xref: /openbmc/linux/kernel/audit.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113 
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115  * to that number per second.  This prevents DoS attacks, but results in
116  * audit records being dropped. */
117 static u32	audit_rate_limit;
118 
119 /* Number of outstanding audit_buffers allowed.
120  * When set to zero, this means unlimited. */
121 static u32	audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 
125 /* The identity of the user shutting down the audit system. */
126 kuid_t		audit_sig_uid = INVALID_UID;
127 pid_t		audit_sig_pid = -1;
128 u32		audit_sig_sid = 0;
129 
130 /* Records can be lost in several ways:
131    0) [suppressed in audit_alloc]
132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133    2) out of memory in audit_log_move [alloc_skb]
134    3) suppressed due to audit_rate_limit
135    4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t	audit_lost = ATOMIC_INIT(0);
138 
139 /* Hash for inode-based rules */
140 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
141 
142 static struct kmem_cache *audit_buffer_cache;
143 
144 /* queue msgs to send via kauditd_task */
145 static struct sk_buff_head audit_queue;
146 /* queue msgs due to temporary unicast send problems */
147 static struct sk_buff_head audit_retry_queue;
148 /* queue msgs waiting for new auditd connection */
149 static struct sk_buff_head audit_hold_queue;
150 
151 /* queue servicing thread */
152 static struct task_struct *kauditd_task;
153 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
154 
155 /* waitqueue for callers who are blocked on the audit backlog */
156 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
157 
158 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
159 				   .mask = -1,
160 				   .features = 0,
161 				   .lock = 0,};
162 
163 static char *audit_feature_names[2] = {
164 	"only_unset_loginuid",
165 	"loginuid_immutable",
166 };
167 
168 /**
169  * struct audit_ctl_mutex - serialize requests from userspace
170  * @lock: the mutex used for locking
171  * @owner: the task which owns the lock
172  *
173  * Description:
174  * This is the lock struct used to ensure we only process userspace requests
175  * in an orderly fashion.  We can't simply use a mutex/lock here because we
176  * need to track lock ownership so we don't end up blocking the lock owner in
177  * audit_log_start() or similar.
178  */
179 static struct audit_ctl_mutex {
180 	struct mutex lock;
181 	void *owner;
182 } audit_cmd_mutex;
183 
184 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
185  * audit records.  Since printk uses a 1024 byte buffer, this buffer
186  * should be at least that large. */
187 #define AUDIT_BUFSIZ 1024
188 
189 /* The audit_buffer is used when formatting an audit record.  The caller
190  * locks briefly to get the record off the freelist or to allocate the
191  * buffer, and locks briefly to send the buffer to the netlink layer or
192  * to place it on a transmit queue.  Multiple audit_buffers can be in
193  * use simultaneously. */
194 struct audit_buffer {
195 	struct sk_buff       *skb;	/* formatted skb ready to send */
196 	struct audit_context *ctx;	/* NULL or associated context */
197 	gfp_t		     gfp_mask;
198 };
199 
200 struct audit_reply {
201 	__u32 portid;
202 	struct net *net;
203 	struct sk_buff *skb;
204 };
205 
206 /**
207  * auditd_test_task - Check to see if a given task is an audit daemon
208  * @task: the task to check
209  *
210  * Description:
211  * Return 1 if the task is a registered audit daemon, 0 otherwise.
212  */
213 int auditd_test_task(struct task_struct *task)
214 {
215 	int rc;
216 	struct auditd_connection *ac;
217 
218 	rcu_read_lock();
219 	ac = rcu_dereference(auditd_conn);
220 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
221 	rcu_read_unlock();
222 
223 	return rc;
224 }
225 
226 /**
227  * audit_ctl_lock - Take the audit control lock
228  */
229 void audit_ctl_lock(void)
230 {
231 	mutex_lock(&audit_cmd_mutex.lock);
232 	audit_cmd_mutex.owner = current;
233 }
234 
235 /**
236  * audit_ctl_unlock - Drop the audit control lock
237  */
238 void audit_ctl_unlock(void)
239 {
240 	audit_cmd_mutex.owner = NULL;
241 	mutex_unlock(&audit_cmd_mutex.lock);
242 }
243 
244 /**
245  * audit_ctl_owner_current - Test to see if the current task owns the lock
246  *
247  * Description:
248  * Return true if the current task owns the audit control lock, false if it
249  * doesn't own the lock.
250  */
251 static bool audit_ctl_owner_current(void)
252 {
253 	return (current == audit_cmd_mutex.owner);
254 }
255 
256 /**
257  * auditd_pid_vnr - Return the auditd PID relative to the namespace
258  *
259  * Description:
260  * Returns the PID in relation to the namespace, 0 on failure.
261  */
262 static pid_t auditd_pid_vnr(void)
263 {
264 	pid_t pid;
265 	const struct auditd_connection *ac;
266 
267 	rcu_read_lock();
268 	ac = rcu_dereference(auditd_conn);
269 	if (!ac || !ac->pid)
270 		pid = 0;
271 	else
272 		pid = pid_vnr(ac->pid);
273 	rcu_read_unlock();
274 
275 	return pid;
276 }
277 
278 /**
279  * audit_get_sk - Return the audit socket for the given network namespace
280  * @net: the destination network namespace
281  *
282  * Description:
283  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
284  * that a reference is held for the network namespace while the sock is in use.
285  */
286 static struct sock *audit_get_sk(const struct net *net)
287 {
288 	struct audit_net *aunet;
289 
290 	if (!net)
291 		return NULL;
292 
293 	aunet = net_generic(net, audit_net_id);
294 	return aunet->sk;
295 }
296 
297 void audit_panic(const char *message)
298 {
299 	switch (audit_failure) {
300 	case AUDIT_FAIL_SILENT:
301 		break;
302 	case AUDIT_FAIL_PRINTK:
303 		if (printk_ratelimit())
304 			pr_err("%s\n", message);
305 		break;
306 	case AUDIT_FAIL_PANIC:
307 		panic("audit: %s\n", message);
308 		break;
309 	}
310 }
311 
312 static inline int audit_rate_check(void)
313 {
314 	static unsigned long	last_check = 0;
315 	static int		messages   = 0;
316 	static DEFINE_SPINLOCK(lock);
317 	unsigned long		flags;
318 	unsigned long		now;
319 	unsigned long		elapsed;
320 	int			retval	   = 0;
321 
322 	if (!audit_rate_limit) return 1;
323 
324 	spin_lock_irqsave(&lock, flags);
325 	if (++messages < audit_rate_limit) {
326 		retval = 1;
327 	} else {
328 		now     = jiffies;
329 		elapsed = now - last_check;
330 		if (elapsed > HZ) {
331 			last_check = now;
332 			messages   = 0;
333 			retval     = 1;
334 		}
335 	}
336 	spin_unlock_irqrestore(&lock, flags);
337 
338 	return retval;
339 }
340 
341 /**
342  * audit_log_lost - conditionally log lost audit message event
343  * @message: the message stating reason for lost audit message
344  *
345  * Emit at least 1 message per second, even if audit_rate_check is
346  * throttling.
347  * Always increment the lost messages counter.
348 */
349 void audit_log_lost(const char *message)
350 {
351 	static unsigned long	last_msg = 0;
352 	static DEFINE_SPINLOCK(lock);
353 	unsigned long		flags;
354 	unsigned long		now;
355 	int			print;
356 
357 	atomic_inc(&audit_lost);
358 
359 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
360 
361 	if (!print) {
362 		spin_lock_irqsave(&lock, flags);
363 		now = jiffies;
364 		if (now - last_msg > HZ) {
365 			print = 1;
366 			last_msg = now;
367 		}
368 		spin_unlock_irqrestore(&lock, flags);
369 	}
370 
371 	if (print) {
372 		if (printk_ratelimit())
373 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
374 				atomic_read(&audit_lost),
375 				audit_rate_limit,
376 				audit_backlog_limit);
377 		audit_panic(message);
378 	}
379 }
380 
381 static int audit_log_config_change(char *function_name, u32 new, u32 old,
382 				   int allow_changes)
383 {
384 	struct audit_buffer *ab;
385 	int rc = 0;
386 
387 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
388 	if (unlikely(!ab))
389 		return rc;
390 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
391 	audit_log_session_info(ab);
392 	rc = audit_log_task_context(ab);
393 	if (rc)
394 		allow_changes = 0; /* Something weird, deny request */
395 	audit_log_format(ab, " res=%d", allow_changes);
396 	audit_log_end(ab);
397 	return rc;
398 }
399 
400 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
401 {
402 	int allow_changes, rc = 0;
403 	u32 old = *to_change;
404 
405 	/* check if we are locked */
406 	if (audit_enabled == AUDIT_LOCKED)
407 		allow_changes = 0;
408 	else
409 		allow_changes = 1;
410 
411 	if (audit_enabled != AUDIT_OFF) {
412 		rc = audit_log_config_change(function_name, new, old, allow_changes);
413 		if (rc)
414 			allow_changes = 0;
415 	}
416 
417 	/* If we are allowed, make the change */
418 	if (allow_changes == 1)
419 		*to_change = new;
420 	/* Not allowed, update reason */
421 	else if (rc == 0)
422 		rc = -EPERM;
423 	return rc;
424 }
425 
426 static int audit_set_rate_limit(u32 limit)
427 {
428 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
429 }
430 
431 static int audit_set_backlog_limit(u32 limit)
432 {
433 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
434 }
435 
436 static int audit_set_backlog_wait_time(u32 timeout)
437 {
438 	return audit_do_config_change("audit_backlog_wait_time",
439 				      &audit_backlog_wait_time, timeout);
440 }
441 
442 static int audit_set_enabled(u32 state)
443 {
444 	int rc;
445 	if (state > AUDIT_LOCKED)
446 		return -EINVAL;
447 
448 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
449 	if (!rc)
450 		audit_ever_enabled |= !!state;
451 
452 	return rc;
453 }
454 
455 static int audit_set_failure(u32 state)
456 {
457 	if (state != AUDIT_FAIL_SILENT
458 	    && state != AUDIT_FAIL_PRINTK
459 	    && state != AUDIT_FAIL_PANIC)
460 		return -EINVAL;
461 
462 	return audit_do_config_change("audit_failure", &audit_failure, state);
463 }
464 
465 /**
466  * auditd_conn_free - RCU helper to release an auditd connection struct
467  * @rcu: RCU head
468  *
469  * Description:
470  * Drop any references inside the auditd connection tracking struct and free
471  * the memory.
