1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/tty.h> 68 #include <linux/pid_namespace.h> 69 #include <net/netns/generic.h> 70 71 #include "audit.h" 72 73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 74 * (Initialization happens after skb_init is called.) */ 75 #define AUDIT_DISABLED -1 76 #define AUDIT_UNINITIALIZED 0 77 #define AUDIT_INITIALIZED 1 78 static int audit_initialized; 79 80 #define AUDIT_OFF 0 81 #define AUDIT_ON 1 82 #define AUDIT_LOCKED 2 83 u32 audit_enabled; 84 u32 audit_ever_enabled; 85 86 EXPORT_SYMBOL_GPL(audit_enabled); 87 88 /* Default state when kernel boots without any parameters. */ 89 static u32 audit_default; 90 91 /* If auditing cannot proceed, audit_failure selects what happens. */ 92 static u32 audit_failure = AUDIT_FAIL_PRINTK; 93 94 /* 95 * If audit records are to be written to the netlink socket, audit_pid 96 * contains the pid of the auditd process and audit_nlk_portid contains 97 * the portid to use to send netlink messages to that process. 98 */ 99 int audit_pid; 100 static __u32 audit_nlk_portid; 101 102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 103 * to that number per second. This prevents DoS attacks, but results in 104 * audit records being dropped. */ 105 static u32 audit_rate_limit; 106 107 /* Number of outstanding audit_buffers allowed. 108 * When set to zero, this means unlimited. */ 109 static u32 audit_backlog_limit = 64; 110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; 112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 113 static u32 audit_backlog_wait_overflow = 0; 114 115 /* The identity of the user shutting down the audit system. */ 116 kuid_t audit_sig_uid = INVALID_UID; 117 pid_t audit_sig_pid = -1; 118 u32 audit_sig_sid = 0; 119 120 /* Records can be lost in several ways: 121 0) [suppressed in audit_alloc] 122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 123 2) out of memory in audit_log_move [alloc_skb] 124 3) suppressed due to audit_rate_limit 125 4) suppressed due to audit_backlog_limit 126 */ 127 static atomic_t audit_lost = ATOMIC_INIT(0); 128 129 /* The netlink socket. */ 130 static struct sock *audit_sock; 131 static int audit_net_id; 132 133 /* Hash for inode-based rules */ 134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 135 136 /* The audit_freelist is a list of pre-allocated audit buffers (if more 137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 138 * being placed on the freelist). */ 139 static DEFINE_SPINLOCK(audit_freelist_lock); 140 static int audit_freelist_count; 141 static LIST_HEAD(audit_freelist); 142 143 static struct sk_buff_head audit_skb_queue; 144 /* queue of skbs to send to auditd when/if it comes back */ 145 static struct sk_buff_head audit_skb_hold_queue; 146 static struct task_struct *kauditd_task; 147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 149 150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 151 .mask = -1, 152 .features = 0, 153 .lock = 0,}; 154 155 static char *audit_feature_names[2] = { 156 "only_unset_loginuid", 157 "loginuid_immutable", 158 }; 159 160 161 /* Serialize requests from userspace. */ 162 DEFINE_MUTEX(audit_cmd_mutex); 163 164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 165 * audit records. Since printk uses a 1024 byte buffer, this buffer 166 * should be at least that large. */ 167 #define AUDIT_BUFSIZ 1024 168 169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 171 #define AUDIT_MAXFREE (2*NR_CPUS) 172 173 /* The audit_buffer is used when formatting an audit record. The caller 174 * locks briefly to get the record off the freelist or to allocate the 175 * buffer, and locks briefly to send the buffer to the netlink layer or 176 * to place it on a transmit queue. Multiple audit_buffers can be in 177 * use simultaneously. */ 178 struct audit_buffer { 179 struct list_head list; 180 struct sk_buff *skb; /* formatted skb ready to send */ 181 struct audit_context *ctx; /* NULL or associated context */ 182 gfp_t gfp_mask; 183 }; 184 185 struct audit_reply { 186 __u32 portid; 187 struct net *net; 188 struct sk_buff *skb; 189 }; 190 191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 192 { 193 if (ab) { 194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 195 nlh->nlmsg_pid = portid; 196 } 197 } 198 199 void audit_panic(const char *message) 200 { 201 switch (audit_failure) { 202 case AUDIT_FAIL_SILENT: 203 break; 204 case AUDIT_FAIL_PRINTK: 205 if (printk_ratelimit()) 206 pr_err("%s\n", message); 207 break; 208 case AUDIT_FAIL_PANIC: 209 /* test audit_pid since printk is always losey, why bother? */ 210 if (audit_pid) 211 panic("audit: %s\n", message); 212 break; 213 } 214 } 215 216 static inline int audit_rate_check(void) 217 { 218 static unsigned long last_check = 0; 219 static int messages = 0; 220 static DEFINE_SPINLOCK(lock); 221 unsigned long flags; 222 unsigned long now; 223 unsigned long elapsed; 224 int retval = 0; 225 226 if (!audit_rate_limit) return 1; 227 228 spin_lock_irqsave(&lock, flags); 229 if (++messages < audit_rate_limit) { 230 retval = 1; 231 } else { 232 now = jiffies; 233 elapsed = now - last_check; 234 if (elapsed > HZ) { 235 last_check = now; 236 messages = 0; 237 retval = 1; 238 } 239 } 240 spin_unlock_irqrestore(&lock, flags); 241 242 return retval; 243 } 244 245 /** 246 * audit_log_lost - conditionally log lost audit message event 247 * @message: the message stating reason for lost audit message 248 * 249 * Emit at least 1 message per second, even if audit_rate_check is 250 * throttling. 251 * Always increment the lost messages counter. 252 */ 253 void audit_log_lost(const char *message) 254 { 255 static unsigned long last_msg = 0; 256 static DEFINE_SPINLOCK(lock); 257 unsigned long flags; 258 unsigned long now; 259 int print; 260 261 atomic_inc(&audit_lost); 262 263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 264 265 if (!print) { 266 spin_lock_irqsave(&lock, flags); 267 now = jiffies; 268 if (now - last_msg > HZ) { 269 print = 1; 270 last_msg = now; 271 } 272 spin_unlock_irqrestore(&lock, flags); 273 } 274 275 if (print) { 276 if (printk_ratelimit()) 277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 278 atomic_read(&audit_lost), 279 audit_rate_limit, 280 audit_backlog_limit); 281 audit_panic(message); 282 } 283 } 284 285 static int audit_log_config_change(char *function_name, u32 new, u32 old, 286 int allow_changes) 287 { 288 struct audit_buffer *ab; 289 int rc = 0; 290 291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 292 if (unlikely(!ab)) 293 return rc; 294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 295 audit_log_session_info(ab); 296 rc = audit_log_task_context(ab); 297 if (rc) 298 allow_changes = 0; /* Something weird, deny request */ 299 audit_log_format(ab, " res=%d", allow_changes); 300 audit_log_end(ab); 301 return rc; 302 } 303 304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 305 { 306 int allow_changes, rc = 0; 307 u32 old = *to_change; 308 309 /* check if we are locked */ 310 if (audit_enabled == AUDIT_LOCKED) 311 