1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with SELinux. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/selinux.h> 59 #include <linux/inotify.h> 60 #include <linux/freezer.h> 61 #include <linux/tty.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized != 0. 66 * (Initialization happens after skb_init is called.) */ 67 static int audit_initialized; 68 69 /* 0 - no auditing 70 * 1 - auditing enabled 71 * 2 - auditing enabled and configuration is locked/unchangeable. */ 72 int audit_enabled; 73 74 /* Default state when kernel boots without any parameters. */ 75 static int audit_default; 76 77 /* If auditing cannot proceed, audit_failure selects what happens. */ 78 static int audit_failure = AUDIT_FAIL_PRINTK; 79 80 /* If audit records are to be written to the netlink socket, audit_pid 81 * contains the (non-zero) pid. */ 82 int audit_pid; 83 84 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 85 * to that number per second. This prevents DoS attacks, but results in 86 * audit records being dropped. */ 87 static int audit_rate_limit; 88 89 /* Number of outstanding audit_buffers allowed. */ 90 static int audit_backlog_limit = 64; 91 static int audit_backlog_wait_time = 60 * HZ; 92 static int audit_backlog_wait_overflow = 0; 93 94 /* The identity of the user shutting down the audit system. */ 95 uid_t audit_sig_uid = -1; 96 pid_t audit_sig_pid = -1; 97 u32 audit_sig_sid = 0; 98 99 /* Records can be lost in several ways: 100 0) [suppressed in audit_alloc] 101 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 102 2) out of memory in audit_log_move [alloc_skb] 103 3) suppressed due to audit_rate_limit 104 4) suppressed due to audit_backlog_limit 105 */ 106 static atomic_t audit_lost = ATOMIC_INIT(0); 107 108 /* The netlink socket. */ 109 static struct sock *audit_sock; 110 111 /* Inotify handle. */ 112 struct inotify_handle *audit_ih; 113 114 /* Hash for inode-based rules */ 115 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 116 117 /* The audit_freelist is a list of pre-allocated audit buffers (if more 118 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 119 * being placed on the freelist). */ 120 static DEFINE_SPINLOCK(audit_freelist_lock); 121 static int audit_freelist_count; 122 static LIST_HEAD(audit_freelist); 123 124 static struct sk_buff_head audit_skb_queue; 125 static struct task_struct *kauditd_task; 126 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 127 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 128 129 /* Serialize requests from userspace. */ 130 static DEFINE_MUTEX(audit_cmd_mutex); 131 132 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 133 * audit records. Since printk uses a 1024 byte buffer, this buffer 134 * should be at least that large. */ 135 #define AUDIT_BUFSIZ 1024 136 137 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 138 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 139 #define AUDIT_MAXFREE (2*NR_CPUS) 140 141 /* The audit_buffer is used when formatting an audit record. The caller 142 * locks briefly to get the record off the freelist or to allocate the 143 * buffer, and locks briefly to send the buffer to the netlink layer or 144 * to place it on a transmit queue. Multiple audit_buffers can be in 145 * use simultaneously. */ 146 struct audit_buffer { 147 struct list_head list; 148 struct sk_buff *skb; /* formatted skb ready to send */ 149 struct audit_context *ctx; /* NULL or associated context */ 150 gfp_t gfp_mask; 151 }; 152 153 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 154 { 155 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 156 nlh->nlmsg_pid = pid; 157 } 158 159 void audit_panic(const char *message) 160 { 161 switch (audit_failure) 162 { 163 case AUDIT_FAIL_SILENT: 164 break; 165 case AUDIT_FAIL_PRINTK: 166 printk(KERN_ERR "audit: %s\n", message); 167 break; 168 case AUDIT_FAIL_PANIC: 169 panic("audit: %s\n", message); 170 break; 171 } 172 } 173 174 static inline int audit_rate_check(void) 175 { 176 static unsigned long last_check = 0; 177 static int messages = 0; 178 static DEFINE_SPINLOCK(lock); 179 unsigned long flags; 180 unsigned long now; 181 unsigned long elapsed; 182 int retval = 0; 183 184 if (!audit_rate_limit) return 1; 185 186 spin_lock_irqsave(&lock, flags); 187 if (++messages < audit_rate_limit) { 188 retval = 1; 189 } else { 190 now = jiffies; 191 elapsed = now - last_check; 192 if (elapsed > HZ) { 193 last_check = now; 194 messages = 0; 195 retval = 1; 196 } 197 } 198 spin_unlock_irqrestore(&lock, flags); 199 200 return retval; 201 } 202 203 /** 204 * audit_log_lost - conditionally log lost audit message event 205 * @message: the message stating reason for lost audit message 206 * 207 * Emit at least 1 message per second, even if audit_rate_check is 208 * throttling. 