audit_names structure with reportable details
1727  * @path: optional path to report instead of audit_names->name
1728  * @record_num: record number to report when handling a list of names
1729  * @call_panic: optional pointer to int that will be updated if secid fails
1730  */
1731 void audit_log_name(struct audit_context *context, struct audit_names *n,
1732 		    struct path *path, int record_num, int *call_panic)
1733 {
1734 	struct audit_buffer *ab;
1735 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1736 	if (!ab)
1737 		return;
1738 
1739 	audit_log_format(ab, "item=%d", record_num);
1740 
1741 	if (path)
1742 		audit_log_d_path(ab, " name=", path);
1743 	else if (n->name) {
1744 		switch (n->name_len) {
1745 		case AUDIT_NAME_FULL:
1746 			/* log the full path */
1747 			audit_log_format(ab, " name=");
1748 			audit_log_untrustedstring(ab, n->name->name);
1749 			break;
1750 		case 0:
1751 			/* name was specified as a relative path and the
1752 			 * directory component is the cwd */
1753 			audit_log_d_path(ab, " name=", &context->pwd);
1754 			break;
1755 		default:
1756 			/* log the name's directory component */
1757 			audit_log_format(ab, " name=");
1758 			audit_log_n_untrustedstring(ab, n->name->name,
1759 						    n->name_len);
1760 		}
1761 	} else
1762 		audit_log_format(ab, " name=(null)");
1763 
1764 	if (n->ino != AUDIT_INO_UNSET)
1765 		audit_log_format(ab, " inode=%lu"
1766 				 " dev=%02x:%02x mode=%#ho"
1767 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1768 				 n->ino,
1769 				 MAJOR(n->dev),
1770 				 MINOR(n->dev),
1771 				 n->mode,
1772 				 from_kuid(&init_user_ns, n->uid),
1773 				 from_kgid(&init_user_ns, n->gid),
1774 				 MAJOR(n->rdev),
1775 				 MINOR(n->rdev));
1776 	if (n->osid != 0) {
1777 		char *ctx = NULL;
1778 		u32 len;
1779 		if (security_secid_to_secctx(
1780 			n->osid, &ctx, &len)) {
1781 			audit_log_format(ab, " osid=%u", n->osid);
1782 			if (call_panic)
1783 				*call_panic = 2;
1784 		} else {
1785 			audit_log_format(ab, " obj=%s", ctx);
1786 			security_release_secctx(ctx, len);
1787 		}
1788 	}
1789 
1790 	/* log the audit_names record type */
1791 	audit_log_format(ab, " nametype=");
1792 	switch(n->type) {
1793 	case AUDIT_TYPE_NORMAL:
1794 		audit_log_format(ab, "NORMAL");
1795 		break;
1796 	case AUDIT_TYPE_PARENT:
1797 		audit_log_format(ab, "PARENT");
1798 		break;
1799 	case AUDIT_TYPE_CHILD_DELETE:
1800 		audit_log_format(ab, "DELETE");
1801 		break;
1802 	case AUDIT_TYPE_CHILD_CREATE:
1803 		audit_log_format(ab, "CREATE");
1804 		break;
1805 	default:
1806 		audit_log_format(ab, "UNKNOWN");
1807 		break;
1808 	}
1809 
1810 	audit_log_fcaps(ab, n);
1811 	audit_log_end(ab);
1812 }
1813 
1814 int audit_log_task_context(struct audit_buffer *ab)
1815 {
1816 	char *ctx = NULL;
1817 	unsigned len;
1818 	int error;
1819 	u32 sid;
1820 
1821 	security_task_getsecid(current, &sid);
1822 	if (!sid)
1823 		return 0;
1824 
1825 	error = security_secid_to_secctx(sid, &ctx, &len);
1826 	if (error) {
1827 		if (error != -EINVAL)
1828 			goto error_path;
1829 		return 0;
1830 	}
1831 
1832 	audit_log_format(ab, " subj=%s", ctx);
1833 	security_release_secctx(ctx, len);
1834 	return 0;
1835 
1836 error_path:
1837 	audit_panic("error in audit_log_task_context");
1838 	return error;
1839 }
1840 EXPORT_SYMBOL(audit_log_task_context);
1841 
1842 void audit_log_d_path_exe(struct audit_buffer *ab,
1843 			  struct mm_struct *mm)
1844 {
1845 	struct file *exe_file;
1846 
1847 	if (!mm)
1848 		goto out_null;
1849 
1850 	exe_file = get_mm_exe_file(mm);
1851 	if (!exe_file)
1852 		goto out_null;
1853 
1854 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1855 	fput(exe_file);
1856 	return;
1857 out_null:
1858 	audit_log_format(ab, " exe=(null)");
1859 }
1860 
1861 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1862 {
1863 	const struct cred *cred;
1864 	char comm[sizeof(tsk->comm)];
1865 	char *tty;
1866 
1867 	if (!ab)
1868 		return;
1869 
1870 	/* tsk == current */
1871 	cred = current_cred();
1872 
1873 	spin_lock_irq(&tsk->sighand->siglock);
1874 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1875 		tty = tsk->signal->tty->name;
1876 	else
1877 		tty = "(none)";
1878 	spin_unlock_irq(&tsk->sighand->siglock);
1879 
1880 	audit_log_format(ab,
1881 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1882 			 " euid=%u suid=%u fsuid=%u"
1883 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1884 			 task_ppid_nr(tsk),
1885 			 task_pid_nr(tsk),
1886 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1887 			 from_kuid(&init_user_ns, cred->uid),
1888 			 from_kgid(&init_user_ns, cred->gid),
1889 			 from_kuid(&init_user_ns, cred->euid),
1890 			 from_kuid(&init_user_ns, cred->suid),