allow_changes = 0; 312 else 313 allow_changes = 1; 314 315 if (audit_enabled != AUDIT_OFF) { 316 rc = audit_log_config_change(function_name, new, old, allow_changes); 317 if (rc) 318 allow_changes = 0; 319 } 320 321 /* If we are allowed, make the change */ 322 if (allow_changes == 1) 323 *to_change = new; 324 /* Not allowed, update reason */ 325 else if (rc == 0) 326 rc = -EPERM; 327 return rc; 328 } 329 330 static int audit_set_rate_limit(u32 limit) 331 { 332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 333 } 334 335 static int audit_set_backlog_limit(u32 limit) 336 { 337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 338 } 339 340 static int audit_set_backlog_wait_time(u32 timeout) 341 { 342 return audit_do_config_change("audit_backlog_wait_time", 343 &audit_backlog_wait_time_master, timeout); 344 } 345 346 static int audit_set_enabled(u32 state) 347 { 348 int rc; 349 if (state > AUDIT_LOCKED) 350 return -EINVAL; 351 352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 353 if (!rc) 354 audit_ever_enabled |= !!state; 355 356 return rc; 357 } 358 359 static int audit_set_failure(u32 state) 360 { 361 if (state != AUDIT_FAIL_SILENT 362 && state != AUDIT_FAIL_PRINTK 363 && state != AUDIT_FAIL_PANIC) 364 return -EINVAL; 365 366 return audit_do_config_change("audit_failure", &audit_failure, state); 367 } 368 369 /* 370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 371 * already have been sent via prink/syslog and so if these messages are dropped 372 * it is not a huge concern since we already passed the audit_log_lost() 373 * notification and stuff. This is just nice to get audit messages during 374 * boot before auditd is running or messages generated while auditd is stopped. 375 * This only holds messages is audit_default is set, aka booting with audit=1 376 * or building your kernel that way. 377 */ 378 static void audit_hold_skb(struct sk_buff *skb) 379 { 380 if (audit_default && 381 (!audit_backlog_limit || 382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 383 skb_queue_tail(&audit_skb_hold_queue, skb); 384 else 385 kfree_skb(skb); 386 } 387 388 /* 389 * For one reason or another this nlh isn't getting delivered to the userspace 390 * audit daemon, just send it to printk. 391 */ 392 static void audit_printk_skb(struct sk_buff *skb) 393 { 394 struct nlmsghdr *nlh = nlmsg_hdr(skb); 395 char *data = nlmsg_data(nlh); 396 397 if (nlh->nlmsg_type != AUDIT_EOE) { 398 if (printk_ratelimit()) 399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 400 else 401 audit_log_lost("printk limit exceeded"); 402 } 403 404 audit_hold_skb(skb); 405 } 406 407 static void kauditd_send_skb(struct sk_buff *skb) 408 { 409 int err; 410 /* take a reference in case we can't send it and we want to hold it */ 411 skb_get(skb); 412 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 413 if (err < 0) { 414 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 415 if (audit_pid) { 416 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 417 audit_log_lost("auditd disappeared"); 418 audit_pid = 0; 419 audit_sock = NULL; 420 } 421 /* we might get lucky and get this in the next auditd */ 422 audit_hold_skb(skb); 423 } else 424 /* drop the extra reference if sent ok */ 425 consume_skb(skb); 426 } 427 428 /* 429 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 430 * 431 * This function doesn't consume an skb as might be expected since it has to 432 * copy it anyways. 433 */ 434 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) 435 { 436 struct sk_buff *copy; 437 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 438 struct sock *sock = aunet->nlsk; 439 440 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 441 return; 442 443 /* 444 * The seemingly wasteful skb_copy() rather than bumping the refcount 445 * using skb_get() is necessary because non-standard mods are made to 446 * the skb by the original kaudit unicast socket send routine. The 447 * existing auditd daemon assumes this breakage. Fixing this would 448 * require co-ordinating a change in the established protocol between 449 * the kaudit kernel subsystem and the auditd userspace code. There is 450 * no reason for new multicast clients to continue with this 451 * non-compliance. 452 */ 453 copy = skb_copy(skb, gfp_mask); 454 if (!copy) 455 return; 456 457 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); 458 } 459 460 /* 461 * flush_hold_queue - empty the hold queue if auditd appears 462 * 463 * If auditd just started, drain the queue of messages already 464 * sent to syslog/printk. Remember loss here is ok. We already 465 * called audit_log_lost() if it didn't go out normally. so the 466 * race between the skb_dequeue and the next check for audit_pid 467 * doesn't matter. 468 * 469 * If you ever find kauditd to be too slow we can get a perf win 470 * by doing our own locking and keeping better track if there 471 * are messages in this queue. I don't see the need now, but 472 * in 5 years when I want to play with this again I'll see this 473 * note and still have no friggin idea what i'm thinking today. 474 */ 475 static void flush_hold_queue(void) 476 { 477 struct sk_buff *skb; 478 479 if (!audit_default || !audit_pid) 480 return; 481 482 skb = skb_dequeue(&audit_skb_hold_queue); 483 if (likely(!skb)) 484 return; 485 486 while (skb && audit_pid) { 487 kauditd_send_skb(skb); 488 skb = skb_dequeue(&audit_skb_hold_queue); 489 } 490 491 /* 492 * if auditd just disappeared but we 493 * dequeued an skb we need to drop ref 494 */ 495 if (skb) 496 consume_skb(skb); 497 } 498 499 static int kauditd_thread(void *dummy) 500 { 501 set_freezable(); 502 while (!kthread_should_stop()) { 503 struct sk_buff *skb; 504 505 flush_hold_queue(); 506 507 skb = skb_dequeue(&audit_skb_queue); 508 509 if (skb) { 510 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 511 wake_up(&audit_backlog_wait); 512 if (audit_pid) 513 kauditd_send_skb(skb); 514 else 515 audit_printk_skb(skb); 516 continue; 517 } 518 519 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 520 } 521 return 0; 522 } 523 524 int audit_send_list(void *_dest) 525 { 526 struct audit_netlink_list *dest = _dest; 527 struct sk_buff *skb; 528 struct net *net = dest->net; 529 struct audit_net *aunet = net_generic(net, audit_net_id); 530 531 /* wait for parent to finish and send an ACK */ 532 mutex_lock(&audit_cmd_mutex); 533 mutex_unlock(&audit_cmd_mutex); 534 535 while ((skb = __skb_dequeue(&dest->q)) != NULL) 536 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 537 538 put_net(net); 539 kfree(dest); 540 541 return 0; 542 } 543 544 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 545 int multi, const void *payload, int size) 546 { 547 struct sk_buff *skb; 548 struct nlmsghdr *nlh; 549 void *data; 550 int flags = multi ? NLM_F_MULTI : 0; 551 int t = done ? NLMSG_DONE : type; 552 553 skb = nlmsg_new(size, GFP_KERNEL); 554 if (!skb) 555 return NULL; 556 557 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 558 if (!nlh) 559 goto out_kfree_skb; 560 data = nlmsg_data(nlh); 561 