209 * Always increment the lost messages counter. 210 */ 211 void audit_log_lost(const char *message) 212 { 213 static unsigned long last_msg = 0; 214 static DEFINE_SPINLOCK(lock); 215 unsigned long flags; 216 unsigned long now; 217 int print; 218 219 atomic_inc(&audit_lost); 220 221 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 222 223 if (!print) { 224 spin_lock_irqsave(&lock, flags); 225 now = jiffies; 226 if (now - last_msg > HZ) { 227 print = 1; 228 last_msg = now; 229 } 230 spin_unlock_irqrestore(&lock, flags); 231 } 232 233 if (print) { 234 printk(KERN_WARNING 235 "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n", 236 atomic_read(&audit_lost), 237 audit_rate_limit, 238 audit_backlog_limit); 239 audit_panic(message); 240 } 241 } 242 243 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) 244 { 245 int res, rc = 0, old = audit_rate_limit; 246 247 /* check if we are locked */ 248 if (audit_enabled == 2) 249 res = 0; 250 else 251 res = 1; 252 253 if (sid) { 254 char *ctx = NULL; 255 u32 len; 256 if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { 257 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 258 "audit_rate_limit=%d old=%d by auid=%u" 259 " subj=%s res=%d", 260 limit, old, loginuid, ctx, res); 261 kfree(ctx); 262 } else 263 res = 0; /* Something weird, deny request */ 264 } 265 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 266 "audit_rate_limit=%d old=%d by auid=%u res=%d", 267 limit, old, loginuid, res); 268 269 /* If we are allowed, make the change */ 270 if (res == 1) 271 audit_rate_limit = limit; 272 /* Not allowed, update reason */ 273 else if (rc == 0) 274 rc = -EPERM; 275 return rc; 276 } 277 278 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) 279 { 280 int res, rc = 0, old = audit_backlog_limit; 281 282 /* check if we are locked */ 283 if (audit_enabled == 2) 284 res = 0; 285 else 286 res = 1; 287 288 if (sid) { 289 char *ctx = NULL; 290 u32 len; 291 if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { 292 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 293 "audit_backlog_limit=%d old=%d by auid=%u" 294 " subj=%s res=%d", 295 limit, old, loginuid, ctx, res); 296 kfree(ctx); 297 } else 298 res = 0; /* Something weird, deny request */ 299 } 300 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 301 "audit_backlog_limit=%d old=%d by auid=%u res=%d", 302 limit, old, loginuid, res); 303 304 /* If we are allowed, make the change */ 305 if (res == 1) 306 audit_backlog_limit = limit; 307 /* Not allowed, update reason */ 308 else if (rc == 0) 309 rc = -EPERM; 310 return rc; 311 } 312 313 static int audit_set_enabled(int state, uid_t loginuid, u32 sid) 314 { 315 int res, rc = 0, old = audit_enabled; 316 317 if (state < 0 || state > 2) 318 return -EINVAL; 319 320 /* check if we are locked */ 321 if (audit_enabled == 2) 322 res = 0; 323 else 324 res = 1; 325 326 if (sid) { 327 char *ctx = NULL; 328 u32 len; 329 if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { 330 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 331 "audit_enabled=%d old=%d by auid=%u" 332 " subj=%s res=%d", 333 state, old, loginuid, ctx, res); 334 kfree(ctx); 335 } else 336 res = 0; /* Something weird, deny request */ 337 } 338 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 339 "audit_enabled=%d old=%d by auid=%u res=%d", 340 state, old, loginuid, res); 341 342 /* If we are allowed, make the change */ 343 if (res == 1) 344 audit_enabled = state; 345 /* Not allowed, update reason */ 346 else if (rc == 0) 347 rc = -EPERM; 348 return rc; 349 } 350 351 static int audit_set_failure(int state, uid_t loginuid, u32 sid) 352 { 353 int res, rc = 0, old = audit_failure; 354 355 if (state != AUDIT_FAIL_SILENT 356 && state != AUDIT_FAIL_PRINTK 357 && state != AUDIT_FAIL_PANIC) 358 return -EINVAL; 359 360 /* check if we are locked */ 361 if (audit_enabled == 2) 362 res = 0; 363 else 364 res = 1; 365 366 if (sid) { 367 char *ctx = NULL; 368 u32 len; 369 if ((rc = selinux_sid_to_string(sid, &ctx, &len)) == 0) { 370 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 371 "audit_failure=%d old=%d by auid=%u" 372 " subj=%s res=%d", 373 state, old, loginuid, ctx, res); 374 kfree(ctx); 375 } else 376 res = 0; /* Something weird, deny request */ 377 } 378 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 379 "audit_failure=%d old=%d by auid=%u res=%d", 380 state, old, loginuid, res); 381 382 /* If we are allowed, make the change */ 383 if (res == 1) 384 audit_failure = state; 385 /* Not allowed, update reason */ 386 else if (rc == 0) 387 rc = -EPERM; 388 return rc; 389 } 390 391 static int