xref: /openbmc/linux/kernel/audit.c (revision d623f60d)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Audit userspace, documentation, tests, and bug/issue trackers:
42  * 	https://github.com/linux-audit
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/file.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/atomic.h>
51 #include <linux/mm.h>
52 #include <linux/export.h>
53 #include <linux/slab.h>
54 #include <linux/err.h>
55 #include <linux/kthread.h>
56 #include <linux/kernel.h>
57 #include <linux/syscalls.h>
58 #include <linux/spinlock.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/gfp.h>
62 #include <linux/pid.h>
63 #include <linux/slab.h>
64 
65 #include <linux/audit.h>
66 
67 #include <net/sock.h>
68 #include <net/netlink.h>
69 #include <linux/skbuff.h>
70 #ifdef CONFIG_SECURITY
71 #include <linux/security.h>
72 #endif
73 #include <linux/freezer.h>
74 #include <linux/pid_namespace.h>
75 #include <net/netns/generic.h>
76 
77 #include "audit.h"
78 
79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
80  * (Initialization happens after skb_init is called.) */
81 #define AUDIT_DISABLED		-1
82 #define AUDIT_UNINITIALIZED	0
83 #define AUDIT_INITIALIZED	1
84 static int	audit_initialized;
85 
86 #define AUDIT_OFF	0
87 #define AUDIT_ON	1
88 #define AUDIT_LOCKED	2
89 u32		audit_enabled = AUDIT_OFF;
90 bool		audit_ever_enabled = !!AUDIT_OFF;
91 
92 EXPORT_SYMBOL_GPL(audit_enabled);
93 
94 /* Default state when kernel boots without any parameters. */
95 static u32	audit_default = AUDIT_OFF;
96 
97 /* If auditing cannot proceed, audit_failure selects what happens. */
98 static u32	audit_failure = AUDIT_FAIL_PRINTK;
99 
100 /* private audit network namespace index */
101 static unsigned int audit_net_id;
102 
103 /**
104  * struct audit_net - audit private network namespace data
105  * @sk: communication socket
106  */
107 struct audit_net {
108 	struct sock *sk;
109 };
110 
111 /**
112  * struct auditd_connection - kernel/auditd connection state
113  * @pid: auditd PID
114  * @portid: netlink portid
115  * @net: the associated network namespace
116  * @rcu: RCU head
117  *
118  * Description:
119  * This struct is RCU protected; you must either hold the RCU lock for reading
120  * or the associated spinlock for writing.
121  */
122 static struct auditd_connection {
123 	struct pid *pid;
124 	u32 portid;
125 	struct net *net;
126 	struct rcu_head rcu;
127 } *auditd_conn = NULL;
128 static DEFINE_SPINLOCK(auditd_conn_lock);
129 
130 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
131  * to that number per second.  This prevents DoS attacks, but results in
132  * audit records being dropped. */
133 static u32	audit_rate_limit;
134 
135 /* Number of outstanding audit_buffers allowed.
136  * When set to zero, this means unlimited. */
137 static u32	audit_backlog_limit = 64;
138 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
139 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
140 
141 /* The identity of the user shutting down the audit system. */
142 kuid_t		audit_sig_uid = INVALID_UID;
143 pid_t		audit_sig_pid = -1;
144 u32		audit_sig_sid = 0;
145 
146 /* Records can be lost in several ways:
147    0) [suppressed in audit_alloc]
148    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
149    2) out of memory in audit_log_move [alloc_skb]
150    3) suppressed due to audit_rate_limit
151    4) suppressed due to audit_backlog_limit
152 */
153 static atomic_t	audit_lost = ATOMIC_INIT(0);
154 
155 /* Hash for inode-based rules */
156 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
157 
158 static struct kmem_cache *audit_buffer_cache;
159 
160 /* queue msgs to send via kauditd_task */
161 static struct sk_buff_head audit_queue;
162 /* queue msgs due to temporary unicast send problems */
163 static struct sk_buff_head audit_retry_queue;
164 /* queue msgs waiting for new auditd connection */
165 static struct sk_buff_head audit_hold_queue;
166 
167 /* queue servicing thread */
168 static struct task_struct *kauditd_task;
169 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
170 
171 /* waitqueue for callers who are blocked on the audit backlog */
172 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
173 
174 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
175 				   .mask = -1,
176 				   .features = 0,
177 				   .lock = 0,};
178 
179 static char *audit_feature_names[2] = {
180 	"only_unset_loginuid",
181 	"loginuid_immutable",
182 };
183 
184 /**
185  * struct audit_ctl_mutex - serialize requests from userspace
186  * @lock: the mutex used for locking
187  * @owner: the task which owns the lock
188  *
189  * Description:
190  * This is the lock struct used to ensure we only process userspace requests
191  * in an orderly fashion.  We can't simply use a mutex/lock here because we
192  * need to track lock ownership so we don't end up blocking the lock owner in
193  * audit_log_start() or similar.
194  */
195 static struct audit_ctl_mutex {
196 	struct mutex lock;
197 	void *owner;
198 } audit_cmd_mutex;
199 
200 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
201  * audit records.  Since printk uses a 1024 byte buffer, this buffer
202  * should be at least that large. */
203 #define AUDIT_BUFSIZ 1024
204 
205 /* The audit_buffer is used when formatting an audit record.  The caller
206  * locks briefly to get the record off the freelist or to allocate the
207  * buffer, and locks briefly to send the buffer to the netlink layer or
208  * to place it on a transmit queue.  Multiple audit_buffers can be in
209  * use simultaneously. */
210 struct audit_buffer {
211 	struct sk_buff       *skb;	/* formatted skb ready to send */
212 	struct audit_context *ctx;	/* NULL or associated context */
213 	gfp_t		     gfp_mask;
214 };
215 
216 struct audit_reply {
217 	__u32 portid;
218 	struct net *net;
219 	struct sk_buff *skb;
220 };
221 
222 /**
223  * auditd_test_task - Check to see if a given task is an audit daemon
224  * @task: the task to check
225  *
226  * Description:
227  * Return 1 if the task is a registered audit daemon, 0 otherwise.
228  */
229 int auditd_test_task(struct task_struct *task)
230 {
231 	int rc;
232 	struct auditd_connection *ac;
233 
234 	rcu_read_lock();
235 	ac = rcu_dereference(auditd_conn);
236 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
237 	rcu_read_unlock();
238 
239 	return rc;
240 }
241 
242 /**
243  * audit_ctl_lock - Take the audit control lock
244  */
245 void audit_ctl_lock(void)
246 {
247 	mutex_lock(&audit_cmd_mutex.lock);
248 	audit_cmd_mutex.owner = current;
249 }
250 
251 /**
252  * audit_ctl_unlock - Drop the audit control lock
253  */
254 void audit_ctl_unlock(void)
255 {
256 	audit_cmd_mutex.owner = NULL;
257 	mutex_unlock(&audit_cmd_mutex.lock);
258 }
259 
260 /**
261  * audit_ctl_owner_current - Test to see if the current task owns the lock
262  *
263  * Description:
264  * Return true if the current task owns the audit control lock, false if it
265  * doesn't own the lock.
266  */
267 static bool audit_ctl_owner_current(void)
268 {
269 	return (current == audit_cmd_mutex.owner);
270 }
271 
272 /**
273  * auditd_pid_vnr - Return the auditd PID relative to the namespace
274  *
275  * Description:
276  * Returns the PID in relation to the namespace, 0 on failure.
277  */
278 static pid_t auditd_pid_vnr(void)
279 {
280 	pid_t pid;
281 	const struct auditd_connection *ac;
282 
283 	rcu_read_lock();
284 	ac = rcu_dereference(auditd_conn);
285 	if (!ac || !ac->pid)
286 		pid = 0;
287 	else
288 		pid = pid_vnr(ac->pid);
289 	rcu_read_unlock();
290 
291 	return pid;
292 }
293 
294 /**
295  * audit_get_sk - Return the audit socket for the given network namespace
296  * @net: the destination network namespace
297  *
298  * Description:
299  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
300  * that a reference is held for the network namespace while the sock is in use.
301  */
302 static struct sock *audit_get_sk(const struct net *net)
303 {
304 	struct audit_net *aunet;
305 
306 	if (!net)
307 		return NULL;
308 
309 	aunet = net_generic(net, audit_net_id);
310 	return aunet->sk;
311 }
312 
313 void audit_panic(const char *message)
314 {
315 	switch (audit_failure) {
316 	case AUDIT_FAIL_SILENT:
317 		break;
318 	case AUDIT_FAIL_PRINTK:
319 		if (printk_ratelimit())
320 			pr_err("%s\n", message);
321 		break;
322 	case AUDIT_FAIL_PANIC:
323 		panic("audit: %s\n", message);
324 		break;
325 	}
326 }
327 
328 static inline int audit_rate_check(void)
329 {
330 	static unsigned long	last_check = 0;
331 	static int		messages   = 0;
332 	static DEFINE_SPINLOCK(lock);
333 	unsigned long		flags;
334 	unsigned long		now;
335 	unsigned long		elapsed;
336 	int			retval	   = 0;
337 
338 	if (!audit_rate_limit) return 1;
339 
340 	spin_lock_irqsave(&lock, flags);
341 	if (++messages < audit_rate_limit) {
342 		retval = 1;
343 	} else {
344 		now     = jiffies;
345 		elapsed = now - last_check;
346 		if (elapsed > HZ) {
347 			last_check = now;
348 			messages   = 0;
349 			retval     = 1;
350 		}
351 	}
352 	spin_unlock_irqrestore(&lock, flags);
353 
354 	return retval;
355 }
356 
357 /**
358  * audit_log_lost - conditionally log lost audit message event
359  * @message: the message stating reason for lost audit message
360  *
361  * Emit at least 1 message per second, even if audit_rate_check is
362  * throttling.