memcpy(data, payload, size); 562 return skb; 563 564 out_kfree_skb: 565 kfree_skb(skb); 566 return NULL; 567 } 568 569 static int audit_send_reply_thread(void *arg) 570 { 571 struct audit_reply *reply = (struct audit_reply *)arg; 572 struct net *net = reply->net; 573 struct audit_net *aunet = net_generic(net, audit_net_id); 574 575 mutex_lock(&audit_cmd_mutex); 576 mutex_unlock(&audit_cmd_mutex); 577 578 /* Ignore failure. It'll only happen if the sender goes away, 579 because our timeout is set to infinite. */ 580 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 581 put_net(net); 582 kfree(reply); 583 return 0; 584 } 585 /** 586 * audit_send_reply - send an audit reply message via netlink 587 * @request_skb: skb of request we are replying to (used to target the reply) 588 * @seq: sequence number 589 * @type: audit message type 590 * @done: done (last) flag 591 * @multi: multi-part message flag 592 * @payload: payload data 593 * @size: payload size 594 * 595 * Allocates an skb, builds the netlink message, and sends it to the port id. 596 * No failure notifications. 597 */ 598 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 599 int multi, const void *payload, int size) 600 { 601 u32 portid = NETLINK_CB(request_skb).portid; 602 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 603 struct sk_buff *skb; 604 struct task_struct *tsk; 605 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 606 GFP_KERNEL); 607 608 if (!reply) 609 return; 610 611 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 612 if (!skb) 613 goto out; 614 615 reply->net = get_net(net); 616 reply->portid = portid; 617 reply->skb = skb; 618 619 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 620 if (!IS_ERR(tsk)) 621 return; 622 kfree_skb(skb); 623 out: 624 kfree(reply); 625 } 626 627 /* 628 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 629 * control messages. 630 */ 631 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 632 { 633 int err = 0; 634 635 /* Only support initial user namespace for now. */ 636 /* 637 * We return ECONNREFUSED because it tricks userspace into thinking 638 * that audit was not configured into the kernel. Lots of users 639 * configure their PAM stack (because that's what the distro does) 640 * to reject login if unable to send messages to audit. If we return 641 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 642 * configured in and will let login proceed. If we return EPERM 643 * userspace will reject all logins. This should be removed when we 644 * support non init namespaces!! 645 */ 646 if (current_user_ns() != &init_user_ns) 647 return -ECONNREFUSED; 648 649 switch (msg_type) { 650 case AUDIT_LIST: 651 case AUDIT_ADD: 652 case AUDIT_DEL: 653 return -EOPNOTSUPP; 654 case AUDIT_GET: 655 case AUDIT_SET: 656 case AUDIT_GET_FEATURE: 657 case AUDIT_SET_FEATURE: 658 case AUDIT_LIST_RULES: 659 case AUDIT_ADD_RULE: 660 case AUDIT_DEL_RULE: 661 case AUDIT_SIGNAL_INFO: 662 case AUDIT_TTY_GET: 663 case AUDIT_TTY_SET: 664 case AUDIT_TRIM: 665 case AUDIT_MAKE_EQUIV: 666 /* Only support auditd and auditctl in initial pid namespace 667 * for now. */ 668 if (task_active_pid_ns(current) != &init_pid_ns) 669 return -EPERM; 670 671 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 672 err = -EPERM; 673 break; 674 case AUDIT_USER: 675 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 676 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 677 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 678 err = -EPERM; 679 break; 680 default: /* bad msg */ 681 err = -EINVAL; 682 } 683 684 return err; 685 } 686 687 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 688 { 689 int rc = 0; 690 uid_t uid = from_kuid(&init_user_ns, current_uid()); 691 pid_t pid = task_tgid_nr(current); 692 693 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 694 *ab = NULL; 695 return rc; 696 } 697 698 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 699 if (unlikely(!*ab)) 700 return rc; 701 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 702 audit_log_session_info(*ab); 703 audit_log_task_context(*ab); 704 705 return rc; 706 } 707 708 int is_audit_feature_set(int i) 709 { 710 return af.features & AUDIT_FEATURE_TO_MASK(i); 711 } 712 713 714 static int audit_get_feature(struct sk_buff *skb) 715 { 716 u32 seq; 717 718 seq = nlmsg_hdr(skb)->nlmsg_seq; 719 720 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 721 722 return 0; 723 } 724 725 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 726 u32 old_lock, u32 new_lock, int res) 727 { 728 struct audit_buffer *ab; 729 730 if (audit_enabled == AUDIT_OFF) 731 return; 732 733 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 734 audit_log_task_info(ab, current); 735 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 736 audit_feature_names[which], !!old_feature, !!new_feature, 737 !!old_lock, !!new_lock, res); 738 audit_log_end(ab); 739 } 740 741 static int audit_set_feature(struct sk_buff *skb) 742 { 743 struct audit_features *uaf; 744 int i; 745 746 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 747 uaf = nlmsg_data(nlmsg_hdr(skb)); 748 749 /* if there is ever a version 2 we should handle that here */ 750 751 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 752 u32 feature = AUDIT_FEATURE_TO_MASK(i); 753 u32 old_feature, new_feature, old_lock, new_lock; 754 755 /* if we are not changing this feature, move along */ 756 if (!(feature & uaf->mask)) 757 continue; 758 759 old_feature = af.features & feature; 760 new_feature = uaf->features & feature; 761 new_lock = (uaf->lock | af.lock) & feature; 762 old_lock = af.lock & feature; 763 764 /* are we changing a locked feature? */ 765 if (old_lock && (new_feature != old_feature)) { 766 audit_log_feature_change(i, old_feature, new_feature, 767 old_lock, new_lock, 0); 768 return -EPERM; 769 } 770 } 771 /* nothing invalid, do the changes */ 772 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 773 u32 feature = AUDIT_FEATURE_TO_MASK(i); 774 u32 old_feature, new_feature, old_lock, new_lock; 775 776 /* if we are not changing this feature, move along */ 777 if (!