kauditd_thread(void *dummy) 392 { 393 struct sk_buff *skb; 394 395 set_freezable(); 396 while (!kthread_should_stop()) { 397 skb = skb_dequeue(&audit_skb_queue); 398 wake_up(&audit_backlog_wait); 399 if (skb) { 400 if (audit_pid) { 401 int err = netlink_unicast(audit_sock, skb, audit_pid, 0); 402 if (err < 0) { 403 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 404 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 405 audit_pid = 0; 406 } 407 } else { 408 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 409 kfree_skb(skb); 410 } 411 } else { 412 DECLARE_WAITQUEUE(wait, current); 413 set_current_state(TASK_INTERRUPTIBLE); 414 add_wait_queue(&kauditd_wait, &wait); 415 416 if (!skb_queue_len(&audit_skb_queue)) { 417 try_to_freeze(); 418 schedule(); 419 } 420 421 __set_current_state(TASK_RUNNING); 422 remove_wait_queue(&kauditd_wait, &wait); 423 } 424 } 425 return 0; 426 } 427 428 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid) 429 { 430 struct task_struct *tsk; 431 int err; 432 433 read_lock(&tasklist_lock); 434 tsk = find_task_by_pid(pid); 435 err = -ESRCH; 436 if (!tsk) 437 goto out; 438 err = 0; 439 440 spin_lock_irq(&tsk->sighand->siglock); 441 if (!tsk->signal->audit_tty) 442 err = -EPERM; 443 spin_unlock_irq(&tsk->sighand->siglock); 444 if (err) 445 goto out; 446 447 tty_audit_push_task(tsk, loginuid); 448 out: 449 read_unlock(&tasklist_lock); 450 return err; 451 } 452 453 int audit_send_list(void *_dest) 454 { 455 struct audit_netlink_list *dest = _dest; 456 int pid = dest->pid; 457 struct sk_buff *skb; 458 459 /* wait for parent to finish and send an ACK */ 460 mutex_lock(&audit_cmd_mutex); 461 mutex_unlock(&audit_cmd_mutex); 462 463 while ((skb = __skb_dequeue(&dest->q)) != NULL) 464 netlink_unicast(audit_sock, skb, pid, 0); 465 466 kfree(dest); 467 468 return 0; 469 } 470 471 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 472 int multi, void *payload, int size) 473 { 474 struct sk_buff *skb; 475 struct nlmsghdr *nlh; 476 int len = NLMSG_SPACE(size); 477 void *data; 478 int flags = multi ? NLM_F_MULTI : 0; 479 int t = done ? NLMSG_DONE : type; 480 481 skb = alloc_skb(len, GFP_KERNEL); 482 if (!skb) 483 return NULL; 484 485 nlh = NLMSG_PUT(skb, pid, seq, t, size); 486 nlh->nlmsg_flags = flags; 487 data = NLMSG_DATA(nlh); 488 memcpy(data, payload, size); 489 return skb; 490 491 nlmsg_failure: /* Used by NLMSG_PUT */ 492 if (skb) 493 kfree_skb(skb); 494 return NULL; 495 } 496 497 /** 498 * audit_send_reply - send an audit reply message via netlink 499 * @pid: process id to send reply to 500 * @seq: sequence number 501 * @type: audit message type 502 * @done: done (last) flag 503 * @multi: multi-part message flag 504 * @payload: payload data 505 * @size: payload size 506 * 507 * Allocates an skb, builds the netlink message, and sends it to the pid. 508 * No failure notifications. 509 */ 510 void audit_send_reply(int pid, int seq, int type, int done, int multi, 511 void *payload, int size) 512 { 513 struct sk_buff *skb; 514 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 515 if (!skb) 516 return; 517 /* Ignore failure. It'll only happen if the sender goes away, 518 because our timeout is set to infinite. */ 519 netlink_unicast(audit_sock, skb, pid, 0); 520 return; 521 } 522 523 /* 524 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 525 * control messages. 526 */ 527 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 528 { 529 int err = 0; 530 531 switch (msg_type) { 532 case AUDIT_GET: 533 case AUDIT_LIST: 534 case AUDIT_LIST_RULES: 535 case AUDIT_SET: 536 case AUDIT_ADD: 537 case AUDIT_ADD_RULE: 538 case AUDIT_DEL: 539 case AUDIT_DEL_RULE: 540 case AUDIT_SIGNAL_INFO: 541 case AUDIT_TTY_GET: 542 case AUDIT_TTY_SET: 543 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 544 err = -EPERM; 545 break; 546 case AUDIT_USER: 547 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 548 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 549 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 550 err = -EPERM; 551 break; 552 default: /* bad msg */ 553 err = -EINVAL; 554 } 555 556 return err; 557 } 558 559 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 560 { 561 u32 uid, pid, seq, sid; 562 void *data; 563 struct audit_status *status_get, status_set; 564 int err; 565 struct audit_buffer *ab; 566 u16 msg_type = nlh->nlmsg_type; 567 uid_t loginuid; /* loginuid of sender */ 568 struct audit_sig_info *sig_data; 569 char *ctx; 570 u32 len; 571 572 err = audit_netlink_ok(skb, msg_type); 573 if (err) 574 return err; 575 576 /* As soon as there's any sign of userspace auditd, 577 * start kauditd to talk to it */ 578 if (!kauditd_task) 579 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 