363  * Always increment the lost messages counter.
364 */
365 void audit_log_lost(const char *message)
366 {
367 	static unsigned long	last_msg = 0;
368 	static DEFINE_SPINLOCK(lock);
369 	unsigned long		flags;
370 	unsigned long		now;
371 	int			print;
372 
373 	atomic_inc(&audit_lost);
374 
375 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
376 
377 	if (!print) {
378 		spin_lock_irqsave(&lock, flags);
379 		now = jiffies;
380 		if (now - last_msg > HZ) {
381 			print = 1;
382 			last_msg = now;
383 		}
384 		spin_unlock_irqrestore(&lock, flags);
385 	}
386 
387 	if (print) {
388 		if (printk_ratelimit())
389 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
390 				atomic_read(&audit_lost),
391 				audit_rate_limit,
392 				audit_backlog_limit);
393 		audit_panic(message);
394 	}
395 }
396 
397 static int audit_log_config_change(char *function_name, u32 new, u32 old,
398 				   int allow_changes)
399 {
400 	struct audit_buffer *ab;
401 	int rc = 0;
402 
403 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
404 	if (unlikely(!ab))
405 		return rc;
406 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
407 	audit_log_session_info(ab);
408 	rc = audit_log_task_context(ab);
409 	if (rc)
410 		allow_changes = 0; /* Something weird, deny request */
411 	audit_log_format(ab, " res=%d", allow_changes);
412 	audit_log_end(ab);
413 	return rc;
414 }
415 
416 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
417 {
418 	int allow_changes, rc = 0;
419 	u32 old = *to_change;
420 
421 	/* check if we are locked */
422 	if (audit_enabled == AUDIT_LOCKED)
423 		allow_changes = 0;
424 	else
425 		allow_changes = 1;
426 
427 	if (audit_enabled != AUDIT_OFF) {
428 		rc = audit_log_config_change(function_name, new, old, allow_changes);
429 		if (rc)
430 			allow_changes = 0;
431 	}
432 
433 	/* If we are allowed, make the change */
434 	if (allow_changes == 1)
435 		*to_change = new;
436 	/* Not allowed, update reason */
437 	else if (rc == 0)
438 		rc = -EPERM;
439 	return rc;
440 }
441 
442 static int audit_set_rate_limit(u32 limit)
443 {
444 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
445 }
446 
447 static int audit_set_backlog_limit(u32 limit)
448 {
449 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
450 }
451 
452 static int audit_set_backlog_wait_time(u32 timeout)
453 {
454 	return audit_do_config_change("audit_backlog_wait_time",
455 				      &audit_backlog_wait_time, timeout);
456 }
457 
458 static int audit_set_enabled(u32 state)
459 {
460 	int rc;
461 	if (state > AUDIT_LOCKED)
462 		return -EINVAL;
463 
464 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
465 	if (!rc)
466 		audit_ever_enabled |= !!state;
467 
468 	return rc;
469 }
470 
471 static int audit_set_failure(u32 state)
472 {
473 	if (state != AUDIT_FAIL_SILENT
474 	    && state != AUDIT_FAIL_PRINTK
475 	    && state != AUDIT_FAIL_PANIC)
476 		return -EINVAL;
477 
478 	return audit_do_config_change("audit_failure", &audit_failure, state);
479 }
480 
481 /**
482  * auditd_conn_free - RCU helper to release an auditd connection struct
483  * @rcu: RCU head
484  *
485  * Description:
486  * Drop any references inside the auditd connection tracking struct and free
487  * the memory.
488  */
489 static void auditd_conn_free(struct rcu_head *rcu)
490 {
491 	struct auditd_connection *ac;
492 
493 	ac = container_of(rcu, struct auditd_connection, rcu);
494 	put_pid(ac->pid);
495 	put_net(ac->net);
496 	kfree(ac);
497 }
498 
499 /**
500  * auditd_set - Set/Reset the auditd connection state
501  * @pid: auditd PID
502  * @portid: auditd netlink portid
503  * @net: auditd network namespace pointer
504  *
505  * Description:
506  * This function will obtain and drop network namespace references as
507  * necessary.  Returns zero on success, negative values on failure.
508  */
509 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
510 {
511 	unsigned long flags;
512 	struct auditd_connection *ac_old, *ac_new;
513 
514 	if (!pid || !net)
515 		return -EINVAL;
516 
517 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
518 	if (!ac_new)
519 		return -ENOMEM;
520 	ac_new->pid = get_pid(pid);
521 	ac_new->portid = portid;
522 	ac_new->net = get_net(net);
523 
524 	spin_lock_irqsave(&auditd_conn_lock, flags);
525 	ac_old = rcu_dereference_protected(auditd_conn,
526 					   lockdep_is_held(&auditd_conn_lock));
527 	rcu_assign_pointer(auditd_conn, ac_new);
528 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
529 
530 	if (ac_old)
531 		call_rcu(&ac_old->rcu, auditd_conn_free);
532 
533 	return 0;
534 }
535 
536 /**
537  * kauditd_print_skb - Print the audit record to the ring buffer
538  * @skb: audit record
539  *
540  * Whatever the reason, this packet may not make it to the auditd connection
541  * so write it via printk so the information isn't completely lost.
542  */
543 static void kauditd_printk_skb(struct sk_buff *skb)
544 {
545 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
546 	char *data = nlmsg_data(nlh);
547 
548 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
550 }
551 
552 /**
553  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554  * @skb: audit record
555  *
556  * Description:
557  * This should only be used by the kauditd_thread when it fails to flush the
558  * hold queue.
559  */
560 static void kauditd_rehold_skb(struct sk_buff *skb)
561 {
562 	/* put the record back in the queue at the same place */
563 	skb_queue_head(&audit_hold_queue, skb);
564 }
565 
566 /**
567  * kauditd_hold_skb - Queue an audit record, waiting for auditd
568  * @skb: audit record
569  *
570  * Description:
571  * Queue the audit record, waiting for an instance of auditd.  When this
572  * function is called we haven't given up yet on sending the record, but things
573  * are not looking good.  The first thing we want to do is try to write the
574  * record via printk and then see if we want to try and hold on to the record
575  * and queue it, if we have room.  If we want to hold on to the record, but we
576  * don't have room, record a record lost message.
577  */
578 static void kauditd_hold_skb(struct sk_buff *skb)
579 {
580 	/* at this point it is uncertain if we will ever send this to auditd so
581 	 * try to send the message via printk before we go any further */
582 	kauditd_printk_skb(skb);
583 
584 	/* can we just silently drop the message? */
585 	if (!audit_default) {
586 		kfree_skb(skb);
587 		return;
588 	}
589 
590 	/* if we have room, queue the message */
591 	if (!audit_backlog_limit ||
592 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 		skb_queue_tail(&audit_hold_queue, skb);
594 		return;
595 	}
596 
597 	/* we have no other options - drop the message */
598 	audit_log_lost("kauditd hold queue overflow");
599 	kfree_skb(skb);
600 }
601 
602 /**
603  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
604  * @skb: audit record
605  *
606  * Description:
607  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
608  * but for some reason we are having problems sending it audit records so
609  * queue the given record and attempt to resend.
610  */
611 static void kauditd_retry_skb(struct sk_buff *skb)
612 {
613 	/* NOTE: because records should only live in the retry queue for a
614 	 * short period of time, before either being sent or moved to the hold
615 	 * queue, we don't currently enforce a limit on this queue */
616 	skb_queue_tail(&audit_retry_queue, skb);
617 }
618 
619 /**
620  * auditd_reset - Disconnect the auditd connection
621  * @ac: auditd connection state
622  *
623  * Description:
624  * Break the auditd/kauditd connection and move all the queued records into the
625  * hold queue in case auditd reconnects.  It is important to note that the @ac
626  * pointer should never be dereferenced inside this function as it may be NULL
627  * or invalid, you can only compare the memory address!  If @ac is NULL then
628  * the connection will always be reset.
629  */
630 static void auditd_reset(const struct auditd_connection *ac)
631 {
632 	unsigned long flags;
633 	struct sk_buff *skb;
634 	struct auditd_connection *ac_old;
635 
636 	/* if it isn't already broken, break the connection */
637 	spin_lock_irqsave(&auditd_conn_lock, flags);
638 	ac_old = rcu_dereference_protected(auditd_conn,
639 					   lockdep_is_held(&auditd_conn_lock));
640 	if (ac && ac != ac_old) {
641 		/* someone already registered a new auditd connection */
642 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
643 		return;
644 	}
645 	rcu_assign_pointer(auditd_conn, NULL);
646 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
647 
648 	if (ac_old)
649 		call_rcu(&ac_old->rcu, auditd_conn_free);
650 
651 	/* flush the retry queue to the hold queue, but don't touch the main
652 	 * queue since we need to process that normally for multicast */
653 	while ((skb = skb_dequeue(&audit_retry_queue)))
654 		kauditd_hold_skb(skb);
655 }
656 
657 /**
658  * auditd_send_unicast_skb - Send a record via unicast to auditd
659  * @skb: audit record
660  *
661  * Description:
662  * Send a skb to the audit daemon, returns positive/zero values on success and
663  * negative values on failure; in all cases the skb will be consumed by this
664  * function.  If the send results in -ECONNREFUSED the connection with auditd
665  * will be reset.  This function may sleep so callers should not hold any locks
666  * where this would cause a problem.
