xref: /openbmc/linux/kernel/audit.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static unsigned int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	struct net *net;
186 	struct sk_buff *skb;
187 };
188 
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time_master, timeout);
342 }
343 
344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	int attempts = 0;
409 #define AUDITD_RETRIES 5
410 
411 restart:
412 	/* take a reference in case we can't send it and we want to hold it */
413 	skb_get(skb);
414 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
415 	if (err < 0) {
416 		pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
417 		       audit_pid, err);
418 		if (audit_pid) {
419 			if (err == -ECONNREFUSED || err == -EPERM
420 			    || ++attempts >= AUDITD_RETRIES) {
421 				char s[32];
422 
423 				snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
424 				audit_log_lost(s);
425 				audit_pid = 0;
426 				audit_sock = NULL;
427 			} else {
428 				pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
429 					attempts, audit_pid);
430 				set_current_state(TASK_INTERRUPTIBLE);
431 				schedule();
432 				goto restart;
433 			}
434 		}
435 		/* we might get lucky and get this in the next auditd */
436 		audit_hold_skb(skb);
437 	} else
438 		/* drop the extra reference if sent ok */
439 		consume_skb(skb);
440 }
441 
442 /*
443  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
444  *
445  * This function doesn't consume an skb as might be expected since it has to
446  * copy it anyways.
447  */
448 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
449 {
450 	struct sk_buff		*copy;
451 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
452 	struct sock		*sock = aunet->nlsk;
453 
454 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
455 		return;
456 
457 	/*
458 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
459 	 * using skb_get() is necessary because non-standard mods are made to
460 	 * the skb by the original kaudit unicast socket send routine.  The
461 	 * existing auditd daemon assumes this breakage.  Fixing this would
462 	 * require co-ordinating a change in the established protocol between
463 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
464 	 * no reason for new multicast clients to continue with this
465 	 * non-compliance.
466 	 */
467 	copy = skb_copy(skb, gfp_mask);
468 	if (!copy)
469 		return;
470 
471 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
472 }
473 
474 /*
475  * flush_hold_queue - empty the hold queue if auditd appears
476  *
477  * If auditd just started, drain the queue of messages already
478  * sent to syslog/printk.  Remember loss here is ok.  We already
479  * called audit_log_lost() if it didn't go out normally.  so the
480  * race between the skb_dequeue and the next check for audit_pid
481  * doesn't matter.
482  *
483  * If you ever find kauditd to be too slow we can get a perf win
484  * by doing our own locking and keeping better track if there
485  * are messages in this queue.  I don't see the need now, but
486  * in 5 years when I want to play with this again I'll see this
487  * note and still have no friggin idea what i'm thinking today.
488  */
489 static void flush_hold_queue(void)
490 {
491 	struct sk_buff *skb;
492 
493 	if (!audit_default || !audit_pid)
494 		return;
495 
496 	skb = skb_dequeue(&audit_skb_hold_queue);
497 	if (likely(!skb))
498 		return;
499 
500 	while (skb && audit_pid) {
501 		kauditd_send_skb(skb);
502 		skb = skb_dequeue(&audit_skb_hold_queue);
503 	}
504 
505 	/*
506 	 * if auditd just disappeared but we
507 	 * dequeued an skb we need to drop ref
508 	 */
509 	consume_skb(skb);
510 }
511 
512 static int kauditd_thread(void *dummy)
513 {
514 	set_freezable();
515 	while (!kthread_should_stop()) {
516 		struct sk_buff *skb;
517 
518 		flush_hold_queue();
519 
520 		skb = skb_dequeue(&audit_skb_queue);
521 
522 		if (skb) {
523 			if (!audit_backlog_limit ||
524 			    (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
525 				wake_up(&audit_backlog_wait);
526 			if (audit_pid)
527 				kauditd_send_skb(skb);
528 			else
529 				audit_printk_skb(skb);
530 			continue;
531 		}
532 
533 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
534 	}
535 	return 0;
536 }
537 
538 int audit_send_list(void *_dest)
539 {
540 	struct audit_netlink_list *dest = _dest;
541 	struct sk_buff *skb;
542 	struct net *net = dest->net;
543 	struct audit_net *aunet = net_generic(net, audit_net_id);
544 
545 	/* wait for parent to finish and send an ACK */
546 	mutex_lock(&audit_cmd_mutex);
547 	mutex_unlock(&audit_cmd_mutex);
548 
549 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
550 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
551 
552 	put_net(net);
553 	kfree(dest);
554 
555 	return 0;
556 }
557 
558 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
559 				 int multi, const void *payload, int size)
560 {
561 	struct sk_buff	*skb;
562 	struct nlmsghdr	*nlh;
563 	void		*data;
564 	int		flags = multi ? NLM_F_MULTI : 0;
565 	int		t     = done  ? NLMSG_DONE  : type;
566 
567 	skb = nlmsg_new(size, GFP_KERNEL);
568 	if (!skb)
569 		return NULL;
570 
571 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
572 	if (!nlh)
573 		goto out_kfree_skb;
574 	data = nlmsg_data(nlh);
575 	memcpy(data, payload, size);
576 	return skb;
577 
578 out_kfree_skb:
579 	kfree_skb(skb);
580 	return NULL;
581 }
582 
583 static int audit_send_reply_thread(void *arg)
584 {
585 	struct audit_reply *reply = (struct audit_reply *)arg;
586 	struct net *net = reply->net;
587 	struct audit_net *aunet = net_generic(net, audit_net_id);
588 
589 	mutex_lock(&audit_cmd_mutex);
590 	mutex_unlock(&audit_cmd_mutex);
591 
592 	/* Ignore failure. It'll only happen if the sender goes away,
593 	   because our timeout is set to infinite. */
594 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
595 	put_net(net);
596 	kfree(reply);
597 	return 0;
598 }
599 /**
600  * audit_send_reply - send an audit reply message via netlink
601  * @request_skb: skb of request we are replying to (used to target the reply)
602  * @seq: sequence number
603  * @type: audit message type
604  * @done: done (last) flag
605  * @multi: multi-part message flag
606  * @payload: payload data
607  * @size: payload size
608  *
609  * Allocates an skb, builds the netlink message, and sends it to the port id.
610  * No failure notifications.
611  */
612 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
613 			     int multi, const void *payload, int size)
614 {
615 	u32 portid = NETLINK_CB(request_skb).portid;
616 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
617 	struct sk_buff *skb;
618 	struct task_struct *tsk;
619 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
620 					    GFP_KERNEL);
621 
622 	if (!reply)
623 		return;
624 
625 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
626 	if (!skb)
627 		goto out;
628 
629 	reply->net = get_net(net);
630 	reply->portid = portid;
631 	reply->skb = skb;
632 
633 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
634 	if (!IS_ERR(tsk))
635 		return;
636 	kfree_skb(skb);
637 out:
638 	kfree(reply);
639 }
640 
641 /*
642  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
643  * control messages.