580 if (IS_ERR(kauditd_task)) { 581 err = PTR_ERR(kauditd_task); 582 kauditd_task = NULL; 583 return err; 584 } 585 586 pid = NETLINK_CREDS(skb)->pid; 587 uid = NETLINK_CREDS(skb)->uid; 588 loginuid = NETLINK_CB(skb).loginuid; 589 sid = NETLINK_CB(skb).sid; 590 seq = nlh->nlmsg_seq; 591 data = NLMSG_DATA(nlh); 592 593 switch (msg_type) { 594 case AUDIT_GET: 595 status_set.enabled = audit_enabled; 596 status_set.failure = audit_failure; 597 status_set.pid = audit_pid; 598 status_set.rate_limit = audit_rate_limit; 599 status_set.backlog_limit = audit_backlog_limit; 600 status_set.lost = atomic_read(&audit_lost); 601 status_set.backlog = skb_queue_len(&audit_skb_queue); 602 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 603 &status_set, sizeof(status_set)); 604 break; 605 case AUDIT_SET: 606 if (nlh->nlmsg_len < sizeof(struct audit_status)) 607 return -EINVAL; 608 status_get = (struct audit_status *)data; 609 if (status_get->mask & AUDIT_STATUS_ENABLED) { 610 err = audit_set_enabled(status_get->enabled, 611 loginuid, sid); 612 if (err < 0) return err; 613 } 614 if (status_get->mask & AUDIT_STATUS_FAILURE) { 615 err = audit_set_failure(status_get->failure, 616 loginuid, sid); 617 if (err < 0) return err; 618 } 619 if (status_get->mask & AUDIT_STATUS_PID) { 620 int old = audit_pid; 621 if (sid) { 622 if ((err = selinux_sid_to_string( 623 sid, &ctx, &len))) 624 return err; 625 else 626 audit_log(NULL, GFP_KERNEL, 627 AUDIT_CONFIG_CHANGE, 628 "audit_pid=%d old=%d by auid=%u subj=%s", 629 status_get->pid, old, 630 loginuid, ctx); 631 kfree(ctx); 632 } else 633 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 634 "audit_pid=%d old=%d by auid=%u", 635 status_get->pid, old, loginuid); 636 audit_pid = status_get->pid; 637 } 638 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) 639 err = audit_set_rate_limit(status_get->rate_limit, 640 loginuid, sid); 641 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 642 err = audit_set_backlog_limit(status_get->backlog_limit, 643 loginuid, sid); 644 break; 645 case AUDIT_USER: 646 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 647 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 648 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 649 return 0; 650 651 err = audit_filter_user(&NETLINK_CB(skb), msg_type); 652 if (err == 1) { 653 err = 0; 654 if (msg_type == AUDIT_USER_TTY) { 655 err = audit_prepare_user_tty(pid, loginuid); 656 if (err) 657 break; 658 } 659 ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 660 if (ab) { 661 audit_log_format(ab, 662 "user pid=%d uid=%u auid=%u", 663 pid, uid, loginuid); 664 if (sid) { 665 if (selinux_sid_to_string( 666 sid, &ctx, &len)) { 667 audit_log_format(ab, 668 " ssid=%u", sid); 669 /* Maybe call audit_panic? */ 670 } else 671 audit_log_format(ab, 672 " subj=%s", ctx); 673 kfree(ctx); 674 } 675 if (msg_type != AUDIT_USER_TTY) 676 audit_log_format(ab, " msg='%.1024s'", 677 (char *)data); 678 else { 679 int size; 680 681 audit_log_format(ab, " msg="); 682 size = nlmsg_len(nlh); 683 audit_log_n_untrustedstring(ab, size, 684 data); 685 } 686 audit_set_pid(ab, pid); 687 audit_log_end(ab); 688 } 689 } 690 break; 691 case AUDIT_ADD: 692 case AUDIT_DEL: 693 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 694 return -EINVAL; 695 if (audit_enabled == 2) { 696 ab = audit_log_start(NULL, GFP_KERNEL, 697 AUDIT_CONFIG_CHANGE); 698 if (ab) { 699 audit_log_format(ab, 700 "pid=%d uid=%u auid=%u", 701 pid, uid, loginuid); 702 if (sid) { 703 if (selinux_sid_to_string( 704 sid, &ctx, &len)) { 705 audit_log_format(ab, 706 " ssid=%u", sid); 707 /* Maybe call audit_panic? */ 708 } else 709 audit_log_format(ab, 710 " subj=%s", ctx); 711 kfree(ctx); 712 } 713 audit_log_format(ab, " audit_enabled=%d res=0", 714 audit_enabled); 715 audit_log_end(ab); 716 } 717 return -EPERM; 718 } 719 /* fallthrough */ 720 case AUDIT_LIST: 721 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 722 uid, seq, data, nlmsg_len(nlh), 723 loginuid, sid); 724 break; 725 case AUDIT_ADD_RULE: 726 case AUDIT_DEL_RULE: 727 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 728 return -EINVAL; 729 if (audit_enabled == 2) { 730 ab = audit_log_start(NULL, GFP_KERNEL, 731 AUDIT_CONFIG_CHANGE); 732 if (ab) { 733 audit_log_format(ab, 734 "pid=%d uid=%u auid=%u", 735 pid, uid, loginuid); 736 if (sid) { 737 if (selinux_sid_to_string( 738 sid, &ctx, &len)) { 739 audit_log_format(ab, 740 " ssid=%u", sid); 741 /* Maybe call audit_panic? */ 742 } else 743 audit_log_format(ab, 744 " subj=%s", ctx); 745 kfree(ctx); 746 } 747 audit_log_format(ab, " audit_enabled=%d res=0", 748 audit_enabled); 749 audit_log_end(ab); 750 } 751 return -EPERM; 752 } 753 /* fallthrough */ 754 case AUDIT_LIST_RULES: 755 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 756 uid, seq, data, nlmsg_len(nlh), 757 loginuid, sid); 758 break; 759 case AUDIT_SIGNAL_INFO: 760 err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); 761 if (err) 762 return err; 763 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 764 if (!sig_data) { 765 kfree(ctx); 766 return -ENOMEM; 767 } 768 sig_data->uid = audit_sig_uid; 769 sig_data->pid = audit_sig_pid; 770 memcpy(sig_data->ctx, ctx, len); 771 kfree(ctx); 772 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 773 0, 0, sig_data, sizeof(*sig_data) + len); 774 kfree(sig_data); 775 break; 776 case AUDIT_TTY_GET: { 777 struct audit_tty_status s; 778 struct task_struct *tsk; 779 780 read_lock(&tasklist_lock); 781 tsk = find_task_by_pid(pid); 782 if (!tsk) 783 err = -ESRCH; 784 else { 785 spin_lock_irq(&tsk->sighand->siglock); 786 s.enabled = tsk->signal->audit_tty != 0; 787 spin_unlock_irq(&tsk->sighand->siglock); 788 } 789 read_unlock(&tasklist_lock); 790 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 791 &s, sizeof(s)); 792 break; 793 } 794 case AUDIT_TTY_SET: { 795 struct audit_tty_status *s; 796 struct task_struct *tsk; 797 798 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 799 return -EINVAL; 800 s = data; 801 if (s->enabled != 0 && s->enabled != 1) 802 return -EINVAL; 803 read_lock(&tasklist_lock); 804 tsk = find_task_by_pid(pid); 805 if (!tsk) 806 err = -ESRCH; 807 else { 808 spin_lock_irq(&tsk->sighand->siglock); 809 tsk->signal->audit_tty = s->enabled != 0; 810 spin_unlock_irq(&tsk->sighand->siglock); 811 } 812 read_unlock(&tasklist_lock); 813 break; 814 } 815 default: 816 err = -EINVAL; 817 break; 818 } 819 820 return err < 0 ? err : 0; 821 } 822 823 /* 824 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 825 * processed by audit_receive_msg. Malformed skbs with wrong length are 826 * discarded silently. 827 */ 828 static void audit_receive_skb(struct sk_buff *skb) 829 { 830 int err; 831 struct nlmsghdr *nlh; 832 u32 rlen; 833 834 while (skb->len >= NLMSG_SPACE(0)) { 835 nlh = nlmsg_hdr(skb); 836 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 837 return; 838 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 839 if (rlen > skb->len) 840 rlen = skb->len; 841 if ((err = audit_receive_msg(skb, nlh))) { 842 netlink_ack(skb, nlh, err); 843 } else if (nlh->nlmsg_flags & NLM_F_ACK) 844 netlink_ack(skb, nlh, 0); 845 skb_pull(skb, rlen); 846 } 847 } 848 849 /* Receive messages from netlink socket. */ 850 static void audit_receive(struct sock *sk, int length) 851 { 852 struct sk_buff *skb; 853 unsigned int qlen; 854 855 mutex_lock(&audit_cmd_mutex); 856 857 for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { 858 skb = skb_dequeue(&sk->sk_receive_queue); 859 audit_receive_skb(skb); 860 kfree_skb(skb); 861 } 862 mutex_unlock(&audit_cmd_mutex); 863 } 864 865 #ifdef CONFIG_AUDITSYSCALL 866 static const struct inotify_operations audit_inotify_ops = { 867 .handle_event = audit_handle_ievent, 868 .destroy_watch = audit_free_parent, 869 }; 870 #endif 871 872 /* Initialize audit support at boot time. */ 873 static int __init audit_init(void) 874 { 875 int i; 876 877 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 878 audit_default ? "enabled" : "disabled"); 879 audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive, 880 NULL, THIS_MODULE); 881 if (!audit_sock) 882 audit_panic("cannot initialize netlink socket"); 883 else 884 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 885 886 skb_queue_head_init(&audit_skb_queue); 887 audit_initialized = 1; 888 audit_enabled = audit_default; 889 890 /* Register the callback with selinux. This callback will be invoked 891 * when a new policy is loaded. */ 892 selinux_audit_set_callback(&selinux_audit_rule_update); 893 894 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 895 896 #ifdef CONFIG_AUDITSYSCALL 897 audit_ih = inotify_init(&audit_inotify_ops); 898 if (IS_ERR(audit_ih)) 899 audit_panic("cannot initialize inotify handle"); 900 #endif 901 902 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 903 INIT_LIST_HEAD(&audit_inode_hash[i]); 904 905 return 0; 906 } 907 __initcall(audit_init); 908 909 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 910 static int __init audit_enable(char *str) 911 { 912 audit_default = !!simple_strtol(str, NULL, 0); 913 printk(KERN_INFO "audit: %s%s\n", 914 audit_default ? "enabled" : "disabled", 915 audit_initialized ? "" : " (after initialization)"); 916 if (audit_initialized) 917 audit_enabled = audit_default; 918 return 1; 919 } 920 921 __setup("audit=", audit_enable); 922 923 static void audit_buffer_free(struct