472  */
473 static void auditd_conn_free(struct rcu_head *rcu)
474 {
475 	struct auditd_connection *ac;
476 
477 	ac = container_of(rcu, struct auditd_connection, rcu);
478 	put_pid(ac->pid);
479 	put_net(ac->net);
480 	kfree(ac);
481 }
482 
483 /**
484  * auditd_set - Set/Reset the auditd connection state
485  * @pid: auditd PID
486  * @portid: auditd netlink portid
487  * @net: auditd network namespace pointer
488  *
489  * Description:
490  * This function will obtain and drop network namespace references as
491  * necessary.  Returns zero on success, negative values on failure.
492  */
493 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
494 {
495 	unsigned long flags;
496 	struct auditd_connection *ac_old, *ac_new;
497 
498 	if (!pid || !net)
499 		return -EINVAL;
500 
501 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
502 	if (!ac_new)
503 		return -ENOMEM;
504 	ac_new->pid = get_pid(pid);
505 	ac_new->portid = portid;
506 	ac_new->net = get_net(net);
507 
508 	spin_lock_irqsave(&auditd_conn_lock, flags);
509 	ac_old = rcu_dereference_protected(auditd_conn,
510 					   lockdep_is_held(&auditd_conn_lock));
511 	rcu_assign_pointer(auditd_conn, ac_new);
512 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
513 
514 	if (ac_old)
515 		call_rcu(&ac_old->rcu, auditd_conn_free);
516 
517 	return 0;
518 }
519 
520 /**
521  * kauditd_print_skb - Print the audit record to the ring buffer
522  * @skb: audit record
523  *
524  * Whatever the reason, this packet may not make it to the auditd connection
525  * so write it via printk so the information isn't completely lost.
526  */
527 static void kauditd_printk_skb(struct sk_buff *skb)
528 {
529 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
530 	char *data = nlmsg_data(nlh);
531 
532 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
533 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
534 }
535 
536 /**
537  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
538  * @skb: audit record
539  *
540  * Description:
541  * This should only be used by the kauditd_thread when it fails to flush the
542  * hold queue.
543  */
544 static void kauditd_rehold_skb(struct sk_buff *skb)
545 {
546 	/* put the record back in the queue at the same place */
547 	skb_queue_head(&audit_hold_queue, skb);
548 }
549 
550 /**
551  * kauditd_hold_skb - Queue an audit record, waiting for auditd
552  * @skb: audit record
553  *
554  * Description:
555  * Queue the audit record, waiting for an instance of auditd.  When this
556  * function is called we haven't given up yet on sending the record, but things
557  * are not looking good.  The first thing we want to do is try to write the
558  * record via printk and then see if we want to try and hold on to the record
559  * and queue it, if we have room.  If we want to hold on to the record, but we
560  * don't have room, record a record lost message.
561  */
562 static void kauditd_hold_skb(struct sk_buff *skb)
563 {
564 	/* at this point it is uncertain if we will ever send this to auditd so
565 	 * try to send the message via printk before we go any further */
566 	kauditd_printk_skb(skb);
567 
568 	/* can we just silently drop the message? */
569 	if (!audit_default) {
570 		kfree_skb(skb);
571 		return;
572 	}
573 
574 	/* if we have room, queue the message */
575 	if (!audit_backlog_limit ||
576 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
577 		skb_queue_tail(&audit_hold_queue, skb);
578 		return;
579 	}
580 
581 	/* we have no other options - drop the message */
582 	audit_log_lost("kauditd hold queue overflow");
583 	kfree_skb(skb);
584 }
585 
586 /**
587  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
588  * @skb: audit record
589  *
590  * Description:
591  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
592  * but for some reason we are having problems sending it audit records so
593  * queue the given record and attempt to resend.
594  */
595 static void kauditd_retry_skb(struct sk_buff *skb)
596 {
597 	/* NOTE: because records should only live in the retry queue for a
598 	 * short period of time, before either being sent or moved to the hold
599 	 * queue, we don't currently enforce a limit on this queue */
600 	skb_queue_tail(&audit_retry_queue, skb);
601 }
602 
603 /**
604  * auditd_reset - Disconnect the auditd connection
605  * @ac: auditd connection state
606  *
607  * Description:
608  * Break the auditd/kauditd connection and move all the queued records into the
609  * hold queue in case auditd reconnects.  It is important to note that the @ac
610  * pointer should never be dereferenced inside this function as it may be NULL
611  * or invalid, you can only compare the memory address!  If @ac is NULL then
612  * the connection will always be reset.
613  */
614 static void auditd_reset(const struct auditd_connection *ac)
615 {
616 	unsigned long flags;
617 	struct sk_buff *skb;
618 	struct auditd_connection *ac_old;
619 
620 	/* if it isn't already broken, break the connection */
621 	spin_lock_irqsave(&auditd_conn_lock, flags);
622 	ac_old = rcu_dereference_protected(auditd_conn,
623 					   lockdep_is_held(&auditd_conn_lock));
624 	if (ac && ac != ac_old) {
625 		/* someone already registered a new auditd connection */
626 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
627 		return;
628 	}
629 	rcu_assign_pointer(auditd_conn, NULL);
630 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
631 
632 	if (ac_old)
633 		call_rcu(&ac_old->rcu, auditd_conn_free);
634 
635 	/* flush the retry queue to the hold queue, but don't touch the main
636 	 * queue since we need to process that normally for multicast */
637 	while ((skb = skb_dequeue(&audit_retry_queue)))
638 		kauditd_hold_skb(skb);
639 }
640 
641 /**
642  * auditd_send_unicast_skb - Send a record via unicast to auditd
643  * @skb: audit record
644  *
645  * Description:
646  * Send a skb to the audit daemon, returns positive/zero values on success and
647  * negative values on failure; in all cases the skb will be consumed by this
648  * function.  If the send results in -ECONNREFUSED the connection with auditd
649  * will be reset.  This function may sleep so callers should not hold any locks
650  * where this would cause a problem.
651  */
652 static int auditd_send_unicast_skb(struct sk_buff *skb)
653 {
654 	int rc;
655 	u32 portid;
656 	struct net *net;
657 	struct sock *sk;
658 	struct auditd_connection *ac;
659 
660 	/* NOTE: we can't call netlink_unicast while in the RCU section so
661 	 *       take a reference to the network namespace and grab local
662 	 *       copies of the namespace, the sock, and the portid; the
663 	 *       namespace and sock aren't going to go away while we hold a
664 	 *       reference and if the portid does become invalid after the RCU
665 	 *       section netlink_unicast() should safely return an error */
666 
667 	rcu_read_lock();
668 	ac = rcu_dereference(auditd_conn);
669 	if (!ac) {
670 		rcu_read_unlock();
671 		kfree_skb(skb);
672 		rc = -ECONNREFUSED;
673 		goto err;
674 	}
675 	net = get_net(ac->net);
676 	sk = audit_get_sk(net);
677 	portid = ac->portid;
678 	rcu_read_unlock();
679 
680 	rc = netlink_unicast(sk, skb, portid, 0);
681 	put_net(net);
682 	if (rc < 0)
683 		goto err;
684 
685 	return rc;
686 
687 err:
688 	if (ac && rc == -ECONNREFUSED)
689 		auditd_reset(ac);
690 	return rc;
691 }
692 
693 /**
694  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
695  * @sk: the sending sock
696  * @portid: the netlink destination
697  * @queue: the skb queue to process
698  * @retry_limit: limit on number of netlink unicast failures
699  * @skb_hook: per-skb hook for additional processing
700  * @err_hook: hook called if the skb fails the netlink unicast send
701  *
702  * Description:
703  * Run through the given queue and attempt to send the audit records to auditd,
704  * returns zero on success, negative values on failure.  It is up to the caller
705  * to ensure that the @sk is valid for the duration of this function.