644  */
645 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
646 {
647 	int err = 0;
648 
649 	/* Only support initial user namespace for now. */
650 	/*
651 	 * We return ECONNREFUSED because it tricks userspace into thinking
652 	 * that audit was not configured into the kernel.  Lots of users
653 	 * configure their PAM stack (because that's what the distro does)
654 	 * to reject login if unable to send messages to audit.  If we return
655 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
656 	 * configured in and will let login proceed.  If we return EPERM
657 	 * userspace will reject all logins.  This should be removed when we
658 	 * support non init namespaces!!
659 	 */
660 	if (current_user_ns() != &init_user_ns)
661 		return -ECONNREFUSED;
662 
663 	switch (msg_type) {
664 	case AUDIT_LIST:
665 	case AUDIT_ADD:
666 	case AUDIT_DEL:
667 		return -EOPNOTSUPP;
668 	case AUDIT_GET:
669 	case AUDIT_SET:
670 	case AUDIT_GET_FEATURE:
671 	case AUDIT_SET_FEATURE:
672 	case AUDIT_LIST_RULES:
673 	case AUDIT_ADD_RULE:
674 	case AUDIT_DEL_RULE:
675 	case AUDIT_SIGNAL_INFO:
676 	case AUDIT_TTY_GET:
677 	case AUDIT_TTY_SET:
678 	case AUDIT_TRIM:
679 	case AUDIT_MAKE_EQUIV:
680 		/* Only support auditd and auditctl in initial pid namespace
681 		 * for now. */
682 		if (task_active_pid_ns(current) != &init_pid_ns)
683 			return -EPERM;
684 
685 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
686 			err = -EPERM;
687 		break;
688 	case AUDIT_USER:
689 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
690 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
691 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
692 			err = -EPERM;
693 		break;
694 	default:  /* bad msg */
695 		err = -EINVAL;
696 	}
697 
698 	return err;
699 }
700 
701 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
702 {
703 	uid_t uid = from_kuid(&init_user_ns, current_uid());
704 	pid_t pid = task_tgid_nr(current);
705 
706 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
707 		*ab = NULL;
708 		return;
709 	}
710 
711 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
712 	if (unlikely(!*ab))
713 		return;
714 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
715 	audit_log_session_info(*ab);
716 	audit_log_task_context(*ab);
717 }
718 
719 int is_audit_feature_set(int i)
720 {
721 	return af.features & AUDIT_FEATURE_TO_MASK(i);
722 }
723 
724 
725 static int audit_get_feature(struct sk_buff *skb)
726 {
727 	u32 seq;
728 
729 	seq = nlmsg_hdr(skb)->nlmsg_seq;
730 
731 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
732 
733 	return 0;
734 }
735 
736 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
737 				     u32 old_lock, u32 new_lock, int res)
738 {
739 	struct audit_buffer *ab;
740 
741 	if (audit_enabled == AUDIT_OFF)
742 		return;
743 
744 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
745 	audit_log_task_info(ab, current);
746 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
747 			 audit_feature_names[which], !!old_feature, !!new_feature,
748 			 !!old_lock, !!new_lock, res);
749 	audit_log_end(ab);
750 }
751 
752 static int audit_set_feature(struct sk_buff *skb)
753 {
754 	struct audit_features *uaf;
755 	int i;
756 
757 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
758 	uaf = nlmsg_data(nlmsg_hdr(skb));
759 
760 	/* if there is ever a version 2 we should handle that here */
761 
762 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
763 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
764 		u32 old_feature, new_feature, old_lock, new_lock;
765 
766 		/* if we are not changing this feature, move along */
767 		if (!(feature & uaf->mask))
768 			continue;
769 
770 		old_feature = af.features & feature;
771 		new_feature = uaf->features & feature;
772 		new_lock = (uaf->lock | af.lock) & feature;
773 		old_lock = af.lock & feature;
774 
775 		/* are we changing a locked feature? */
776 		if (old_lock && (new_feature != old_feature)) {
777 			audit_log_feature_change(i, old_feature, new_feature,
778 						 old_lock, new_lock, 0);
779 			return -EPERM;
780 		}
781 	}
782 	/* nothing invalid, do the changes */
783 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
784 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
785 		u32 old_feature, new_feature, old_lock, new_lock;
786 
787 		/* if we are not changing this feature, move along */
788 		if (!(feature & uaf->mask))
789 			continue;
790 
791 		old_feature = af.features & feature;
792 		new_feature = uaf->features & feature;
793 		old_lock = af.lock & feature;
794 		new_lock = (uaf->lock | af.lock) & feature;
795 
796 		if (new_feature != old_feature)
797 			audit_log_feature_change(i, old_feature, new_feature,
798 						 old_lock, new_lock, 1);
799 
800 		if (new_feature)
801 			af.features |= feature;
802 		else
803 			af.features &= ~feature;
804 		af.lock |= new_lock;
805 	}
806 
807 	return 0;
808 }
809 
810 static int audit_replace(pid_t pid)
811 {
812 	struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
813 					       &pid, sizeof(pid));
814 
815 	if (!skb)
816 		return -ENOMEM;
817 	return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
818 }
819 
820 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
821 {
822 	u32			seq;
823 	void			*data;
824 	int			err;
825 	struct audit_buffer	*ab;
826 	u16			msg_type = nlh->nlmsg_type;
827 	struct audit_sig_info   *sig_data;
828 	char			*ctx = NULL;
829 	u32			len;
830 
831 	err = audit_netlink_ok(skb, msg_type);
832 	if (err)
833 		return err;
834 
835 	/* As soon as there's any sign of userspace auditd,
836 	 * start kauditd to talk to it */
837 	if (!kauditd_task) {
838 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
839 		if (IS_ERR(kauditd_task)) {
840 			err = PTR_ERR(kauditd_task);
841 			kauditd_task = NULL;
842 			return err;
843 		}
844 	}
845 	seq  = nlh->nlmsg_seq;
846 	data = nlmsg_data(nlh);
847 
848 	switch (msg_type) {
849 	case AUDIT_GET: {
850 		struct audit_status	s;
851 		memset(&s, 0, sizeof(s));
852 		s.enabled		= audit_enabled;
853 		s.failure		= audit_failure;
854 		s.pid			= audit_pid;
855 		s.rate_limit		= audit_rate_limit;
856 		s.backlog_limit		= audit_backlog_limit;
857 		s.lost			= atomic_read(&audit_lost);
858 		s.backlog		= skb_queue_len(&audit_skb_queue);
859 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
860 		s.backlog_wait_time	= audit_backlog_wait_time_master;
861 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
862 		break;
863 	}
864 	case AUDIT_SET: {
865 		struct audit_status	s;
866 		memset(&s, 0, sizeof(s));
867 		/* guard against past and future API changes */
868 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
869 		if (s.mask & AUDIT_STATUS_ENABLED) {
870 			err = audit_set_enabled(s.enabled);
871 			if (err < 0)
872 				return err;
873 		}
874 		if (s.mask & AUDIT_STATUS_FAILURE) {
875 			err = audit_set_failure(s.failure);
876 			if (err < 0)
877 				return err;
878 		}
879 		if (s.mask & AUDIT_STATUS_PID) {
880 			/* NOTE: we are using task_tgid_vnr() below because