(feature & uaf->mask)) 778 continue; 779 780 old_feature = af.features & feature; 781 new_feature = uaf->features & feature; 782 old_lock = af.lock & feature; 783 new_lock = (uaf->lock | af.lock) & feature; 784 785 if (new_feature != old_feature) 786 audit_log_feature_change(i, old_feature, new_feature, 787 old_lock, new_lock, 1); 788 789 if (new_feature) 790 af.features |= feature; 791 else 792 af.features &= ~feature; 793 af.lock |= new_lock; 794 } 795 796 return 0; 797 } 798 799 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 800 { 801 u32 seq; 802 void *data; 803 int err; 804 struct audit_buffer *ab; 805 u16 msg_type = nlh->nlmsg_type; 806 struct audit_sig_info *sig_data; 807 char *ctx = NULL; 808 u32 len; 809 810 err = audit_netlink_ok(skb, msg_type); 811 if (err) 812 return err; 813 814 /* As soon as there's any sign of userspace auditd, 815 * start kauditd to talk to it */ 816 if (!kauditd_task) { 817 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 818 if (IS_ERR(kauditd_task)) { 819 err = PTR_ERR(kauditd_task); 820 kauditd_task = NULL; 821 return err; 822 } 823 } 824 seq = nlh->nlmsg_seq; 825 data = nlmsg_data(nlh); 826 827 switch (msg_type) { 828 case AUDIT_GET: { 829 struct audit_status s; 830 memset(&s, 0, sizeof(s)); 831 s.enabled = audit_enabled; 832 s.failure = audit_failure; 833 s.pid = audit_pid; 834 s.rate_limit = audit_rate_limit; 835 s.backlog_limit = audit_backlog_limit; 836 s.lost = atomic_read(&audit_lost); 837 s.backlog = skb_queue_len(&audit_skb_queue); 838 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 839 s.backlog_wait_time = audit_backlog_wait_time_master; 840 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 841 break; 842 } 843 case AUDIT_SET: { 844 struct audit_status s; 845 memset(&s, 0, sizeof(s)); 846 /* guard against past and future API changes */ 847 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 848 if (s.mask & AUDIT_STATUS_ENABLED) { 849 err = audit_set_enabled(s.enabled); 850 if (err < 0) 851 return err; 852 } 853 if (s.mask & AUDIT_STATUS_FAILURE) { 854 err = audit_set_failure(s.failure); 855 if (err < 0) 856 return err; 857 } 858 if (s.mask & AUDIT_STATUS_PID) { 859 int new_pid = s.pid; 860 861 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 862 return -EACCES; 863 if (audit_enabled != AUDIT_OFF) 864 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 865 audit_pid = new_pid; 866 audit_nlk_portid = NETLINK_CB(skb).portid; 867 audit_sock = skb->sk; 868 } 869 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 870 err = audit_set_rate_limit(s.rate_limit); 871 if (err < 0) 872 return err; 873 } 874 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 875 err = audit_set_backlog_limit(s.backlog_limit); 876 if (err < 0) 877 return err; 878 } 879 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 880 if (sizeof(s) > (size_t)nlh->nlmsg_len) 881 return -EINVAL; 882 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 883 return -EINVAL; 884 err = audit_set_backlog_wait_time(s.backlog_wait_time); 885 if (err < 0) 886 return err; 887 } 888 break; 889 } 890 case AUDIT_GET_FEATURE: 891 err = audit_get_feature(skb); 892 if (err) 893 return err; 894 break; 895 case AUDIT_SET_FEATURE: 896 err = audit_set_feature(skb); 897 if (err) 898 return err; 899 break; 900 case AUDIT_USER: 901 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 902 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 903 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 904 return 0; 905 906 err = audit_filter_user(msg_type); 907 if (err == 1) { /* match or error */ 908 err = 0; 909 if (msg_type == AUDIT_USER_TTY) { 910 err = tty_audit_push_current(); 911 if (err) 912 break; 913 } 914 mutex_unlock(&audit_cmd_mutex); 915 audit_log_common_recv_msg(&ab, msg_type); 916 if (msg_type != AUDIT_USER_TTY) 917 audit_log_format(ab, " msg='%.*s'", 918 AUDIT_MESSAGE_TEXT_MAX, 919 (char *)data); 920 else { 921 int size; 922 923 audit_log_format(ab, " data="); 924 size = nlmsg_len(nlh); 925 if (size > 0 && 926 ((unsigned char *)data)[size - 1] == '\0') 927 size--; 928 audit_log_n_untrustedstring(ab, data, size); 929 } 930 audit_set_portid(ab, NETLINK_CB(skb).portid); 931 audit_log_end(ab); 932 mutex_lock(&audit_cmd_mutex); 933 } 934 break; 935 case AUDIT_ADD_RULE: 936 case AUDIT_DEL_RULE: 937 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 938 return -EINVAL; 939 if (audit_enabled == AUDIT_LOCKED) { 940 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 941 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 942 audit_log_end(ab); 943 return -EPERM; 944 } 945 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 946 seq, data, nlmsg_len(nlh)); 947 break; 948 case AUDIT_LIST_RULES: 949 err = audit_list_rules_send(skb, seq); 950 break; 951 case AUDIT_TRIM: 952 audit_trim_trees(); 953 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 954 audit_log_format(ab, " op=trim res=1"); 955 audit_log_end(ab); 956 break; 957 case AUDIT_MAKE_EQUIV: { 958 void *bufp = data; 959 u32 sizes[2]; 960 size_t msglen = nlmsg_len(nlh); 961 char *old, *new; 962 963 err = -EINVAL; 964 if (msglen < 2 * sizeof(u32)) 965 break; 966 memcpy(sizes, bufp, 2 * sizeof(u32)); 967 bufp += 2 * sizeof(u32); 968 msglen -= 2 * sizeof(u32); 969 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 970 if (IS_ERR(old)) { 971 err = PTR_ERR(old); 972 break; 973 } 974 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 975 if (IS_ERR(new)) { 976 err = PTR_ERR(new); 977 kfree(old); 978 break; 979 } 980 /* OK, here comes... */ 981 err = audit_tag_tree(old, new); 982 983 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 984 985 audit_log_format(ab, " op=make_equiv old="); 986 audit_log_untrustedstring(ab, old); 987 audit_log_format(ab, " new="); 988 audit_log_untrustedstring(ab, new); 989 audit_log_format(ab, " res=%d", !err); 990 audit_log_end(ab); 991 kfree(old); 992 kfree(new); 993 break; 994 } 995 case AUDIT_SIGNAL_INFO: 996 len = 0; 997 if (audit_sig_sid) { 998 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 999 if (err) 1000 return err; 1001 } 1002 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1003 if (!sig_data) { 1004 if (audit_sig_sid) 1005 security_release_secctx(ctx, len); 1006 return -ENOMEM; 1007 } 1008 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1009 sig_data->pid = audit_sig_pid; 1010 if (audit_sig_sid) { 1011 memcpy(sig_data->ctx, ctx, len); 1012 security_release_secctx(ctx, len); 1013 } 1014 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1015 sig_data, sizeof(*sig_data) + len); 1016 kfree(sig_data); 1017 break; 1018 case AUDIT_TTY_GET: { 1019 struct audit_tty_status s; 1020 struct task_struct *tsk = current; 1021 1022 spin_lock(&tsk->sighand->siglock); 1023 s.enabled = tsk->signal->audit_tty; 1024 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1025 spin_unlock(&tsk->sighand->siglock); 1026 1027 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1028 break; 1029 } 1030 case AUDIT_TTY_SET: { 1031 struct audit_tty_status s, old; 1032 struct task_struct *tsk = current; 1033 struct audit_buffer *ab; 1034 1035 memset(&s, 0, sizeof(s)); 1036 /* guard against past and future API changes */ 1037 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1038 /* check if new data is valid */ 1039 if ((s.enabled != 0 && s.enabled != 1) || 1040 (s.log_passwd != 0 && s.log_passwd != 1)) 1041 err = -EINVAL; 1042 1043 spin_lock(&tsk->sighand->siglock); 1044 old.enabled = tsk->signal->audit_tty; 1045 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1046 if (!err) { 1047 tsk->signal->audit_tty = s.enabled; 1048 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1049 } 1050 spin_unlock(&tsk->sighand->siglock); 1051 1052 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1053 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1054 " old-log_passwd=%d new-log_passwd=%d res=%d", 1055 old.enabled, s.enabled, old.log_passwd, 1056 s.log_passwd, !err); 1057 audit_log_end(ab); 1058 break; 1059 } 1060 default: 1061 err = -EINVAL; 1062 break; 1063 } 1064 1065 return err < 0 ? err : 0; 1066 } 1067 1068 /* 1069 * Get message from skb. Each message is processed by audit_receive_msg. 1070 * Malformed skbs with wrong length are discarded silently. 