706  *
707  */
708 static int kauditd_send_queue(struct sock *sk, u32 portid,
709 			      struct sk_buff_head *queue,
710 			      unsigned int retry_limit,
711 			      void (*skb_hook)(struct sk_buff *skb),
712 			      void (*err_hook)(struct sk_buff *skb))
713 {
714 	int rc = 0;
715 	struct sk_buff *skb;
716 	static unsigned int failed = 0;
717 
718 	/* NOTE: kauditd_thread takes care of all our locking, we just use
719 	 *       the netlink info passed to us (e.g. sk and portid) */
720 
721 	while ((skb = skb_dequeue(queue))) {
722 		/* call the skb_hook for each skb we touch */
723 		if (skb_hook)
724 			(*skb_hook)(skb);
725 
726 		/* can we send to anyone via unicast? */
727 		if (!sk) {
728 			if (err_hook)
729 				(*err_hook)(skb);
730 			continue;
731 		}
732 
733 		/* grab an extra skb reference in case of error */
734 		skb_get(skb);
735 		rc = netlink_unicast(sk, skb, portid, 0);
736 		if (rc < 0) {
737 			/* fatal failure for our queue flush attempt? */
738 			if (++failed >= retry_limit ||
739 			    rc == -ECONNREFUSED || rc == -EPERM) {
740 				/* yes - error processing for the queue */
741 				sk = NULL;
742 				if (err_hook)
743 					(*err_hook)(skb);
744 				if (!skb_hook)
745 					goto out;
746 				/* keep processing with the skb_hook */
747 				continue;
748 			} else
749 				/* no - requeue to preserve ordering */
750 				skb_queue_head(queue, skb);
751 		} else {
752 			/* it worked - drop the extra reference and continue */
753 			consume_skb(skb);
754 			failed = 0;
755 		}
756 	}
757 
758 out:
759 	return (rc >= 0 ? 0 : rc);
760 }
761 
762 /*
763  * kauditd_send_multicast_skb - Send a record to any multicast listeners
764  * @skb: audit record
765  *
766  * Description:
767  * Write a multicast message to anyone listening in the initial network
768  * namespace.  This function doesn't consume an skb as might be expected since
769  * it has to copy it anyways.
770  */
771 static void kauditd_send_multicast_skb(struct sk_buff *skb)
772 {
773 	struct sk_buff *copy;
774 	struct sock *sock = audit_get_sk(&init_net);
775 	struct nlmsghdr *nlh;
776 
777 	/* NOTE: we are not taking an additional reference for init_net since
778 	 *       we don't have to worry about it going away */
779 
780 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
781 		return;
782 
783 	/*
784 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
785 	 * using skb_get() is necessary because non-standard mods are made to
786 	 * the skb by the original kaudit unicast socket send routine.  The
787 	 * existing auditd daemon assumes this breakage.  Fixing this would
788 	 * require co-ordinating a change in the established protocol between
789 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
790 	 * no reason for new multicast clients to continue with this
791 	 * non-compliance.
792 	 */
793 	copy = skb_copy(skb, GFP_KERNEL);
794 	if (!copy)
795 		return;
796 	nlh = nlmsg_hdr(copy);
797 	nlh->nlmsg_len = skb->len;
798 
799 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
800 }
801 
802 /**
803  * kauditd_thread - Worker thread to send audit records to userspace
804  * @dummy: unused
805  */
806 static int kauditd_thread(void *dummy)
807 {
808 	int rc;
809 	u32 portid = 0;
810 	struct net *net = NULL;
811 	struct sock *sk = NULL;
812 	struct auditd_connection *ac;
813 
814 #define UNICAST_RETRIES 5
815 
816 	set_freezable();
817 	while (!kthread_should_stop()) {
818 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
819 		rcu_read_lock();
820 		ac = rcu_dereference(auditd_conn);
821 		if (!ac) {
822 			rcu_read_unlock();
823 			goto main_queue;
824 		}
825 		net = get_net(ac->net);
826 		sk = audit_get_sk(net);
827 		portid = ac->portid;
828 		rcu_read_unlock();
829 
830 		/* attempt to flush the hold queue */
831 		rc = kauditd_send_queue(sk, portid,
832 					&audit_hold_queue, UNICAST_RETRIES,
833 					NULL, kauditd_rehold_skb);
834 		if (rc < 0) {
835 			sk = NULL;
836 			auditd_reset(ac);
837 			goto main_queue;
838 		}
839 
840 		/* attempt to flush the retry queue */
841 		rc = kauditd_send_queue(sk, portid,
842 					&audit_retry_queue, UNICAST_RETRIES,
843 					NULL, kauditd_hold_skb);
844 		if (rc < 0) {
845 			sk = NULL;
846 			auditd_reset(ac);
847 			goto main_queue;
848 		}
849 
850 main_queue:
851 		/* process the main queue - do the multicast send and attempt
852 		 * unicast, dump failed record sends to the retry queue; if
853 		 * sk == NULL due to previous failures we will just do the
854 		 * multicast send and move the record to the hold queue */
855 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
856 					kauditd_send_multicast_skb,
857 					(sk ?
858 					 kauditd_retry_skb : kauditd_hold_skb));
859 		if (ac && rc < 0)
860 			auditd_reset(ac);
861 		sk = NULL;
862 
863 		/* drop our netns reference, no auditd sends past this line */
864 		if (net) {
865 			put_net(net);
866 			net = NULL;
867 		}
868 
869 		/* we have processed all the queues so wake everyone */
870 		wake_up(&audit_backlog_wait);
871 
872 		/* NOTE: we want to wake up if there is anything on the queue,
873 		 *       regardless of if an auditd is connected, as we need to
874 		 *       do the multicast send and rotate records from the
875 		 *       main queue to the retry/hold queues */
876 		wait_event_freezable(kauditd_wait,
877 				     (skb_queue_len(&audit_queue) ? 1 : 0));
878 	}
879 
880 	return 0;
881 }
882 
883 int audit_send_list(void *_dest)
884 {
885 	struct audit_netlink_list *dest = _dest;
886 	struct sk_buff *skb;
887 	struct sock *sk = audit_get_sk(dest->net);
888 
889 	/* wait for parent to finish and send an ACK */
890 	audit_ctl_lock();
891 	audit_ctl_unlock();
892 
893 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
894 		netlink_unicast(sk, skb, dest->portid, 0);
895 
896 	put_net(dest->net);
897 	kfree(dest);
898 
899 	return 0;
900 }
901 
902 struct sk_buff *audit_make_reply(int seq, int type, int done,
903 				 int multi, const void *payload, int size)
904 {
905 	struct sk_buff	*skb;
906 	struct nlmsghdr	*nlh;
907 	void		*data;
908 	int		flags = multi ? NLM_F_MULTI : 0;
909 	int		t     = done  ? NLMSG_DONE  : type;
910 
911 	skb = nlmsg_new(size, GFP_KERNEL);
912 	if (!skb)
913 		return NULL;
914 
915 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
916 	if (!nlh)
917 		goto out_kfree_skb;
918 	data = nlmsg_data(nlh);
919 	memcpy(data, payload, size);
920 	return skb;
921 
922 out_kfree_skb:
923 	kfree_skb(skb);
924 	return NULL;
925 }
926 
927 static int audit_send_reply_thread(void *arg)
928 {
929 	struct audit_reply *reply = (struct audit_reply *)arg;
930 	struct sock *sk = audit_get_sk(reply->net);
931 
932 	audit_ctl_lock();
933 	audit_ctl_unlock();
934 
935 	/* Ignore failure. It'll only happen if the sender goes away,
936 	   because our timeout is set to infinite. */
937 	netlink_unicast(sk, reply->skb, reply->portid, 0);
938 	put_net(reply->net);
939 	kfree(reply);
940 	return 0;
941 }
942 
943 /**
944  * audit_send_reply - send an audit reply message via netlink
945  * @request_skb: skb of request we are replying to (used to target the reply)
946  * @seq: sequence number
947  * @type: audit message type
948  * @done: done (last) flag
949  * @multi: multi-part message flag
950  * @payload: payload data
951  * @size: payload size
952  *
953  * Allocates an skb, builds the netlink message, and sends it to the port id.
954  * No failure notifications.
