1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Audit userspace, documentation, tests, and bug/issue trackers: 42 * https://github.com/linux-audit 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/file.h> 48 #include <linux/init.h> 49 #include <linux/types.h> 50 #include <linux/atomic.h> 51 #include <linux/mm.h> 52 #include <linux/export.h> 53 #include <linux/slab.h> 54 #include <linux/err.h> 55 #include <linux/kthread.h> 56 #include <linux/kernel.h> 57 #include <linux/syscalls.h> 58 #include <linux/spinlock.h> 59 #include <linux/rcupdate.h> 60 #include <linux/mutex.h> 61 #include <linux/gfp.h> 62 #include <linux/pid.h> 63 #include <linux/slab.h> 64 65 #include <linux/audit.h> 66 67 #include <net/sock.h> 68 #include <net/netlink.h> 69 #include <linux/skbuff.h> 70 #ifdef CONFIG_SECURITY 71 #include <linux/security.h> 72 #endif 73 #include <linux/freezer.h> 74 #include <linux/pid_namespace.h> 75 #include <net/netns/generic.h> 76 77 #include "audit.h" 78 79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 80 * (Initialization happens after skb_init is called.) */ 81 #define AUDIT_DISABLED -1 82 #define AUDIT_UNINITIALIZED 0 83 #define AUDIT_INITIALIZED 1 84 static int audit_initialized; 85 86 #define AUDIT_OFF 0 87 #define AUDIT_ON 1 88 #define AUDIT_LOCKED 2 89 u32 audit_enabled = AUDIT_OFF; 90 bool audit_ever_enabled = !!AUDIT_OFF; 91 92 EXPORT_SYMBOL_GPL(audit_enabled); 93 94 /* Default state when kernel boots without any parameters. */ 95 static u32 audit_default = AUDIT_OFF; 96 97 /* If auditing cannot proceed, audit_failure selects what happens. */ 98 static u32 audit_failure = AUDIT_FAIL_PRINTK; 99 100 /* private audit network namespace index */ 101 static unsigned int audit_net_id; 102 103 /** 104 * struct audit_net - audit private network namespace data 105 * @sk: communication socket 106 */ 107 struct audit_net { 108 struct sock *sk; 109 }; 110 111 /** 112 * struct auditd_connection - kernel/auditd connection state 113 * @pid: auditd PID 114 * @portid: netlink portid 115 * @net: the associated network namespace 116 * @rcu: RCU head 117 * 118 * Description: 119 * This struct is RCU protected; you must either hold the RCU lock for reading 120 * or the associated spinlock for writing. 121 */ 122 static struct auditd_connection { 123 struct pid *pid; 124 u32 portid; 125 struct net *net; 126 struct rcu_head rcu; 127 } *auditd_conn = NULL; 128 static DEFINE_SPINLOCK(auditd_conn_lock); 129 130 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 131 * to that number per second. This prevents DoS attacks, but results in 132 * audit records being dropped. */ 133 static u32 audit_rate_limit; 134 135 /* Number of outstanding audit_buffers allowed. 136 * When set to zero, this means unlimited. */ 137 static u32 audit_backlog_limit = 64; 138 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 139 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 140 141 /* The identity of the user shutting down the audit system. */ 142 kuid_t audit_sig_uid = INVALID_UID; 143 pid_t audit_sig_pid = -1; 144 u32 audit_sig_sid = 0; 145 146 /* Records can be lost in several ways: 147 0) [suppressed in audit_alloc] 148 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 149 2) out of memory in audit_log_move [alloc_skb] 150 3) suppressed due to audit_rate_limit 151 4) suppressed due to audit_backlog_limit 152 */ 153 static atomic_t audit_lost = ATOMIC_INIT(0); 154 155 /* Hash for inode-based rules */ 156 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 157 158 static struct kmem_cache *audit_buffer_cache; 159 160 /* queue msgs to send via kauditd_task */ 161 static struct sk_buff_head audit_queue; 162 /* queue msgs due to temporary unicast send problems */ 163 static struct sk_buff_head audit_retry_queue; 164 /* queue msgs waiting for new auditd connection */ 165 static struct sk_buff_head audit_hold_queue; 166 167 /* queue servicing thread */ 168 static struct task_struct *kauditd_task; 169 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 170 171 /* waitqueue for callers who are blocked on the audit backlog */ 172 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 173 174 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 175 .mask = -1, 176 .features = 0, 177 .lock = 0,}; 178 179 static char *audit_feature_names[2] = { 180 "only_unset_loginuid", 181 "loginuid_immutable", 182 }; 183 184 /** 185 * struct audit_ctl_mutex - serialize requests from userspace 186 * @lock: the mutex used for locking 187 * @owner: the task which owns the lock 188 * 189 * Description: 190 * This is the lock struct used to ensure we only process userspace requests 191 * in an orderly fashion. We can't simply use a mutex/lock here because we 192 * need to track lock ownership so we don't end up blocking the lock owner in 193 * audit_log_start() or similar. 194 */ 195 static struct audit_ctl_mutex { 196 struct mutex lock; 197 void *owner; 198 } audit_cmd_mutex; 199 200 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 201 * audit records. Since printk uses a 1024 byte buffer, this buffer 202 * should be at least that large. */ 203 #define AUDIT_BUFSIZ 1024 204 205 /* The audit_buffer is used when formatting an audit record. The caller 206 * locks briefly to get the record off the freelist or to allocate the 207 * buffer, and locks briefly to send the buffer to the netlink layer or 208 * to place it on a transmit queue. Multiple audit_buffers can be in 209 * use simultaneously. */ 210 struct audit_buffer { 211 struct sk_buff *skb; /* formatted skb ready to send */ 212 struct audit_context *ctx; /* NULL or associated context */ 213 gfp_t gfp_mask; 214 }; 215 216 struct audit_reply { 217 __u32 portid; 218 struct net *net; 219 struct sk_buff *skb; 220 }; 221 222 /** 223 * auditd_test_task - Check to see if a given task is an audit daemon 224 * @task: the task to check 225 * 226 * Description: 227 * Return 1 if the task is a registered audit daemon, 0 otherwise. 228 */ 229 int auditd_test_task(struct task_struct *task) 230 { 231 int rc; 232 struct auditd_connection *ac; 233 234 rcu_read_lock(); 235 ac = rcu_dereference(auditd_conn); 236 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 237 rcu_read_unlock(); 238 239 return rc; 240 } 241 242 /** 243 * audit_ctl_lock - Take the audit control lock 244 */ 245 void audit_ctl_lock(void) 246 { 247 mutex_lock(&audit_cmd_mutex.lock); 248 audit_cmd_mutex.owner = current; 249 } 250 251 /** 252 * audit_ctl_unlock - Drop the audit control lock 253 */ 254 void audit_ctl_unlock(void) 255 { 256 audit_cmd_mutex.owner = NULL; 257 mutex_unlock(&audit_cmd_mutex.lock); 258 } 259 260 /** 261 * audit_ctl_owner_current - Test to see if the current task owns the lock 262 * 263 * Description: 264 * Return true if the current task owns the audit control lock, false if it 265 * doesn't own the lock. 266 */ 267 static bool audit_ctl_owner_current(void) 268 { 269 return (current == audit_cmd_mutex.owner); 270 } 271 272 /** 273 * auditd_pid_vnr - Return the auditd PID relative to the namespace 274 * 275 * Description: 276 * Returns the PID in relation to the namespace, 0 on failure. 277 */ 278 static pid_t auditd_pid_vnr(void) 279 { 280 pid_t pid; 281 const struct auditd_connection *ac; 282 283 rcu_read_lock(); 284 ac = rcu_dereference(auditd_conn); 285 if (!ac || !ac->pid) 286 pid = 0; 287 else 288 pid = pid_vnr(ac->pid); 289 rcu_read_unlock(); 290 291 return pid; 292 } 293 294 /** 295 * audit_get_sk - Return the audit socket for the given network namespace 296 * @net: the destination network namespace 297 * 298 * Description: 299 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 300 * that a reference is held for the network namespace while the sock is in use. 301 */ 302 static struct sock *audit_get_sk(const struct net *net) 303 { 304 struct audit_net *aunet; 305 306 if (!net) 307 return NULL; 308 309 aunet = net_generic(net, audit_net_id); 310 return aunet->sk; 311 } 312 313 void audit_panic(const char *message) 314 { 315 switch (audit_failure) { 316 case AUDIT_FAIL_SILENT: 317 break; 318 case AUDIT_FAIL_PRINTK: 319 if (printk_ratelimit()) 320 pr_err("%s\n", message); 321 break; 322 case AUDIT_FAIL_PANIC: 323 panic("audit: %s\n", message); 324 break; 325 } 326 } 327 328 static inline int audit_rate_check(void) 329 { 330 static unsigned long last_check = 0; 331 static int messages = 0; 332 static DEFINE_SPINLOCK(lock); 333 unsigned long flags; 334 unsigned long now; 335 unsigned long elapsed; 336 int retval = 0; 337 338 if (!audit_rate_limit) return 1; 339 340 spin_lock_irqsave(&lock, flags); 341 if (++messages < audit_rate_limit) { 342 retval = 1; 343 } else { 344 now = jiffies; 345 elapsed = now - last_check; 346 if (elapsed > HZ) { 347 last_check = now; 348 messages = 0; 349 retval = 1; 350 } 351 } 352 spin_unlock_irqrestore(&lock, flags); 353 354 return retval; 355 } 356 357 /** 358 * audit_log_lost - conditionally log lost audit message event 359 * @message: the message stating reason for lost audit message 360 * 361 * Emit at least 1 message per second, even if audit_rate_check is 362 * throttling. 