1071 */ 1072 static void audit_receive_skb(struct sk_buff *skb) 1073 { 1074 struct nlmsghdr *nlh; 1075 /* 1076 * len MUST be signed for nlmsg_next to be able to dec it below 0 1077 * if the nlmsg_len was not aligned 1078 */ 1079 int len; 1080 int err; 1081 1082 nlh = nlmsg_hdr(skb); 1083 len = skb->len; 1084 1085 while (nlmsg_ok(nlh, len)) { 1086 err = audit_receive_msg(skb, nlh); 1087 /* if err or if this message says it wants a response */ 1088 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1089 netlink_ack(skb, nlh, err); 1090 1091 nlh = nlmsg_next(nlh, &len); 1092 } 1093 } 1094 1095 /* Receive messages from netlink socket. */ 1096 static void audit_receive(struct sk_buff *skb) 1097 { 1098 mutex_lock(&audit_cmd_mutex); 1099 audit_receive_skb(skb); 1100 mutex_unlock(&audit_cmd_mutex); 1101 } 1102 1103 /* Run custom bind function on netlink socket group connect or bind requests. */ 1104 static int audit_bind(struct net *net, int group) 1105 { 1106 if (!capable(CAP_AUDIT_READ)) 1107 return -EPERM; 1108 1109 return 0; 1110 } 1111 1112 static int __net_init audit_net_init(struct net *net) 1113 { 1114 struct netlink_kernel_cfg cfg = { 1115 .input = audit_receive, 1116 .bind = audit_bind, 1117 .flags = NL_CFG_F_NONROOT_RECV, 1118 .groups = AUDIT_NLGRP_MAX, 1119 }; 1120 1121 struct audit_net *aunet = net_generic(net, audit_net_id); 1122 1123 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1124 if (aunet->nlsk == NULL) { 1125 audit_panic("cannot initialize netlink socket in namespace"); 1126 return -ENOMEM; 1127 } 1128 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1129 return 0; 1130 } 1131 1132 static void __net_exit audit_net_exit(struct net *net) 1133 { 1134 struct audit_net *aunet = net_generic(net, audit_net_id); 1135 struct sock *sock = aunet->nlsk; 1136 if (sock == audit_sock) { 1137 audit_pid = 0; 1138 audit_sock = NULL; 1139 } 1140 1141 RCU_INIT_POINTER(aunet->nlsk, NULL); 1142 synchronize_net(); 1143 netlink_kernel_release(sock); 1144 } 1145 1146 static struct pernet_operations audit_net_ops __net_initdata = { 1147 .init = audit_net_init, 1148 .exit = audit_net_exit, 1149 .id = &audit_net_id, 1150 .size = sizeof(struct audit_net), 1151 }; 1152 1153 /* Initialize audit support at boot time. */ 1154 static int __init audit_init(void) 1155 { 1156 int i; 1157 1158 if (audit_initialized == AUDIT_DISABLED) 1159 return 0; 1160 1161 pr_info("initializing netlink subsys (%s)\n", 1162 audit_default ? "enabled" : "disabled"); 1163 register_pernet_subsys(&audit_net_ops); 1164 1165 skb_queue_head_init(&audit_skb_queue); 1166 skb_queue_head_init(&audit_skb_hold_queue); 1167 audit_initialized = AUDIT_INITIALIZED; 1168 audit_enabled = audit_default; 1169 audit_ever_enabled |= !!audit_default; 1170 1171 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1172 1173 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1174 INIT_LIST_HEAD(&audit_inode_hash[i]); 1175 1176 return 0; 1177 } 1178 __initcall(audit_init); 1179 1180 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1181 static int __init audit_enable(char *str) 1182 { 1183 audit_default = !!simple_strtol(str, NULL, 0); 1184 if (!audit_default) 1185 audit_initialized = AUDIT_DISABLED; 1186 1187 pr_info("%s\n", audit_default ? 1188 "enabled (after initialization)" : "disabled (until reboot)"); 1189 1190 return 1; 1191 } 1192 __setup("audit=", audit_enable); 1193 1194 /* Process kernel command-line parameter at boot time. 1195 * audit_backlog_limit=<n> */ 1196 static int __init audit_backlog_limit_set(char *str) 1197 { 1198 u32 audit_backlog_limit_arg; 1199 1200 pr_info("audit_backlog_limit: "); 1201 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1202 pr_cont("using default of %u, unable to parse %s\n", 1203 audit_backlog_limit, str); 1204 return 1; 1205 } 1206 1207 audit_backlog_limit = audit_backlog_limit_arg; 1208 pr_cont("%d\n", audit_backlog_limit); 1209 1210 return 1; 1211 } 1212 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1213 1214 static void audit_buffer_free(struct audit_buffer *ab) 1215 { 1216 unsigned long flags; 1217 1218 if (!ab) 1219 return; 1220 1221 if (ab->skb) 1222 kfree_skb(ab->skb); 1223 1224 spin_lock_irqsave(&audit_freelist_lock, flags); 1225 if (audit_freelist_count > AUDIT_MAXFREE) 1226 kfree(ab); 1227 else { 1228 audit_freelist_count++; 1229 list_add(&ab->list, &audit_freelist); 1230 } 1231 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1232 } 1233 1234 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1235 gfp_t gfp_mask, int type) 1236 { 1237 unsigned long flags; 1238 struct audit_buffer *ab = NULL; 1239 struct nlmsghdr *nlh; 1240 1241 spin_lock_irqsave(&audit_freelist_lock, flags); 1242 if (!list_empty(&audit_freelist)) { 1243 ab = list_entry(audit_freelist.next, 1244 struct audit_buffer, list); 1245 list_del(&ab->list); 1246 --audit_freelist_count; 1247 } 1248 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1249 1250 if (!ab) { 1251 ab = kmalloc(sizeof(*ab), gfp_mask); 1252 if (!ab) 1253 goto err; 1254 } 1255 1256 ab->ctx = ctx; 1257 ab->gfp_mask = gfp_mask; 1258 1259 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1260 if (!ab->skb) 1261 goto err; 1262 1263 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1264 if (!nlh) 1265 goto out_kfree_skb; 1266 1267 return ab; 1268 1269 out_kfree_skb: 1270 kfree_skb(ab->skb); 1271 ab->skb = NULL; 1272 err: 1273 audit_buffer_free(ab); 1274 return NULL; 1275 } 1276 1277 /** 1278 * audit_serial - compute a serial number for the audit record 1279 * 1280 * Compute a serial number for the audit record. Audit records are 1281 * written to user-space as soon as they are generated, so a complete 1282 * audit record may be written in several pieces. The timestamp of the 1283 * record and this serial number are used by the user-space tools to 1284 * determine which pieces belong to the same audit record. The 1285 * (timestamp,serial) tuple is unique for each syscall and is live from 1286 * syscall entry to syscall exit. 1287 * 1288 * NOTE: Another possibility is to store the formatted records off the 1289 * audit context (for those records that have a context), and emit them 1290 * all at syscall exit. However, this could delay the reporting of 1291 * significant errors until syscall exit (or never, if the system 1292 * halts). 