955  */
956 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
957 			     int multi, const void *payload, int size)
958 {
959 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
960 	struct sk_buff *skb;
961 	struct task_struct *tsk;
962 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
963 					    GFP_KERNEL);
964 
965 	if (!reply)
966 		return;
967 
968 	skb = audit_make_reply(seq, type, done, multi, payload, size);
969 	if (!skb)
970 		goto out;
971 
972 	reply->net = get_net(net);
973 	reply->portid = NETLINK_CB(request_skb).portid;
974 	reply->skb = skb;
975 
976 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
977 	if (!IS_ERR(tsk))
978 		return;
979 	kfree_skb(skb);
980 out:
981 	kfree(reply);
982 }
983 
984 /*
985  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
986  * control messages.
987  */
988 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
989 {
990 	int err = 0;
991 
992 	/* Only support initial user namespace for now. */
993 	/*
994 	 * We return ECONNREFUSED because it tricks userspace into thinking
995 	 * that audit was not configured into the kernel.  Lots of users
996 	 * configure their PAM stack (because that's what the distro does)
997 	 * to reject login if unable to send messages to audit.  If we return
998 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
999 	 * configured in and will let login proceed.  If we return EPERM
1000 	 * userspace will reject all logins.  This should be removed when we
1001 	 * support non init namespaces!!
1002 	 */
1003 	if (current_user_ns() != &init_user_ns)
1004 		return -ECONNREFUSED;
1005 
1006 	switch (msg_type) {
1007 	case AUDIT_LIST:
1008 	case AUDIT_ADD:
1009 	case AUDIT_DEL:
1010 		return -EOPNOTSUPP;
1011 	case AUDIT_GET:
1012 	case AUDIT_SET:
1013 	case AUDIT_GET_FEATURE:
1014 	case AUDIT_SET_FEATURE:
1015 	case AUDIT_LIST_RULES:
1016 	case AUDIT_ADD_RULE:
1017 	case AUDIT_DEL_RULE:
1018 	case AUDIT_SIGNAL_INFO:
1019 	case AUDIT_TTY_GET:
1020 	case AUDIT_TTY_SET:
1021 	case AUDIT_TRIM:
1022 	case AUDIT_MAKE_EQUIV:
1023 		/* Only support auditd and auditctl in initial pid namespace
1024 		 * for now. */
1025 		if (task_active_pid_ns(current) != &init_pid_ns)
1026 			return -EPERM;
1027 
1028 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1029 			err = -EPERM;
1030 		break;
1031 	case AUDIT_USER:
1032 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1033 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1034 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1035 			err = -EPERM;
1036 		break;
1037 	default:  /* bad msg */
1038 		err = -EINVAL;
1039 	}
1040 
1041 	return err;
1042 }
1043 
1044 static void audit_log_common_recv_msg(struct audit_context *context,
1045 					struct audit_buffer **ab, u16 msg_type)
1046 {
1047 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1048 	pid_t pid = task_tgid_nr(current);
1049 
1050 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1051 		*ab = NULL;
1052 		return;
1053 	}
1054 
1055 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1056 	if (unlikely(!*ab))
1057 		return;
1058 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1059 	audit_log_session_info(*ab);
1060 	audit_log_task_context(*ab);
1061 }
1062 
1063 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1064 					   u16 msg_type)
1065 {
1066 	audit_log_common_recv_msg(NULL, ab, msg_type);
1067 }
1068 
1069 int is_audit_feature_set(int i)
1070 {
1071 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1072 }
1073 
1074 
1075 static int audit_get_feature(struct sk_buff *skb)
1076 {
1077 	u32 seq;
1078 
1079 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1080 
1081 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1082 
1083 	return 0;
1084 }
1085 
1086 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1087 				     u32 old_lock, u32 new_lock, int res)
1088 {
1089 	struct audit_buffer *ab;
1090 
1091 	if (audit_enabled == AUDIT_OFF)
1092 		return;
1093 
1094 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1095 	if (!ab)
1096 		return;
1097 	audit_log_task_info(ab);
1098 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1099 			 audit_feature_names[which], !!old_feature, !!new_feature,
1100 			 !!old_lock, !!new_lock, res);
1101 	audit_log_end(ab);
1102 }
1103 
1104 static int audit_set_feature(struct sk_buff *skb)
1105 {
1106 	struct audit_features *uaf;
1107 	int i;
1108 
1109 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1110 	uaf = nlmsg_data(nlmsg_hdr(skb));
1111 
1112 	/* if there is ever a version 2 we should handle that here */
1113 
1114 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1115 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1116 		u32 old_feature, new_feature, old_lock, new_lock;
1117 
1118 		/* if we are not changing this feature, move along */
1119 		if (!(feature & uaf->mask))
1120 			continue;
1121 
1122 		old_feature = af.features & feature;
1123 		new_feature = uaf->features & feature;
1124 		new_lock = (uaf->lock | af.lock) & feature;
1125 		old_lock = af.lock & feature;
1126 
1127 		/* are we changing a locked feature? */
1128 		if (old_lock && (new_feature != old_feature)) {
1129 			audit_log_feature_change(i, old_feature, new_feature,
1130 						 old_lock, new_lock, 0);
1131 			return -EPERM;
1132 		}
1133 	}
1134 	/* nothing invalid, do the changes */
1135 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1136 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1137 		u32 old_feature, new_feature, old_lock, new_lock;
1138 
1139 		/* if we are not changing this feature, move along */
1140 		if (!(feature & uaf->mask))
1141 			continue;
1142 
1143 		old_feature = af.features & feature;
1144 		new_feature = uaf->features & feature;
1145 		old_lock = af.lock & feature;
1146 		new_lock = (uaf->lock | af.lock) & feature;
1147 
1148 		if (new_feature != old_feature)
1149 			audit_log_feature_change(i, old_feature, new_feature,
1150 						 old_lock, new_lock, 1);
1151 
1152 		if (new_feature)
1153 			af.features |= feature;
1154 		else
1155 			af.features &= ~feature;
1156 		af.lock |= new_lock;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 static int audit_replace(struct pid *pid)
1163 {
1164 	pid_t pvnr;
1165 	struct sk_buff *skb;
1166 
1167 	pvnr = pid_vnr(pid);
1168 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1169 	if (!skb)
1170 		return -ENOMEM;
1171 	return auditd_send_unicast_skb(skb);
1172 }
1173 
1174 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1175 {
1176 	u32			seq;
1177 	void			*data;
1178 	int			err;
1179 	struct audit_buffer	*ab;
1180 	u16			msg_type = nlh->nlmsg_type;
1181 	struct audit_sig_info   *sig_data;
1182 	char			*ctx = NULL;
1183 	u32			len;
1184 
1185 	err = audit_netlink_ok(skb, msg_type);
1186 	if (err)
1187 		return err;
1188 
1189 	seq  = nlh->nlmsg_seq;
1190 	data = nlmsg_data(nlh);
1191 
1192 	switch (msg_type) {
1193 	case AUDIT_GET: {
1194 		struct audit_status	s;
1195 		memset(&s, 0, sizeof(s));
1196 		s.enabled		= audit_enabled;
1197 		s.failure		= audit_failure;
1198 		/* NOTE: use pid_vnr() so the PID is relative to the current
1199 		 *       namespace */
1200 		s.pid			= auditd_pid_vnr();
1201 		s.rate_limit		= audit_rate_limit;
1202 		s.backlog_limit		= audit_backlog_limit;
1203 		s.lost			= atomic_read(&audit_lost);
1204 		s.backlog		= skb_queue_len(&audit_queue);
1205 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1206 		s.backlog_wait_time	= audit_backlog_wait_time;
1207 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1208 		break;
1209 	}
1210 	case AUDIT_SET: {
1211 		struct audit_status	s;
1212 		memset(&s, 0, sizeof(s));
1213 		/* guard against past and future API changes */
1214 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1215 		if (s.mask & AUDIT_STATUS_ENABLED) {
1216 			err = audit_set_enabled(s.enabled);
1217 			if (err < 0)
1218 				return err;
1219 		}
1220 		if (s.mask & AUDIT_STATUS_FAILURE) {
1221 			err = audit_set_failure(s.failure);
1222 			if (err < 0)
1223 				return err;
1224 		}
1225 		if (s.mask & AUDIT_STATUS_PID) {
1226 			/* NOTE: we are using the vnr PID functions below
1227 			 *       because the s.pid value is relative to the
1228 			 *       namespace of the caller; at present this
1229 			 *       doesn't matter much since you can really only