363 * Always increment the lost messages counter. 364 */ 365 void audit_log_lost(const char *message) 366 { 367 static unsigned long last_msg = 0; 368 static DEFINE_SPINLOCK(lock); 369 unsigned long flags; 370 unsigned long now; 371 int print; 372 373 atomic_inc(&audit_lost); 374 375 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 376 377 if (!print) { 378 spin_lock_irqsave(&lock, flags); 379 now = jiffies; 380 if (now - last_msg > HZ) { 381 print = 1; 382 last_msg = now; 383 } 384 spin_unlock_irqrestore(&lock, flags); 385 } 386 387 if (print) { 388 if (printk_ratelimit()) 389 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 390 atomic_read(&audit_lost), 391 audit_rate_limit, 392 audit_backlog_limit); 393 audit_panic(message); 394 } 395 } 396 397 static int audit_log_config_change(char *function_name, u32 new, u32 old, 398 int allow_changes) 399 { 400 struct audit_buffer *ab; 401 int rc = 0; 402 403 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 404 if (unlikely(!ab)) 405 return rc; 406 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 407 audit_log_session_info(ab); 408 rc = audit_log_task_context(ab); 409 if (rc) 410 allow_changes = 0; /* Something weird, deny request */ 411 audit_log_format(ab, " res=%d", allow_changes); 412 audit_log_end(ab); 413 return rc; 414 } 415 416 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 417 { 418 int allow_changes, rc = 0; 419 u32 old = *to_change; 420 421 /* check if we are locked */ 422 if (audit_enabled == AUDIT_LOCKED) 423 allow_changes = 0; 424 else 425 allow_changes = 1; 426 427 if (audit_enabled != AUDIT_OFF) { 428 rc = audit_log_config_change(function_name, new, old, allow_changes); 429 if (rc) 430 allow_changes = 0; 431 } 432 433 /* If we are allowed, make the change */ 434 if (allow_changes == 1) 435 *to_change = new; 436 /* Not allowed, update reason */ 437 else if (rc == 0) 438 rc = -EPERM; 439 return rc; 440 } 441 442 static int audit_set_rate_limit(u32 limit) 443 { 444 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 445 } 446 447 static int audit_set_backlog_limit(u32 limit) 448 { 449 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 450 } 451 452 static int audit_set_backlog_wait_time(u32 timeout) 453 { 454 return audit_do_config_change("audit_backlog_wait_time", 455 &audit_backlog_wait_time, timeout); 456 } 457 458 static int audit_set_enabled(u32 state) 459 { 460 int rc; 461 if (state > AUDIT_LOCKED) 462 return -EINVAL; 463 464 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 465 if (!rc) 466 audit_ever_enabled |= !!state; 467 468 return rc; 469 } 470 471 static int audit_set_failure(u32 state) 472 { 473 if (state != AUDIT_FAIL_SILENT 474 && state != AUDIT_FAIL_PRINTK 475 && state != AUDIT_FAIL_PANIC) 476 return -EINVAL; 477 478 return audit_do_config_change("audit_failure", &audit_failure, state); 479 } 480 481 /** 482 * auditd_conn_free - RCU helper to release an auditd connection struct 483 * @rcu: RCU head 484 * 485 * Description: 486 * Drop any references inside the auditd connection tracking struct and free 487 * the memory. 488 */ 489 static void auditd_conn_free(struct rcu_head *rcu) 490 { 491 struct auditd_connection *ac; 492 493 ac = container_of(rcu, struct auditd_connection, rcu); 494 put_pid(ac->pid); 495 put_net(ac->net); 496 kfree(ac); 497 } 498 499 /** 500 * auditd_set - Set/Reset the auditd connection state 501 * @pid: auditd PID 502 * @portid: auditd netlink portid 503 * @net: auditd network namespace pointer 504 * 505 * Description: 506 * This function will obtain and drop network namespace references as 507 * necessary. Returns zero on success, negative values on failure. 508 */ 509 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 510 { 511 unsigned long flags; 512 struct auditd_connection *ac_old, *ac_new; 513 514 if (!pid || !net) 515 return -EINVAL; 516 517 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 518 if (!ac_new) 519 return -ENOMEM; 520 ac_new->pid = get_pid(pid); 521 ac_new->portid = portid; 522 ac_new->net = get_net(net); 523 524 spin_lock_irqsave(&auditd_conn_lock, flags); 525 ac_old = rcu_dereference_protected(auditd_conn, 526 lockdep_is_held(&auditd_conn_lock)); 527 rcu_assign_pointer(auditd_conn, ac_new); 528 spin_unlock_irqrestore(&auditd_conn_lock, flags); 529 530 if (ac_old) 531 call_rcu(&ac_old->rcu, auditd_conn_free); 532 533 return 0; 534 } 535 536 /** 537 * kauditd_print_skb - Print the audit record to the ring buffer 538 * @skb: audit record 539 * 540 * Whatever the reason, this packet may not make it to the auditd connection 541 * so write it via printk so the information isn't completely lost. 542 */ 543 static void kauditd_printk_skb(struct sk_buff *skb) 544 { 545 struct nlmsghdr *nlh = nlmsg_hdr(skb); 546 char *data = nlmsg_data(nlh); 547 548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 550 } 551 552 /** 553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 554 * @skb: audit record 555 * 556 * Description: 557 * This should only be used by the kauditd_thread when it fails to flush the 558 * hold queue. 559 */ 560 static void kauditd_rehold_skb(struct sk_buff *skb) 561 { 562 /* put the record back in the queue at the same place */ 563 skb_queue_head(&audit_hold_queue, skb); 564 } 565 566 /** 567 * kauditd_hold_skb - Queue an audit record, waiting for auditd 568 * @skb: audit record 569 * 570 * Description: 571 * Queue the audit record, waiting for an instance of auditd. When this 572 * function is called we haven't given up yet on sending the record, but things 573 * are not looking good. The first thing we want to do is try to write the 574 * record via printk and then see if we want to try and hold on to the record 575 * and queue it, if we have room. If we want to hold on to the record, but we 576 * don't have room, record a record lost message. 577 */ 578 static void kauditd_hold_skb(struct sk_buff *skb) 579 { 580 /* at this point it is uncertain if we will ever send this to auditd so 581 * try to send the message via printk before we go any further */ 582 kauditd_printk_skb(skb); 583 584 /* can we just silently drop the message? */ 585 if (!audit_default) { 586 kfree_skb(skb); 587 return; 588 } 589 590 /* if we have room, queue the message */ 591 if (!audit_backlog_limit || 592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 593 skb_queue_tail(&audit_hold_queue, skb); 594 return; 595 } 596 597 /* we have no other options - drop the message */ 598 audit_log_lost("kauditd hold queue overflow"); 599 kfree_skb(skb); 600 } 601 602 /** 603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 604 * @skb: audit record 605 * 606 * Description: 607 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 608 * but for some reason we are having problems sending it audit records so 609 * queue the given record and attempt to resend. 610 */ 611 static void kauditd_retry_skb(struct sk_buff *skb) 612 { 613 /* NOTE: because records should only live in the retry queue for a 614 * short period of time, before either being sent or moved to the hold 615 * queue, we don't currently enforce a limit on this queue */ 616 skb_queue_tail(&audit_retry_queue, skb); 617 } 618 619 /** 620 * auditd_reset - Disconnect the auditd connection 621 * @ac: auditd connection state 622 * 623 * Description: 624 * Break the auditd/kauditd connection and move all the queued records into the 625 * hold queue in case auditd reconnects. It is important to note that the @ac 626 * pointer should never be dereferenced inside this function as it may be NULL 627 * or invalid, you can only compare the memory address! If @ac is NULL then 628 * the connection will always be reset. 