audit_buffer *ab) 924 { 925 unsigned long flags; 926 927 if (!ab) 928 return; 929 930 if (ab->skb) 931 kfree_skb(ab->skb); 932 933 spin_lock_irqsave(&audit_freelist_lock, flags); 934 if (audit_freelist_count > AUDIT_MAXFREE) 935 kfree(ab); 936 else { 937 audit_freelist_count++; 938 list_add(&ab->list, &audit_freelist); 939 } 940 spin_unlock_irqrestore(&audit_freelist_lock, flags); 941 } 942 943 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 944 gfp_t gfp_mask, int type) 945 { 946 unsigned long flags; 947 struct audit_buffer *ab = NULL; 948 struct nlmsghdr *nlh; 949 950 spin_lock_irqsave(&audit_freelist_lock, flags); 951 if (!list_empty(&audit_freelist)) { 952 ab = list_entry(audit_freelist.next, 953 struct audit_buffer, list); 954 list_del(&ab->list); 955 --audit_freelist_count; 956 } 957 spin_unlock_irqrestore(&audit_freelist_lock, flags); 958 959 if (!ab) { 960 ab = kmalloc(sizeof(*ab), gfp_mask); 961 if (!ab) 962 goto err; 963 } 964 965 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 966 if (!ab->skb) 967 goto err; 968 969 ab->ctx = ctx; 970 ab->gfp_mask = gfp_mask; 971 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 972 nlh->nlmsg_type = type; 973 nlh->nlmsg_flags = 0; 974 nlh->nlmsg_pid = 0; 975 nlh->nlmsg_seq = 0; 976 return ab; 977 err: 978 audit_buffer_free(ab); 979 return NULL; 980 } 981 982 /** 983 * audit_serial - compute a serial number for the audit record 984 * 985 * Compute a serial number for the audit record. Audit records are 986 * written to user-space as soon as they are generated, so a complete 987 * audit record may be written in several pieces. The timestamp of the 988 * record and this serial number are used by the user-space tools to 989 * determine which pieces belong to the same audit record. The 990 * (timestamp,serial) tuple is unique for each syscall and is live from 991 * syscall entry to syscall exit. 992 * 993 * NOTE: Another possibility is to store the formatted records off the 994 * audit context (for those records that have a context), and emit them 995 * all at syscall exit. However, this could delay the reporting of 996 * significant errors until syscall exit (or never, if the system 997 * halts). 998 */ 999 unsigned int audit_serial(void) 1000 { 1001 static DEFINE_SPINLOCK(serial_lock); 1002 static unsigned int serial = 0; 1003 1004 unsigned long flags; 1005 unsigned int ret; 1006 1007 spin_lock_irqsave(&serial_lock, flags); 1008 do { 1009 ret = ++serial; 1010 } while (unlikely(!ret)); 1011 spin_unlock_irqrestore(&serial_lock, flags); 1012 1013 return ret; 1014 } 1015 1016 static inline void audit_get_stamp(struct audit_context *ctx, 1017 struct timespec *t, unsigned int *serial) 1018 { 1019 if (ctx) 1020 auditsc_get_stamp(ctx, t, serial); 1021 else { 1022 *t = CURRENT_TIME; 1023 *serial = audit_serial(); 1024 } 1025 } 1026 1027 /* Obtain an audit buffer. This routine does locking to obtain the 1028 * audit buffer, but then no locking is required for calls to 1029 * audit_log_*format. If the tsk is a task that is currently in a 1030 * syscall, then the syscall is marked as auditable and an audit record 1031 * will be written at syscall exit. If there is no associated task, tsk 1032 * should be NULL. */ 1033 1034 /** 1035 * audit_log_start - obtain an audit buffer 1036 * @ctx: audit_context (may be NULL) 1037 * @gfp_mask: type of allocation 1038 * @type: audit message type 1039 * 1040 * Returns audit_buffer pointer on success or NULL on error. 1041 * 1042 * Obtain an audit buffer. This routine does locking to obtain the 1043 * audit buffer, but then no locking is required for calls to 1044 * audit_log_*format. If the task (ctx) is a task that is currently in a 1045 * syscall, then the syscall is marked as auditable and an audit record 1046 * will be written at syscall exit. If there is no associated task, then 1047 * task context (ctx) should be NULL. 1048 */ 1049 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1050 int type) 1051 { 1052 struct audit_buffer *ab = NULL; 1053 struct timespec t; 1054 unsigned int serial; 1055 int reserve; 1056 unsigned long timeout_start = jiffies; 1057 1058 if (!audit_initialized) 1059 return NULL; 1060 1061 if (unlikely(audit_filter_type(type))) 1062 return NULL; 1063 1064 if (gfp_mask & __GFP_WAIT) 1065 reserve = 0; 1066 else 1067 reserve = 5; /* Allow atomic callers to go up to five 1068 entries over the normal backlog limit */ 1069 1070 while (audit_backlog_limit 1071 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1072 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1073 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1074 1075 /* Wait for auditd to drain the queue a little */ 1076 DECLARE_WAITQUEUE(wait, current); 