1230 			 *       run auditd from the initial pid namespace, but
1231 			 *       something to keep in mind if this changes */
1232 			pid_t new_pid = s.pid;
1233 			pid_t auditd_pid;
1234 			struct pid *req_pid = task_tgid(current);
1235 
1236 			/* Sanity check - PID values must match. Setting
1237 			 * pid to 0 is how auditd ends auditing. */
1238 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1239 				return -EINVAL;
1240 
1241 			/* test the auditd connection */
1242 			audit_replace(req_pid);
1243 
1244 			auditd_pid = auditd_pid_vnr();
1245 			if (auditd_pid) {
1246 				/* replacing a healthy auditd is not allowed */
1247 				if (new_pid) {
1248 					audit_log_config_change("audit_pid",
1249 							new_pid, auditd_pid, 0);
1250 					return -EEXIST;
1251 				}
1252 				/* only current auditd can unregister itself */
1253 				if (pid_vnr(req_pid) != auditd_pid) {
1254 					audit_log_config_change("audit_pid",
1255 							new_pid, auditd_pid, 0);
1256 					return -EACCES;
1257 				}
1258 			}
1259 
1260 			if (new_pid) {
1261 				/* register a new auditd connection */
1262 				err = auditd_set(req_pid,
1263 						 NETLINK_CB(skb).portid,
1264 						 sock_net(NETLINK_CB(skb).sk));
1265 				if (audit_enabled != AUDIT_OFF)
1266 					audit_log_config_change("audit_pid",
1267 								new_pid,
1268 								auditd_pid,
1269 								err ? 0 : 1);
1270 				if (err)
1271 					return err;
1272 
1273 				/* try to process any backlog */
1274 				wake_up_interruptible(&kauditd_wait);
1275 			} else {
1276 				if (audit_enabled != AUDIT_OFF)
1277 					audit_log_config_change("audit_pid",
1278 								new_pid,
1279 								auditd_pid, 1);
1280 
1281 				/* unregister the auditd connection */
1282 				auditd_reset(NULL);
1283 			}
1284 		}
1285 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1286 			err = audit_set_rate_limit(s.rate_limit);
1287 			if (err < 0)
1288 				return err;
1289 		}
1290 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1291 			err = audit_set_backlog_limit(s.backlog_limit);
1292 			if (err < 0)
1293 				return err;
1294 		}
1295 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1296 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1297 				return -EINVAL;
1298 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1299 				return -EINVAL;
1300 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1301 			if (err < 0)
1302 				return err;
1303 		}
1304 		if (s.mask == AUDIT_STATUS_LOST) {
1305 			u32 lost = atomic_xchg(&audit_lost, 0);
1306 
1307 			audit_log_config_change("lost", 0, lost, 1);
1308 			return lost;
1309 		}
1310 		break;
1311 	}
1312 	case AUDIT_GET_FEATURE:
1313 		err = audit_get_feature(skb);
1314 		if (err)
1315 			return err;
1316 		break;
1317 	case AUDIT_SET_FEATURE:
1318 		err = audit_set_feature(skb);
1319 		if (err)
1320 			return err;
1321 		break;
1322 	case AUDIT_USER:
1323 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1324 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1325 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1326 			return 0;
1327 
1328 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1329 		if (err == 1) { /* match or error */
1330 			err = 0;
1331 			if (msg_type == AUDIT_USER_TTY) {
1332 				err = tty_audit_push();
1333 				if (err)
1334 					break;
1335 			}
1336 			audit_log_user_recv_msg(&ab, msg_type);
1337 			if (msg_type != AUDIT_USER_TTY)
1338 				audit_log_format(ab, " msg='%.*s'",
1339 						 AUDIT_MESSAGE_TEXT_MAX,
1340 						 (char *)data);
1341 			else {
1342 				int size;
1343 
1344 				audit_log_format(ab, " data=");
1345 				size = nlmsg_len(nlh);
1346 				if (size > 0 &&
1347 				    ((unsigned char *)data)[size - 1] == '\0')
1348 					size--;
1349 				audit_log_n_untrustedstring(ab, data, size);
1350 			}
1351 			audit_log_end(ab);
1352 		}
1353 		break;
1354 	case AUDIT_ADD_RULE:
1355 	case AUDIT_DEL_RULE:
1356 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1357 			return -EINVAL;
1358 		if (audit_enabled == AUDIT_LOCKED) {
1359 			audit_log_common_recv_msg(audit_context(), &ab,
1360 						  AUDIT_CONFIG_CHANGE);
1361 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1362 					 msg_type == AUDIT_ADD_RULE ?
1363 						"add_rule" : "remove_rule",
1364 					 audit_enabled);
1365 			audit_log_end(ab);
1366 			return -EPERM;
1367 		}
1368 		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1369 		break;
1370 	case AUDIT_LIST_RULES:
1371 		err = audit_list_rules_send(skb, seq);
1372 		break;
1373 	case AUDIT_TRIM:
1374 		audit_trim_trees();
1375 		audit_log_common_recv_msg(audit_context(), &ab,
1376 					  AUDIT_CONFIG_CHANGE);
1377 		audit_log_format(ab, " op=trim res=1");
1378 		audit_log_end(ab);
1379 		break;
1380 	case AUDIT_MAKE_EQUIV: {
1381 		void *bufp = data;
1382 		u32 sizes[2];
1383 		size_t msglen = nlmsg_len(nlh);
1384 		char *old, *new;
1385 
1386 		err = -EINVAL;
1387 		if (msglen < 2 * sizeof(u32))
1388 			break;
1389 		memcpy(sizes, bufp, 2 * sizeof(u32));
1390 		bufp += 2 * sizeof(u32);
1391 		msglen -= 2 * sizeof(u32);
1392 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1393 		if (IS_ERR(old)) {
1394 			err = PTR_ERR(old);
1395 			break;
1396 		}
1397 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1398 		if (IS_ERR(new)) {
1399 			err = PTR_ERR(new);
1400 			kfree(old);
1401 			break;
1402 		}
1403 		/* OK, here comes... */
1404 		err = audit_tag_tree(old, new);
1405 
1406 		audit_log_common_recv_msg(audit_context(), &ab,
1407 					  AUDIT_CONFIG_CHANGE);
1408 		audit_log_format(ab, " op=make_equiv old=");
1409 		audit_log_untrustedstring(ab, old);
1410 		audit_log_format(ab, " new=");
1411 		audit_log_untrustedstring(ab, new);
1412 		audit_log_format(ab, " res=%d", !err);
1413 		audit_log_end(ab);
1414 		kfree(old);
1415 		kfree(new);
1416 		break;
1417 	}
1418 	case AUDIT_SIGNAL_INFO:
1419 		len = 0;
1420 		if (audit_sig_sid) {
1421 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1422 			if (err)
1423 				return err;
1424 		}
1425 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1426 		if (!sig_data) {
1427 			if (audit_sig_sid)
1428 				security_release_secctx(ctx, len);
1429 			return -ENOMEM;
1430 		}
1431 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1432 		sig_data->pid = audit_sig_pid;
1433 		if (audit_sig_sid) {
1434 			memcpy(sig_data->ctx, ctx, len);
1435 			security_release_secctx(ctx, len);
1436 		}
1437 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1438 				 sig_data, sizeof(*sig_data) + len);
1439 		kfree(sig_data);
1440 		break;
1441 	case AUDIT_TTY_GET: {
1442 		struct audit_tty_status s;
1443 		unsigned int t;
1444 
1445 		t = READ_ONCE(current->signal->audit_tty);
1446 		s.enabled = t & AUDIT_TTY_ENABLE;
1447 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1448 
1449 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1450 		break;
1451 	}
1452 	case AUDIT_TTY_SET: {
1453 		struct audit_tty_status s, old;
1454 		struct audit_buffer	*ab;
1455 		unsigned int t;
1456 
1457 		memset(&s, 0, sizeof(s));
1458 		/* guard against past and future API changes */
1459 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1460 		/* check if new data is valid */
1461 		if ((s.enabled != 0 && s.enabled != 1) ||
1462 		    (s.log_passwd != 0 && s.log_passwd != 1))
1463 			err = -EINVAL;
1464 
1465 		if (err)
1466 			t = READ_ONCE(current->signal->audit_tty);
1467 		else {
1468 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1469 			t = xchg(&current->signal->audit_tty, t);
1470 		}
1471 		old.enabled = t & AUDIT_TTY_ENABLE;
1472 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1473 
1474 		audit_log_common_recv_msg(audit_context(), &ab,
1475 					  AUDIT_CONFIG_CHANGE);
1476 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1477 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1478 				 old.enabled, s.enabled, old.log_passwd,
1479 				 s.log_passwd, !err);
1480 		audit_log_end(ab);
1481 		break;
1482 	}
1483 	default:
1484 		err = -EINVAL;
1485 		break;
1486 	}
1487 
1488 	return err < 0 ? err : 0;
1489 }
1490 
1491 /**
1492  * audit_receive - receive messages from a netlink control socket
1493  * @skb: the message buffer
1494  *
1495  * Parse the provided skb and deal with any messages that may be present,
1496  * malformed skbs are discarded.