629 */ 630 static void auditd_reset(const struct auditd_connection *ac) 631 { 632 unsigned long flags; 633 struct sk_buff *skb; 634 struct auditd_connection *ac_old; 635 636 /* if it isn't already broken, break the connection */ 637 spin_lock_irqsave(&auditd_conn_lock, flags); 638 ac_old = rcu_dereference_protected(auditd_conn, 639 lockdep_is_held(&auditd_conn_lock)); 640 if (ac && ac != ac_old) { 641 /* someone already registered a new auditd connection */ 642 spin_unlock_irqrestore(&auditd_conn_lock, flags); 643 return; 644 } 645 rcu_assign_pointer(auditd_conn, NULL); 646 spin_unlock_irqrestore(&auditd_conn_lock, flags); 647 648 if (ac_old) 649 call_rcu(&ac_old->rcu, auditd_conn_free); 650 651 /* flush the retry queue to the hold queue, but don't touch the main 652 * queue since we need to process that normally for multicast */ 653 while ((skb = skb_dequeue(&audit_retry_queue))) 654 kauditd_hold_skb(skb); 655 } 656 657 /** 658 * auditd_send_unicast_skb - Send a record via unicast to auditd 659 * @skb: audit record 660 * 661 * Description: 662 * Send a skb to the audit daemon, returns positive/zero values on success and 663 * negative values on failure; in all cases the skb will be consumed by this 664 * function. If the send results in -ECONNREFUSED the connection with auditd 665 * will be reset. This function may sleep so callers should not hold any locks 666 * where this would cause a problem. 667 */ 668 static int auditd_send_unicast_skb(struct sk_buff *skb) 669 { 670 int rc; 671 u32 portid; 672 struct net *net; 673 struct sock *sk; 674 struct auditd_connection *ac; 675 676 /* NOTE: we can't call netlink_unicast while in the RCU section so 677 * take a reference to the network namespace and grab local 678 * copies of the namespace, the sock, and the portid; the 679 * namespace and sock aren't going to go away while we hold a 680 * reference and if the portid does become invalid after the RCU 681 * section netlink_unicast() should safely return an error */ 682 683 rcu_read_lock(); 684 ac = rcu_dereference(auditd_conn); 685 if (!ac) { 686 rcu_read_unlock(); 687 kfree_skb(skb); 688 rc = -ECONNREFUSED; 689 goto err; 690 } 691 net = get_net(ac->net); 692 sk = audit_get_sk(net); 693 portid = ac->portid; 694 rcu_read_unlock(); 695 696 rc = netlink_unicast(sk, skb, portid, 0); 697 put_net(net); 698 if (rc < 0) 699 goto err; 700 701 return rc; 702 703 err: 704 if (ac && rc == -ECONNREFUSED) 705 auditd_reset(ac); 706 return rc; 707 } 708 709 /** 710 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 711 * @sk: the sending sock 712 * @portid: the netlink destination 713 * @queue: the skb queue to process 714 * @retry_limit: limit on number of netlink unicast failures 715 * @skb_hook: per-skb hook for additional processing 716 * @err_hook: hook called if the skb fails the netlink unicast send 717 * 718 * Description: 719 * Run through the given queue and attempt to send the audit records to auditd, 720 * returns zero on success, negative values on failure. It is up to the caller 721 * to ensure that the @sk is valid for the duration of this function. 722 * 723 */ 724 static int kauditd_send_queue(struct sock *sk, u32 portid, 725 struct sk_buff_head *queue, 726 unsigned int retry_limit, 727 void (*skb_hook)(struct sk_buff *skb), 728 void (*err_hook)(struct sk_buff *skb)) 729 { 730 int rc = 0; 731 struct sk_buff *skb; 732 static unsigned int failed = 0; 733 734 /* NOTE: kauditd_thread takes care of all our locking, we just use 735 * the netlink info passed to us (e.g. sk and portid) */ 736 737 while ((skb = skb_dequeue(queue))) { 738 /* call the skb_hook for each skb we touch */ 739 if (skb_hook) 740 (*skb_hook)(skb); 741 742 /* can we send to anyone via unicast? */ 743 if (!sk) { 744 if (err_hook) 745 (*err_hook)(skb); 746 continue; 747 } 748 749 /* grab an extra skb reference in case of error */ 750 skb_get(skb); 751 rc = netlink_unicast(sk, skb, portid, 0); 752 if (rc < 0) { 753 /* fatal failure for our queue flush attempt? */ 754 if (++failed >= retry_limit || 755 rc == -ECONNREFUSED || rc == -EPERM) { 756 /* yes - error processing for the queue */ 757 sk = NULL; 758 if (err_hook) 759 (*err_hook)(skb); 760 if (!skb_hook) 761 goto out; 762 /* keep processing with the skb_hook */ 763 continue; 764 } else 765 /* no - requeue to preserve ordering */ 766 skb_queue_head(queue, skb); 767 } else { 768 /* it worked - drop the extra reference and continue */ 769 consume_skb(skb); 770 failed = 0; 771 } 772 } 773 774 out: 775 return (rc >= 0 ? 0 : rc); 776 } 777 778 /* 779 * kauditd_send_multicast_skb - Send a record to any multicast listeners 780 * @skb: audit record 781 * 782 * Description: 783 * Write a multicast message to anyone listening in the initial network 784 * namespace. This function doesn't consume an skb as might be expected since 785 * it has to copy it anyways. 786 */ 787 static void kauditd_send_multicast_skb(struct sk_buff *skb) 788 { 789 struct sk_buff *copy; 790 struct sock *sock = audit_get_sk(&init_net); 791 struct nlmsghdr *nlh; 792 793 /* NOTE: we are not taking an additional reference for init_net since 794 * we don't have to worry about it going away */ 795 796 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 797 return; 798 799 /* 800 * The seemingly wasteful skb_copy() rather than bumping the refcount 801 * using skb_get() is necessary because non-standard mods are made to 802 * the skb by the original kaudit unicast socket send routine. The 803 * existing auditd daemon assumes this breakage. Fixing this would 804 * require co-ordinating a change in the established protocol between 805 * the kaudit kernel subsystem and the auditd userspace code. There is 806 * no reason for new multicast clients to continue with this 807 * non-compliance. 808 */ 809 copy = skb_copy(skb, GFP_KERNEL); 810 if (!copy) 811 return; 812 nlh = nlmsg_hdr(copy); 813 nlh->nlmsg_len = skb->len; 814 815 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 816 } 817 818 /** 819 * kauditd_thread - Worker thread to send audit records to userspace 820 * @dummy: unused 821 */ 822 static int kauditd_thread(void *dummy) 823 { 824 int rc; 825 u32 portid = 0; 826 struct net *net = NULL; 827 struct sock *sk = NULL; 828 struct auditd_connection *ac; 829 830 #define UNICAST_RETRIES 5 831 832 set_freezable(); 833 while (!kthread_should_stop()) { 834 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 835 rcu_read_lock(); 836 ac = rcu_dereference(auditd_conn); 837 if (!ac) { 838 rcu_read_unlock(); 839 goto main_queue; 840 } 841 net = get_net(ac->net); 842 sk = audit_get_sk(net); 843 portid = ac->portid; 844 rcu_read_unlock(); 845 846 /* attempt to flush the hold queue */ 847 rc = kauditd_send_queue(sk, portid, 848 &audit_hold_queue, UNICAST_RETRIES, 849 NULL, kauditd_rehold_skb); 850 if (ac && rc < 0) { 851 sk = NULL; 852 auditd_reset(ac); 853 goto main_queue; 854 } 855 856 /* attempt to flush the retry queue */ 857 rc = kauditd_send_queue(sk, portid, 858 &audit_retry_queue, UNICAST_RETRIES, 859 NULL, kauditd_hold_skb); 860 if (ac && rc < 0) { 861 sk = NULL; 862 auditd_reset(ac); 863 goto main_queue; 864 } 865 866 main_queue: 867 /* process the main queue - do the multicast send and attempt 868 * unicast, dump failed record sends to the retry queue; if 869 * sk == NULL due to previous failures we will just do the 870 * multicast send and move the record to the hold queue */ 871 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 872 kauditd_send_multicast_skb, 873 (sk ? 874 kauditd_retry_skb : kauditd_hold_skb)); 875 if (ac && rc < 0) 876 auditd_reset(ac); 877 sk = NULL; 878 879 /* drop our netns reference, no auditd sends past this line */ 880 if (net) { 881 put_net(net); 882 net = NULL; 883 } 884 885 /* we have processed all the queues so wake everyone */ 886 wake_up(&audit_backlog_wait); 887 888 /* NOTE: we want to wake up if there is anything on the queue, 889 * regardless of if an auditd is connected, as we need to 890 * do the multicast send and rotate records from the 891 * main queue to the retry/hold queues */ 892 wait_event_freezable(kauditd_wait, 893 (skb_queue_len(&audit_queue) ? 