881 			 *       the s.pid value is relative to the namespace
882 			 *       of the caller; at present this doesn't matter
883 			 *       much since you can really only run auditd
884 			 *       from the initial pid namespace, but something
885 			 *       to keep in mind if this changes */
886 			int new_pid = s.pid;
887 			pid_t requesting_pid = task_tgid_vnr(current);
888 
889 			if ((!new_pid) && (requesting_pid != audit_pid)) {
890 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
891 				return -EACCES;
892 			}
893 			if (audit_pid && new_pid &&
894 			    audit_replace(requesting_pid) != -ECONNREFUSED) {
895 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
896 				return -EEXIST;
897 			}
898 			if (audit_enabled != AUDIT_OFF)
899 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
900 			audit_pid = new_pid;
901 			audit_nlk_portid = NETLINK_CB(skb).portid;
902 			audit_sock = skb->sk;
903 		}
904 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
905 			err = audit_set_rate_limit(s.rate_limit);
906 			if (err < 0)
907 				return err;
908 		}
909 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
910 			err = audit_set_backlog_limit(s.backlog_limit);
911 			if (err < 0)
912 				return err;
913 		}
914 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
915 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
916 				return -EINVAL;
917 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
918 				return -EINVAL;
919 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
920 			if (err < 0)
921 				return err;
922 		}
923 		break;
924 	}
925 	case AUDIT_GET_FEATURE:
926 		err = audit_get_feature(skb);
927 		if (err)
928 			return err;
929 		break;
930 	case AUDIT_SET_FEATURE:
931 		err = audit_set_feature(skb);
932 		if (err)
933 			return err;
934 		break;
935 	case AUDIT_USER:
936 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
937 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
938 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
939 			return 0;
940 
941 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
942 		if (err == 1) { /* match or error */
943 			err = 0;
944 			if (msg_type == AUDIT_USER_TTY) {
945 				err = tty_audit_push();
946 				if (err)
947 					break;
948 			}
949 			mutex_unlock(&audit_cmd_mutex);
950 			audit_log_common_recv_msg(&ab, msg_type);
951 			if (msg_type != AUDIT_USER_TTY)
952 				audit_log_format(ab, " msg='%.*s'",
953 						 AUDIT_MESSAGE_TEXT_MAX,
954 						 (char *)data);
955 			else {
956 				int size;
957 
958 				audit_log_format(ab, " data=");
959 				size = nlmsg_len(nlh);
960 				if (size > 0 &&
961 				    ((unsigned char *)data)[size - 1] == '\0')
962 					size--;
963 				audit_log_n_untrustedstring(ab, data, size);
964 			}
965 			audit_set_portid(ab, NETLINK_CB(skb).portid);
966 			audit_log_end(ab);
967 			mutex_lock(&audit_cmd_mutex);
968 		}
969 		break;
970 	case AUDIT_ADD_RULE:
971 	case AUDIT_DEL_RULE:
972 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
973 			return -EINVAL;
974 		if (audit_enabled == AUDIT_LOCKED) {
975 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
976 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
977 			audit_log_end(ab);
978 			return -EPERM;
979 		}
980 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
981 					   seq, data, nlmsg_len(nlh));
982 		break;
983 	case AUDIT_LIST_RULES:
984 		err = audit_list_rules_send(skb, seq);
985 		break;
986 	case AUDIT_TRIM:
987 		audit_trim_trees();
988 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
989 		audit_log_format(ab, " op=trim res=1");
990 		audit_log_end(ab);
991 		break;
992 	case AUDIT_MAKE_EQUIV: {
993 		void *bufp = data;
994 		u32 sizes[2];
995 		size_t msglen = nlmsg_len(nlh);
996 		char *old, *new;
997 
998 		err = -EINVAL;
999 		if (msglen < 2 * sizeof(u32))
1000 			break;
1001 		memcpy(sizes, bufp, 2 * sizeof(u32));
1002 		bufp += 2 * sizeof(u32);
1003 		msglen -= 2 * sizeof(u32);
1004 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1005 		if (IS_ERR(old)) {
1006 			err = PTR_ERR(old);
1007 			break;
1008 		}
1009 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1010 		if (IS_ERR(new)) {
1011 			err = PTR_ERR(new);
1012 			kfree(old);
1013 			break;
1014 		}
1015 		/* OK, here comes... */
1016 		err = audit_tag_tree(old, new);
1017 
1018 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1019 
1020 		audit_log_format(ab, " op=make_equiv old=");
1021 		audit_log_untrustedstring(ab, old);
1022 		audit_log_format(ab, " new=");
1023 		audit_log_untrustedstring(ab, new);
1024 		audit_log_format(ab, " res=%d", !err);
1025 		audit_log_end(ab);
1026 		kfree(old);
1027 		kfree(new);
1028 		break;
1029 	}
1030 	case AUDIT_SIGNAL_INFO:
1031 		len = 0;
1032 		if (audit_sig_sid) {
1033 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1034 			if (err)
1035 				return err;
1036 		}
1037 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1038 		if (!sig_data) {
1039 			if (audit_sig_sid)
1040 				security_release_secctx(ctx, len);
1041 			return -ENOMEM;
1042 		}
1043 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1044 		sig_data->pid = audit_sig_pid;
1045 		if (audit_sig_sid) {
1046 			memcpy(sig_data->ctx, ctx, len);
1047 			security_release_secctx(ctx, len);
1048 		}
1049 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1050 				 sig_data, sizeof(*sig_data) + len);
1051 		kfree(sig_data);
1052 		break;
1053 	case AUDIT_TTY_GET: {
1054 		struct audit_tty_status s;
1055 		unsigned int t;
1056 
1057 		t = READ_ONCE(current->signal->audit_tty);
1058 		s.enabled = t & AUDIT_TTY_ENABLE;
1059 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1060 
1061 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1062 		break;
1063 	}
1064 	case AUDIT_TTY_SET: {
1065 		struct audit_tty_status s, old;
1066 		struct audit_buffer	*ab;
1067 		unsigned int t;
1068 
1069 		memset(&s, 0, sizeof(s));
1070 		/* guard against past and future API changes */
1071 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1072 		/* check if new data is valid */
1073 		if ((s.enabled != 0 && s.enabled != 1) ||
1074 		    (s.log_passwd != 0 && s.log_passwd != 1))
1075 			err = -EINVAL;
1076 
1077 		if (err)
1078 			t = READ_ONCE(current->signal->audit_tty);
1079 		else {
1080 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1081 			t = xchg(&current->signal->audit_tty, t);
1082 		}
1083 		old.enabled = t & AUDIT_TTY_ENABLE;
1084 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1085 
1086 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1087 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1088 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1089 				 old.enabled, s.enabled, old.log_passwd,
1090 				 s.log_passwd, !err);
1091 		audit_log_end(ab);
1092 		break;
1093 	}
1094 	default:
1095 		err = -EINVAL;
1096 		break;
1097 	}
1098 
1099 	return err < 0 ? err : 0;
1100 }
1101 
1102 /*
1103  * Get message from skb.  Each message is processed by audit_receive_msg.