1497  */
1498 static void audit_receive(struct sk_buff  *skb)
1499 {
1500 	struct nlmsghdr *nlh;
1501 	/*
1502 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1503 	 * if the nlmsg_len was not aligned
1504 	 */
1505 	int len;
1506 	int err;
1507 
1508 	nlh = nlmsg_hdr(skb);
1509 	len = skb->len;
1510 
1511 	audit_ctl_lock();
1512 	while (nlmsg_ok(nlh, len)) {
1513 		err = audit_receive_msg(skb, nlh);
1514 		/* if err or if this message says it wants a response */
1515 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1516 			netlink_ack(skb, nlh, err, NULL);
1517 
1518 		nlh = nlmsg_next(nlh, &len);
1519 	}
1520 	audit_ctl_unlock();
1521 }
1522 
1523 /* Run custom bind function on netlink socket group connect or bind requests. */
1524 static int audit_bind(struct net *net, int group)
1525 {
1526 	if (!capable(CAP_AUDIT_READ))
1527 		return -EPERM;
1528 
1529 	return 0;
1530 }
1531 
1532 static int __net_init audit_net_init(struct net *net)
1533 {
1534 	struct netlink_kernel_cfg cfg = {
1535 		.input	= audit_receive,
1536 		.bind	= audit_bind,
1537 		.flags	= NL_CFG_F_NONROOT_RECV,
1538 		.groups	= AUDIT_NLGRP_MAX,
1539 	};
1540 
1541 	struct audit_net *aunet = net_generic(net, audit_net_id);
1542 
1543 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1544 	if (aunet->sk == NULL) {
1545 		audit_panic("cannot initialize netlink socket in namespace");
1546 		return -ENOMEM;
1547 	}
1548 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1549 
1550 	return 0;
1551 }
1552 
1553 static void __net_exit audit_net_exit(struct net *net)
1554 {
1555 	struct audit_net *aunet = net_generic(net, audit_net_id);
1556 
1557 	/* NOTE: you would think that we would want to check the auditd
1558 	 * connection and potentially reset it here if it lives in this
1559 	 * namespace, but since the auditd connection tracking struct holds a
1560 	 * reference to this namespace (see auditd_set()) we are only ever
1561 	 * going to get here after that connection has been released */
1562 
1563 	netlink_kernel_release(aunet->sk);
1564 }
1565 
1566 static struct pernet_operations audit_net_ops __net_initdata = {
1567 	.init = audit_net_init,
1568 	.exit = audit_net_exit,
1569 	.id = &audit_net_id,
1570 	.size = sizeof(struct audit_net),
1571 };
1572 
1573 /* Initialize audit support at boot time. */
1574 static int __init audit_init(void)
1575 {
1576 	int i;
1577 
1578 	if (audit_initialized == AUDIT_DISABLED)
1579 		return 0;
1580 
1581 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1582 					       sizeof(struct audit_buffer),
1583 					       0, SLAB_PANIC, NULL);
1584 
1585 	skb_queue_head_init(&audit_queue);
1586 	skb_queue_head_init(&audit_retry_queue);
1587 	skb_queue_head_init(&audit_hold_queue);
1588 
1589 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1590 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1591 
1592 	mutex_init(&audit_cmd_mutex.lock);
1593 	audit_cmd_mutex.owner = NULL;
1594 
1595 	pr_info("initializing netlink subsys (%s)\n",
1596 		audit_default ? "enabled" : "disabled");
1597 	register_pernet_subsys(&audit_net_ops);
1598 
1599 	audit_initialized = AUDIT_INITIALIZED;
1600 
1601 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1602 	if (IS_ERR(kauditd_task)) {
1603 		int err = PTR_ERR(kauditd_task);
1604 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1605 	}
1606 
1607 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1608 		"state=initialized audit_enabled=%u res=1",
1609 		 audit_enabled);
1610 
1611 	return 0;
1612 }
1613 postcore_initcall(audit_init);
1614 
1615 /*
1616  * Process kernel command-line parameter at boot time.
1617  * audit={0|off} or audit={1|on}.
1618  */
1619 static int __init audit_enable(char *str)
1620 {
1621 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1622 		audit_default = AUDIT_OFF;
1623 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1624 		audit_default = AUDIT_ON;
1625 	else {
1626 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1627 		audit_default = AUDIT_ON;
1628 	}
1629 
1630 	if (audit_default == AUDIT_OFF)
1631 		audit_initialized = AUDIT_DISABLED;
1632 	if (audit_set_enabled(audit_default))
1633 		pr_err("audit: error setting audit state (%d)\n",
1634 		       audit_default);
1635 
1636 	pr_info("%s\n", audit_default ?
1637 		"enabled (after initialization)" : "disabled (until reboot)");
1638 
1639 	return 1;
1640 }
1641 __setup("audit=", audit_enable);
1642 
1643 /* Process kernel command-line parameter at boot time.
1644  * audit_backlog_limit=<n> */
1645 static int __init audit_backlog_limit_set(char *str)
1646 {
1647 	u32 audit_backlog_limit_arg;
1648 
1649 	pr_info("audit_backlog_limit: ");
1650 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1651 		pr_cont("using default of %u, unable to parse %s\n",
1652 			audit_backlog_limit, str);
1653 		return 1;
1654 	}
1655 
1656 	audit_backlog_limit = audit_backlog_limit_arg;
1657 	pr_cont("%d\n", audit_backlog_limit);
1658 
1659 	return 1;
1660 }
1661 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1662 
1663 static void audit_buffer_free(struct audit_buffer *ab)
1664 {
1665 	if (!ab)
1666 		return;
1667 
1668 	kfree_skb(ab->skb);
1669 	kmem_cache_free(audit_buffer_cache, ab);
1670 }
1671 
1672 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1673 					       gfp_t gfp_mask, int type)
1674 {
1675 	struct audit_buffer *ab;
1676 
1677 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1678 	if (!ab)
1679 		return NULL;
1680 
1681 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1682 	if (!ab->skb)
1683 		goto err;
1684 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1685 		goto err;
1686 
1687 	ab->ctx = ctx;
1688 	ab->gfp_mask = gfp_mask;
1689 
1690 	return ab;
1691 
1692 err:
1693 	audit_buffer_free(ab);
1694 	return NULL;
1695 }
1696 
1697 /**
1698  * audit_serial - compute a serial number for the audit record
1699  *
1700  * Compute a serial number for the audit record.  Audit records are
1701  * written to user-space as soon as they are generated, so a complete
1702  * audit record may be written in several pieces.  The timestamp of the
1703  * record and this serial number are used by the user-space tools to
1704  * determine which pieces belong to the same audit record.  The
1705  * (timestamp,serial) tuple is unique for each syscall and is live from
1706  * syscall entry to syscall exit.
1707  *
1708  * NOTE: Another possibility is to store the formatted records off the
1709  * audit context (for those records that have a context), and emit them
1710  * all at syscall exit.  However, this could delay the reporting of
1711  * significant errors until syscall exit (or never, if the system
1712  * halts).
1713  */
1714 unsigned int audit_serial(void)
1715 {
1716 	static atomic_t serial = ATOMIC_INIT(0);
1717 
1718 	return atomic_add_return(1, &serial);
1719 }
1720 
1721 static inline void audit_get_stamp(struct audit_context *ctx,
1722 				   struct timespec64 *t, unsigned int *serial)
1723 {
1724 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1725 		ktime_get_coarse_real_ts64(t);
1726 		*serial = audit_serial();
1727 	}
1728 }
1729 
1730 /**
1731  * audit_log_start - obtain an audit buffer
1732  * @ctx: audit_context (may be NULL)
1733  * @gfp_mask: type of allocation
1734  * @type: audit message type
1735  *
1736  * Returns audit_buffer pointer on success or NULL on error.
1737  *
1738  * Obtain an audit buffer.  This routine does locking to obtain the
1739  * audit buffer, but then no locking is required for calls to
1740  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1741  * syscall, then the syscall is marked as auditable and an audit record
1742  * will be written at syscall exit.  If there is no associated task, then
1743  * task context (ctx) should be NULL.
1744  */
1745 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1746 				     int type)
1747 {
1748 	struct audit_buffer *ab;
1749 	struct timespec64 t;
1750 	unsigned int uninitialized_var(serial);
1751 
1752 	if (audit_initialized != AUDIT_INITIALIZED)
1753 		return NULL;
1754 
1755 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1756 		return NULL;
1757 
1758 	/* NOTE: don't ever fail/sleep on these two conditions:
1759 	 * 1. auditd generated record - since we need auditd to drain the
1760 	 *    queue; also, when we are checking for auditd, compare PIDs using
1761 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1762 	 *    using a PID anchored in the caller's namespace
1763 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1764 	 *    while holding the mutex */
1765 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1766 		long stime = audit_backlog_wait_time;
1767 
1768 		while (audit_backlog_limit &&
1769 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1770 			/* wake kauditd to try and flush the queue */
1771 			wake_up_interruptible(&kauditd_wait);
1772 
1773 			/* sleep if we are allowed and we haven't exhausted our
1774 			 * backlog wait limit */
1775 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1776 				DECLARE_WAITQUEUE(wait, current);
1777 
1778 				add_wait_queue_exclusive(&audit_backlog_wait,
1779 							 &wait);
1780 				set_current_state(TASK_UNINTERRUPTIBLE);
1781 				stime = schedule_timeout(stime);
1782 				remove_wait_queue(&audit_backlog_wait, &wait);
1783 			} else {
1784 				if (audit_rate_check() && printk_ratelimit())
1785 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1786 						skb_queue_len(&audit_queue),
1787 						audit_backlog_limit);
1788 				audit_log_lost("backlog limit exceeded");
1789 				return NULL;
1790 			}
1791 		}
1792 	}
1793 
1794 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1795 	if (!ab) {
1796 		audit_log_lost("out of memory in audit_log_start");
1797 		return NULL;
1798 	}
1799 
1800 	audit_get_stamp(ab->ctx, &t, &serial);
1801 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1802 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1803 
1804 	return ab;
1805 }
1806 
1807 /**
1808  * audit_expand - expand skb in the audit buffer
1809  * @ab: audit_buffer
1810  * @extra: space to add at tail of the skb
1811  *
1812  * Returns 0 (no space) on failed expansion, or available space if
1813  * successful.