1077 set_current_state(TASK_INTERRUPTIBLE); 1078 add_wait_queue(&audit_backlog_wait, &wait); 1079 1080 if (audit_backlog_limit && 1081 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1082 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1083 1084 __set_current_state(TASK_RUNNING); 1085 remove_wait_queue(&audit_backlog_wait, &wait); 1086 continue; 1087 } 1088 if (audit_rate_check()) 1089 printk(KERN_WARNING 1090 "audit: audit_backlog=%d > " 1091 "audit_backlog_limit=%d\n", 1092 skb_queue_len(&audit_skb_queue), 1093 audit_backlog_limit); 1094 audit_log_lost("backlog limit exceeded"); 1095 audit_backlog_wait_time = audit_backlog_wait_overflow; 1096 wake_up(&audit_backlog_wait); 1097 return NULL; 1098 } 1099 1100 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1101 if (!ab) { 1102 audit_log_lost("out of memory in audit_log_start"); 1103 return NULL; 1104 } 1105 1106 audit_get_stamp(ab->ctx, &t, &serial); 1107 1108 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1109 t.tv_sec, t.tv_nsec/1000000, serial); 1110 return ab; 1111 } 1112 1113 /** 1114 * audit_expand - expand skb in the audit buffer 1115 * @ab: audit_buffer 1116 * @extra: space to add at tail of the skb 1117 * 1118 * Returns 0 (no space) on failed expansion, or available space if 1119 * successful. 1120 */ 1121 static inline int audit_expand(struct audit_buffer *ab, int extra) 1122 { 1123 struct sk_buff *skb = ab->skb; 1124 int ret = pskb_expand_head(skb, skb_headroom(skb), extra, 1125 ab->gfp_mask); 1126 if (ret < 0) { 1127 audit_log_lost("out of memory in audit_expand"); 1128 return 0; 1129 } 1130 return skb_tailroom(skb); 1131 } 1132 1133 /* 1134 * Format an audit message into the audit buffer. If there isn't enough 1135 * room in the audit buffer, more room will be allocated and vsnprint 1136 * will be called a second time. Currently, we assume that a printk 1137 * can't format message larger than 1024 bytes, so we don't either. 1138 */ 1139 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1140 va_list args) 1141 { 1142 int len, avail; 1143 struct sk_buff *skb; 1144 va_list args2; 1145 1146 if (!ab) 1147 return; 1148 1149 BUG_ON(!ab->skb); 1150 skb = ab->skb; 1151 avail = skb_tailroom(skb); 1152 if (avail == 0) { 1153 avail = audit_expand(ab, AUDIT_BUFSIZ); 1154 if (!avail) 1155 goto out; 1156 } 1157 va_copy(args2, args); 1158 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1159 if (len >= avail) { 1160 /* The printk buffer is 1024 bytes long, so if we get 1161 * here and AUDIT_BUFSIZ is at least 1024, then we can 1162 * log everything that printk could have logged. */ 1163 avail = audit_expand(ab, 1164 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1165 if (!avail) 1166 goto out; 1167 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1168 } 1169 if (len > 0) 1170 skb_put(skb, len); 1171 out: 1172 return; 1173 } 1174 1175 /** 1176 * audit_log_format - format a message into the audit buffer. 1177 * @ab: audit_buffer 1178 * @fmt: format string 1179 * @...: optional parameters matching @fmt string 1180 * 1181 * All the work is done in audit_log_vformat. 1182 */ 1183 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1184 { 1185 va_list args; 1186 1187 if (!ab) 1188 return; 1189 va_start(args, fmt); 1190 audit_log_vformat(ab, fmt, args); 1191 va_end(args); 1192 } 1193 1194 /** 1195 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1196 * @ab: the audit_buffer 1197 * @buf: buffer to convert to hex 1198 * @len: length of @buf to be converted 1199 * 1200 * No return value; failure to expand is silently ignored. 1201 * 1202 * This function will take the passed buf and convert it into a string of 1203 * ascii hex digits. The new string is placed onto the skb. 1204 */ 1205 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, 1206 size_t len) 1207 { 1208 int i, avail, new_len; 1209 unsigned char *ptr; 1210 struct sk_buff *skb; 1211 static const unsigned char *hex = "0123456789ABCDEF"; 1212 1213 if (!ab) 1214 return; 1215 1216 BUG_ON(!ab->skb); 1217 skb = ab->skb; 1218 avail = skb_tailroom(skb); 1219 new_len = len<<1; 1220 if (new_len >= avail) { 1221 /* Round the buffer request up to the next multiple */ 1222 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1223 avail = audit_expand(ab, new_len); 1224 if (!avail) 1225 return; 1226 } 1227 1228 ptr = skb_tail_pointer(skb); 1229 for (i=0; i<len; i++) { 1230 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1231 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1232 } 1233 *ptr = 0; 1234 skb_put(skb, len << 1); /* new string is twice the old string */ 1235 } 1236 1237 /* 1238 * Format a string of no more than slen characters into the audit buffer, 1239 * enclosed in quote marks. 