xref: /openbmc/linux/kernel/audit.c (revision b9ccfda2)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 
53 #include <linux/audit.h>
54 
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <linux/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 
65 #include "audit.h"
66 
67 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
68  * (Initialization happens after skb_init is called.) */
69 #define AUDIT_DISABLED		-1
70 #define AUDIT_UNINITIALIZED	0
71 #define AUDIT_INITIALIZED	1
72 static int	audit_initialized;
73 
74 #define AUDIT_OFF	0
75 #define AUDIT_ON	1
76 #define AUDIT_LOCKED	2
77 int		audit_enabled;
78 int		audit_ever_enabled;
79 
80 EXPORT_SYMBOL_GPL(audit_enabled);
81 
82 /* Default state when kernel boots without any parameters. */
83 static int	audit_default;
84 
85 /* If auditing cannot proceed, audit_failure selects what happens. */
86 static int	audit_failure = AUDIT_FAIL_PRINTK;
87 
88 /*
89  * If audit records are to be written to the netlink socket, audit_pid
90  * contains the pid of the auditd process and audit_nlk_pid contains
91  * the pid to use to send netlink messages to that process.
92  */
93 int		audit_pid;
94 static int	audit_nlk_pid;
95 
96 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
97  * to that number per second.  This prevents DoS attacks, but results in
98  * audit records being dropped. */
99 static int	audit_rate_limit;
100 
101 /* Number of outstanding audit_buffers allowed. */
102 static int	audit_backlog_limit = 64;
103 static int	audit_backlog_wait_time = 60 * HZ;
104 static int	audit_backlog_wait_overflow = 0;
105 
106 /* The identity of the user shutting down the audit system. */
107 uid_t		audit_sig_uid = -1;
108 pid_t		audit_sig_pid = -1;
109 u32		audit_sig_sid = 0;
110 
111 /* Records can be lost in several ways:
112    0) [suppressed in audit_alloc]
113    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
114    2) out of memory in audit_log_move [alloc_skb]
115    3) suppressed due to audit_rate_limit
116    4) suppressed due to audit_backlog_limit
117 */
118 static atomic_t    audit_lost = ATOMIC_INIT(0);
119 
120 /* The netlink socket. */
121 static struct sock *audit_sock;
122 
123 /* Hash for inode-based rules */
124 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
125 
126 /* The audit_freelist is a list of pre-allocated audit buffers (if more
127  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
128  * being placed on the freelist). */
129 static DEFINE_SPINLOCK(audit_freelist_lock);
130 static int	   audit_freelist_count;
131 static LIST_HEAD(audit_freelist);
132 
133 static struct sk_buff_head audit_skb_queue;
134 /* queue of skbs to send to auditd when/if it comes back */
135 static struct sk_buff_head audit_skb_hold_queue;
136 static struct task_struct *kauditd_task;
137 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
138 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
139 
140 /* Serialize requests from userspace. */
141 DEFINE_MUTEX(audit_cmd_mutex);
142 
143 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
144  * audit records.  Since printk uses a 1024 byte buffer, this buffer
145  * should be at least that large. */
146 #define AUDIT_BUFSIZ 1024
147 
148 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
149  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
150 #define AUDIT_MAXFREE  (2*NR_CPUS)
151 
152 /* The audit_buffer is used when formatting an audit record.  The caller
153  * locks briefly to get the record off the freelist or to allocate the
154  * buffer, and locks briefly to send the buffer to the netlink layer or
155  * to place it on a transmit queue.  Multiple audit_buffers can be in
156  * use simultaneously. */
157 struct audit_buffer {
158 	struct list_head     list;
159 	struct sk_buff       *skb;	/* formatted skb ready to send */
160 	struct audit_context *ctx;	/* NULL or associated context */
161 	gfp_t		     gfp_mask;
162 };
163 
164 struct audit_reply {
165 	int pid;
166 	struct sk_buff *skb;