1814  */
1815 static inline int audit_expand(struct audit_buffer *ab, int extra)
1816 {
1817 	struct sk_buff *skb = ab->skb;
1818 	int oldtail = skb_tailroom(skb);
1819 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1820 	int newtail = skb_tailroom(skb);
1821 
1822 	if (ret < 0) {
1823 		audit_log_lost("out of memory in audit_expand");
1824 		return 0;
1825 	}
1826 
1827 	skb->truesize += newtail - oldtail;
1828 	return newtail;
1829 }
1830 
1831 /*
1832  * Format an audit message into the audit buffer.  If there isn't enough
1833  * room in the audit buffer, more room will be allocated and vsnprint
1834  * will be called a second time.  Currently, we assume that a printk
1835  * can't format message larger than 1024 bytes, so we don't either.
1836  */
1837 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1838 			      va_list args)
1839 {
1840 	int len, avail;
1841 	struct sk_buff *skb;
1842 	va_list args2;
1843 
1844 	if (!ab)
1845 		return;
1846 
1847 	BUG_ON(!ab->skb);
1848 	skb = ab->skb;
1849 	avail = skb_tailroom(skb);
1850 	if (avail == 0) {
1851 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1852 		if (!avail)
1853 			goto out;
1854 	}
1855 	va_copy(args2, args);
1856 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1857 	if (len >= avail) {
1858 		/* The printk buffer is 1024 bytes long, so if we get
1859 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1860 		 * log everything that printk could have logged. */
1861 		avail = audit_expand(ab,
1862 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1863 		if (!avail)
1864 			goto out_va_end;
1865 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1866 	}
1867 	if (len > 0)
1868 		skb_put(skb, len);
1869 out_va_end:
1870 	va_end(args2);
1871 out:
1872 	return;
1873 }
1874 
1875 /**
1876  * audit_log_format - format a message into the audit buffer.
1877  * @ab: audit_buffer
1878  * @fmt: format string
1879  * @...: optional parameters matching @fmt string
1880  *
1881  * All the work is done in audit_log_vformat.
1882  */
1883 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1884 {
1885 	va_list args;
1886 
1887 	if (!ab)
1888 		return;
1889 	va_start(args, fmt);
1890 	audit_log_vformat(ab, fmt, args);
1891 	va_end(args);
1892 }
1893 
1894 /**
1895  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1896  * @ab: the audit_buffer
1897  * @buf: buffer to convert to hex
1898  * @len: length of @buf to be converted
1899  *
1900  * No return value; failure to expand is silently ignored.
1901  *
1902  * This function will take the passed buf and convert it into a string of
1903  * ascii hex digits. The new string is placed onto the skb.
1904  */
1905 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1906 		size_t len)
1907 {
1908 	int i, avail, new_len;
1909 	unsigned char *ptr;
1910 	struct sk_buff *skb;
1911 
1912 	if (!ab)
1913 		return;
1914 
1915 	BUG_ON(!ab->skb);
1916 	skb = ab->skb;
1917 	avail = skb_tailroom(skb);
1918 	new_len = len<<1;
1919 	if (new_len >= avail) {
1920 		/* Round the buffer request up to the next multiple */
1921 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1922 		avail = audit_expand(ab, new_len);
1923 		if (!avail)
1924 			return;
1925 	}
1926 
1927 	ptr = skb_tail_pointer(skb);
1928 	for (i = 0; i < len; i++)
1929 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1930 	*ptr = 0;
1931 	skb_put(skb, len << 1); /* new string is twice the old string */
1932 }
1933 
1934 /*
1935  * Format a string of no more than slen characters into the audit buffer,
1936  * enclosed in quote marks.
1937  */
1938 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1939 			size_t slen)
1940 {
1941 	int avail, new_len;
1942 	unsigned char *ptr;
1943 	struct sk_buff *skb;
1944 
1945 	if (!ab)
1946 		return;
1947 
1948 	BUG_ON(!ab->skb);
1949 	skb = ab->skb;
1950 	avail = skb_tailroom(skb);
1951 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1952 	if (new_len > avail) {
1953 		avail = audit_expand(ab, new_len);
1954 		if (!avail)
1955 			return;
1956 	}
1957 	ptr = skb_tail_pointer(skb);
1958 	*ptr++ = '"';
1959 	memcpy(ptr, string, slen);
1960 	ptr += slen;
1961 	*ptr++ = '"';
1962 	*ptr = 0;
1963 	skb_put(skb, slen + 2);	/* don't include null terminator */
1964 }
1965 
1966 /**
1967  * audit_string_contains_control - does a string need to be logged in hex
1968  * @string: string to be checked
1969  * @len: max length of the string to check
1970  */
1971 bool audit_string_contains_control(const char *string, size_t len)
1972 {
1973 	const unsigned char *p;
1974 	for (p = string; p < (const unsigned char *)string + len; p++) {
1975 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1976 			return true;
1977 	}
1978 	return false;
1979 }
1980 
1981 /**
1982  * audit_log_n_untrustedstring - log a string that may contain random characters
1983  * @ab: audit_buffer
1984  * @len: length of string (not including trailing null)
1985  * @string: string to be logged
1986  *
1987  * This code will escape a string that is passed to it if the string
1988  * contains a control character, unprintable character, double quote mark,
1989  * or a space. Unescaped strings will start and end with a double quote mark.
1990  * Strings that are escaped are printed in hex (2 digits per char).
1991  *
1992  * The caller specifies the number of characters in the string to log, which may
1993  * or may not be the entire string.
1994  */
1995 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1996 				 size_t len)
1997 {
1998 	if (audit_string_contains_control(string, len))
1999 		audit_log_n_hex(ab, string, len);
2000 	else
2001 		audit_log_n_string(ab, string, len);
2002 }
2003 
2004 /**
2005  * audit_log_untrustedstring - log a string that may contain random characters
2006  * @ab: audit_buffer
2007  * @string: string to be logged
2008  *
2009  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2010  * determine string length.