667  */
668 static int auditd_send_unicast_skb(struct sk_buff *skb)
669 {
670 	int rc;
671 	u32 portid;
672 	struct net *net;
673 	struct sock *sk;
674 	struct auditd_connection *ac;
675 
676 	/* NOTE: we can't call netlink_unicast while in the RCU section so
677 	 *       take a reference to the network namespace and grab local
678 	 *       copies of the namespace, the sock, and the portid; the
679 	 *       namespace and sock aren't going to go away while we hold a
680 	 *       reference and if the portid does become invalid after the RCU
681 	 *       section netlink_unicast() should safely return an error */
682 
683 	rcu_read_lock();
684 	ac = rcu_dereference(auditd_conn);
685 	if (!ac) {
686 		rcu_read_unlock();
687 		kfree_skb(skb);
688 		rc = -ECONNREFUSED;
689 		goto err;
690 	}
691 	net = get_net(ac->net);
692 	sk = audit_get_sk(net);
693 	portid = ac->portid;
694 	rcu_read_unlock();
695 
696 	rc = netlink_unicast(sk, skb, portid, 0);
697 	put_net(net);
698 	if (rc < 0)
699 		goto err;
700 
701 	return rc;
702 
703 err:
704 	if (ac && rc == -ECONNREFUSED)
705 		auditd_reset(ac);
706 	return rc;
707 }
708 
709 /**
710  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
711  * @sk: the sending sock
712  * @portid: the netlink destination
713  * @queue: the skb queue to process
714  * @retry_limit: limit on number of netlink unicast failures
715  * @skb_hook: per-skb hook for additional processing
716  * @err_hook: hook called if the skb fails the netlink unicast send
717  *
718  * Description:
719  * Run through the given queue and attempt to send the audit records to auditd,
720  * returns zero on success, negative values on failure.  It is up to the caller
721  * to ensure that the @sk is valid for the duration of this function.
722  *
723  */
724 static int kauditd_send_queue(struct sock *sk, u32 portid,
725 			      struct sk_buff_head *queue,
726 			      unsigned int retry_limit,
727 			      void (*skb_hook)(struct sk_buff *skb),
728 			      void (*err_hook)(struct sk_buff *skb))
729 {
730 	int rc = 0;
731 	struct sk_buff *skb;
732 	static unsigned int failed = 0;
733 
734 	/* NOTE: kauditd_thread takes care of all our locking, we just use
735 	 *       the netlink info passed to us (e.g. sk and portid) */
736 
737 	while ((skb = skb_dequeue(queue))) {
738 		/* call the skb_hook for each skb we touch */
739 		if (skb_hook)
740 			(*skb_hook)(skb);
741 
742 		/* can we send to anyone via unicast? */
743 		if (!sk) {
744 			if (err_hook)
745 				(*err_hook)(skb);
746 			continue;
747 		}
748 
749 		/* grab an extra skb reference in case of error */
750 		skb_get(skb);
751 		rc = netlink_unicast(sk, skb, portid, 0);
752 		if (rc < 0) {
753 			/* fatal failure for our queue flush attempt? */
754 			if (++failed >= retry_limit ||
755 			    rc == -ECONNREFUSED || rc == -EPERM) {
756 				/* yes - error processing for the queue */
757 				sk = NULL;
758 				if (err_hook)
759 					(*err_hook)(skb);
760 				if (!skb_hook)
761 					goto out;
762 				/* keep processing with the skb_hook */
763 				continue;
764 			} else
765 				/* no - requeue to preserve ordering */
766 				skb_queue_head(queue, skb);
767 		} else {
768 			/* it worked - drop the extra reference and continue */
769 			consume_skb(skb);
770 			failed = 0;
771 		}
772 	}
773 
774 out:
775 	return (rc >= 0 ? 0 : rc);
776 }
777 
778 /*
779  * kauditd_send_multicast_skb - Send a record to any multicast listeners
780  * @skb: audit record
781  *
782  * Description:
783  * Write a multicast message to anyone listening in the initial network
784  * namespace.  This function doesn't consume an skb as might be expected since
785  * it has to copy it anyways.
786  */
787 static void kauditd_send_multicast_skb(struct sk_buff *skb)
788 {
789 	struct sk_buff *copy;
790 	struct sock *sock = audit_get_sk(&init_net);
791 	struct nlmsghdr *nlh;
792 
793 	/* NOTE: we are not taking an additional reference for init_net since
794 	 *       we don't have to worry about it going away */
795 
796 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
797 		return;
798 
799 	/*
800 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
801 	 * using skb_get() is necessary because non-standard mods are made to
802 	 * the skb by the original kaudit unicast socket send routine.  The
803 	 * existing auditd daemon assumes this breakage.  Fixing this would
804 	 * require co-ordinating a change in the established protocol between
805 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
806 	 * no reason for new multicast clients to continue with this
807 	 * non-compliance.
808 	 */
809 	copy = skb_copy(skb, GFP_KERNEL);
810 	if (!copy)
811 		return;
812 	nlh = nlmsg_hdr(copy);
813 	nlh->nlmsg_len = skb->len;
814 
815 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
816 }
817 
818 /**
819  * kauditd_thread - Worker thread to send audit records to userspace
820  * @dummy: unused
821  */
822 static int kauditd_thread(void *dummy)
823 {
824 	int rc;
825 	u32 portid = 0;
826 	struct net *net = NULL;
827 	struct sock *sk = NULL;
828 	struct auditd_connection *ac;
829 
830 #define UNICAST_RETRIES 5
831 
832 	set_freezable();
833 	while (!kthread_should_stop()) {
834 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
835 		rcu_read_lock();
836 		ac = rcu_dereference(auditd_conn);
837 		if (!ac) {
838 			rcu_read_unlock();
839 			goto main_queue;
840 		}
841 		net = get_net(ac->net);
842 		sk = audit_get_sk(net);
843 		portid = ac->portid;
844 		rcu_read_unlock();
845 
846 		/* attempt to flush the hold queue */
847 		rc = kauditd_send_queue(sk, portid,
848 					&audit_hold_queue, UNICAST_RETRIES,
849 					NULL, kauditd_rehold_skb);
850 		if (ac && rc < 0) {
851 			sk = NULL;
852 			auditd_reset(ac);
853 			goto main_queue;
854 		}
855 
856 		/* attempt to flush the retry queue */
857 		rc = kauditd_send_queue(sk, portid,
858 					&audit_retry_queue, UNICAST_RETRIES,
859 					NULL, kauditd_hold_skb);
860 		if (ac && rc < 0) {
861 			sk = NULL;
862 			auditd_reset(ac);
863 			goto main_queue;
864 		}
865 
866 main_queue:
867 		/* process the main queue - do the multicast send and attempt
868 		 * unicast, dump failed record sends to the retry queue; if
869 		 * sk == NULL due to previous failures we will just do the
870 		 * multicast send and move the record to the hold queue */
871 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
872 					kauditd_send_multicast_skb,
873 					(sk ?
874 					 kauditd_retry_skb : kauditd_hold_skb));
875 		if (ac && rc < 0)
876 			auditd_reset(ac);
877 		sk = NULL;
878 
879 		/* drop our netns reference, no auditd sends past this line */
880 		if (net) {
881 			put_net(net);
882 			net = NULL;
883 		}
884 
885 		/* we have processed all the queues so wake everyone */
886 		wake_up(&audit_backlog_wait);
887 
888 		/* NOTE: we want to wake up if there is anything on the queue,
889 		 *       regardless of if an auditd is connected, as we need to
890 		 *       do the multicast send and rotate records from the
891 		 *       main queue to the retry/hold queues */
892 		wait_event_freezable(kauditd_wait,
893 				     (skb_queue_len(&audit_queue) ? 1 : 0));
894 	}
895 
896 	return 0;
897 }
898 
899 int audit_send_list(void *_dest)
900 {
901 	struct audit_netlink_list *dest = _dest;
902 	struct sk_buff *skb;
903 	struct sock *sk = audit_get_sk(dest->net);
904 
905 	/* wait for parent to finish and send an ACK */
906 	audit_ctl_lock();
907 	audit_ctl_unlock();
908 
909 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
910 		netlink_unicast(sk, skb, dest->portid, 0);
911 
912 	put_net(dest->net);
913 	kfree(dest);
914 
915 	return 0;
916 }
917 
918 struct sk_buff *audit_make_reply(int seq, int type, int done,
919 				 int multi, const void *payload, int size)
920 {
921 	struct sk_buff	*skb;
922 	struct nlmsghdr	*nlh;
923 	void		*data;
924 	int		flags = multi ? NLM_F_MULTI : 0;
925 	int		t     = done  ? NLMSG_DONE  : type;
926 
927 	skb = nlmsg_new(size, GFP_KERNEL);
928 	if (!skb)
929 		return NULL;
930 
931 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
932 	if (!nlh)
933 		goto out_kfree_skb;
934 	data = nlmsg_data(nlh);
935 	memcpy(data, payload, size);
936 	return skb;
937 
938 out_kfree_skb:
939 	kfree_skb(skb);
940 	return NULL;
941 }
942 
943 static int audit_send_reply_thread(void *arg)
944 {
945 	struct audit_reply *reply = (struct audit_reply *)arg;
946 	struct sock *sk = audit_get_sk(reply->net);
947 
948 	audit_ctl_lock();
949 	audit_ctl_unlock();
950 
951 	/* Ignore failure. It'll only happen if the sender goes away,
952 	   because our timeout is set to infinite. */
953 	netlink_unicast(sk, reply->skb, reply->portid, 0);
954 	put_net(reply->net);
955 	kfree(reply);
956 	return 0;
957 }
958 
959 /**
960  * audit_send_reply - send an audit reply message via netlink
961  * @request_skb: skb of request we are replying to (used to target the reply)
962  * @seq: sequence number
963  * @type: audit message type
964  * @done: done (last) flag
965  * @multi: multi-part message flag
966  * @payload: payload data
967  * @size: payload size
968  *
969  * Allocates an skb, builds the netlink message, and sends it to the port id.