1104  * Malformed skbs with wrong length are discarded silently.
1105  */
1106 static void audit_receive_skb(struct sk_buff *skb)
1107 {
1108 	struct nlmsghdr *nlh;
1109 	/*
1110 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1111 	 * if the nlmsg_len was not aligned
1112 	 */
1113 	int len;
1114 	int err;
1115 
1116 	nlh = nlmsg_hdr(skb);
1117 	len = skb->len;
1118 
1119 	while (nlmsg_ok(nlh, len)) {
1120 		err = audit_receive_msg(skb, nlh);
1121 		/* if err or if this message says it wants a response */
1122 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1123 			netlink_ack(skb, nlh, err);
1124 
1125 		nlh = nlmsg_next(nlh, &len);
1126 	}
1127 }
1128 
1129 /* Receive messages from netlink socket. */
1130 static void audit_receive(struct sk_buff  *skb)
1131 {
1132 	mutex_lock(&audit_cmd_mutex);
1133 	audit_receive_skb(skb);
1134 	mutex_unlock(&audit_cmd_mutex);
1135 }
1136 
1137 /* Run custom bind function on netlink socket group connect or bind requests. */
1138 static int audit_bind(struct net *net, int group)
1139 {
1140 	if (!capable(CAP_AUDIT_READ))
1141 		return -EPERM;
1142 
1143 	return 0;
1144 }
1145 
1146 static int __net_init audit_net_init(struct net *net)
1147 {
1148 	struct netlink_kernel_cfg cfg = {
1149 		.input	= audit_receive,
1150 		.bind	= audit_bind,
1151 		.flags	= NL_CFG_F_NONROOT_RECV,
1152 		.groups	= AUDIT_NLGRP_MAX,
1153 	};
1154 
1155 	struct audit_net *aunet = net_generic(net, audit_net_id);
1156 
1157 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1158 	if (aunet->nlsk == NULL) {
1159 		audit_panic("cannot initialize netlink socket in namespace");
1160 		return -ENOMEM;
1161 	}
1162 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1163 	return 0;
1164 }
1165 
1166 static void __net_exit audit_net_exit(struct net *net)
1167 {
1168 	struct audit_net *aunet = net_generic(net, audit_net_id);
1169 	struct sock *sock = aunet->nlsk;
1170 	if (sock == audit_sock) {
1171 		audit_pid = 0;
1172 		audit_sock = NULL;
1173 	}
1174 
1175 	netlink_kernel_release(sock);
1176 	aunet->nlsk = NULL;
1177 }
1178 
1179 static struct pernet_operations audit_net_ops __net_initdata = {
1180 	.init = audit_net_init,
1181 	.exit = audit_net_exit,
1182 	.id = &audit_net_id,
1183 	.size = sizeof(struct audit_net),
1184 };
1185 
1186 /* Initialize audit support at boot time. */
1187 static int __init audit_init(void)
1188 {
1189 	int i;
1190 
1191 	if (audit_initialized == AUDIT_DISABLED)
1192 		return 0;
1193 
1194 	pr_info("initializing netlink subsys (%s)\n",
1195 		audit_default ? "enabled" : "disabled");
1196 	register_pernet_subsys(&audit_net_ops);
1197 
1198 	skb_queue_head_init(&audit_skb_queue);
1199 	skb_queue_head_init(&audit_skb_hold_queue);
1200 	audit_initialized = AUDIT_INITIALIZED;
1201 	audit_enabled = audit_default;
1202 	audit_ever_enabled |= !!audit_default;
1203 
1204 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1205 
1206 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1207 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1208 
1209 	return 0;
1210 }
1211 __initcall(audit_init);
1212 
1213 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1214 static int __init audit_enable(char *str)
1215 {
1216 	audit_default = !!simple_strtol(str, NULL, 0);
1217 	if (!audit_default)
1218 		audit_initialized = AUDIT_DISABLED;
1219 
1220 	pr_info("%s\n", audit_default ?
1221 		"enabled (after initialization)" : "disabled (until reboot)");
1222 
1223 	return 1;
1224 }
1225 __setup("audit=", audit_enable);
1226 
1227 /* Process kernel command-line parameter at boot time.