1293 */ 1294 unsigned int audit_serial(void) 1295 { 1296 static atomic_t serial = ATOMIC_INIT(0); 1297 1298 return atomic_add_return(1, &serial); 1299 } 1300 1301 static inline void audit_get_stamp(struct audit_context *ctx, 1302 struct timespec *t, unsigned int *serial) 1303 { 1304 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1305 *t = CURRENT_TIME; 1306 *serial = audit_serial(); 1307 } 1308 } 1309 1310 /* 1311 * Wait for auditd to drain the queue a little 1312 */ 1313 static long wait_for_auditd(long sleep_time) 1314 { 1315 DECLARE_WAITQUEUE(wait, current); 1316 set_current_state(TASK_UNINTERRUPTIBLE); 1317 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1318 1319 if (audit_backlog_limit && 1320 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1321 sleep_time = schedule_timeout(sleep_time); 1322 1323 __set_current_state(TASK_RUNNING); 1324 remove_wait_queue(&audit_backlog_wait, &wait); 1325 1326 return sleep_time; 1327 } 1328 1329 /** 1330 * audit_log_start - obtain an audit buffer 1331 * @ctx: audit_context (may be NULL) 1332 * @gfp_mask: type of allocation 1333 * @type: audit message type 1334 * 1335 * Returns audit_buffer pointer on success or NULL on error. 1336 * 1337 * Obtain an audit buffer. This routine does locking to obtain the 1338 * audit buffer, but then no locking is required for calls to 1339 * audit_log_*format. If the task (ctx) is a task that is currently in a 1340 * syscall, then the syscall is marked as auditable and an audit record 1341 * will be written at syscall exit. If there is no associated task, then 1342 * task context (ctx) should be NULL. 1343 */ 1344 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1345 int type) 1346 { 1347 struct audit_buffer *ab = NULL; 1348 struct timespec t; 1349 unsigned int uninitialized_var(serial); 1350 int reserve = 5; /* Allow atomic callers to go up to five 1351 entries over the normal backlog limit */ 1352 unsigned long timeout_start = jiffies; 1353 1354 if (audit_initialized != AUDIT_INITIALIZED) 1355 return NULL; 1356 1357 if (unlikely(audit_filter_type(type))) 1358 return NULL; 1359 1360 if (gfp_mask & __GFP_WAIT) { 1361 if (audit_pid && audit_pid == current->pid) 1362 gfp_mask &= ~__GFP_WAIT; 1363 else 1364 reserve = 0; 1365 } 1366 1367 while (audit_backlog_limit 1368 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1369 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1370 long sleep_time; 1371 1372 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1373 if (sleep_time > 0) { 1374 sleep_time = wait_for_auditd(sleep_time); 1375 if (sleep_time > 0) 1376 continue; 1377 } 1378 } 1379 if (audit_rate_check() && printk_ratelimit()) 1380 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1381 skb_queue_len(&audit_skb_queue), 1382 audit_backlog_limit); 1383 audit_log_lost("backlog limit exceeded"); 1384 audit_backlog_wait_time = audit_backlog_wait_overflow; 1385 wake_up(&audit_backlog_wait); 1386 return NULL; 1387 } 1388 1389 if (!reserve) 1390 audit_backlog_wait_time = audit_backlog_wait_time_master; 1391 1392 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1393 if (!ab) { 1394 audit_log_lost("out of memory in audit_log_start"); 1395 return NULL; 1396 } 1397 1398 audit_get_stamp(ab->ctx, &t, &serial); 1399 1400 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1401 t.tv_sec, t.tv_nsec/1000000, serial); 1402 return ab; 1403 } 1404 1405 /** 1406 * audit_expand - expand skb in the audit buffer 1407 * @ab: audit_buffer 1408 * @extra: space to add at tail of the skb 1409 * 1410 * Returns 0 (no space) on failed expansion, or available space if 1411 * successful. 1412 */ 1413 static inline int audit_expand(struct audit_buffer *ab, int extra) 1414 { 1415 struct sk_buff *skb = ab->skb; 1416 int oldtail = skb_tailroom(skb); 1417 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1418 int newtail = skb_tailroom(skb); 1419 1420 if (ret < 0) { 1421 audit_log_lost("out of memory in audit_expand"); 1422 return 0; 1423 } 1424 1425 skb->truesize += newtail - oldtail; 1426 return newtail; 1427 } 1428 1429 /* 1430 * Format an audit message into the audit buffer. If there isn't enough 1431 * room in the audit buffer, more room will be allocated and vsnprint 1432 * will be called a second time. Currently, we assume that a printk 1433 * can't format message larger than 1024 bytes, so we don't either. 1434 */ 1435 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1436 va_list args) 1437 { 1438 int len, avail; 1439 struct sk_buff *skb; 1440 va_list args2; 1441 1442 if (!ab) 1443 return; 1444 1445 BUG_ON(!ab->skb); 1446 skb = ab->skb; 1447 avail = skb_tailroom(skb); 1448 if (avail == 0) { 1449 avail = audit_expand(ab, AUDIT_BUFSIZ); 1450 if (!avail) 1451 goto out; 1452 } 1453 va_copy(args2, args); 1454 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1455 if (len >= avail) { 1456 /* The printk buffer is 1024 bytes long, so if we get 1457 * here and AUDIT_BUFSIZ is at least 1024, then we can 1458 * log everything that printk could have logged. */ 1459 avail = audit_expand(ab, 1460 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1461 if (!avail) 1462 goto out_va_end; 1463 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1464 } 1465 if (len > 0) 1466 skb_put(skb, len); 1467 out_va_end: 1468 va_end(args2); 1469 out: 1470 return; 1471 } 1472 1473 /** 1474 * audit_log_format - format a message into the audit buffer. 1475 * @ab: audit_buffer 1476 * @fmt: format string 1477 * @...: optional parameters matching @fmt string 1478 * 1479 * All the work is done in audit_log_vformat. 1480 */ 1481 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1482 { 1483 va_list args; 1484 1485 if (!ab) 1486 return; 1487 va_start(args, fmt); 1488 audit_log_vformat(ab, fmt, args); 1489 va_end(args); 1490 } 1491 1492 /** 1493 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1494 * @ab: the audit_buffer 1495 * @buf: buffer to convert to hex 1496 * @len: length of @buf to be converted 1497 * 1498 * No return value; failure to expand is silently ignored. 1499 * 1500 * This function will take the passed buf and convert it into a string of 1501 * ascii hex digits. The new string is placed onto the skb. 1502 */ 1503 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1504 size_t len) 1505 { 1506 int i, avail, new_len; 1507 unsigned char *ptr; 1508 struct sk_buff *skb; 1509 1510 if (!ab) 1511 return; 1512 1513 BUG_ON(!ab->skb); 1514 skb = ab->skb; 1515 avail = skb_tailroom(skb); 1516 new_len = len<<1; 1517 if (new_len >= avail) { 1518 /* Round the buffer request up to the next multiple */ 1519 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1520 avail = audit_expand(ab, new_len); 1521 if (!avail) 1522 return; 1523 } 1524 1525 ptr = skb_tail_pointer(skb); 1526 for (i = 0; i < len; i++) 1527 ptr = hex_byte_pack_upper(ptr, buf[i]); 1528 *ptr = 0; 1529 skb_put(skb, len << 1); /* new string is twice the old string */ 1530 } 1531 1532 /* 1533 * Format a string of no more than slen characters into the audit buffer, 1534 * enclosed in quote marks. 