970  * No failure notifications.
971  */
972 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
973 			     int multi, const void *payload, int size)
974 {
975 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
976 	struct sk_buff *skb;
977 	struct task_struct *tsk;
978 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
979 					    GFP_KERNEL);
980 
981 	if (!reply)
982 		return;
983 
984 	skb = audit_make_reply(seq, type, done, multi, payload, size);
985 	if (!skb)
986 		goto out;
987 
988 	reply->net = get_net(net);
989 	reply->portid = NETLINK_CB(request_skb).portid;
990 	reply->skb = skb;
991 
992 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
993 	if (!IS_ERR(tsk))
994 		return;
995 	kfree_skb(skb);
996 out:
997 	kfree(reply);
998 }
999 
1000 /*
1001  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1002  * control messages.
1003  */
1004 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1005 {
1006 	int err = 0;
1007 
1008 	/* Only support initial user namespace for now. */
1009 	/*
1010 	 * We return ECONNREFUSED because it tricks userspace into thinking
1011 	 * that audit was not configured into the kernel.  Lots of users
1012 	 * configure their PAM stack (because that's what the distro does)
1013 	 * to reject login if unable to send messages to audit.  If we return
1014 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1015 	 * configured in and will let login proceed.  If we return EPERM
1016 	 * userspace will reject all logins.  This should be removed when we
1017 	 * support non init namespaces!!
1018 	 */
1019 	if (current_user_ns() != &init_user_ns)
1020 		return -ECONNREFUSED;
1021 
1022 	switch (msg_type) {
1023 	case AUDIT_LIST:
1024 	case AUDIT_ADD:
1025 	case AUDIT_DEL:
1026 		return -EOPNOTSUPP;
1027 	case AUDIT_GET:
1028 	case AUDIT_SET:
1029 	case AUDIT_GET_FEATURE:
1030 	case AUDIT_SET_FEATURE:
1031 	case AUDIT_LIST_RULES:
1032 	case AUDIT_ADD_RULE:
1033 	case AUDIT_DEL_RULE:
1034 	case AUDIT_SIGNAL_INFO:
1035 	case AUDIT_TTY_GET:
1036 	case AUDIT_TTY_SET:
1037 	case AUDIT_TRIM:
1038 	case AUDIT_MAKE_EQUIV:
1039 		/* Only support auditd and auditctl in initial pid namespace
1040 		 * for now. */
1041 		if (task_active_pid_ns(current) != &init_pid_ns)
1042 			return -EPERM;
1043 
1044 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1045 			err = -EPERM;
1046 		break;
1047 	case AUDIT_USER:
1048 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1049 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1050 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1051 			err = -EPERM;
1052 		break;
1053 	default:  /* bad msg */
1054 		err = -EINVAL;
1055 	}
1056 
1057 	return err;
1058 }
1059 
1060 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1061 {
1062 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1063 	pid_t pid = task_tgid_nr(current);
1064 
1065 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1066 		*ab = NULL;
1067 		return;
1068 	}
1069 
1070 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1071 	if (unlikely(!*ab))
1072 		return;
1073 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1074 	audit_log_session_info(*ab);
1075 	audit_log_task_context(*ab);
1076 }
1077 
1078 int is_audit_feature_set(int i)
1079 {
1080 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1081 }
1082 
1083 
1084 static int audit_get_feature(struct sk_buff *skb)
1085 {
1086 	u32 seq;
1087 
1088 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1089 
1090 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1091 
1092 	return 0;
1093 }
1094 
1095 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1096 				     u32 old_lock, u32 new_lock, int res)
1097 {
1098 	struct audit_buffer *ab;
1099 
1100 	if (audit_enabled == AUDIT_OFF)
1101 		return;
1102 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1103 	if (!ab)
1104 		return;
1105 	audit_log_task_info(ab, current);
1106 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1107 			 audit_feature_names[which], !!old_feature, !!new_feature,
1108 			 !!old_lock, !!new_lock, res);
1109 	audit_log_end(ab);
1110 }
1111 
1112 static int audit_set_feature(struct sk_buff *skb)
1113 {
1114 	struct audit_features *uaf;
1115 	int i;
1116 
1117 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1118 	uaf = nlmsg_data(nlmsg_hdr(skb));
1119 
1120 	/* if there is ever a version 2 we should handle that here */
1121 
1122 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1123 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1124 		u32 old_feature, new_feature, old_lock, new_lock;
1125 
1126 		/* if we are not changing this feature, move along */
1127 		if (!(feature & uaf->mask))
1128 			continue;
1129 
1130 		old_feature = af.features & feature;
1131 		new_feature = uaf->features & feature;
1132 		new_lock = (uaf->lock | af.lock) & feature;
1133 		old_lock = af.lock & feature;
1134 
1135 		/* are we changing a locked feature? */
1136 		if (old_lock && (new_feature != old_feature)) {
1137 			audit_log_feature_change(i, old_feature, new_feature,
1138 						 old_lock, new_lock, 0);
1139 			return -EPERM;
1140 		}
1141 	}
1142 	/* nothing invalid, do the changes */
1143 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 		u32 old_feature, new_feature, old_lock, new_lock;
1146 
1147 		/* if we are not changing this feature, move along */
1148 		if (!(feature & uaf->mask))
1149 			continue;
1150 
1151 		old_feature = af.features & feature;
1152 		new_feature = uaf->features & feature;
1153 		old_lock = af.lock & feature;
1154 		new_lock = (uaf->lock | af.lock) & feature;
1155 
1156 		if (new_feature != old_feature)
1157 			audit_log_feature_change(i, old_feature, new_feature,
1158 						 old_lock, new_lock, 1);
1159 
1160 		if (new_feature)
1161 			af.features |= feature;
1162 		else
1163 			af.features &= ~feature;
1164 		af.lock |= new_lock;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static int audit_replace(struct pid *pid)
1171 {
1172 	pid_t pvnr;
1173 	struct sk_buff *skb;
1174 
1175 	pvnr = pid_vnr(pid);
1176 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1177 	if (!skb)
1178 		return -ENOMEM;
1179 	return auditd_send_unicast_skb(skb);
1180 }
1181 
1182 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1183 {
1184 	u32			seq;
1185 	void			*data;
1186 	int			err;
1187 	struct audit_buffer	*ab;
1188 	u16			msg_type = nlh->nlmsg_type;
1189 	struct audit_sig_info   *sig_data;
1190 	char			*ctx = NULL;
1191 	u32			len;
1192 
1193 	err = audit_netlink_ok(skb, msg_type);
1194 	if (err)
1195 		return err;
1196 
1197 	seq  = nlh->nlmsg_seq;
1198 	data = nlmsg_data(nlh);
1199 
1200 	switch (msg_type) {
1201 	case AUDIT_GET: {
1202 		struct audit_status	s;
1203 		memset(&s, 0, sizeof(s));
1204 		s.enabled		= audit_enabled;
1205 		s.failure		= audit_failure;
1206 		/* NOTE: use pid_vnr() so the PID is relative to the current
1207 		 *       namespace */
1208 		s.pid			= auditd_pid_vnr();
1209 		s.rate_limit		= audit_rate_limit;
1210 		s.backlog_limit		= audit_backlog_limit;
1211 		s.lost			= atomic_read(&audit_lost);
1212 		s.backlog		= skb_queue_len(&audit_queue);
1213 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1214 		s.backlog_wait_time	= audit_backlog_wait_time;
1215 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1216 		break;
1217 	}
1218 	case AUDIT_SET: {
1219 		struct audit_status	s;
1220 		memset(&s, 0, sizeof(s));
1221 		/* guard against past and future API changes */
1222 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1223 		if (s.mask & AUDIT_STATUS_ENABLED) {
1224 			err = audit_set_enabled(s.enabled);
1225 			if (err < 0)
1226 				return err;
1227 		}
1228 		if (s.mask & AUDIT_STATUS_FAILURE) {
1229 			err = audit_set_failure(s.failure);
1230 			if (err < 0)
1231 				return err;
1232 		}
1233 		if (s.mask & AUDIT_STATUS_PID) {
1234 			/* NOTE: we are using the vnr PID functions below
1235 			 *       because the s.pid value is relative to the
1236 			 *       namespace of the caller; at present this
1237 			 *       doesn't matter much since you can really only