1240 */ 1241 static void audit_log_n_string(struct audit_buffer *ab, size_t slen, 1242 const char *string) 1243 { 1244 int avail, new_len; 1245 unsigned char *ptr; 1246 struct sk_buff *skb; 1247 1248 if (!ab) 1249 return; 1250 1251 BUG_ON(!ab->skb); 1252 skb = ab->skb; 1253 avail = skb_tailroom(skb); 1254 new_len = slen + 3; /* enclosing quotes + null terminator */ 1255 if (new_len > avail) { 1256 avail = audit_expand(ab, new_len); 1257 if (!avail) 1258 return; 1259 } 1260 ptr = skb_tail_pointer(skb); 1261 *ptr++ = '"'; 1262 memcpy(ptr, string, slen); 1263 ptr += slen; 1264 *ptr++ = '"'; 1265 *ptr = 0; 1266 skb_put(skb, slen + 2); /* don't include null terminator */ 1267 } 1268 1269 /** 1270 * audit_log_n_untrustedstring - log a string that may contain random characters 1271 * @ab: audit_buffer 1272 * @len: lenth of string (not including trailing null) 1273 * @string: string to be logged 1274 * 1275 * This code will escape a string that is passed to it if the string 1276 * contains a control character, unprintable character, double quote mark, 1277 * or a space. Unescaped strings will start and end with a double quote mark. 1278 * Strings that are escaped are printed in hex (2 digits per char). 1279 * 1280 * The caller specifies the number of characters in the string to log, which may 1281 * or may not be the entire string. 1282 */ 1283 const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, 1284 const char *string) 1285 { 1286 const unsigned char *p; 1287 1288 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1289 if (*p == '"' || *p < 0x21 || *p > 0x7f) { 1290 audit_log_hex(ab, string, len); 1291 return string + len + 1; 1292 } 1293 } 1294 audit_log_n_string(ab, len, string); 1295 return p + 1; 1296 } 1297 1298 /** 1299 * audit_log_untrustedstring - log a string that may contain random characters 1300 * @ab: audit_buffer 1301 * @string: string to be logged 1302 * 1303 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1304 * determine string length. 1305 */ 1306 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1307 { 1308 return audit_log_n_untrustedstring(ab, strlen(string), string); 1309 } 1310 1311 /* This is a helper-function to print the escaped d_path */ 1312 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1313 struct dentry *dentry, struct vfsmount *vfsmnt) 1314 { 1315 char *p, *path; 1316 1317 if (prefix) 1318 audit_log_format(ab, " %s", prefix); 1319 1320 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1321 path = kmalloc(PATH_MAX+11, ab->gfp_mask); 1322 if (!path) { 1323 audit_log_format(ab, "<no memory>"); 1324 return; 1325 } 1326 p = d_path(dentry, vfsmnt, path, PATH_MAX+11); 1327 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1328 /* FIXME: can we save some information here? */ 1329 audit_log_format(ab, "<too long>"); 1330 } else 1331 audit_log_untrustedstring(ab, p); 1332 kfree(path); 1333 } 1334 1335 /** 1336 * audit_log_end - end one audit record 1337 * @ab: the audit_buffer 1338 * 1339 * The netlink_* functions cannot be called inside an irq context, so 1340 * the audit buffer is placed on a queue and a tasklet is scheduled to 1341 * remove them from the queue outside the irq context. May be called in 1342 * any context. 1343 */ 1344 void audit_log_end(struct audit_buffer *ab) 1345 { 1346 if (!ab) 1347 return; 1348 if (!audit_rate_check()) { 1349 audit_log_lost("rate limit exceeded"); 1350 } else { 1351 if (audit_pid) { 1352 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1353 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1354 skb_queue_tail(&audit_skb_queue, ab->skb); 1355 ab->skb = NULL; 1356 wake_up_interruptible(&kauditd_wait); 1357 } else { 1358 printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0)); 1359 } 1360 } 1361 audit_buffer_free(ab); 1362 } 1363 1364 /** 1365 * audit_log - Log an audit record 1366 * @ctx: audit context 1367 * @gfp_mask: type of allocation 1368 * @type: audit message type 1369 * @fmt: format string to use 1370 * @...: variable parameters matching the format string 1371 * 1372 * This is a convenience function that calls audit_log_start, 1373 * audit_log_vformat, and audit_log_end. It may be called 1374 * in any context. 1375 */ 1376 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1377 const char *fmt, ...) 1378 { 1379 struct audit_buffer *ab; 1380 va_list args; 1381 1382 ab = audit_log_start(ctx, gfp_mask, type); 1383 if (ab) { 1384 va_start(args, fmt); 1385 audit_log_vformat(ab, fmt, args); 1386 va_end(args); 1387 audit_log_end(ab); 1388 } 1389 } 1390 1391 EXPORT_SYMBOL(audit_log_start); 1392 EXPORT_SYMBOL(audit_log_end); 1393 EXPORT_SYMBOL(audit_log_format); 1394 EXPORT_SYMBOL(audit_log); 1395