1 : 0)); 894 } 895 896 return 0; 897 } 898 899 int audit_send_list(void *_dest) 900 { 901 struct audit_netlink_list *dest = _dest; 902 struct sk_buff *skb; 903 struct sock *sk = audit_get_sk(dest->net); 904 905 /* wait for parent to finish and send an ACK */ 906 audit_ctl_lock(); 907 audit_ctl_unlock(); 908 909 while ((skb = __skb_dequeue(&dest->q)) != NULL) 910 netlink_unicast(sk, skb, dest->portid, 0); 911 912 put_net(dest->net); 913 kfree(dest); 914 915 return 0; 916 } 917 918 struct sk_buff *audit_make_reply(int seq, int type, int done, 919 int multi, const void *payload, int size) 920 { 921 struct sk_buff *skb; 922 struct nlmsghdr *nlh; 923 void *data; 924 int flags = multi ? NLM_F_MULTI : 0; 925 int t = done ? NLMSG_DONE : type; 926 927 skb = nlmsg_new(size, GFP_KERNEL); 928 if (!skb) 929 return NULL; 930 931 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 932 if (!nlh) 933 goto out_kfree_skb; 934 data = nlmsg_data(nlh); 935 memcpy(data, payload, size); 936 return skb; 937 938 out_kfree_skb: 939 kfree_skb(skb); 940 return NULL; 941 } 942 943 static int audit_send_reply_thread(void *arg) 944 { 945 struct audit_reply *reply = (struct audit_reply *)arg; 946 struct sock *sk = audit_get_sk(reply->net); 947 948 audit_ctl_lock(); 949 audit_ctl_unlock(); 950 951 /* Ignore failure. It'll only happen if the sender goes away, 952 because our timeout is set to infinite. */ 953 netlink_unicast(sk, reply->skb, reply->portid, 0); 954 put_net(reply->net); 955 kfree(reply); 956 return 0; 957 } 958 959 /** 960 * audit_send_reply - send an audit reply message via netlink 961 * @request_skb: skb of request we are replying to (used to target the reply) 962 * @seq: sequence number 963 * @type: audit message type 964 * @done: done (last) flag 965 * @multi: multi-part message flag 966 * @payload: payload data 967 * @size: payload size 968 * 969 * Allocates an skb, builds the netlink message, and sends it to the port id. 970 * No failure notifications. 971 */ 972 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 973 int multi, const void *payload, int size) 974 { 975 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 976 struct sk_buff *skb; 977 struct task_struct *tsk; 978 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 979 GFP_KERNEL); 980 981 if (!reply) 982 return; 983 984 skb = audit_make_reply(seq, type, done, multi, payload, size); 985 if (!skb) 986 goto out; 987 988 reply->net = get_net(net); 989 reply->portid = NETLINK_CB(request_skb).portid; 990 reply->skb = skb; 991 992 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 993 if (!IS_ERR(tsk)) 994 return; 995 kfree_skb(skb); 996 out: 997 kfree(reply); 998 } 999 1000 /* 1001 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1002 * control messages. 1003 */ 1004 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1005 { 1006 int err = 0; 1007 1008 /* Only support initial user namespace for now. */ 1009 /* 1010 * We return ECONNREFUSED because it tricks userspace into thinking 1011 * that audit was not configured into the kernel. Lots of users 1012 * configure their PAM stack (because that's what the distro does) 1013 * to reject login if unable to send messages to audit. If we return 1014 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1015 * configured in and will let login proceed. If we return EPERM 1016 * userspace will reject all logins. This should be removed when we 1017 * support non init namespaces!! 1018 */ 1019 if (current_user_ns() != &init_user_ns) 1020 return -ECONNREFUSED; 1021 1022 switch (msg_type) { 1023 case AUDIT_LIST: 1024 case AUDIT_ADD: 1025 case AUDIT_DEL: 1026 return -EOPNOTSUPP; 1027 case AUDIT_GET: 1028 case AUDIT_SET: 1029 case AUDIT_GET_FEATURE: 1030 case AUDIT_SET_FEATURE: 1031 case AUDIT_LIST_RULES: 1032 case AUDIT_ADD_RULE: 1033 case AUDIT_DEL_RULE: 1034 case AUDIT_SIGNAL_INFO: 1035 case AUDIT_TTY_GET: 1036 case AUDIT_TTY_SET: 1037 case AUDIT_TRIM: 1038 case AUDIT_MAKE_EQUIV: 1039 /* Only support auditd and auditctl in initial pid namespace 1040 * for now. */ 1041 if (task_active_pid_ns(current) != &init_pid_ns) 1042 return -EPERM; 1043 1044 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1045 err = -EPERM; 1046 break; 1047 case AUDIT_USER: 1048 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1049 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1050 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1051 err = -EPERM; 1052 break; 1053 default: /* bad msg */ 1054 err = -EINVAL; 1055 } 1056 1057 return err; 1058 } 1059 1060 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 1061 { 1062 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1063 pid_t pid = task_tgid_nr(current); 1064 1065 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1066 *ab = NULL; 1067 return; 1068 } 1069 1070 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 1071 if (unlikely(!*ab)) 1072 return; 1073 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 1074 audit_log_session_info(*ab); 1075 audit_log_task_context(*ab); 1076 } 1077 1078 int is_audit_feature_set(int i) 1079 { 1080 return af.features & AUDIT_FEATURE_TO_MASK(i); 1081 } 1082 1083 1084 static int audit_get_feature(struct sk_buff *skb) 1085 { 1086 u32 seq; 1087 1088 seq = nlmsg_hdr(skb)->nlmsg_seq; 1089 1090 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1091 1092 return 0; 1093 } 1094 1095 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1096 u32 old_lock, u32 new_lock, int res) 1097 { 1098 struct audit_buffer *ab; 1099 1100 if (audit_enabled == AUDIT_OFF) 1101 return; 1102 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1103 if (!ab) 1104 return; 1105 audit_log_task_info(ab, current); 1106 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1107 audit_feature_names[which], !!old_feature, !!new_feature, 1108 !!old_lock, !!new_lock, res); 1109 audit_log_end(ab); 1110 } 1111 1112 static int audit_set_feature(struct sk_buff *skb) 1113 { 1114 struct audit_features *uaf; 1115 int i; 1116 1117 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1118 uaf = nlmsg_data(nlmsg_hdr(skb)); 1119 1120 /* if there is ever a version 2 we should handle that here */ 1121 1122 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1123 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1124 u32 old_feature, new_feature, old_lock, new_lock; 1125 1126 /* if we are not changing this feature, move along */ 1127 if (!(feature & uaf->mask)) 1128 continue; 1129 1130 old_feature = af.features & feature; 1131 new_feature = uaf->features & feature; 1132 new_lock = (uaf->lock | af.lock) & feature; 1133 old_lock = af.lock & feature; 1134 1135 /* are we changing a locked feature? */ 1136 if (old_lock && (new_feature != old_feature)) { 1137 audit_log_feature_change(i, old_feature, new_feature, 1138 old_lock, new_lock, 0); 1139 return -EPERM; 1140 } 1141 } 1142 /* nothing invalid, do the changes */ 1143 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1144 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1145 u32 old_feature, new_feature, old_lock, new_lock; 1146 1147 /* if we are not changing this feature, move along */ 1148 if (!(feature & uaf->mask)) 1149 continue; 1150 1151 old_feature = af.features & feature; 1152 new_feature = uaf->features & feature; 1153 old_lock = af.lock & feature; 1154 new_lock = (uaf->lock | af.lock) & feature; 1155 1156 if (new_feature != old_feature) 1157 audit_log_feature_change(i, old_feature, new_feature, 1158 old_lock, new_lock, 1); 1159 1160 if (new_feature) 1161 af.features |= feature; 1162 else 1163 af.features &= ~feature; 1164 af.lock |= new_lock; 1165 } 1166 1167 return 0; 1168 } 1169 1170 static int audit_replace(struct pid *pid) 1171 { 1172 pid_t pvnr; 1173 struct sk_buff *skb; 1174 1175 pvnr = pid_vnr(pid); 1176 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1177 if (!skb) 1178 return -ENOMEM; 1179 return auditd_send_unicast_skb(skb); 1180 } 1181 1182 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1183 { 1184 u32 seq; 1185 void *data; 1186 int err; 1187 struct audit_buffer *ab; 1188 u16 msg_type = nlh->nlmsg_type; 1189 struct audit_sig_info *sig_data; 1190 char *ctx = NULL; 1191 u32 len; 1192 1193 err = audit_netlink_ok(skb, msg_type); 1194 if (err) 1195 return err; 1196 1197 seq = nlh->nlmsg_seq; 1198 data = nlmsg_data(nlh); 1199 1200 switch (msg_type) { 1201 case AUDIT_GET: { 1202 struct audit_status s; 1203 memset(&s, 0, sizeof(s)); 1204 s.enabled = audit_enabled; 1205 s.failure = audit_failure; 1206 /* NOTE: use pid_vnr() so the PID is relative to the current 1207 * namespace */ 1208 s.pid = auditd_pid_vnr(); 1209 s.rate_limit = audit_rate_limit; 1210 s.backlog_limit = audit_backlog_limit; 1211 s.lost = atomic_read(&audit_lost); 1212 s.backlog = skb_queue_len(&audit_queue); 1213 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1214 s.backlog_wait_time = audit_backlog_wait_time; 1215 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1216 break; 1217 } 1218 case AUDIT_SET: { 1219 struct audit_status s; 1220 memset(&s, 0, sizeof(s)); 1221 /* guard against past and future API changes */ 1222 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1223 if (s.mask & AUDIT_STATUS_ENABLED) { 1224 err = audit_set_enabled(s.enabled); 1225 if (err < 