1238 			 *       run auditd from the initial pid namespace, but
1239 			 *       something to keep in mind if this changes */
1240 			pid_t new_pid = s.pid;
1241 			pid_t auditd_pid;
1242 			struct pid *req_pid = task_tgid(current);
1243 
1244 			/* Sanity check - PID values must match. Setting
1245 			 * pid to 0 is how auditd ends auditing. */
1246 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1247 				return -EINVAL;
1248 
1249 			/* test the auditd connection */
1250 			audit_replace(req_pid);
1251 
1252 			auditd_pid = auditd_pid_vnr();
1253 			if (auditd_pid) {
1254 				/* replacing a healthy auditd is not allowed */
1255 				if (new_pid) {
1256 					audit_log_config_change("audit_pid",
1257 							new_pid, auditd_pid, 0);
1258 					return -EEXIST;
1259 				}
1260 				/* only current auditd can unregister itself */
1261 				if (pid_vnr(req_pid) != auditd_pid) {
1262 					audit_log_config_change("audit_pid",
1263 							new_pid, auditd_pid, 0);
1264 					return -EACCES;
1265 				}
1266 			}
1267 
1268 			if (new_pid) {
1269 				/* register a new auditd connection */
1270 				err = auditd_set(req_pid,
1271 						 NETLINK_CB(skb).portid,
1272 						 sock_net(NETLINK_CB(skb).sk));
1273 				if (audit_enabled != AUDIT_OFF)
1274 					audit_log_config_change("audit_pid",
1275 								new_pid,
1276 								auditd_pid,
1277 								err ? 0 : 1);
1278 				if (err)
1279 					return err;
1280 
1281 				/* try to process any backlog */
1282 				wake_up_interruptible(&kauditd_wait);
1283 			} else {
1284 				if (audit_enabled != AUDIT_OFF)
1285 					audit_log_config_change("audit_pid",
1286 								new_pid,
1287 								auditd_pid, 1);
1288 
1289 				/* unregister the auditd connection */
1290 				auditd_reset(NULL);
1291 			}
1292 		}
1293 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1294 			err = audit_set_rate_limit(s.rate_limit);
1295 			if (err < 0)
1296 				return err;
1297 		}
1298 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1299 			err = audit_set_backlog_limit(s.backlog_limit);
1300 			if (err < 0)
1301 				return err;
1302 		}
1303 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1304 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1305 				return -EINVAL;
1306 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1307 				return -EINVAL;
1308 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1309 			if (err < 0)
1310 				return err;
1311 		}
1312 		if (s.mask == AUDIT_STATUS_LOST) {
1313 			u32 lost = atomic_xchg(&audit_lost, 0);
1314 
1315 			audit_log_config_change("lost", 0, lost, 1);
1316 			return lost;
1317 		}
1318 		break;
1319 	}
1320 	case AUDIT_GET_FEATURE:
1321 		err = audit_get_feature(skb);
1322 		if (err)
1323 			return err;
1324 		break;
1325 	case AUDIT_SET_FEATURE:
1326 		err = audit_set_feature(skb);
1327 		if (err)
1328 			return err;
1329 		break;
1330 	case AUDIT_USER:
1331 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1332 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1333 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1334 			return 0;
1335 
1336 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1337 		if (err == 1) { /* match or error */
1338 			err = 0;
1339 			if (msg_type == AUDIT_USER_TTY) {
1340 				err = tty_audit_push();
1341 				if (err)
1342 					break;
1343 			}
1344 			audit_log_common_recv_msg(&ab, msg_type);
1345 			if (msg_type != AUDIT_USER_TTY)
1346 				audit_log_format(ab, " msg='%.*s'",
1347 						 AUDIT_MESSAGE_TEXT_MAX,
1348 						 (char *)data);
1349 			else {
1350 				int size;
1351 
1352 				audit_log_format(ab, " data=");
1353 				size = nlmsg_len(nlh);
1354 				if (size > 0 &&
1355 				    ((unsigned char *)data)[size - 1] == '\0')
1356 					size--;
1357 				audit_log_n_untrustedstring(ab, data, size);
1358 			}
1359 			audit_log_end(ab);
1360 		}
1361 		break;
1362 	case AUDIT_ADD_RULE:
1363 	case AUDIT_DEL_RULE:
1364 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1365 			return -EINVAL;
1366 		if (audit_enabled == AUDIT_LOCKED) {
1367 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1368 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1369 			audit_log_end(ab);
1370 			return -EPERM;
1371 		}
1372 		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1373 		break;
1374 	case AUDIT_LIST_RULES:
1375 		err = audit_list_rules_send(skb, seq);
1376 		break;
1377 	case AUDIT_TRIM:
1378 		audit_trim_trees();
1379 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1380 		audit_log_format(ab, " op=trim res=1");
1381 		audit_log_end(ab);
1382 		break;
1383 	case AUDIT_MAKE_EQUIV: {
1384 		void *bufp = data;
1385 		u32 sizes[2];
1386 		size_t msglen = nlmsg_len(nlh);
1387 		char *old, *new;
1388 
1389 		err = -EINVAL;
1390 		if (msglen < 2 * sizeof(u32))
1391 			break;
1392 		memcpy(sizes, bufp, 2 * sizeof(u32));
1393 		bufp += 2 * sizeof(u32);
1394 		msglen -= 2 * sizeof(u32);
1395 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1396 		if (IS_ERR(old)) {
1397 			err = PTR_ERR(old);
1398 			break;
1399 		}
1400 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1401 		if (IS_ERR(new)) {
1402 			err = PTR_ERR(new);
1403 			kfree(old);
1404 			break;
1405 		}
1406 		/* OK, here comes... */
1407 		err = audit_tag_tree(old, new);
1408 
1409 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1410 
1411 		audit_log_format(ab, " op=make_equiv old=");
1412 		audit_log_untrustedstring(ab, old);
1413 		audit_log_format(ab, " new=");
1414 		audit_log_untrustedstring(ab, new);
1415 		audit_log_format(ab, " res=%d", !err);
1416 		audit_log_end(ab);
1417 		kfree(old);
1418 		kfree(new);
1419 		break;
1420 	}
1421 	case AUDIT_SIGNAL_INFO:
1422 		len = 0;
1423 		if (audit_sig_sid) {
1424 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1425 			if (err)
1426 				return err;
1427 		}
1428 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1429 		if (!sig_data) {
1430 			if (audit_sig_sid)
1431 				security_release_secctx(ctx, len);
1432 			return -ENOMEM;
1433 		}
1434 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1435 		sig_data->pid = audit_sig_pid;
1436 		if (audit_sig_sid) {
1437 			memcpy(sig_data->ctx, ctx, len);
1438 			security_release_secctx(ctx, len);
1439 		}
1440 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1441 				 sig_data, sizeof(*sig_data) + len);
1442 		kfree(sig_data);
1443 		break;
1444 	case AUDIT_TTY_GET: {
1445 		struct audit_tty_status s;
1446 		unsigned int t;
1447 
1448 		t = READ_ONCE(current->signal->audit_tty);
1449 		s.enabled = t & AUDIT_TTY_ENABLE;
1450 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1451 
1452 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1453 		break;
1454 	}
1455 	case AUDIT_TTY_SET: {
1456 		struct audit_tty_status s, old;
1457 		struct audit_buffer	*ab;
1458 		unsigned int t;
1459 
1460 		memset(&s, 0, sizeof(s));
1461 		/* guard against past and future API changes */
1462 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1463 		/* check if new data is valid */
1464 		if ((s.enabled != 0 && s.enabled != 1) ||
1465 		    (s.log_passwd != 0 && s.log_passwd != 1))
1466 			err = -EINVAL;
1467 
1468 		if (err)
1469 			t = READ_ONCE(current->signal->audit_tty);
1470 		else {
1471 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1472 			t = xchg(&current->signal->audit_tty, t);
1473 		}
1474 		old.enabled = t & AUDIT_TTY_ENABLE;
1475 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1476 
1477 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1478 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1479 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1480 				 old.enabled, s.enabled, old.log_passwd,
1481 				 s.log_passwd, !err);
1482 		audit_log_end(ab);
1483 		break;
1484 	}
1485 	default:
1486 		err = -EINVAL;
1487 		break;
1488 	}
1489 
1490 	return err < 0 ? err : 0;
1491 }
1492 
1493 /**
1494  * audit_receive - receive messages from a netlink control socket
1495  * @skb: the message buffer
1496  *
1497  * Parse the provided skb and deal with any messages that may be present,
1498  * malformed skbs are discarded.