1535 */ 1536 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1537 size_t slen) 1538 { 1539 int avail, new_len; 1540 unsigned char *ptr; 1541 struct sk_buff *skb; 1542 1543 if (!ab) 1544 return; 1545 1546 BUG_ON(!ab->skb); 1547 skb = ab->skb; 1548 avail = skb_tailroom(skb); 1549 new_len = slen + 3; /* enclosing quotes + null terminator */ 1550 if (new_len > avail) { 1551 avail = audit_expand(ab, new_len); 1552 if (!avail) 1553 return; 1554 } 1555 ptr = skb_tail_pointer(skb); 1556 *ptr++ = '"'; 1557 memcpy(ptr, string, slen); 1558 ptr += slen; 1559 *ptr++ = '"'; 1560 *ptr = 0; 1561 skb_put(skb, slen + 2); /* don't include null terminator */ 1562 } 1563 1564 /** 1565 * audit_string_contains_control - does a string need to be logged in hex 1566 * @string: string to be checked 1567 * @len: max length of the string to check 1568 */ 1569 int audit_string_contains_control(const char *string, size_t len) 1570 { 1571 const unsigned char *p; 1572 for (p = string; p < (const unsigned char *)string + len; p++) { 1573 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1574 return 1; 1575 } 1576 return 0; 1577 } 1578 1579 /** 1580 * audit_log_n_untrustedstring - log a string that may contain random characters 1581 * @ab: audit_buffer 1582 * @len: length of string (not including trailing null) 1583 * @string: string to be logged 1584 * 1585 * This code will escape a string that is passed to it if the string 1586 * contains a control character, unprintable character, double quote mark, 1587 * or a space. Unescaped strings will start and end with a double quote mark. 1588 * Strings that are escaped are printed in hex (2 digits per char). 1589 * 1590 * The caller specifies the number of characters in the string to log, which may 1591 * or may not be the entire string. 1592 */ 1593 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1594 size_t len) 1595 { 1596 if (audit_string_contains_control(string, len)) 1597 audit_log_n_hex(ab, string, len); 1598 else 1599 audit_log_n_string(ab, string, len); 1600 } 1601 1602 /** 1603 * audit_log_untrustedstring - log a string that may contain random characters 1604 * @ab: audit_buffer 1605 * @string: string to be logged 1606 * 1607 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1608 * determine string length. 1609 */ 1610 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1611 { 1612 audit_log_n_untrustedstring(ab, string, strlen(string)); 1613 } 1614 1615 /* This is a helper-function to print the escaped d_path */ 1616 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1617 const struct path *path) 1618 { 1619 char *p, *pathname; 1620 1621 if (prefix) 1622 audit_log_format(ab, "%s", prefix); 1623 1624 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1625 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1626 if (!pathname) { 1627 audit_log_string(ab, "<no_memory>"); 1628 return; 1629 } 1630 p = d_path(path, pathname, PATH_MAX+11); 1631 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1632 /* FIXME: can we save some information here? */ 1633 audit_log_string(ab, "<too_long>"); 1634 } else 1635 audit_log_untrustedstring(ab, p); 1636 kfree(pathname); 1637 } 1638 1639 void audit_log_session_info(struct audit_buffer *ab) 1640 { 1641 unsigned int sessionid = audit_get_sessionid(current); 1642 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1643 1644 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1645 } 1646 1647 void audit_log_key(struct audit_buffer *ab, char *key) 1648 { 1649 audit_log_format(ab, " key="); 1650 if (key) 1651 audit_log_untrustedstring(ab, key); 1652 else 1653 audit_log_format(ab, "(null)"); 1654 } 1655 1656 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1657 { 1658 int i; 1659 1660 audit_log_format(ab, " %s=", prefix); 1661 CAP_FOR_EACH_U32(i) { 1662 audit_log_format(ab, "%08x", 1663 cap->cap[CAP_LAST_U32 - i]); 1664 } 1665 } 1666 1667 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1668 { 1669 kernel_cap_t *perm = &name->fcap.permitted; 1670 kernel_cap_t *inh = &name->fcap.inheritable; 1671 int log = 0; 1672 1673 if (!cap_isclear(*perm)) { 1674 audit_log_cap(ab, "cap_fp", perm); 1675 log = 1; 1676 } 1677 if (!cap_isclear(*inh)) { 1678 audit_log_cap(ab, "cap_fi", inh); 1679 log = 1; 1680 } 1681 1682 if (log) 1683 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1684 name->fcap.fE, name->fcap_ver); 1685 } 1686 1687 static inline int audit_copy_fcaps(struct audit_names *name, 1688 const struct dentry *dentry) 1689 { 1690 struct cpu_vfs_cap_data caps; 1691 int rc; 1692 1693 if (!dentry) 1694 return 0; 1695 1696 rc = get_vfs_caps_from_disk(dentry, &caps); 1697 if (rc) 1698 return rc; 1699 1700 name->fcap.permitted = caps.permitted; 1701 name->fcap.inheritable = caps.inheritable; 1702 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1703 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1704 VFS_CAP_REVISION_SHIFT; 1705 1706 return 0; 1707 } 1708 1709 /* Copy inode data into an audit_names. */ 1710 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1711 const struct inode *inode) 1712 { 1713 name->ino = inode->i_ino; 1714 name->dev = inode->i_sb->s_dev; 1715 name->mode = inode->i_mode; 1716 name->uid = inode->i_uid; 1717 name->gid = inode->i_gid; 1718 name->rdev = inode->i_rdev; 1719 security_inode_getsecid(inode, &name->osid); 1720 audit_copy_fcaps(name, dentry); 1721 } 1722 1723 /** 1724 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1725 * @context: audit_context for the task 1726 * @n: audit_names structure with reportable details 1727 * @path: optional path to report instead of audit_names->name 1728 * @record_num: record number to report when handling a list of names 1729 * @call_panic: optional pointer to int that will be updated if secid fails 1730 */ 1731 void audit_log_name(struct audit_context *context, struct audit_names *n, 1732 struct path *path, int record_num, int *call_panic) 1733 { 1734 struct audit_buffer *ab; 1735 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1736 if (!ab) 1737 return; 1738 1739 audit_log_format(ab, "item=%d", record_num); 1740 1741 if (path) 1742 audit_log_d_path(ab, " name=", path); 1743 else if (n->name) { 1744 switch (n->name_len) { 1745 case AUDIT_NAME_FULL: 1746 /* log the full path */ 1747 audit_log_format(ab, " name="); 1748 audit_log_untrustedstring(ab, n->name->name); 1749 break; 1750 case 0: 1751 /* name was specified as a relative path and the 1752 * directory component is the cwd */ 1753 audit_log_d_path(ab, " name=", &context->pwd); 1754 break; 1755 default: 1756 /* log the name's directory component */ 1757 audit_log_format(ab, " name="); 1758 audit_log_n_untrustedstring(ab, n->name->name, 1759 n->name_len); 1760 } 1761 } else 1762 audit_log_format(ab, " name=(null)"); 1763 1764 if (n->ino != AUDIT_INO_UNSET) 1765 audit_log_format(ab, " inode=%lu" 1766 " dev=%02x:%02x mode=%#ho" 1767 " ouid=%u ogid=%u rdev=%02x:%02x", 1768 n->ino, 1769 MAJOR(n->dev), 1770 MINOR(n->dev), 1771 n->mode, 1772 from_kuid(&init_user_ns, n->uid), 1773 from_kgid(&init_user_ns, n->gid), 1774 MAJOR(n->rdev), 1775 MINOR(n->rdev)); 1776 if (n->osid != 0) { 1777 char *ctx = NULL; 1778 u32 len; 1779 if (security_secid_to_secctx( 1780 n->osid, &ctx, &len)) { 1781 audit_log_format(ab, " osid=%u", n->osid); 1782 if (call_panic) 1783 *call_panic = 2; 1784 } else { 1785 audit_log_format(ab, " obj=%s", ctx); 1786 security_release_secctx(ctx, len); 1787 } 1788 } 1789 1790 /* log the audit_names record type */ 1791 audit_log_format(ab, " nametype="); 