0) 1226 return err; 1227 } 1228 if (s.mask & AUDIT_STATUS_FAILURE) { 1229 err = audit_set_failure(s.failure); 1230 if (err < 0) 1231 return err; 1232 } 1233 if (s.mask & AUDIT_STATUS_PID) { 1234 /* NOTE: we are using the vnr PID functions below 1235 * because the s.pid value is relative to the 1236 * namespace of the caller; at present this 1237 * doesn't matter much since you can really only 1238 * run auditd from the initial pid namespace, but 1239 * something to keep in mind if this changes */ 1240 pid_t new_pid = s.pid; 1241 pid_t auditd_pid; 1242 struct pid *req_pid = task_tgid(current); 1243 1244 /* Sanity check - PID values must match. Setting 1245 * pid to 0 is how auditd ends auditing. */ 1246 if (new_pid && (new_pid != pid_vnr(req_pid))) 1247 return -EINVAL; 1248 1249 /* test the auditd connection */ 1250 audit_replace(req_pid); 1251 1252 auditd_pid = auditd_pid_vnr(); 1253 if (auditd_pid) { 1254 /* replacing a healthy auditd is not allowed */ 1255 if (new_pid) { 1256 audit_log_config_change("audit_pid", 1257 new_pid, auditd_pid, 0); 1258 return -EEXIST; 1259 } 1260 /* only current auditd can unregister itself */ 1261 if (pid_vnr(req_pid) != auditd_pid) { 1262 audit_log_config_change("audit_pid", 1263 new_pid, auditd_pid, 0); 1264 return -EACCES; 1265 } 1266 } 1267 1268 if (new_pid) { 1269 /* register a new auditd connection */ 1270 err = auditd_set(req_pid, 1271 NETLINK_CB(skb).portid, 1272 sock_net(NETLINK_CB(skb).sk)); 1273 if (audit_enabled != AUDIT_OFF) 1274 audit_log_config_change("audit_pid", 1275 new_pid, 1276 auditd_pid, 1277 err ? 0 : 1); 1278 if (err) 1279 return err; 1280 1281 /* try to process any backlog */ 1282 wake_up_interruptible(&kauditd_wait); 1283 } else { 1284 if (audit_enabled != AUDIT_OFF) 1285 audit_log_config_change("audit_pid", 1286 new_pid, 1287 auditd_pid, 1); 1288 1289 /* unregister the auditd connection */ 1290 auditd_reset(NULL); 1291 } 1292 } 1293 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1294 err = audit_set_rate_limit(s.rate_limit); 1295 if (err < 0) 1296 return err; 1297 } 1298 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1299 err = audit_set_backlog_limit(s.backlog_limit); 1300 if (err < 0) 1301 return err; 1302 } 1303 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1304 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1305 return -EINVAL; 1306 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1307 return -EINVAL; 1308 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1309 if (err < 0) 1310 return err; 1311 } 1312 if (s.mask == AUDIT_STATUS_LOST) { 1313 u32 lost = atomic_xchg(&audit_lost, 0); 1314 1315 audit_log_config_change("lost", 0, lost, 1); 1316 return lost; 1317 } 1318 break; 1319 } 1320 case AUDIT_GET_FEATURE: 1321 err = audit_get_feature(skb); 1322 if (err) 1323 return err; 1324 break; 1325 case AUDIT_SET_FEATURE: 1326 err = audit_set_feature(skb); 1327 if (err) 1328 return err; 1329 break; 1330 case AUDIT_USER: 1331 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1332 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1333 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1334 return 0; 1335 1336 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1337 if (err == 1) { /* match or error */ 1338 err = 0; 1339 if (msg_type == AUDIT_USER_TTY) { 1340 err = tty_audit_push(); 1341 if (err) 1342 break; 1343 } 1344 audit_log_common_recv_msg(&ab, msg_type); 1345 if (msg_type != AUDIT_USER_TTY) 1346 audit_log_format(ab, " msg='%.*s'", 1347 AUDIT_MESSAGE_TEXT_MAX, 1348 (char *)data); 1349 else { 1350 int size; 1351 1352 audit_log_format(ab, " data="); 1353 size = nlmsg_len(nlh); 1354 if (size > 0 && 1355 ((unsigned char *)data)[size - 1] == '\0') 1356 size--; 1357 audit_log_n_untrustedstring(ab, data, size); 1358 } 1359 audit_log_end(ab); 1360 } 1361 break; 1362 case AUDIT_ADD_RULE: 1363 case AUDIT_DEL_RULE: 1364 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1365 return -EINVAL; 1366 if (audit_enabled == AUDIT_LOCKED) { 1367 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1368 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1369 audit_log_end(ab); 1370 return -EPERM; 1371 } 1372 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1373 break; 1374 case AUDIT_LIST_RULES: 1375 err = audit_list_rules_send(skb, seq); 1376 break; 1377 case AUDIT_TRIM: 1378 audit_trim_trees(); 1379 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1380 audit_log_format(ab, " op=trim res=1"); 1381 audit_log_end(ab); 1382 break; 1383 case AUDIT_MAKE_EQUIV: { 1384 void *bufp = data; 1385 u32 sizes[2]; 1386 size_t msglen = nlmsg_len(nlh); 1387 char *old, *new; 1388 1389 err = -EINVAL; 1390 if (msglen < 2 * sizeof(u32)) 1391 break; 1392 memcpy(sizes, bufp, 2 * sizeof(u32)); 1393 bufp += 2 * sizeof(u32); 1394 msglen -= 2 * sizeof(u32); 1395 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1396 if (IS_ERR(old)) { 1397 err = PTR_ERR(old); 1398 break; 1399 } 1400 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1401 if (IS_ERR(new)) { 1402 err = PTR_ERR(new); 1403 kfree(old); 1404 break; 1405 } 1406 /* OK, here comes... */ 1407 err = audit_tag_tree(old, new); 1408 1409 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1410 1411 audit_log_format(ab, " op=make_equiv old="); 1412 audit_log_untrustedstring(ab, old); 1413 audit_log_format(ab, " new="); 1414 audit_log_untrustedstring(ab, new); 1415 audit_log_format(ab, " res=%d", !err); 1416 audit_log_end(ab); 1417 kfree(old); 1418 kfree(new); 1419 break; 1420 } 1421 case AUDIT_SIGNAL_INFO: 1422 len = 0; 1423 if (audit_sig_sid) { 1424 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1425 if (err) 1426 return err; 1427 } 1428 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1429 if (!sig_data) { 1430 if (audit_sig_sid) 1431 security_release_secctx(ctx, len); 1432 return -ENOMEM; 1433 } 1434 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1435 sig_data->pid = audit_sig_pid; 1436 if (audit_sig_sid) { 1437 memcpy(sig_data->ctx, ctx, len); 1438 security_release_secctx(ctx, len); 1439 } 1440 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1441 sig_data, sizeof(*sig_data) + len); 1442 kfree(sig_data); 1443 break; 1444 case AUDIT_TTY_GET: { 1445 struct audit_tty_status s; 1446 unsigned int t; 1447 1448 t = READ_ONCE(current->signal->audit_tty); 1449 s.enabled = t & AUDIT_TTY_ENABLE; 1450 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1451 1452 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1453 break; 1454 } 1455 case AUDIT_TTY_SET: { 1456 struct audit_tty_status s, old; 1457 struct audit_buffer *ab; 1458 unsigned int t; 1459 1460 memset(&s, 0, sizeof(s)); 1461 /* guard against past and future API changes */ 1462 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1463 /* check if new data is valid */ 1464 if ((s.enabled != 0 && s.enabled != 1) || 1465 (s.log_passwd != 0 && s.log_passwd != 1)) 1466 err = -EINVAL; 1467 1468 if (err) 1469 t = READ_ONCE(current->signal->audit_tty); 1470 else { 1471 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1472 t = xchg(¤t->signal->audit_tty, t); 1473 } 1474 old.enabled = t & AUDIT_TTY_ENABLE; 1475 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1476 1477 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1478 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1479 " old-log_passwd=%d new-log_passwd=%d res=%d", 1480 old.enabled, s.enabled, old.log_passwd, 1481 s.log_passwd, !err); 1482 audit_log_end(ab); 1483 break; 1484 } 1485 default: 1486 err = -EINVAL; 1487 break; 1488 } 1489 1490 return err < 0 ? err : 0; 1491 } 1492 1493 /** 1494 * audit_receive - receive messages from a netlink control socket 1495 * @skb: the message buffer 1496 * 1497 * Parse the provided skb and deal with any messages that may be present, 1498 * malformed skbs are discarded. 