1499  */
1500 static void audit_receive(struct sk_buff  *skb)
1501 {
1502 	struct nlmsghdr *nlh;
1503 	/*
1504 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1505 	 * if the nlmsg_len was not aligned
1506 	 */
1507 	int len;
1508 	int err;
1509 
1510 	nlh = nlmsg_hdr(skb);
1511 	len = skb->len;
1512 
1513 	audit_ctl_lock();
1514 	while (nlmsg_ok(nlh, len)) {
1515 		err = audit_receive_msg(skb, nlh);
1516 		/* if err or if this message says it wants a response */
1517 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1518 			netlink_ack(skb, nlh, err, NULL);
1519 
1520 		nlh = nlmsg_next(nlh, &len);
1521 	}
1522 	audit_ctl_unlock();
1523 }
1524 
1525 /* Run custom bind function on netlink socket group connect or bind requests. */
1526 static int audit_bind(struct net *net, int group)
1527 {
1528 	if (!capable(CAP_AUDIT_READ))
1529 		return -EPERM;
1530 
1531 	return 0;
1532 }
1533 
1534 static int __net_init audit_net_init(struct net *net)
1535 {
1536 	struct netlink_kernel_cfg cfg = {
1537 		.input	= audit_receive,
1538 		.bind	= audit_bind,
1539 		.flags	= NL_CFG_F_NONROOT_RECV,
1540 		.groups	= AUDIT_NLGRP_MAX,
1541 	};
1542 
1543 	struct audit_net *aunet = net_generic(net, audit_net_id);
1544 
1545 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1546 	if (aunet->sk == NULL) {
1547 		audit_panic("cannot initialize netlink socket in namespace");
1548 		return -ENOMEM;
1549 	}
1550 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1551 
1552 	return 0;
1553 }
1554 
1555 static void __net_exit audit_net_exit(struct net *net)
1556 {
1557 	struct audit_net *aunet = net_generic(net, audit_net_id);
1558 
1559 	/* NOTE: you would think that we would want to check the auditd
1560 	 * connection and potentially reset it here if it lives in this
1561 	 * namespace, but since the auditd connection tracking struct holds a
1562 	 * reference to this namespace (see auditd_set()) we are only ever
1563 	 * going to get here after that connection has been released */
1564 
1565 	netlink_kernel_release(aunet->sk);
1566 }
1567 
1568 static struct pernet_operations audit_net_ops __net_initdata = {
1569 	.init = audit_net_init,
1570 	.exit = audit_net_exit,
1571 	.id = &audit_net_id,
1572 	.size = sizeof(struct audit_net),
1573 };
1574 
1575 /* Initialize audit support at boot time. */
1576 static int __init audit_init(void)
1577 {
1578 	int i;
1579 
1580 	if (audit_initialized == AUDIT_DISABLED)
1581 		return 0;
1582 
1583 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1584 					       sizeof(struct audit_buffer),
1585 					       0, SLAB_PANIC, NULL);
1586 
1587 	skb_queue_head_init(&audit_queue);
1588 	skb_queue_head_init(&audit_retry_queue);
1589 	skb_queue_head_init(&audit_hold_queue);
1590 
1591 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1592 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1593 
1594 	mutex_init(&audit_cmd_mutex.lock);
1595 	audit_cmd_mutex.owner = NULL;
1596 
1597 	pr_info("initializing netlink subsys (%s)\n",
1598 		audit_default ? "enabled" : "disabled");
1599 	register_pernet_subsys(&audit_net_ops);
1600 
1601 	audit_initialized = AUDIT_INITIALIZED;
1602 
1603 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1604 	if (IS_ERR(kauditd_task)) {
1605 		int err = PTR_ERR(kauditd_task);
1606 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1607 	}
1608 
1609 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1610 		"state=initialized audit_enabled=%u res=1",
1611 		 audit_enabled);
1612 
1613 	return 0;
1614 }
1615 postcore_initcall(audit_init);
1616 
1617 /*
1618  * Process kernel command-line parameter at boot time.
1619  * audit={0|off} or audit={1|on}.
1620  */
1621 static int __init audit_enable(char *str)
1622 {
1623 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1624 		audit_default = AUDIT_OFF;
1625 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1626 		audit_default = AUDIT_ON;
1627 	else {
1628 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1629 		audit_default = AUDIT_ON;
1630 	}
1631 
1632 	if (audit_default == AUDIT_OFF)
1633 		audit_initialized = AUDIT_DISABLED;
1634 	if (audit_set_enabled(audit_default))
1635 		pr_err("audit: error setting audit state (%d)\n",
1636 		       audit_default);
1637 
1638 	pr_info("%s\n", audit_default ?
1639 		"enabled (after initialization)" : "disabled (until reboot)");
1640 
1641 	return 1;
1642 }
1643 __setup("audit=", audit_enable);
1644 
1645 /* Process kernel command-line parameter at boot time.
1646  * audit_backlog_limit=<n> */
1647 static int __init audit_backlog_limit_set(char *str)
1648 {
1649 	u32 audit_backlog_limit_arg;
1650 
1651 	pr_info("audit_backlog_limit: ");
1652 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1653 		pr_cont("using default of %u, unable to parse %s\n",
1654 			audit_backlog_limit, str);
1655 		return 1;
1656 	}
1657 
1658 	audit_backlog_limit = audit_backlog_limit_arg;
1659 	pr_cont("%d\n", audit_backlog_limit);
1660 
1661 	return 1;
1662 }
1663 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1664 
1665 static void audit_buffer_free(struct audit_buffer *ab)
1666 {
1667 	if (!ab)
1668 		return;
1669 
1670 	kfree_skb(ab->skb);
1671 	kmem_cache_free(audit_buffer_cache, ab);
1672 }
1673 
1674 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1675 					       gfp_t gfp_mask, int type)
1676 {
1677 	struct audit_buffer *ab;
1678 
1679 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1680 	if (!ab)
1681 		return NULL;
1682 
1683 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1684 	if (!ab->skb)
1685 		goto err;
1686 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1687 		goto err;
1688 
1689 	ab->ctx = ctx;
1690 	ab->gfp_mask = gfp_mask;
1691 
1692 	return ab;
1693 
1694 err:
1695 	audit_buffer_free(ab);
1696 	return NULL;
1697 }
1698 
1699 /**
1700  * audit_serial - compute a serial number for the audit record
1701  *
1702  * Compute a serial number for the audit record.  Audit records are
1703  * written to user-space as soon as they are generated, so a complete
1704  * audit record may be written in several pieces.  The timestamp of the
1705  * record and this serial number are used by the user-space tools to
1706  * determine which pieces belong to the same audit record.  The
1707  * (timestamp,serial) tuple is unique for each syscall and is live from
1708  * syscall entry to syscall exit.
1709  *
1710  * NOTE: Another possibility is to store the formatted records off the
1711  * audit context (for those records that have a context), and emit them
1712  * all at syscall exit.  However, this could delay the reporting of
1713  * significant errors until syscall exit (or never, if the system
1714  * halts).
1715  */
1716 unsigned int audit_serial(void)
1717 {
1718 	static atomic_t serial = ATOMIC_INIT(0);
1719 
1720 	return atomic_add_return(1, &serial);
1721 }
1722 
1723 static inline void audit_get_stamp(struct audit_context *ctx,
1724 				   struct timespec64 *t, unsigned int *serial)
1725 {
1726 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1727 		*t = current_kernel_time64();
1728 		*serial = audit_serial();
1729 	}
1730 }
1731 
1732 /**
1733  * audit_log_start - obtain an audit buffer
1734  * @ctx: audit_context (may be NULL)
1735  * @gfp_mask: type of allocation
1736  * @type: audit message type
1737  *
1738  * Returns audit_buffer pointer on success or NULL on error.
1739  *
1740  * Obtain an audit buffer.  This routine does locking to obtain the
1741  * audit buffer, but then no locking is required for calls to
1742  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1743  * syscall, then the syscall is marked as auditable and an audit record
1744  * will be written at syscall exit.  If there is no associated task, then
1745  * task context (ctx) should be NULL.
1746  */
1747 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1748 				     int type)
1749 {
1750 	struct audit_buffer *ab;
1751 	struct timespec64 t;
1752 	unsigned int uninitialized_var(serial);
1753 
1754 	if (audit_initialized != AUDIT_INITIALIZED)
1755 		return NULL;
1756 
1757 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1758 		return NULL;
1759 
1760 	/* NOTE: don't ever fail/sleep on these two conditions:
1761 	 * 1. auditd generated record - since we need auditd to drain the
1762 	 *    queue; also, when we are checking for auditd, compare PIDs using
1763 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1764 	 *    using a PID anchored in the caller's namespace
1765 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1766 	 *    while holding the mutex */
1767 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1768 		long stime = audit_backlog_wait_time;
1769 
1770 		while (audit_backlog_limit &&
1771 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1772 			/* wake kauditd to try and flush the queue */
1773 			wake_up_interruptible(&kauditd_wait);
1774 
1775 			/* sleep if we are allowed and we haven't exhausted our
1776 			 * backlog wait limit */
1777 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1778 				DECLARE_WAITQUEUE(wait, current);
1779 
1780 				add_wait_queue_exclusive(&audit_backlog_wait,
1781 							 &wait);
1782 				set_current_state(TASK_UNINTERRUPTIBLE);
1783 				stime = schedule_timeout(stime);
1784 				remove_wait_queue(&audit_backlog_wait, &wait);
1785 			} else {
1786 				if (audit_rate_check() && printk_ratelimit())
1787 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1788 						skb_queue_len(&audit_queue),
1789 						audit_backlog_limit);
1790 				audit_log_lost("backlog limit exceeded");
1791 				return NULL;
1792 			}
1793 		}
1794 	}
1795 
1796 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1797 	if (!ab) {
1798 		audit_log_lost("out of memory in audit_log_start");
1799 		return NULL;
1800 	}
1801 
1802 	audit_get_stamp(ab->ctx, &t, &serial);
1803 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1804 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1805 
1806 	return ab;
1807 }
1808 
1809 /**
1810  * audit_expand - expand skb in the audit buffer
1811  * @ab: audit_buffer
1812  * @extra: space to add at tail of the skb
1813  *
1814  * Returns 0 (no space) on failed expansion, or available space if
1815  * successful.