2011  */
2012 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2013 {
2014 	audit_log_n_untrustedstring(ab, string, strlen(string));
2015 }
2016 
2017 /* This is a helper-function to print the escaped d_path */
2018 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2019 		      const struct path *path)
2020 {
2021 	char *p, *pathname;
2022 
2023 	if (prefix)
2024 		audit_log_format(ab, "%s", prefix);
2025 
2026 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2027 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2028 	if (!pathname) {
2029 		audit_log_string(ab, "<no_memory>");
2030 		return;
2031 	}
2032 	p = d_path(path, pathname, PATH_MAX+11);
2033 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2034 		/* FIXME: can we save some information here? */
2035 		audit_log_string(ab, "<too_long>");
2036 	} else
2037 		audit_log_untrustedstring(ab, p);
2038 	kfree(pathname);
2039 }
2040 
2041 void audit_log_session_info(struct audit_buffer *ab)
2042 {
2043 	unsigned int sessionid = audit_get_sessionid(current);
2044 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2045 
2046 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2047 }
2048 
2049 void audit_log_key(struct audit_buffer *ab, char *key)
2050 {
2051 	audit_log_format(ab, " key=");
2052 	if (key)
2053 		audit_log_untrustedstring(ab, key);
2054 	else
2055 		audit_log_format(ab, "(null)");
2056 }
2057 
2058 int audit_log_task_context(struct audit_buffer *ab)
2059 {
2060 	char *ctx = NULL;
2061 	unsigned len;
2062 	int error;
2063 	u32 sid;
2064 
2065 	security_task_getsecid(current, &sid);
2066 	if (!sid)
2067 		return 0;
2068 
2069 	error = security_secid_to_secctx(sid, &ctx, &len);
2070 	if (error) {
2071 		if (error != -EINVAL)
2072 			goto error_path;
2073 		return 0;
2074 	}
2075 
2076 	audit_log_format(ab, " subj=%s", ctx);
2077 	security_release_secctx(ctx, len);
2078 	return 0;
2079 
2080 error_path:
2081 	audit_panic("error in audit_log_task_context");
2082 	return error;
2083 }
2084 EXPORT_SYMBOL(audit_log_task_context);
2085 
2086 void audit_log_d_path_exe(struct audit_buffer *ab,
2087 			  struct mm_struct *mm)
2088 {
2089 	struct file *exe_file;
2090 
2091 	if (!mm)
2092 		goto out_null;
2093 
2094 	exe_file = get_mm_exe_file(mm);
2095 	if (!exe_file)
2096 		goto out_null;
2097 
2098 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2099 	fput(exe_file);
2100 	return;
2101 out_null:
2102 	audit_log_format(ab, " exe=(null)");
2103 }
2104 
2105 struct tty_struct *audit_get_tty(void)
2106 {
2107 	struct tty_struct *tty = NULL;
2108 	unsigned long flags;
2109 
2110 	spin_lock_irqsave(&current->sighand->siglock, flags);
2111 	if (current->signal)
2112 		tty = tty_kref_get(current->signal->tty);
2113 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2114 	return tty;
2115 }
2116 
2117 void audit_put_tty(struct tty_struct *tty)
2118 {
2119 	tty_kref_put(tty);
2120 }
2121 
2122 void audit_log_task_info(struct audit_buffer *ab)
2123 {
2124 	const struct cred *cred;
2125 	char comm[sizeof(current->comm)];
2126 	struct tty_struct *tty;
2127 
2128 	if (!ab)
2129 		return;
2130 
2131 	cred = current_cred();
2132 	tty = audit_get_tty();
2133 	audit_log_format(ab,
2134 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2135 			 " euid=%u suid=%u fsuid=%u"
2136 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2137 			 task_ppid_nr(current),
2138 			 task_tgid_nr(current),
2139 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2140 			 from_kuid(&init_user_ns, cred->uid),
2141 			 from_kgid(&init_user_ns, cred->gid),
2142 			 from_kuid(&init_user_ns, cred->euid),
2143 			 from_kuid(&init_user_ns, cred->suid),
2144 			 from_kuid(&init_user_ns, cred->fsuid),
2145 			 from_kgid(&init_user_ns, cred->egid),
2146 			 from_kgid(&init_user_ns, cred->sgid),
2147 			 from_kgid(&init_user_ns, cred->fsgid),
2148 			 tty ? tty_name(tty) : "(none)",
2149 			 audit_get_sessionid(current));
2150 	audit_put_tty(tty);
2151 	audit_log_format(ab, " comm=");
2152 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2153 	audit_log_d_path_exe(ab, current->mm);
2154 	audit_log_task_context(ab);
2155 }
2156 EXPORT_SYMBOL(audit_log_task_info);
2157 
2158 /**
2159  * audit_log_path_denied - report a path restriction denial
2160  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2161  * @operation: specific operation name
2162  */
2163 void audit_log_path_denied(int type, const char *operation)
2164 {
2165 	struct audit_buffer *ab;
2166 
2167 	if (!audit_enabled || audit_dummy_context())
2168 		return;
2169 
2170 	/* Generate log with subject, operation, outcome. */
2171 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2172 	if (!ab)
2173 		return;
2174 	audit_log_format(ab, "op=%s", operation);
2175 	audit_log_task_info(ab);
2176 	audit_log_format(ab, " res=0");
2177 	audit_log_end(ab);
2178 }
2179 
2180 /* global counter which is incremented every time something logs in */
2181 static atomic_t session_id = ATOMIC_INIT(0);
2182 
2183 static int audit_set_loginuid_perm(kuid_t loginuid)
2184 {
2185 	/* if we are unset, we don't need privs */
2186 	if (!audit_loginuid_set(current))
2187 		return 0;
2188 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2189 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2190 		return -EPERM;
2191 	/* it is set, you need permission */
2192 	if (!capable(CAP_AUDIT_CONTROL))
2193 		return -EPERM;
2194 	/* reject if this is not an unset and we don't allow that */
2195 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2196 				 && uid_valid(loginuid))
2197 		return -EPERM;
2198 	return 0;
2199 }
2200 
2201 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2202 				   unsigned int oldsessionid,
2203 				   unsigned int sessionid, int rc)
2204 {
2205 	struct audit_buffer *ab;
2206 	uid_t uid, oldloginuid, loginuid;
2207 	struct tty_struct *tty;
2208 
2209 	if (!audit_enabled)
2210 		return;
2211 
2212 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2213 	if (!ab)
2214 		return;
2215 
2216 	uid = from_kuid(&init_user_ns, task_uid(current));
2217 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2218 	loginuid = from_kuid(&init_user_ns, kloginuid),
2219 	tty = audit_get_tty();
2220 
2221 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2222 	audit_log_task_context(ab);
2223 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2224 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2225 			 oldsessionid, sessionid, !rc);
2226 	audit_put_tty(tty);
2227 	audit_log_end(ab);
2228 }
2229 
2230 /**
2231  * audit_set_loginuid - set current task's loginuid
2232  * @loginuid: loginuid value
2233  *
2234  * Returns 0.
2235  *
2236  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2237  */
2238 int audit_set_loginuid(kuid_t loginuid)
2239 {
2240 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2241 	kuid_t oldloginuid;
2242 	int rc;
2243 
2244 	oldloginuid = audit_get_loginuid(current);
2245 	oldsessionid = audit_get_sessionid(current);
2246 
2247 	rc = audit_set_loginuid_perm(loginuid);
2248 	if (rc)
2249 		goto out;
2250 
2251 	/* are we setting or clearing? */
2252 	if (uid_valid(loginuid)) {
2253 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2254 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2255 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2256 	}
2257 
2258 	current->sessionid = sessionid;
2259 	current->loginuid = loginuid;
2260 out:
2261 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2262 	return rc;
2263 }
2264 
2265 /**
2266  * audit_signal_info - record signal info for shutting down audit subsystem
2267  * @sig: signal value
2268  * @t: task being signaled
2269  *
2270  * If the audit subsystem is being terminated, record the task (pid)
2271  * and uid that is doing that.
2272  */
2273 int audit_signal_info(int sig, struct task_struct *t)
2274 {
2275 	kuid_t uid = current_uid(), auid;
2276 
2277 	if (auditd_test_task(t) &&
2278 	    (sig == SIGTERM || sig == SIGHUP ||
2279 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2280 		audit_sig_pid = task_tgid_nr(current);
2281 		auid = audit_get_loginuid(current);
2282 		if (uid_valid(auid))
2283 			audit_sig_uid = auid;
2284 		else
2285 			audit_sig_uid = uid;
2286 		security_task_getsecid(current, &audit_sig_sid);
2287 	}
2288 
2289 	return audit_signal_info_syscall(t);
2290 }
2291 
2292 /**
2293  * audit_log_end - end one audit record
2294  * @ab: the audit_buffer
2295  *
2296  * We can not do a netlink send inside an irq context because it blocks (last
2297  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2298  * queue and a tasklet is scheduled to remove them from the queue outside the
2299  * irq context.  May be called in any context.
2300  */
2301 void audit_log_end(struct audit_buffer *ab)
2302 {
2303 	struct sk_buff *skb;
2304 	struct nlmsghdr *nlh;
2305 
2306 	if (!ab)
2307 		return;
2308 
2309 	if (audit_rate_check()) {
2310 		skb = ab->skb;
2311 		ab->skb = NULL;
2312 
2313 		/* setup the netlink header, see the comments in
2314 		 * kauditd_send_multicast_skb() for length quirks */
2315 		nlh = nlmsg_hdr(skb);
2316 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2317 
2318 		/* queue the netlink packet and poke the kauditd thread */
2319 		skb_queue_tail(&audit_queue, skb);
2320 		wake_up_interruptible(&kauditd_wait);
2321 	} else
2322 		audit_log_lost("rate limit exceeded");
2323 
2324 	audit_buffer_free(ab);
2325 }
2326 
2327 /**
2328  * audit_log - Log an audit record
2329  * @ctx: audit context
2330  * @gfp_mask: type of allocation
2331  * @type: audit message type
2332  * @fmt: format string to use
2333  * @...: variable parameters matching the format string
2334  *
2335  * This is a convenience function that calls audit_log_start,
2336  * audit_log_vformat, and audit_log_end.  It may be called
2337  * in any context.
2338  */
2339 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2340 	       const char *fmt, ...)
2341 {
2342 	struct audit_buffer *ab;
2343 	va_list args;
2344 
2345 	ab = audit_log_start(ctx, gfp_mask, type);
2346 	if (ab) {
2347 		va_start(args, fmt);
2348 		audit_log_vformat(ab, fmt, args);
2349 		va_end(args);
2350 		audit_log_end(ab);
2351 	}
2352 }
2353 
2354 EXPORT_SYMBOL(audit_log_start);
2355 EXPORT_SYMBOL(audit_log_end);
2356 EXPORT_SYMBOL(audit_log_format);
2357 EXPORT_SYMBOL(audit_log);
2358