1499 */ 1500 static void audit_receive(struct sk_buff *skb) 1501 { 1502 struct nlmsghdr *nlh; 1503 /* 1504 * len MUST be signed for nlmsg_next to be able to dec it below 0 1505 * if the nlmsg_len was not aligned 1506 */ 1507 int len; 1508 int err; 1509 1510 nlh = nlmsg_hdr(skb); 1511 len = skb->len; 1512 1513 audit_ctl_lock(); 1514 while (nlmsg_ok(nlh, len)) { 1515 err = audit_receive_msg(skb, nlh); 1516 /* if err or if this message says it wants a response */ 1517 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1518 netlink_ack(skb, nlh, err, NULL); 1519 1520 nlh = nlmsg_next(nlh, &len); 1521 } 1522 audit_ctl_unlock(); 1523 } 1524 1525 /* Run custom bind function on netlink socket group connect or bind requests. */ 1526 static int audit_bind(struct net *net, int group) 1527 { 1528 if (!capable(CAP_AUDIT_READ)) 1529 return -EPERM; 1530 1531 return 0; 1532 } 1533 1534 static int __net_init audit_net_init(struct net *net) 1535 { 1536 struct netlink_kernel_cfg cfg = { 1537 .input = audit_receive, 1538 .bind = audit_bind, 1539 .flags = NL_CFG_F_NONROOT_RECV, 1540 .groups = AUDIT_NLGRP_MAX, 1541 }; 1542 1543 struct audit_net *aunet = net_generic(net, audit_net_id); 1544 1545 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1546 if (aunet->sk == NULL) { 1547 audit_panic("cannot initialize netlink socket in namespace"); 1548 return -ENOMEM; 1549 } 1550 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1551 1552 return 0; 1553 } 1554 1555 static void __net_exit audit_net_exit(struct net *net) 1556 { 1557 struct audit_net *aunet = net_generic(net, audit_net_id); 1558 1559 /* NOTE: you would think that we would want to check the auditd 1560 * connection and potentially reset it here if it lives in this 1561 * namespace, but since the auditd connection tracking struct holds a 1562 * reference to this namespace (see auditd_set()) we are only ever 1563 * going to get here after that connection has been released */ 1564 1565 netlink_kernel_release(aunet->sk); 1566 } 1567 1568 static struct pernet_operations audit_net_ops __net_initdata = { 1569 .init = audit_net_init, 1570 .exit = audit_net_exit, 1571 .id = &audit_net_id, 1572 .size = sizeof(struct audit_net), 1573 }; 1574 1575 /* Initialize audit support at boot time. */ 1576 static int __init audit_init(void) 1577 { 1578 int i; 1579 1580 if (audit_initialized == AUDIT_DISABLED) 1581 return 0; 1582 1583 audit_buffer_cache = kmem_cache_create("audit_buffer", 1584 sizeof(struct audit_buffer), 1585 0, SLAB_PANIC, NULL); 1586 1587 skb_queue_head_init(&audit_queue); 1588 skb_queue_head_init(&audit_retry_queue); 1589 skb_queue_head_init(&audit_hold_queue); 1590 1591 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1592 INIT_LIST_HEAD(&audit_inode_hash[i]); 1593 1594 mutex_init(&audit_cmd_mutex.lock); 1595 audit_cmd_mutex.owner = NULL; 1596 1597 pr_info("initializing netlink subsys (%s)\n", 1598 audit_default ? "enabled" : "disabled"); 1599 register_pernet_subsys(&audit_net_ops); 1600 1601 audit_initialized = AUDIT_INITIALIZED; 1602 1603 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1604 if (IS_ERR(kauditd_task)) { 1605 int err = PTR_ERR(kauditd_task); 1606 panic("audit: failed to start the kauditd thread (%d)\n", err); 1607 } 1608 1609 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1610 "state=initialized audit_enabled=%u res=1", 1611 audit_enabled); 1612 1613 return 0; 1614 } 1615 postcore_initcall(audit_init); 1616 1617 /* 1618 * Process kernel command-line parameter at boot time. 1619 * audit={0|off} or audit={1|on}. 1620 */ 1621 static int __init audit_enable(char *str) 1622 { 1623 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1624 audit_default = AUDIT_OFF; 1625 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1626 audit_default = AUDIT_ON; 1627 else { 1628 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1629 audit_default = AUDIT_ON; 1630 } 1631 1632 if (audit_default == AUDIT_OFF) 1633 audit_initialized = AUDIT_DISABLED; 1634 if (audit_set_enabled(audit_default)) 1635 pr_err("audit: error setting audit state (%d)\n", 1636 audit_default); 1637 1638 pr_info("%s\n", audit_default ? 1639 "enabled (after initialization)" : "disabled (until reboot)"); 1640 1641 return 1; 1642 } 1643 __setup("audit=", audit_enable); 1644 1645 /* Process kernel command-line parameter at boot time. 1646 * audit_backlog_limit=<n> */ 1647 static int __init audit_backlog_limit_set(char *str) 1648 { 1649 u32 audit_backlog_limit_arg; 1650 1651 pr_info("audit_backlog_limit: "); 1652 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1653 pr_cont("using default of %u, unable to parse %s\n", 1654 audit_backlog_limit, str); 1655 return 1; 1656 } 1657 1658 audit_backlog_limit = audit_backlog_limit_arg; 1659 pr_cont("%d\n", audit_backlog_limit); 1660 1661 return 1; 1662 } 1663 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1664 1665 static void audit_buffer_free(struct audit_buffer *ab) 1666 { 1667 if (!ab) 1668 return; 1669 1670 kfree_skb(ab->skb); 1671 kmem_cache_free(audit_buffer_cache, ab); 1672 } 1673 1674 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1675 gfp_t gfp_mask, int type) 1676 { 1677 struct audit_buffer *ab; 1678 1679 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1680 if (!ab) 1681 return NULL; 1682 1683 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1684 if (!ab->skb) 1685 goto err; 1686 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1687 goto err; 1688 1689 ab->ctx = ctx; 1690 ab->gfp_mask = gfp_mask; 1691 1692 return ab; 1693 1694 err: 1695 audit_buffer_free(ab); 1696 return NULL; 1697 } 1698 1699 /** 1700 * audit_serial - compute a serial number for the audit record 1701 * 1702 * Compute a serial number for the audit record. Audit records are 1703 * written to user-space as soon as they are generated, so a complete 1704 * audit record may be written in several pieces. The timestamp of the 1705 * record and this serial number are used by the user-space tools to 1706 * determine which pieces belong to the same audit record. The 1707 * (timestamp,serial) tuple is unique for each syscall and is live from 1708 * syscall entry to syscall exit. 1709 * 1710 * NOTE: Another possibility is to store the formatted records off the 1711 * audit context (for those records that have a context), and emit them 1712 * all at syscall exit. However, this could delay the reporting of 1713 * significant errors until syscall exit (or never, if the system 1714 * halts). 1715 */ 1716 unsigned int audit_serial(void) 1717 { 1718 static atomic_t serial = ATOMIC_INIT(0); 1719 1720 return atomic_add_return(1, &serial); 1721 } 1722 1723 static inline void audit_get_stamp(struct audit_context *ctx, 1724 struct timespec64 *t, unsigned int *serial) 1725 { 1726 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1727 *t = current_kernel_time64(); 1728 *serial = audit_serial(); 1729 } 1730 } 1731 1732 /** 1733 * audit_log_start - obtain an audit buffer 1734 * @ctx: audit_context (may be NULL) 1735 * @gfp_mask: type of allocation 1736 * @type: audit message type 1737 * 1738 * Returns audit_buffer pointer on success or NULL on error. 1739 * 1740 * Obtain an audit buffer. This routine does locking to obtain the 1741 * audit buffer, but then no locking is required for calls to 1742 * audit_log_*format. If the task (ctx) is a task that is currently in a 1743 * syscall, then the syscall is marked as auditable and an audit record 1744 * will be written at syscall exit. If there is no associated task, then 1745 * task context (ctx) should be NULL. 1746 */ 1747 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1748 int type) 1749 { 1750 struct audit_buffer *ab; 1751 struct timespec64 t; 1752 unsigned int uninitialized_var(serial); 1753 1754 if (audit_initialized != AUDIT_INITIALIZED) 1755 return NULL; 1756 1757 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1758 return NULL; 1759 1760 /* NOTE: don't ever fail/sleep on these two conditions: 1761 * 1. auditd generated record - since we need auditd to drain the 1762 * queue; also, when we are checking for auditd, compare PIDs using 1763 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1764 * using a PID anchored in the caller's namespace 1765 * 2. generator holding the audit_cmd_mutex - we don't want to block 1766 * while holding the mutex */ 1767 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1768 long stime = audit_backlog_wait_time; 1769 1770 while (audit_backlog_limit && 1771 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1772 /* wake kauditd to try and flush the queue */ 1773 wake_up_interruptible(&kauditd_wait); 1774 1775 /* sleep if we are allowed and we haven't exhausted our 1776 * backlog wait limit */ 1777 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1778 DECLARE_WAITQUEUE(wait, current); 1779 1780 add_wait_queue_exclusive(&audit_backlog_wait, 1781 &wait); 1782 set_current_state(TASK_UNINTERRUPTIBLE); 1783 stime = schedule_timeout(stime); 1784 remove_wait_queue(&audit_backlog_wait, &wait); 1785 } else { 1786 if (audit_rate_check() && printk_ratelimit()) 1787 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1788 skb_queue_len(&audit_queue), 1789 audit_backlog_limit); 1790 audit_log_lost("backlog limit exceeded"); 1791 return NULL; 1792 } 1793 } 1794 } 1795 1796 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1797 if (!ab) { 1798 audit_log_lost("out of memory in audit_log_start"); 1799 return NULL; 1800 } 1801 1802 audit_get_stamp(ab->ctx, &t, &serial); 1803 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1804 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1805 1806 return ab; 1807 } 1808 1809 /** 1810 * audit_expand - expand skb in the audit buffer 1811 * @ab: audit_buffer 1812 * @extra: space to add at tail of the skb 1813 * 1814 * Returns 0 (no space) on failed expansion, or available space if 1815 * successful. 