1816  */
1817 static inline int audit_expand(struct audit_buffer *ab, int extra)
1818 {
1819 	struct sk_buff *skb = ab->skb;
1820 	int oldtail = skb_tailroom(skb);
1821 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1822 	int newtail = skb_tailroom(skb);
1823 
1824 	if (ret < 0) {
1825 		audit_log_lost("out of memory in audit_expand");
1826 		return 0;
1827 	}
1828 
1829 	skb->truesize += newtail - oldtail;
1830 	return newtail;
1831 }
1832 
1833 /*
1834  * Format an audit message into the audit buffer.  If there isn't enough
1835  * room in the audit buffer, more room will be allocated and vsnprint
1836  * will be called a second time.  Currently, we assume that a printk
1837  * can't format message larger than 1024 bytes, so we don't either.
1838  */
1839 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1840 			      va_list args)
1841 {
1842 	int len, avail;
1843 	struct sk_buff *skb;
1844 	va_list args2;
1845 
1846 	if (!ab)
1847 		return;
1848 
1849 	BUG_ON(!ab->skb);
1850 	skb = ab->skb;
1851 	avail = skb_tailroom(skb);
1852 	if (avail == 0) {
1853 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1854 		if (!avail)
1855 			goto out;
1856 	}
1857 	va_copy(args2, args);
1858 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1859 	if (len >= avail) {
1860 		/* The printk buffer is 1024 bytes long, so if we get
1861 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1862 		 * log everything that printk could have logged. */
1863 		avail = audit_expand(ab,
1864 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1865 		if (!avail)
1866 			goto out_va_end;
1867 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1868 	}
1869 	if (len > 0)
1870 		skb_put(skb, len);
1871 out_va_end:
1872 	va_end(args2);
1873 out:
1874 	return;
1875 }
1876 
1877 /**
1878  * audit_log_format - format a message into the audit buffer.
1879  * @ab: audit_buffer
1880  * @fmt: format string
1881  * @...: optional parameters matching @fmt string
1882  *
1883  * All the work is done in audit_log_vformat.
1884  */
1885 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1886 {
1887 	va_list args;
1888 
1889 	if (!ab)
1890 		return;
1891 	va_start(args, fmt);
1892 	audit_log_vformat(ab, fmt, args);
1893 	va_end(args);
1894 }
1895 
1896 /**
1897  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1898  * @ab: the audit_buffer
1899  * @buf: buffer to convert to hex
1900  * @len: length of @buf to be converted
1901  *
1902  * No return value; failure to expand is silently ignored.
1903  *
1904  * This function will take the passed buf and convert it into a string of
1905  * ascii hex digits. The new string is placed onto the skb.
1906  */
1907 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1908 		size_t len)
1909 {
1910 	int i, avail, new_len;
1911 	unsigned char *ptr;
1912 	struct sk_buff *skb;
1913 
1914 	if (!ab)
1915 		return;
1916 
1917 	BUG_ON(!ab->skb);
1918 	skb = ab->skb;
1919 	avail = skb_tailroom(skb);
1920 	new_len = len<<1;
1921 	if (new_len >= avail) {
1922 		/* Round the buffer request up to the next multiple */
1923 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1924 		avail = audit_expand(ab, new_len);
1925 		if (!avail)
1926 			return;
1927 	}
1928 
1929 	ptr = skb_tail_pointer(skb);
1930 	for (i = 0; i < len; i++)
1931 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1932 	*ptr = 0;
1933 	skb_put(skb, len << 1); /* new string is twice the old string */
1934 }
1935 
1936 /*
1937  * Format a string of no more than slen characters into the audit buffer,
1938  * enclosed in quote marks.
1939  */
1940 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1941 			size_t slen)
1942 {
1943 	int avail, new_len;
1944 	unsigned char *ptr;
1945 	struct sk_buff *skb;
1946 
1947 	if (!ab)
1948 		return;
1949 
1950 	BUG_ON(!ab->skb);
1951 	skb = ab->skb;
1952 	avail = skb_tailroom(skb);
1953 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1954 	if (new_len > avail) {
1955 		avail = audit_expand(ab, new_len);
1956 		if (!avail)
1957 			return;
1958 	}
1959 	ptr = skb_tail_pointer(skb);
1960 	*ptr++ = '"';
1961 	memcpy(ptr, string, slen);
1962 	ptr += slen;
1963 	*ptr++ = '"';
1964 	*ptr = 0;
1965 	skb_put(skb, slen + 2);	/* don't include null terminator */
1966 }
1967 
1968 /**
1969  * audit_string_contains_control - does a string need to be logged in hex
1970  * @string: string to be checked
1971  * @len: max length of the string to check
1972  */
1973 bool audit_string_contains_control(const char *string, size_t len)
1974 {
1975 	const unsigned char *p;
1976 	for (p = string; p < (const unsigned char *)string + len; p++) {
1977 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1978 			return true;
1979 	}
1980 	return false;
1981 }
1982 
1983 /**
1984  * audit_log_n_untrustedstring - log a string that may contain random characters
1985  * @ab: audit_buffer
1986  * @len: length of string (not including trailing null)
1987  * @string: string to be logged
1988  *
1989  * This code will escape a string that is passed to it if the string
1990  * contains a control character, unprintable character, double quote mark,
1991  * or a space. Unescaped strings will start and end with a double quote mark.
1992  * Strings that are escaped are printed in hex (2 digits per char).
1993  *
1994  * The caller specifies the number of characters in the string to log, which may
1995  * or may not be the entire string.
1996  */
1997 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1998 				 size_t len)
1999 {
2000 	if (audit_string_contains_control(string, len))
2001 		audit_log_n_hex(ab, string, len);
2002 	else
2003 		audit_log_n_string(ab, string, len);
2004 }
2005 
2006 /**
2007  * audit_log_untrustedstring - log a string that may contain random characters
2008  * @ab: audit_buffer
2009  * @string: string to be logged
2010  *
2011  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2012  * determine string length.
2013  */
2014 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2015 {
2016 	audit_log_n_untrustedstring(ab, string, strlen(string));
2017 }
2018 
2019 /* This is a helper-function to print the escaped d_path */
2020 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2021 		      const struct path *path)
2022 {
2023 	char *p, *pathname;
2024 
2025 	if (prefix)
2026 		audit_log_format(ab, "%s", prefix);
2027 
2028 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2029 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2030 	if (!pathname) {
2031 		audit_log_string(ab, "<no_memory>");
2032 		return;
2033 	}
2034 	p = d_path(path, pathname, PATH_MAX+11);
2035 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2036 		/* FIXME: can we save some information here? */
2037 		audit_log_string(ab, "<too_long>");
2038 	} else
2039 		audit_log_untrustedstring(ab, p);
2040 	kfree(pathname);
2041 }
2042 
2043 void audit_log_session_info(struct audit_buffer *ab)
2044 {
2045 	unsigned int sessionid = audit_get_sessionid(current);
2046 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2047 
2048 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2049 }
2050 
2051 void audit_log_key(struct audit_buffer *ab, char *key)
2052 {
2053 	audit_log_format(ab, " key=");
2054 	if (key)
2055 		audit_log_untrustedstring(ab, key);
2056 	else
2057 		audit_log_format(ab, "(null)");
2058 }
2059 
2060 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2061 {
2062 	int i;
2063 
2064 	audit_log_format(ab, " %s=", prefix);
2065 	CAP_FOR_EACH_U32(i) {
2066 		audit_log_format(ab, "%08x",
2067 				 cap->cap[CAP_LAST_U32 - i]);
2068 	}
2069 }
2070 
2071 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2072 {
2073 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2074 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2075 	audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2076 			 name->fcap.fE, name->fcap_ver);
2077 }
2078 
2079 static inline int audit_copy_fcaps(struct audit_names *name,
2080 				   const struct dentry *dentry)
2081 {
2082 	struct cpu_vfs_cap_data caps;
2083 	int rc;
2084 
2085 	if (!dentry)
2086 		return 0;
2087 
2088 	rc = get_vfs_caps_from_disk(dentry, &caps);
2089 	if (rc)
2090 		return rc;
2091 
2092 	name->fcap.permitted = caps.permitted;
2093 	name->fcap.inheritable = caps.inheritable;
2094 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2095 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2096 				VFS_CAP_REVISION_SHIFT;
2097 
2098 	return 0;
2099 }
2100 
2101 /* Copy inode data into an audit_names. */
2102 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2103 		      struct inode *inode)