1792 switch(n->type) { 1793 case AUDIT_TYPE_NORMAL: 1794 audit_log_format(ab, "NORMAL"); 1795 break; 1796 case AUDIT_TYPE_PARENT: 1797 audit_log_format(ab, "PARENT"); 1798 break; 1799 case AUDIT_TYPE_CHILD_DELETE: 1800 audit_log_format(ab, "DELETE"); 1801 break; 1802 case AUDIT_TYPE_CHILD_CREATE: 1803 audit_log_format(ab, "CREATE"); 1804 break; 1805 default: 1806 audit_log_format(ab, "UNKNOWN"); 1807 break; 1808 } 1809 1810 audit_log_fcaps(ab, n); 1811 audit_log_end(ab); 1812 } 1813 1814 int audit_log_task_context(struct audit_buffer *ab) 1815 { 1816 char *ctx = NULL; 1817 unsigned len; 1818 int error; 1819 u32 sid; 1820 1821 security_task_getsecid(current, &sid); 1822 if (!sid) 1823 return 0; 1824 1825 error = security_secid_to_secctx(sid, &ctx, &len); 1826 if (error) { 1827 if (error != -EINVAL) 1828 goto error_path; 1829 return 0; 1830 } 1831 1832 audit_log_format(ab, " subj=%s", ctx); 1833 security_release_secctx(ctx, len); 1834 return 0; 1835 1836 error_path: 1837 audit_panic("error in audit_log_task_context"); 1838 return error; 1839 } 1840 EXPORT_SYMBOL(audit_log_task_context); 1841 1842 void audit_log_d_path_exe(struct audit_buffer *ab, 1843 struct mm_struct *mm) 1844 { 1845 struct file *exe_file; 1846 1847 if (!mm) 1848 goto out_null; 1849 1850 exe_file = get_mm_exe_file(mm); 1851 if (!exe_file) 1852 goto out_null; 1853 1854 audit_log_d_path(ab, " exe=", &exe_file->f_path); 1855 fput(exe_file); 1856 return; 1857 out_null: 1858 audit_log_format(ab, " exe=(null)"); 1859 } 1860 1861 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1862 { 1863 const struct cred *cred; 1864 char comm[sizeof(tsk->comm)]; 1865 char *tty; 1866 1867 if (!ab) 1868 return; 1869 1870 /* tsk == current */ 1871 cred = current_cred(); 1872 1873 spin_lock_irq(&tsk->sighand->siglock); 1874 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1875 tty = tsk->signal->tty->name; 1876 else 1877 tty = "(none)"; 1878 spin_unlock_irq(&tsk->sighand->siglock); 1879 1880 audit_log_format(ab, 1881 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1882 " euid=%u suid=%u fsuid=%u" 1883 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1884 task_ppid_nr(tsk), 1885 task_pid_nr(tsk), 1886 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1887 from_kuid(&init_user_ns, cred->uid), 1888 from_kgid(&init_user_ns, cred->gid), 1889 from_kuid(&init_user_ns, cred->euid), 1890 from_kuid(&init_user_ns, cred->suid), 1891 from_kuid(&init_user_ns, cred->fsuid), 1892 from_kgid(&init_user_ns, cred->egid), 1893 from_kgid(&init_user_ns, cred->sgid), 1894 from_kgid(&init_user_ns, cred->fsgid), 1895 tty, audit_get_sessionid(tsk)); 1896 1897 audit_log_format(ab, " comm="); 1898 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1899 1900 audit_log_d_path_exe(ab, tsk->mm); 1901 audit_log_task_context(ab); 1902 } 1903 EXPORT_SYMBOL(audit_log_task_info); 1904 1905 /** 1906 * audit_log_link_denied - report a link restriction denial 1907 * @operation: specific link operation 1908 * @link: the path that triggered the restriction 1909 */ 1910 void audit_log_link_denied(const char *operation, struct path *link) 1911 { 1912 struct audit_buffer *ab; 1913 struct audit_names *name; 1914 1915 name = kzalloc(sizeof(*name), GFP_NOFS); 1916 if (!name) 1917 return; 1918 1919 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1920 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1921 AUDIT_ANOM_LINK); 1922 if (!ab) 1923 goto out; 1924 audit_log_format(ab, "op=%s", operation); 1925 audit_log_task_info(ab, current); 1926 audit_log_format(ab, " res=0"); 1927 audit_log_end(ab); 1928 1929 /* Generate AUDIT_PATH record with object. */ 1930 name->type = AUDIT_TYPE_NORMAL; 1931 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 1932 audit_log_name(current->audit_context, name, link, 0, NULL); 1933 out: 1934 kfree(name); 1935 } 1936 1937 /** 1938 * audit_log_end - end one audit record 1939 * @ab: the audit_buffer 1940 * 1941 * netlink_unicast() cannot be called inside an irq context because it blocks 1942 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1943 * on a queue and a tasklet is scheduled to remove them from the queue outside 1944 * the irq context. May be called in any context. 1945 */ 1946 void audit_log_end(struct audit_buffer *ab) 1947 { 1948 if (!ab) 1949 return; 1950 if (!audit_rate_check()) { 1951 audit_log_lost("rate limit exceeded"); 1952 } else { 1953 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1954 1955 nlh->nlmsg_len = ab->skb->len; 1956 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); 1957 1958 /* 1959 * The original kaudit unicast socket sends up messages with 1960 * nlmsg_len set to the payload length rather than the entire 1961 * message length. This breaks the standard set by netlink. 1962 * The existing auditd daemon assumes this breakage. Fixing 1963 * this would require co-ordinating a change in the established 1964 * protocol between the kaudit kernel subsystem and the auditd 1965 * userspace code. 1966 */ 1967 nlh->nlmsg_len -= NLMSG_HDRLEN; 1968 1969 if (audit_pid) { 1970 skb_queue_tail(&audit_skb_queue, ab->skb); 1971 wake_up_interruptible(&kauditd_wait); 1972 } else { 1973 audit_printk_skb(ab->skb); 1974 } 1975 ab->skb = NULL; 1976 } 1977 audit_buffer_free(ab); 1978 } 1979 1980 /** 1981 * audit_log - Log an audit record 1982 * @ctx: audit context 1983 * @gfp_mask: type of allocation 1984 * @type: audit message type 1985 * @fmt: format string to use 1986 * @...: variable parameters matching the format string 1987 * 1988 * This is a convenience function that calls audit_log_start, 1989 * audit_log_vformat, and audit_log_end. It may be called 1990 * in any context. 1991 */ 1992 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1993 const char *fmt, ...) 1994 { 1995 struct audit_buffer *ab; 1996 va_list args; 1997 1998 ab = audit_log_start(ctx, gfp_mask, type); 1999 if (ab) { 2000 va_start(args, fmt); 2001 audit_log_vformat(ab, fmt, args); 2002 va_end(args); 2003 audit_log_end(ab); 2004 } 2005 } 2006 2007 #ifdef CONFIG_SECURITY 2008 /** 2009 * audit_log_secctx - Converts and logs SELinux context 2010 * @ab: audit_buffer 2011 * @secid: security number 2012 * 2013 * This is a helper function that calls security_secid_to_secctx to convert 2014 * secid to secctx and then adds the (converted) SELinux context to the audit 2015 * log by calling audit_log_format, thus also preventing leak of internal secid 2016 * to userspace. If secid cannot be converted audit_panic is called. 2017 */ 2018 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2019 { 2020 u32 len; 2021 char *secctx; 2022 2023 if (security_secid_to_secctx(secid, &secctx, &len)) { 2024 audit_panic("Cannot convert secid to context"); 2025 } else { 2026 audit_log_format(ab, " obj=%s", secctx); 2027 security_release_secctx(secctx, len); 2028 } 2029 } 2030 EXPORT_SYMBOL(audit_log_secctx); 2031 #endif 2032 2033 EXPORT_SYMBOL(audit_log_start); 2034 EXPORT_SYMBOL(audit_log_end); 2035 EXPORT_SYMBOL(audit_log_format); 2036 EXPORT_SYMBOL(audit_log); 2037