1228  * audit_backlog_limit=<n> */
1229 static int __init audit_backlog_limit_set(char *str)
1230 {
1231 	u32 audit_backlog_limit_arg;
1232 
1233 	pr_info("audit_backlog_limit: ");
1234 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1235 		pr_cont("using default of %u, unable to parse %s\n",
1236 			audit_backlog_limit, str);
1237 		return 1;
1238 	}
1239 
1240 	audit_backlog_limit = audit_backlog_limit_arg;
1241 	pr_cont("%d\n", audit_backlog_limit);
1242 
1243 	return 1;
1244 }
1245 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1246 
1247 static void audit_buffer_free(struct audit_buffer *ab)
1248 {
1249 	unsigned long flags;
1250 
1251 	if (!ab)
1252 		return;
1253 
1254 	kfree_skb(ab->skb);
1255 	spin_lock_irqsave(&audit_freelist_lock, flags);
1256 	if (audit_freelist_count > AUDIT_MAXFREE)
1257 		kfree(ab);
1258 	else {
1259 		audit_freelist_count++;
1260 		list_add(&ab->list, &audit_freelist);
1261 	}
1262 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1263 }
1264 
1265 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1266 						gfp_t gfp_mask, int type)
1267 {
1268 	unsigned long flags;
1269 	struct audit_buffer *ab = NULL;
1270 	struct nlmsghdr *nlh;
1271 
1272 	spin_lock_irqsave(&audit_freelist_lock, flags);
1273 	if (!list_empty(&audit_freelist)) {
1274 		ab = list_entry(audit_freelist.next,
1275 				struct audit_buffer, list);
1276 		list_del(&ab->list);
1277 		--audit_freelist_count;
1278 	}
1279 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1280 
1281 	if (!ab) {
1282 		ab = kmalloc(sizeof(*ab), gfp_mask);
1283 		if (!ab)
1284 			goto err;
1285 	}
1286 
1287 	ab->ctx = ctx;
1288 	ab->gfp_mask = gfp_mask;
1289 
1290 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1291 	if (!ab->skb)
1292 		goto err;
1293 
1294 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1295 	if (!nlh)
1296 		goto out_kfree_skb;
1297 
1298 	return ab;
1299 
1300 out_kfree_skb:
1301 	kfree_skb(ab->skb);
1302 	ab->skb = NULL;
1303 err:
1304 	audit_buffer_free(ab);
1305 	return NULL;
1306 }
1307 
1308 /**
1309  * audit_serial - compute a serial number for the audit record
1310  *
1311  * Compute a serial number for the audit record.  Audit records are
1312  * written to user-space as soon as they are generated, so a complete
1313  * audit record may be written in several pieces.  The timestamp of the
1314  * record and this serial number are used by the user-space tools to
1315  * determine which pieces belong to the same audit record.  The
1316  * (timestamp,serial) tuple is unique for each syscall and is live from
1317  * syscall entry to syscall exit.
1318  *
1319  * NOTE: Another possibility is to store the formatted records off the
1320  * audit context (for those records that have a context), and emit them
1321  * all at syscall exit.  However, this could delay the reporting of
1322  * significant errors until syscall exit (or never, if the system
1323  * halts).
1324  */
1325 unsigned int audit_serial(void)
1326 {
1327 	static atomic_t serial = ATOMIC_INIT(0);
1328 
1329 	return atomic_add_return(1, &serial);
1330 }
1331 
1332 static inline void audit_get_stamp(struct audit_context *ctx,
1333 				   struct timespec *t, unsigned int *serial)
1334 {
1335 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1336 		*t = CURRENT_TIME;
1337 		*serial = audit_serial();
1338 	}
1339 }
1340 
1341 /*
1342  * Wait for auditd to drain the queue a little
1343  */
1344 static long wait_for_auditd(long sleep_time)
1345 {
1346 	DECLARE_WAITQUEUE(wait, current);
1347 
1348 	if (audit_backlog_limit &&
1349 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1350 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1351 		set_current_state(TASK_UNINTERRUPTIBLE);
1352 		sleep_time = schedule_timeout(sleep_time);
1353 		remove_wait_queue(&audit_backlog_wait, &wait);
1354 	}
1355 
1356 	return sleep_time;
1357 }
1358 
1359 /**
1360  * audit_log_start - obtain an audit buffer
1361  * @ctx: audit_context (may be NULL)
1362  * @gfp_mask: type of allocation
1363  * @type: audit message type
1364  *
1365  * Returns audit_buffer pointer on success or NULL on error.
1366  *
1367  * Obtain an audit buffer.  This routine does locking to obtain the
1368  * audit buffer, but then no locking is required for calls to
1369  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1370  * syscall, then the syscall is marked as auditable and an audit record
1371  * will be written at syscall exit.  If there is no associated task, then
1372  * task context (ctx) should be NULL.
1373  */
1374 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1375 				     int type)
1376 {
1377 	struct audit_buffer	*ab	= NULL;
1378 	struct timespec		t;
1379 	unsigned int		uninitialized_var(serial);
1380 	int reserve = 5; /* Allow atomic callers to go up to five
1381 			    entries over the normal backlog limit */
1382 	unsigned long timeout_start = jiffies;
1383 
1384 	if (audit_initialized != AUDIT_INITIALIZED)
1385 		return NULL;
1386 
1387 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1388 		return NULL;
1389 
1390 	if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1391 		if (audit_pid && audit_pid == current->tgid)
1392 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1393 		else
1394 			reserve = 0;
1395 	}
1396 
1397 	while (audit_backlog_limit
1398 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1399 		if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1400 			long sleep_time;
1401 
1402 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1403 			if (sleep_time > 0) {
1404 				sleep_time = wait_for_auditd(sleep_time);
1405 				if (sleep_time > 0)
1406 					continue;
1407 			}
1408 		}
1409 		if (audit_rate_check() && printk_ratelimit())
1410 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1411 				skb_queue_len(&audit_skb_queue),
1412 				audit_backlog_limit);
1413 		audit_log_lost("backlog limit exceeded");
1414 		audit_backlog_wait_time = 0;
1415 		wake_up(&audit_backlog_wait);
1416 		return NULL;
1417 	}
1418 
1419 	if (!reserve && !audit_backlog_wait_time)
1420 		audit_backlog_wait_time = audit_backlog_wait_time_master;
1421 
1422 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1423 	if (!ab) {
1424 		audit_log_lost("out of memory in audit_log_start");
1425 		return NULL;
1426 	}
1427 
1428 	audit_get_stamp(ab->ctx, &t, &serial);
1429 
1430 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1431 			 t.tv_sec, t.tv_nsec/1000000, serial);
1432 	return ab;
1433 }
1434 
1435 /**
1436  * audit_expand - expand skb in the audit buffer
1437  * @ab: audit_buffer
1438  * @extra: space to add at tail of the skb
1439  *
1440  * Returns 0 (no space) on failed expansion, or available space if
1441  * successful.
1442  */
1443 static inline int audit_expand(struct audit_buffer *ab, int extra)
1444 {
1445 	struct sk_buff *skb = ab->skb;
1446 	int oldtail = skb_tailroom(skb);
1447 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1448 	int newtail = skb_tailroom(skb);
1449 
1450 	if (ret < 0) {
1451 		audit_log_lost("out of memory in audit_expand");
1452 		return 0;
1453 	}
1454 
1455 	skb->truesize += newtail - oldtail;
1456 	return newtail;
1457 }
1458 
1459 /*
1460  * Format an audit message into the audit buffer.  If there isn't enough
1461  * room in the audit buffer, more room will be allocated and vsnprint
1462  * will be called a second time.  Currently, we assume that a printk
1463  * can't format message larger than 1024 bytes, so we don't either.