2104 {
2105 	name->ino   = inode->i_ino;
2106 	name->dev   = inode->i_sb->s_dev;
2107 	name->mode  = inode->i_mode;
2108 	name->uid   = inode->i_uid;
2109 	name->gid   = inode->i_gid;
2110 	name->rdev  = inode->i_rdev;
2111 	security_inode_getsecid(inode, &name->osid);
2112 	audit_copy_fcaps(name, dentry);
2113 }
2114 
2115 /**
2116  * audit_log_name - produce AUDIT_PATH record from struct audit_names
2117  * @context: audit_context for the task
2118  * @n: audit_names structure with reportable details
2119  * @path: optional path to report instead of audit_names->name
2120  * @record_num: record number to report when handling a list of names
2121  * @call_panic: optional pointer to int that will be updated if secid fails
2122  */
2123 void audit_log_name(struct audit_context *context, struct audit_names *n,
2124 		    const struct path *path, int record_num, int *call_panic)
2125 {
2126 	struct audit_buffer *ab;
2127 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2128 	if (!ab)
2129 		return;
2130 
2131 	audit_log_format(ab, "item=%d", record_num);
2132 
2133 	if (path)
2134 		audit_log_d_path(ab, " name=", path);
2135 	else if (n->name) {
2136 		switch (n->name_len) {
2137 		case AUDIT_NAME_FULL:
2138 			/* log the full path */
2139 			audit_log_format(ab, " name=");
2140 			audit_log_untrustedstring(ab, n->name->name);
2141 			break;
2142 		case 0:
2143 			/* name was specified as a relative path and the
2144 			 * directory component is the cwd */
2145 			audit_log_d_path(ab, " name=", &context->pwd);
2146 			break;
2147 		default:
2148 			/* log the name's directory component */
2149 			audit_log_format(ab, " name=");
2150 			audit_log_n_untrustedstring(ab, n->name->name,
2151 						    n->name_len);
2152 		}
2153 	} else
2154 		audit_log_format(ab, " name=(null)");
2155 
2156 	if (n->ino != AUDIT_INO_UNSET)
2157 		audit_log_format(ab, " inode=%lu"
2158 				 " dev=%02x:%02x mode=%#ho"
2159 				 " ouid=%u ogid=%u rdev=%02x:%02x",
2160 				 n->ino,
2161 				 MAJOR(n->dev),
2162 				 MINOR(n->dev),
2163 				 n->mode,
2164 				 from_kuid(&init_user_ns, n->uid),
2165 				 from_kgid(&init_user_ns, n->gid),
2166 				 MAJOR(n->rdev),
2167 				 MINOR(n->rdev));
2168 	if (n->osid != 0) {
2169 		char *ctx = NULL;
2170 		u32 len;
2171 		if (security_secid_to_secctx(
2172 			n->osid, &ctx, &len)) {
2173 			audit_log_format(ab, " osid=%u", n->osid);
2174 			if (call_panic)
2175 				*call_panic = 2;
2176 		} else {
2177 			audit_log_format(ab, " obj=%s", ctx);
2178 			security_release_secctx(ctx, len);
2179 		}
2180 	}
2181 
2182 	/* log the audit_names record type */
2183 	audit_log_format(ab, " nametype=");
2184 	switch(n->type) {
2185 	case AUDIT_TYPE_NORMAL:
2186 		audit_log_format(ab, "NORMAL");
2187 		break;
2188 	case AUDIT_TYPE_PARENT:
2189 		audit_log_format(ab, "PARENT");
2190 		break;
2191 	case AUDIT_TYPE_CHILD_DELETE:
2192 		audit_log_format(ab, "DELETE");
2193 		break;
2194 	case AUDIT_TYPE_CHILD_CREATE:
2195 		audit_log_format(ab, "CREATE");
2196 		break;
2197 	default:
2198 		audit_log_format(ab, "UNKNOWN");
2199 		break;
2200 	}
2201 
2202 	audit_log_fcaps(ab, n);
2203 	audit_log_end(ab);
2204 }
2205 
2206 int audit_log_task_context(struct audit_buffer *ab)
2207 {
2208 	char *ctx = NULL;
2209 	unsigned len;
2210 	int error;
2211 	u32 sid;
2212 
2213 	security_task_getsecid(current, &sid);
2214 	if (!sid)
2215 		return 0;
2216 
2217 	error = security_secid_to_secctx(sid, &ctx, &len);
2218 	if (error) {
2219 		if (error != -EINVAL)
2220 			goto error_path;
2221 		return 0;
2222 	}
2223 
2224 	audit_log_format(ab, " subj=%s", ctx);
2225 	security_release_secctx(ctx, len);
2226 	return 0;
2227 
2228 error_path:
2229 	audit_panic("error in audit_log_task_context");
2230 	return error;
2231 }
2232 EXPORT_SYMBOL(audit_log_task_context);
2233 
2234 void audit_log_d_path_exe(struct audit_buffer *ab,
2235 			  struct mm_struct *mm)
2236 {
2237 	struct file *exe_file;
2238 
2239 	if (!mm)
2240 		goto out_null;
2241 
2242 	exe_file = get_mm_exe_file(mm);
2243 	if (!exe_file)
2244 		goto out_null;
2245 
2246 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2247 	fput(exe_file);
2248 	return;
2249 out_null:
2250 	audit_log_format(ab, " exe=(null)");
2251 }
2252 
2253 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2254 {
2255 	struct tty_struct *tty = NULL;
2256 	unsigned long flags;
2257 
2258 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2259 	if (tsk->signal)
2260 		tty = tty_kref_get(tsk->signal->tty);
2261 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2262 	return tty;
2263 }
2264 
2265 void audit_put_tty(struct tty_struct *tty)
2266 {
2267 	tty_kref_put(tty);
2268 }
2269 
2270 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2271 {
2272 	const struct cred *cred;
2273 	char comm[sizeof(tsk->comm)];
2274 	struct tty_struct *tty;
2275 
2276 	if (!ab)
2277 		return;
2278 
2279 	/* tsk == current */
2280 	cred = current_cred();
2281 	tty = audit_get_tty(tsk);
2282 	audit_log_format(ab,
2283 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2284 			 " euid=%u suid=%u fsuid=%u"
2285 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2286 			 task_ppid_nr(tsk),
2287 			 task_tgid_nr(tsk),
2288 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2289 			 from_kuid(&init_user_ns, cred->uid),
2290 			 from_kgid(&init_user_ns, cred->gid),
2291 			 from_kuid(&init_user_ns, cred->euid),
2292 			 from_kuid(&init_user_ns, cred->suid),
2293 			 from_kuid(&init_user_ns, cred->fsuid),
2294 			 from_kgid(&init_user_ns, cred->egid),
2295 			 from_kgid(&init_user_ns, cred->sgid),
2296 			 from_kgid(&init_user_ns, cred->fsgid),
2297 			 tty ? tty_name(tty) : "(none)",
2298 			 audit_get_sessionid(tsk));
2299 	audit_put_tty(tty);
2300 	audit_log_format(ab, " comm=");
2301 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2302 	audit_log_d_path_exe(ab, tsk->mm);
2303 	audit_log_task_context(ab);
2304 }
2305 EXPORT_SYMBOL(audit_log_task_info);
2306 
2307 /**
2308  * audit_log_link_denied - report a link restriction denial
2309  * @operation: specific link operation
2310  */
2311 void audit_log_link_denied(const char *operation)
2312 {
2313 	struct audit_buffer *ab;
2314 
2315 	if (!audit_enabled || audit_dummy_context())
2316 		return;
2317 
2318 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2319 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2320 	if (!ab)
2321 		return;
2322 	audit_log_format(ab, "op=%s", operation);
2323 	audit_log_task_info(ab, current);
2324 	audit_log_format(ab, " res=0");
2325 	audit_log_end(ab);
2326 }
2327 
2328 /**
2329  * audit_log_end - end one audit record
2330  * @ab: the audit_buffer
2331  *
2332  * We can not do a netlink send inside an irq context because it blocks (last
2333  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2334  * queue and a tasklet is scheduled to remove them from the queue outside the
2335  * irq context.  May be called in any context.
2336  */
2337 void audit_log_end(struct audit_buffer *ab)
2338 {
2339 	struct sk_buff *skb;
2340 	struct nlmsghdr *nlh;
2341 
2342 	if (!ab)
2343 		return;
2344 
2345 	if (audit_rate_check()) {
2346 		skb = ab->skb;
2347 		ab->skb = NULL;
2348 
2349 		/* setup the netlink header, see the comments in
2350 		 * kauditd_send_multicast_skb() for length quirks */
2351 		nlh = nlmsg_hdr(skb);
2352 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2353 
2354 		/* queue the netlink packet and poke the kauditd thread */
2355 		skb_queue_tail(&audit_queue, skb);
2356 		wake_up_interruptible(&kauditd_wait);
2357 	} else
2358 		audit_log_lost("rate limit exceeded");
2359 
2360 	audit_buffer_free(ab);
2361 }
2362 
2363 /**
2364  * audit_log - Log an audit record
2365  * @ctx: audit context
2366  * @gfp_mask: type of allocation
2367  * @type: audit message type
2368  * @fmt: format string to use
2369  * @...: variable parameters matching the format string
2370  *
2371  * This is a convenience function that calls audit_log_start,
2372  * audit_log_vformat, and audit_log_end.  It may be called
2373  * in any context.
2374  */
2375 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2376 	       const char *fmt, ...)
2377 {
2378 	struct audit_buffer *ab;
2379 	va_list args;
2380 
2381 	ab = audit_log_start(ctx, gfp_mask, type);
2382 	if (ab) {
2383 		va_start(args, fmt);
2384 		audit_log_vformat(ab, fmt, args);
2385 		va_end(args);
2386 		audit_log_end(ab);
2387 	}
2388 }
2389 
2390 EXPORT_SYMBOL(audit_log_start);
2391 EXPORT_SYMBOL(audit_log_end);
2392 EXPORT_SYMBOL(audit_log_format);
2393 EXPORT_SYMBOL(audit_log);
2394