1891 			 from_kuid(&init_user_ns, cred->fsuid),
1892 			 from_kgid(&init_user_ns, cred->egid),
1893 			 from_kgid(&init_user_ns, cred->sgid),
1894 			 from_kgid(&init_user_ns, cred->fsgid),
1895 			 tty, audit_get_sessionid(tsk));
1896 
1897 	audit_log_format(ab, " comm=");
1898 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1899 
1900 	audit_log_d_path_exe(ab, tsk->mm);
1901 	audit_log_task_context(ab);
1902 }
1903 EXPORT_SYMBOL(audit_log_task_info);
1904 
1905 /**
1906  * audit_log_link_denied - report a link restriction denial
1907  * @operation: specific link operation
1908  * @link: the path that triggered the restriction
1909  */
1910 void audit_log_link_denied(const char *operation, struct path *link)
1911 {
1912 	struct audit_buffer *ab;
1913 	struct audit_names *name;
1914 
1915 	name = kzalloc(sizeof(*name), GFP_NOFS);
1916 	if (!name)
1917 		return;
1918 
1919 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1920 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1921 			     AUDIT_ANOM_LINK);
1922 	if (!ab)
1923 		goto out;
1924 	audit_log_format(ab, "op=%s", operation);
1925 	audit_log_task_info(ab, current);
1926 	audit_log_format(ab, " res=0");
1927 	audit_log_end(ab);
1928 
1929 	/* Generate AUDIT_PATH record with object. */
1930 	name->type = AUDIT_TYPE_NORMAL;
1931 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1932 	audit_log_name(current->audit_context, name, link, 0, NULL);
1933 out:
1934 	kfree(name);
1935 }
1936 
1937 /**
1938  * audit_log_end - end one audit record
1939  * @ab: the audit_buffer
1940  *
1941  * netlink_unicast() cannot be called inside an irq context because it blocks
1942  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1943  * on a queue and a tasklet is scheduled to remove them from the queue outside
1944  * the irq context.  May be called in any context.
1945  */
1946 void audit_log_end(struct audit_buffer *ab)
1947 {
1948 	if (!ab)
1949 		return;
1950 	if (!audit_rate_check()) {
1951 		audit_log_lost("rate limit exceeded");
1952 	} else {
1953 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1954 
1955 		nlh->nlmsg_len = ab->skb->len;
1956 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1957 
1958 		/*
1959 		 * The original kaudit unicast socket sends up messages with
1960 		 * nlmsg_len set to the payload length rather than the entire
1961 		 * message length.  This breaks the standard set by netlink.
1962 		 * The existing auditd daemon assumes this breakage.  Fixing
1963 		 * this would require co-ordinating a change in the established
1964 		 * protocol between the kaudit kernel subsystem and the auditd
1965 		 * userspace code.
1966 		 */
1967 		nlh->nlmsg_len -= NLMSG_HDRLEN;
1968 
1969 		if (audit_pid) {
1970 			skb_queue_tail(&audit_skb_queue, ab->skb);
1971 			wake_up_interruptible(&kauditd_wait);
1972 		} else {
1973 			audit_printk_skb(ab->skb);
1974 		}
1975 		ab->skb = NULL;
1976 	}
1977 	audit_buffer_free(ab);
1978 }
1979 
1980 /**
1981  * audit_log - Log an audit record
1982  * @ctx: audit context
1983  * @gfp_mask: type of allocation
1984  * @type: audit message type
1985  * @fmt: format string to use
1986  * @...: variable parameters matching the format string
1987  *
1988  * This is a convenience function that calls audit_log_start,
1989  * audit_log_vformat, and audit_log_end.  It may be called
1990  * in any context.
1991  */
1992 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1993 	       const char *fmt, ...)
1994 {
1995 	struct audit_buffer *ab;
1996 	va_list args;
1997 
1998 	ab = audit_log_start(ctx, gfp_mask, type);
1999 	if (ab) {
2000 		va_start(args, fmt);
2001 		audit_log_vformat(ab, fmt, args);
2002 		va_end(args);
2003 		audit_log_end(ab);
2004 	}
2005 }
2006 
2007 #ifdef CONFIG_SECURITY
2008 /**
2009  * audit_log_secctx - Converts and logs SELinux context
2010  * @ab: audit_buffer
2011  * @secid: security number
2012  *
2013  * This is a helper function that calls security_secid_to_secctx to convert
2014  * secid to secctx and then adds the (converted) SELinux context to the audit
2015  * log by calling audit_log_format, thus also preventing leak of internal secid
2016  * to userspace. If secid cannot be converted audit_panic is called.
2017  */
2018 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2019 {
2020 	u32 len;
2021 	char *secctx;
2022 
2023 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2024 		audit_panic("Cannot convert secid to context");
2025 	} else {
2026 		audit_log_format(ab, " obj=%s", secctx);
2027 		security_release_secctx(secctx, len);
2028 	}
2029 }
2030 EXPORT_SYMBOL(audit_log_secctx);
2031 #endif
2032 
2033 EXPORT_SYMBOL(audit_log_start);
2034 EXPORT_SYMBOL(audit_log_end);
2035 EXPORT_SYMBOL(audit_log_format);
2036 EXPORT_SYMBOL(audit_log);
2037