1464  */
1465 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1466 			      va_list args)
1467 {
1468 	int len, avail;
1469 	struct sk_buff *skb;
1470 	va_list args2;
1471 
1472 	if (!ab)
1473 		return;
1474 
1475 	BUG_ON(!ab->skb);
1476 	skb = ab->skb;
1477 	avail = skb_tailroom(skb);
1478 	if (avail == 0) {
1479 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1480 		if (!avail)
1481 			goto out;
1482 	}
1483 	va_copy(args2, args);
1484 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1485 	if (len >= avail) {
1486 		/* The printk buffer is 1024 bytes long, so if we get
1487 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1488 		 * log everything that printk could have logged. */
1489 		avail = audit_expand(ab,
1490 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1491 		if (!avail)
1492 			goto out_va_end;
1493 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1494 	}
1495 	if (len > 0)
1496 		skb_put(skb, len);
1497 out_va_end:
1498 	va_end(args2);
1499 out:
1500 	return;
1501 }
1502 
1503 /**
1504  * audit_log_format - format a message into the audit buffer.
1505  * @ab: audit_buffer
1506  * @fmt: format string
1507  * @...: optional parameters matching @fmt string
1508  *
1509  * All the work is done in audit_log_vformat.
1510  */
1511 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1512 {
1513 	va_list args;
1514 
1515 	if (!ab)
1516 		return;
1517 	va_start(args, fmt);
1518 	audit_log_vformat(ab, fmt, args);
1519 	va_end(args);
1520 }
1521 
1522 /**
1523  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1524  * @ab: the audit_buffer
1525  * @buf: buffer to convert to hex
1526  * @len: length of @buf to be converted
1527  *
1528  * No return value; failure to expand is silently ignored.
1529  *
1530  * This function will take the passed buf and convert it into a string of
1531  * ascii hex digits. The new string is placed onto the skb.
1532  */
1533 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1534 		size_t len)
1535 {
1536 	int i, avail, new_len;
1537 	unsigned char *ptr;
1538 	struct sk_buff *skb;
1539 
1540 	if (!ab)
1541 		return;
1542 
1543 	BUG_ON(!ab->skb);
1544 	skb = ab->skb;
1545 	avail = skb_tailroom(skb);
1546 	new_len = len<<1;
1547 	if (new_len >= avail) {
1548 		/* Round the buffer request up to the next multiple */
1549 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1550 		avail = audit_expand(ab, new_len);
1551 		if (!avail)
1552 			return;
1553 	}
1554 
1555 	ptr = skb_tail_pointer(skb);
1556 	for (i = 0; i < len; i++)
1557 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1558 	*ptr = 0;
1559 	skb_put(skb, len << 1); /* new string is twice the old string */
1560 }
1561 
1562 /*
1563  * Format a string of no more than slen characters into the audit buffer,
1564  * enclosed in quote marks.
1565  */
1566 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1567 			size_t slen)
1568 {
1569 	int avail, new_len;
1570 	unsigned char *ptr;
1571 	struct sk_buff *skb;
1572 
1573 	if (!ab)
1574 		return;
1575 
1576 	BUG_ON(!ab->skb);
1577 	skb = ab->skb;
1578 	avail = skb_tailroom(skb);
1579 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1580 	if (new_len > avail) {
1581 		avail = audit_expand(ab, new_len);
1582 		if (!avail)
1583 			return;
1584 	}
1585 	ptr = skb_tail_pointer(skb);
1586 	*ptr++ = '"';
1587 	memcpy(ptr, string, slen);
1588 	ptr += slen;
1589 	*ptr++ = '"';
1590 	*ptr = 0;
1591 	skb_put(skb, slen + 2);	/* don't include null terminator */
1592 }
1593 
1594 /**
1595  * audit_string_contains_control - does a string need to be logged in hex
1596  * @string: string to be checked
1597  * @len: max length of the string to check
1598  */
1599 bool audit_string_contains_control(const char *string, size_t len)
1600 {
1601 	const unsigned char *p;
1602 	for (p = string; p < (const unsigned char *)string + len; p++) {
1603 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1604 			return true;
1605 	}
1606 	return false;
1607 }
1608 
1609 /**
1610  * audit_log_n_untrustedstring - log a string that may contain random characters
1611  * @ab: audit_buffer
1612  * @len: length of string (not including trailing null)
1613  * @string: string to be logged
1614  *
1615  * This code will escape a string that is passed to it if the string
1616  * contains a control character, unprintable character, double quote mark,
1617  * or a space. Unescaped strings will start and end with a double quote mark.
1618  * Strings that are escaped are printed in hex (2 digits per char).
1619  *
1620  * The caller specifies the number of characters in the string to log, which may
1621  * or may not be the entire string.
1622  */
1623 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1624 				 size_t len)
1625 {
1626 	if (audit_string_contains_control(string, len))
1627 		audit_log_n_hex(ab, string, len);
1628 	else
1629 		audit_log_n_string(ab, string, len);
1630 }
1631 
1632 /**
1633  * audit_log_untrustedstring - log a string that may contain random characters
1634  * @ab: audit_buffer
1635  * @string: string to be logged
1636  *
1637  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1638  * determine string length.