1816 */ 1817 static inline int audit_expand(struct audit_buffer *ab, int extra) 1818 { 1819 struct sk_buff *skb = ab->skb; 1820 int oldtail = skb_tailroom(skb); 1821 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1822 int newtail = skb_tailroom(skb); 1823 1824 if (ret < 0) { 1825 audit_log_lost("out of memory in audit_expand"); 1826 return 0; 1827 } 1828 1829 skb->truesize += newtail - oldtail; 1830 return newtail; 1831 } 1832 1833 /* 1834 * Format an audit message into the audit buffer. If there isn't enough 1835 * room in the audit buffer, more room will be allocated and vsnprint 1836 * will be called a second time. Currently, we assume that a printk 1837 * can't format message larger than 1024 bytes, so we don't either. 1838 */ 1839 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1840 va_list args) 1841 { 1842 int len, avail; 1843 struct sk_buff *skb; 1844 va_list args2; 1845 1846 if (!ab) 1847 return; 1848 1849 BUG_ON(!ab->skb); 1850 skb = ab->skb; 1851 avail = skb_tailroom(skb); 1852 if (avail == 0) { 1853 avail = audit_expand(ab, AUDIT_BUFSIZ); 1854 if (!avail) 1855 goto out; 1856 } 1857 va_copy(args2, args); 1858 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1859 if (len >= avail) { 1860 /* The printk buffer is 1024 bytes long, so if we get 1861 * here and AUDIT_BUFSIZ is at least 1024, then we can 1862 * log everything that printk could have logged. */ 1863 avail = audit_expand(ab, 1864 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1865 if (!avail) 1866 goto out_va_end; 1867 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1868 } 1869 if (len > 0) 1870 skb_put(skb, len); 1871 out_va_end: 1872 va_end(args2); 1873 out: 1874 return; 1875 } 1876 1877 /** 1878 * audit_log_format - format a message into the audit buffer. 1879 * @ab: audit_buffer 1880 * @fmt: format string 1881 * @...: optional parameters matching @fmt string 1882 * 1883 * All the work is done in audit_log_vformat. 1884 */ 1885 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1886 { 1887 va_list args; 1888 1889 if (!ab) 1890 return; 1891 va_start(args, fmt); 1892 audit_log_vformat(ab, fmt, args); 1893 va_end(args); 1894 } 1895 1896 /** 1897 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1898 * @ab: the audit_buffer 1899 * @buf: buffer to convert to hex 1900 * @len: length of @buf to be converted 1901 * 1902 * No return value; failure to expand is silently ignored. 1903 * 1904 * This function will take the passed buf and convert it into a string of 1905 * ascii hex digits. The new string is placed onto the skb. 1906 */ 1907 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1908 size_t len) 1909 { 1910 int i, avail, new_len; 1911 unsigned char *ptr; 1912 struct sk_buff *skb; 1913 1914 if (!ab) 1915 return; 1916 1917 BUG_ON(!ab->skb); 1918 skb = ab->skb; 1919 avail = skb_tailroom(skb); 1920 new_len = len<<1; 1921 if (new_len >= avail) { 1922 /* Round the buffer request up to the next multiple */ 1923 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1924 avail = audit_expand(ab, new_len); 1925 if (!avail) 1926 return; 1927 } 1928 1929 ptr = skb_tail_pointer(skb); 1930 for (i = 0; i < len; i++) 1931 ptr = hex_byte_pack_upper(ptr, buf[i]); 1932 *ptr = 0; 1933 skb_put(skb, len << 1); /* new string is twice the old string */ 1934 } 1935 1936 /* 1937 * Format a string of no more than slen characters into the audit buffer, 1938 * enclosed in quote marks. 1939 */ 1940 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1941 size_t slen) 1942 { 1943 int avail, new_len; 1944 unsigned char *ptr; 1945 struct sk_buff *skb; 1946 1947 if (!ab) 1948 return; 1949 1950 BUG_ON(!ab->skb); 1951 skb = ab->skb; 1952 avail = skb_tailroom(skb); 1953 new_len = slen + 3; /* enclosing quotes + null terminator */ 1954 if (new_len > avail) { 1955 avail = audit_expand(ab, new_len); 1956 if (!avail) 1957 return; 1958 } 1959 ptr = skb_tail_pointer(skb); 1960 *ptr++ = '"'; 1961 memcpy(ptr, string, slen); 1962 ptr += slen; 1963 *ptr++ = '"'; 1964 *ptr = 0; 1965 skb_put(skb, slen + 2); /* don't include null terminator */ 1966 } 1967 1968 /** 1969 * audit_string_contains_control - does a string need to be logged in hex 1970 * @string: string to be checked 1971 * @len: max length of the string to check 1972 */ 1973 bool audit_string_contains_control(const char *string, size_t len) 1974 { 1975 const unsigned char *p; 1976 for (p = string; p < (const unsigned char *)string + len; p++) { 1977 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1978 return true; 1979 } 1980 return false; 1981 } 1982 1983 /** 1984 * audit_log_n_untrustedstring - log a string that may contain random characters 1985 * @ab: audit_buffer 1986 * @len: length of string (not including trailing null) 1987 * @string: string to be logged 1988 * 1989 * This code will escape a string that is passed to it if the string 1990 * contains a control character, unprintable character, double quote mark, 1991 * or a space. Unescaped strings will start and end with a double quote mark. 1992 * Strings that are escaped are printed in hex (2 digits per char). 1993 * 1994 * The caller specifies the number of characters in the string to log, which may 1995 * or may not be the entire string. 1996 */ 1997 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1998 size_t len) 1999 { 2000 if (audit_string_contains_control(string, len)) 2001 audit_log_n_hex(ab, string, len); 2002 else 2003 audit_log_n_string(ab, string, len); 2004 } 2005 2006 /** 2007 * audit_log_untrustedstring - log a string that may contain random characters 2008 * @ab: audit_buffer 2009 * @string: string to be logged 2010 * 2011 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2012 * determine string length. 2013 */ 2014 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2015 { 2016 audit_log_n_untrustedstring(ab, string, strlen(string)); 2017 } 2018 2019 /* This is a helper-function to print the escaped d_path */ 2020 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2021 const struct path *path) 2022 { 2023 char *p, *pathname; 2024 2025 if (prefix) 2026 audit_log_format(ab, "%s", prefix); 2027 2028 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2029 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2030 if (!pathname) { 2031 audit_log_string(ab, "<no_memory>"); 2032 return; 2033 } 2034 p = d_path(path, pathname, PATH_MAX+11); 2035 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2036 /* FIXME: can we save some information here? */ 2037 audit_log_string(ab, "<too_long>"); 2038 } else 2039 audit_log_untrustedstring(ab, p); 2040 kfree(pathname); 2041 } 2042 2043 void audit_log_session_info(struct audit_buffer *ab) 2044 { 2045 unsigned int sessionid = audit_get_sessionid(current); 2046 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2047 2048 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 2049 } 2050 2051 void audit_log_key(struct audit_buffer *ab, char *key) 2052 { 2053 audit_log_format(ab, " key="); 2054 if (key) 2055 audit_log_untrustedstring(ab, key); 2056 else 2057 audit_log_format(ab, "(null)"); 2058 } 2059 2060 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 2061 { 2062 int i; 2063 2064 audit_log_format(ab, " %s=", prefix); 2065 CAP_FOR_EACH_U32(i) { 2066 audit_log_format(ab, "%08x", 2067 cap->cap[CAP_LAST_U32 - i]); 2068 } 2069 } 2070 2071 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 2072 { 2073 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 2074 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 2075 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 2076 name->fcap.fE, name->fcap_ver); 2077 } 2078 2079 static inline int audit_copy_fcaps(struct audit_names *name, 2080 const struct dentry *dentry) 2081 { 2082 struct cpu_vfs_cap_data caps; 2083 int rc; 2084 2085 if (!dentry) 2086 return 0; 2087 2088 rc = get_vfs_caps_from_disk(dentry, &caps); 2089 if (rc) 2090 return rc; 2091 2092 name->fcap.permitted = caps.permitted; 2093 name->fcap.inheritable = caps.inheritable; 2094 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2095 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2096 VFS_CAP_REVISION_SHIFT; 2097 2098 return 0; 2099 } 2100 2101 /* Copy inode data into an audit_names. */ 2102 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2103 struct inode *inode) 2104 { 2105 name->ino = inode->i_ino; 2106 name->dev = inode->i_sb->s_dev; 2107 name->mode = inode->i_mode; 2108 name->uid = inode->i_uid; 2109 name->gid = inode->i_gid; 2110 name->rdev = inode->i_rdev; 2111 security_inode_getsecid(inode, &name->osid); 2112 audit_copy_fcaps(name, dentry); 2113 } 2114 2115 /** 2116 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2117 * @context: audit_context for the task 2118 * @n: audit_names structure with reportable details 2119 * @path: optional path to report instead of audit_names->name 2120 * @record_num: record number to report when handling a list of names 2121 * @call_panic: optional pointer to int that will be updated if secid fails 2122 */ 2123 void audit_log_name(struct audit_context *context, struct audit_names *n, 2124 const struct path *path, int record_num, int *call_panic) 2125 { 2126 struct audit_buffer *ab; 2127 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2128 if (!ab) 2129 return; 2130 2131 audit_log_format(ab, "item=%d", record_num); 2132 2133 if (path) 2134 audit_log_d_path(ab, " name=", path); 2135 else if (n->name) { 2136 switch (n->name_len) { 2137 case AUDIT_NAME_FULL: 2138 /* log the full path */ 2139 audit_log_format(ab, " name="); 2140 audit_log_untrustedstring(ab, n->name->name); 2141 break; 2142 case 0: 2143 /* name was specified as a relative path and the 2144 * directory component is the cwd */ 2145 audit_log_d_path(ab, " name=", &context->pwd); 2146 break; 2147 default: 2148 /* log the name's directory component */ 2149 audit_log_format(ab, " name="); 2150 audit_log_n_untrustedstring(ab, n->name->name, 2151 n->name_len); 2152 } 2153 } else 2154 audit_log_format(ab, " name=(null)"); 2155 2156 if (n->ino != AUDIT_INO_UNSET) 2157 audit_log_format(ab, " inode=%lu" 2158 " dev=%02x:%02x mode=%#ho" 2159 " ouid=%u ogid=%u rdev=%02x:%02x", 2160 n->ino, 2161 MAJOR(n->dev), 2162 MINOR(n->dev), 2163 n->mode, 2164 from_kuid(&init_user_ns, n->uid), 2165 from_kgid(&init_user_ns, n->gid), 2166 MAJOR(n->rdev), 2167 MINOR(n->rdev)); 2168 if (n->osid != 0) { 2169 char *ctx = NULL; 2170 u32 len; 2171 if (security_secid_to_secctx( 2172 n->osid, &ctx, &len)) { 2173 audit_log_format(ab, " osid=%u", n->osid); 2174 if (call_panic) 2175 *call_panic = 2; 2176 } else { 2177 audit_log_format(ab, " obj=%s", ctx); 2178 security_release_secctx(ctx, len); 2179 } 2180 } 2181 2182 /* log the audit_names record type */ 2183 audit_log_format(ab, " nametype="); 2184 switch(n->type) { 2185 case AUDIT_TYPE_NORMAL: 2186 audit_log_format(ab, "NORMAL"); 2187 break; 2188 case AUDIT_TYPE_PARENT: 2189 audit_log_format(ab, "PARENT"); 2190 break; 2191 case AUDIT_TYPE_CHILD_DELETE: 2192 audit_log_format(ab, "DELETE"); 2193 break; 2194 case AUDIT_TYPE_CHILD_CREATE: 2195 audit_log_format(ab, "CREATE"); 2196 break; 2197 default: 2198 audit_log_format(ab, "UNKNOWN"); 2199 break; 2200 } 2201 2202 audit_log_fcaps(ab, n); 2203 audit_log_end(ab); 2204 } 2205 2206 int audit_log_task_context(struct audit_buffer *ab) 2207 { 2208 char *ctx = NULL; 2209 unsigned len; 2210 int error; 2211 u32 sid; 2212 2213 security_task_getsecid(current, &sid); 2214 if (!sid) 2215 return 0; 2216 2217 error = security_secid_to_secctx(sid, &ctx, &len); 2218 if (error) { 2219 if (error != -EINVAL) 2220 goto error_path; 2221 return 0; 2222 } 2223 2224 audit_log_format(ab, " subj=%s", ctx); 2225 security_release_secctx(ctx, len); 2226 return 0; 2227 2228 error_path: 2229 audit_panic("error in audit_log_task_context"); 2230 return error; 2231 } 2232 EXPORT_SYMBOL(audit_log_task_context); 2233 2234 void audit_log_d_path_exe(struct audit_buffer *ab, 2235 struct mm_struct *mm) 2236 { 2237 struct file *exe_file; 2238 2239 if (!mm) 2240 goto out_null; 2241 2242 exe_file = get_mm_exe_file(mm); 2243 if (!exe_file) 2244 goto out_null; 2245 2246 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2247 fput(exe_file); 2248 return; 2249 out_null: 2250 audit_log_format(ab, " exe=(null)"); 2251 } 2252 2253 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2254 { 2255 struct tty_struct *tty = NULL; 2256 unsigned long flags; 2257 2258 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2259 if (tsk->signal) 2260 tty = tty_kref_get(tsk->signal->tty); 2261 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2262 return tty; 2263 } 2264 2265 void audit_put_tty(struct tty_struct *tty) 2266 { 2267 tty_kref_put(tty); 2268 } 2269 2270 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2271 { 2272 const struct cred *cred; 2273 char comm[sizeof(tsk->comm)]; 2274 struct tty_struct *tty; 2275 2276 if (!ab) 2277 return; 2278 2279 /* tsk == current */ 2280 cred = current_cred(); 2281 tty = audit_get_tty(tsk); 2282 audit_log_format(ab, 2283 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2284 " euid=%u suid=%u fsuid=%u" 2285 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2286 task_ppid_nr(tsk), 2287 task_tgid_nr(tsk), 2288 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2289 from_kuid(&init_user_ns, cred->uid), 2290 from_kgid(&init_user_ns, cred->gid), 2291 from_kuid(&init_user_ns, cred->euid), 2292 from_kuid(&init_user_ns, cred->suid), 2293 from_kuid(&init_user_ns, cred->fsuid), 2294 from_kgid(&init_user_ns, cred->egid), 2295 from_kgid(&init_user_ns, cred->sgid), 2296 from_kgid(&init_user_ns, cred->fsgid), 2297 tty ? tty_name(tty) : "(none)", 2298 audit_get_sessionid(tsk)); 2299 audit_put_tty(tty); 2300 audit_log_format(ab, " comm="); 2301 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2302 audit_log_d_path_exe(ab, tsk->mm); 2303 audit_log_task_context(ab); 2304 } 2305 EXPORT_SYMBOL(audit_log_task_info); 2306 2307 /** 2308 * audit_log_link_denied - report a link restriction denial 2309 * @operation: specific link operation 2310 */ 2311 void audit_log_link_denied(const char *operation) 2312 { 2313 struct audit_buffer *ab; 2314 2315 if (!audit_enabled || audit_dummy_context()) 2316 return; 2317 2318 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2319 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK); 2320 if (!ab) 2321 return; 2322 audit_log_format(ab, "op=%s", operation); 2323 audit_log_task_info(ab, current); 2324 audit_log_format(ab, " res=0"); 2325 audit_log_end(ab); 2326 } 2327 2328 /** 2329 * audit_log_end - end one audit record 2330 * @ab: the audit_buffer 2331 * 2332 * We can not do a netlink send inside an irq context because it blocks (last 2333 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2334 * queue and a tasklet is scheduled to remove them from the queue outside the 2335 * irq context. May be called in any context. 2336 */ 2337 void audit_log_end(struct audit_buffer *ab) 2338 { 2339 struct sk_buff *skb; 2340 struct nlmsghdr *nlh; 2341 2342 if (!ab) 2343 return; 2344 2345 if (audit_rate_check()) { 2346 skb = ab->skb; 2347 ab->skb = NULL; 2348 2349 /* setup the netlink header, see the comments in 2350 * kauditd_send_multicast_skb() for length quirks */ 2351 nlh = nlmsg_hdr(skb); 2352 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2353 2354 /* queue the netlink packet and poke the kauditd thread */ 2355 skb_queue_tail(&audit_queue, skb); 2356 wake_up_interruptible(&kauditd_wait); 2357 } else 2358 audit_log_lost("rate limit exceeded"); 2359 2360 audit_buffer_free(ab); 2361 } 2362 2363 /** 2364 * audit_log - Log an audit record 2365 * @ctx: audit context 2366 * @gfp_mask: type of allocation 2367 * @type: audit message type 2368 * @fmt: format string to use 2369 * @...: variable parameters matching the format string 2370 * 2371 * This is a convenience function that calls audit_log_start, 2372 * audit_log_vformat, and audit_log_end. It may be called 2373 * in any context. 2374 */ 2375 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2376 const char *fmt, ...) 2377 { 2378 struct audit_buffer *ab; 2379 va_list args; 2380 2381 ab = audit_log_start(ctx, gfp_mask, type); 2382 if (ab) { 2383 va_start(args, fmt); 2384 audit_log_vformat(ab, fmt, args); 2385 va_end(args); 2386 audit_log_end(ab); 2387 } 2388 } 2389 2390 EXPORT_SYMBOL(audit_log_start); 2391 EXPORT_SYMBOL(audit_log_end); 2392 EXPORT_SYMBOL(audit_log_format); 2393 EXPORT_SYMBOL(audit_log); 2394