1639  */
1640 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1641 {
1642 	audit_log_n_untrustedstring(ab, string, strlen(string));
1643 }
1644 
1645 /* This is a helper-function to print the escaped d_path */
1646 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1647 		      const struct path *path)
1648 {
1649 	char *p, *pathname;
1650 
1651 	if (prefix)
1652 		audit_log_format(ab, "%s", prefix);
1653 
1654 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1655 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1656 	if (!pathname) {
1657 		audit_log_string(ab, "<no_memory>");
1658 		return;
1659 	}
1660 	p = d_path(path, pathname, PATH_MAX+11);
1661 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1662 		/* FIXME: can we save some information here? */
1663 		audit_log_string(ab, "<too_long>");
1664 	} else
1665 		audit_log_untrustedstring(ab, p);
1666 	kfree(pathname);
1667 }
1668 
1669 void audit_log_session_info(struct audit_buffer *ab)
1670 {
1671 	unsigned int sessionid = audit_get_sessionid(current);
1672 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1673 
1674 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1675 }
1676 
1677 void audit_log_key(struct audit_buffer *ab, char *key)
1678 {
1679 	audit_log_format(ab, " key=");
1680 	if (key)
1681 		audit_log_untrustedstring(ab, key);
1682 	else
1683 		audit_log_format(ab, "(null)");
1684 }
1685 
1686 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1687 {
1688 	int i;
1689 
1690 	audit_log_format(ab, " %s=", prefix);
1691 	CAP_FOR_EACH_U32(i) {
1692 		audit_log_format(ab, "%08x",
1693 				 cap->cap[CAP_LAST_U32 - i]);
1694 	}
1695 }
1696 
1697 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1698 {
1699 	kernel_cap_t *perm = &name->fcap.permitted;
1700 	kernel_cap_t *inh = &name->fcap.inheritable;
1701 	int log = 0;
1702 
1703 	if (!cap_isclear(*perm)) {
1704 		audit_log_cap(ab, "cap_fp", perm);
1705 		log = 1;
1706 	}
1707 	if (!cap_isclear(*inh)) {
1708 		audit_log_cap(ab, "cap_fi", inh);
1709 		log = 1;
1710 	}
1711 
1712 	if (log)
1713 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1714 				 name->fcap.fE, name->fcap_ver);
1715 }
1716 
1717 static inline int audit_copy_fcaps(struct audit_names *name,
1718 				   const struct dentry *dentry)
1719 {
1720 	struct cpu_vfs_cap_data caps;
1721 	int rc;
1722 
1723 	if (!dentry)
1724 		return 0;
1725 
1726 	rc = get_vfs_caps_from_disk(dentry, &caps);
1727 	if (rc)
1728 		return rc;
1729 
1730 	name->fcap.permitted = caps.permitted;
1731 	name->fcap.inheritable = caps.inheritable;
1732 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1733 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1734 				VFS_CAP_REVISION_SHIFT;
1735 
1736 	return 0;
1737 }
1738 
1739 /* Copy inode data into an audit_names. */
1740 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1741 		      struct inode *inode)
1742 {
1743 	name->ino   = inode->i_ino;
1744 	name->dev   = inode->i_sb->s_dev;
1745 	name->mode  = inode->i_mode;
1746 	name->uid   = inode->i_uid;
1747 	name->gid   = inode->i_gid;
1748 	name->rdev  = inode->i_rdev;
1749 	security_inode_getsecid(inode, &name->osid);
1750 	audit_copy_fcaps(name, dentry);
1751 }
1752 
1753 /**
1754  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1755  * @context: audit_context for the task
1756  * @n: audit_names structure with reportable details
1757  * @path: optional path to report instead of audit_names->name
1758  * @record_num: record number to report when handling a list of names
1759  * @call_panic: optional pointer to int that will be updated if secid fails
1760  */
1761 void audit_log_name(struct audit_context *context, struct audit_names *n,
1762 		    struct path *path, int record_num, int *call_panic)
1763 {
1764 	struct audit_buffer *ab;
1765 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1766 	if (!ab)
1767 		return;
1768 
1769 	audit_log_format(ab, "item=%d", record_num);
1770 
1771 	if (path)
1772 		audit_log_d_path(ab, " name=", path);
1773 	else if (n->name) {
1774 		switch (n->name_len) {
1775 		case AUDIT_NAME_FULL:
1776 			/* log the full path */
1777 			audit_log_format(ab, " name=");
1778 			audit_log_untrustedstring(ab, n->name->name);
1779 			break;
1780 		case 0:
1781 			/* name was specified as a relative path and the
1782 			 * directory component is the cwd */
1783 			audit_log_d_path(ab, " name=", &context->pwd);
1784 			break;
1785 		default:
1786 			/* log the name's directory component */
1787 			audit_log_format(ab, " name=");
1788 			audit_log_n_untrustedstring(ab, n->name->name,
1789 						    n->name_len);
1790 		}
1791 	} else
1792 		audit_log_format(ab, " name=(null)");
1793 
1794 	if (n->ino != AUDIT_INO_UNSET)
1795 		audit_log_format(ab, " inode=%lu"
1796 				 " dev=%02x:%02x mode=%#ho"
1797 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1798 				 n->ino,
1799 				 MAJOR(n->dev),
1800 				 MINOR(n->dev),
1801 				 n->mode,
1802 				 from_kuid(&init_user_ns, n->uid),
1803 				 from_kgid(&init_user_ns, n->gid),
1804 				 MAJOR(n->rdev),
1805 				 MINOR(n->rdev));
1806 	if (n->osid != 0) {
1807 		char *ctx = NULL;
1808 		u32 len;
1809 		if (security_secid_to_secctx(
1810 			n->osid, &ctx, &len)) {
1811 			audit_log_format(ab, " osid=%u", n->osid);
1812 			if (call_panic)
1813 				*call_panic = 2;
1814 		} else {
1815 			audit_log_format(ab, " obj=%s", ctx);
1816 			security_release_secctx(ctx, len);
1817 		}
1818 	}
1819 
1820 	/* log the audit_names record type */
1821 	audit_log_format(ab, " nametype=");
1822 	switch(n->type) {
1823 	case AUDIT_TYPE_NORMAL:
1824 		audit_log_format(ab, "NORMAL");
1825 		break;
1826 	case AUDIT_TYPE_PARENT:
1827 		audit_log_format(ab, "PARENT");
1828 		break;
1829 	case AUDIT_TYPE_CHILD_DELETE:
1830 		audit_log_format(ab, "DELETE");
1831 		break;
1832 	case AUDIT_TYPE_CHILD_CREATE:
1833 		audit_log_format(ab, "CREATE");
1834 		break;
1835 	default:
1836 		audit_log_format(ab, "UNKNOWN");
1837 		break;
1838 	}
1839 
1840 	audit_log_fcaps(ab, n);
1841 	audit_log_end(ab);
1842 }
1843 
1844 int audit_log_task_context(struct audit_buffer *ab)
1845 {
1846 	char *ctx = NULL;
1847 	unsigned len;
1848 	int error;
1849 	u32 sid;
1850 
1851 	security_task_getsecid(current, &sid);
1852 	if (!sid)
1853 		return 0;
1854 
1855 	error = security_secid_to_secctx(sid, &ctx, &len);
1856 	if (error) {
1857 		if (error != -EINVAL)
1858 			goto error_path;
1859 		return 0;
1860 	}
1861 
1862 	audit_log_format(ab, " subj=%s", ctx);
1863 	security_release_secctx(ctx, len);
1864 	return 0;
1865 
1866 error_path:
1867 	audit_panic("error in audit_log_task_context");
1868 	return error;
1869 }
1870 EXPORT_SYMBOL(audit_log_task_context);
1871 
1872 void audit_log_d_path_exe(struct audit_buffer *ab,
1873 			  struct mm_struct *mm)
1874 {
1875 	struct file *exe_file;
1876 
1877 	if (!mm)
1878 		goto out_null;
1879 
1880 	exe_file = get_mm_exe_file(mm);
1881 	if (!exe_file)
1882 		goto out_null;
1883 
1884 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1885 	fput(exe_file);
1886 	return;
1887 out_null:
1888 	audit_log_format(ab, " exe=(null)");
1889 }
1890 
1891 struct tty_struct *audit_get_tty(struct task_struct *tsk)
1892 {
1893 	struct tty_struct *tty = NULL;
1894 	unsigned long flags;
1895 
1896 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1897 	if (tsk->signal)
1898 		tty = tty_kref_get(tsk->signal->tty);
1899 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1900 	return tty;
1901 }
1902 
1903 void audit_put_tty(struct tty_struct *tty)
1904 {
1905 	tty_kref_put(tty);
1906 }
1907 
1908 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1909 {
1910 	const struct cred *cred;
1911 	char comm[sizeof(tsk->comm)];
1912 	struct tty_struct *tty;
1913 
1914 	if (!ab)
1915 		return;
1916 
1917 	/* tsk == current */
1918 	cred = current_cred();
1919 	tty = audit_get_tty(tsk);
1920 	audit_log_format(ab,
1921 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1922 			 " euid=%u suid=%u fsuid=%u"
1923 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1924 			 task_ppid_nr(tsk),
1925 			 task_tgid_nr(tsk),
1926 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1927 			 from_kuid(&init_user_ns, cred->uid),
1928 			 from_kgid(&init_user_ns, cred->gid),
1929 			 from_kuid(&init_user_ns, cred->euid),
1930 			 from_kuid(&init_user_ns, cred->suid),
1931 			 from_kuid(&init_user_ns, cred->fsuid),
1932 			 from_kgid(&init_user_ns, cred->egid),
1933 			 from_kgid(&init_user_ns, cred->sgid),
1934 			 from_kgid(&init_user_ns, cred->fsgid),
1935 			 tty ? tty_name(tty) : "(none)",
1936 			 audit_get_sessionid(tsk));
1937 	audit_put_tty(tty);
1938 	audit_log_format(ab, " comm=");
1939 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1940 	audit_log_d_path_exe(ab, tsk->mm);
1941 	audit_log_task_context(ab);
1942 }
1943 EXPORT_SYMBOL(audit_log_task_info);
1944 
1945 /**
1946  * audit_log_link_denied - report a link restriction denial
1947  * @operation: specific link operation
1948  * @link: the path that triggered the restriction
1949  */
1950 void audit_log_link_denied(const char *operation, struct path *link)
1951 {
1952 	struct audit_buffer *ab;
1953 	struct audit_names *name;
1954 
1955 	name = kzalloc(sizeof(*name), GFP_NOFS);
1956 	if (!name)
1957 		return;
1958 
1959 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1960 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1961 			     AUDIT_ANOM_LINK);
1962 	if (!ab)
1963 		goto out;
1964 	audit_log_format(ab, "op=%s", operation);
1965 	audit_log_task_info(ab, current);
1966 	audit_log_format(ab, " res=0");
1967 	audit_log_end(ab);
1968 
1969 	/* Generate AUDIT_PATH record with object. */
1970 	name->type = AUDIT_TYPE_NORMAL;
1971 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1972 	audit_log_name(current->audit_context, name, link, 0, NULL);
1973 out:
1974 	kfree(name);
1975 }
1976 
1977 /**
1978  * audit_log_end - end one audit record
1979  * @ab: the audit_buffer
1980  *
1981  * netlink_unicast() cannot be called inside an irq context because it blocks
1982  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1983  * on a queue and a tasklet is scheduled to remove them from the queue outside
1984  * the irq context.  May be called in any context.
1985  */
1986 void audit_log_end(struct audit_buffer *ab)
1987 {
1988 	if (!ab)
1989 		return;
1990 	if (!audit_rate_check()) {
1991 		audit_log_lost("rate limit exceeded");
1992 	} else {
1993 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1994 
1995 		nlh->nlmsg_len = ab->skb->len;
1996 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1997 
1998 		/*
1999 		 * The original kaudit unicast socket sends up messages with
2000 		 * nlmsg_len set to the payload length rather than the entire
2001 		 * message length.  This breaks the standard set by netlink.
2002 		 * The existing auditd daemon assumes this breakage.  Fixing
2003 		 * this would require co-ordinating a change in the established
2004 		 * protocol between the kaudit kernel subsystem and the auditd
2005 		 * userspace code.
2006 		 */
2007 		nlh->nlmsg_len -= NLMSG_HDRLEN;
2008 
2009 		if (audit_pid) {
2010 			skb_queue_tail(&audit_skb_queue, ab->skb);
2011 			wake_up_interruptible(&kauditd_wait);
2012 		} else {
2013 			audit_printk_skb(ab->skb);
2014 		}
2015 		ab->skb = NULL;
2016 	}
2017 	audit_buffer_free(ab);
2018 }
2019 
2020 /**
2021  * audit_log - Log an audit record
2022  * @ctx: audit context
2023  * @gfp_mask: type of allocation
2024  * @type: audit message type
2025  * @fmt: format string to use
2026  * @...: variable parameters matching the format string
2027  *
2028  * This is a convenience function that calls audit_log_start,
2029  * audit_log_vformat, and audit_log_end.  It may be called
2030  * in any context.
2031  */
2032 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2033 	       const char *fmt, ...)
2034 {
2035 	struct audit_buffer *ab;
2036 	va_list args;
2037 
2038 	ab = audit_log_start(ctx, gfp_mask, type);
2039 	if (ab) {
2040 		va_start(args, fmt);
2041 		audit_log_vformat(ab, fmt, args);
2042 		va_end(args);
2043 		audit_log_end(ab);
2044 	}
2045 }
2046 
2047 #ifdef CONFIG_SECURITY
2048 /**
2049  * audit_log_secctx - Converts and logs SELinux context
2050  * @ab: audit_buffer
2051  * @secid: security number
2052  *
2053  * This is a helper function that calls security_secid_to_secctx to convert
2054  * secid to secctx and then adds the (converted) SELinux context to the audit
2055  * log by calling audit_log_format, thus also preventing leak of internal secid
2056  * to userspace. If secid cannot be converted audit_panic is called.
2057  */
2058 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2059 {
2060 	u32 len;
2061 	char *secctx;
2062 
2063 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2064 		audit_panic("Cannot convert secid to context");
2065 	} else {
2066 		audit_log_format(ab, " obj=%s", secctx);
2067 		security_release_secctx(secctx, len);
2068 	}
2069 }
2070 EXPORT_SYMBOL(audit_log_secctx);
2071 #endif
2072 
2073 EXPORT_SYMBOL(audit_log_start);
2074 EXPORT_SYMBOL(audit_log_end);
2075 EXPORT_SYMBOL(audit_log_format);
2076 EXPORT_SYMBOL(audit_log);
2077