167 };
168 
169 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
170 {
171 	if (ab) {
172 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
173 		nlh->nlmsg_pid = pid;
174 	}
175 }
176 
177 void audit_panic(const char *message)
178 {
179 	switch (audit_failure)
180 	{
181 	case AUDIT_FAIL_SILENT:
182 		break;
183 	case AUDIT_FAIL_PRINTK:
184 		if (printk_ratelimit())
185 			printk(KERN_ERR "audit: %s\n", message);
186 		break;
187 	case AUDIT_FAIL_PANIC:
188 		/* test audit_pid since printk is always losey, why bother? */
189 		if (audit_pid)
190 			panic("audit: %s\n", message);
191 		break;
192 	}
193 }
194 
195 static inline int audit_rate_check(void)
196 {
197 	static unsigned long	last_check = 0;
198 	static int		messages   = 0;
199 	static DEFINE_SPINLOCK(lock);
200 	unsigned long		flags;
201 	unsigned long		now;
202 	unsigned long		elapsed;
203 	int			retval	   = 0;
204 
205 	if (!audit_rate_limit) return 1;
206 
207 	spin_lock_irqsave(&lock, flags);
208 	if (++messages < audit_rate_limit) {
209 		retval = 1;
210 	} else {
211 		now     = jiffies;
212 		elapsed = now - last_check;
213 		if (elapsed > HZ) {
214 			last_check = now;
215 			messages   = 0;
216 			retval     = 1;
217 		}
218 	}
219 	spin_unlock_irqrestore(&lock, flags);
220 
221 	return retval;
222 }
223 
224 /**
225  * audit_log_lost - conditionally log lost audit message event
226  * @message: the message stating reason for lost audit message
227  *
228  * Emit at least 1 message per second, even if audit_rate_check is
229  * throttling.
230  * Always increment the lost messages counter.
231 */
232 void audit_log_lost(const char *message)
233 {
234 	static unsigned long	last_msg = 0;
235 	static DEFINE_SPINLOCK(lock);
236 	unsigned long		flags;
237 	unsigned long		now;
238 	int			print;
239 
240 	atomic_inc(&audit_lost);
241 
242 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
243 
244 	if (!print) {
245 		spin_lock_irqsave(&lock, flags);
246 		now = jiffies;
247 		if (now - last_msg > HZ) {
248 			print = 1;
249 			last_msg = now;
250 		}
251 		spin_unlock_irqrestore(&lock, flags);
252 	}
253 
254 	if (print) {
255 		if (printk_ratelimit())
256 			printk(KERN_WARNING
257 				"audit: audit_lost=%d audit_rate_limit=%d "
258 				"audit_backlog_limit=%d\n",
259 				atomic_read(&audit_lost),
260 				audit_rate_limit,
261 				audit_backlog_limit);
262 		audit_panic(message);
263 	}
264 }
265 
266 static int audit_log_config_change(char *function_name, int new, int old,
267 				   uid_t loginuid, u32 sessionid, u32 sid,
268 				   int allow_changes)
269 {
270 	struct audit_buffer *ab;
271 	int rc = 0;
272 
273 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
274 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
275 			 old, loginuid, sessionid);
276 	if (sid) {
277 		char *ctx = NULL;
278 		u32 len;
279 
280 		rc = security_secid_to_secctx(sid, &ctx, &len);
281 		if (rc) {
282 			audit_log_format(ab, " sid=%u", sid);
283 			allow_changes = 0; /* Something weird, deny request */
284 		} else {
285 			audit_log_format(ab, " subj=%s", ctx);
286 			security_release_secctx(ctx, len);
287 		}
288 	}
289 	audit_log_format(ab, " res=%d", allow_changes);
290 	audit_log_end(ab);
291 	return rc;
292 }
293 
294 static int audit_do_config_change(char *function_name, int *to_change,
295 				  int new, uid_t loginuid, u32 sessionid,
296 				  u32 sid)
297 {
298 	int allow_changes, rc = 0, old = *to_change;
299 
300 	/* check if we are locked */
301 	if (audit_enabled == AUDIT_LOCKED)
302 		allow_changes = 0;
303 	else
304 		allow_changes = 1;
305 
306 	if (audit_enabled != AUDIT_OFF) {
307 		rc = audit_log_config_change(function_name, new, old, loginuid,
308 					     sessionid, sid, allow_changes);
309 		if (rc)
310 			allow_changes = 0;
311 	}
312 
313 	/* If we are allowed, make the change */
314 	if (allow_changes == 1)
315 		*to_change = new;
316 	/* Not allowed, update reason */
317 	else if (rc == 0)
318 		rc = -EPERM;
319 	return rc;
320 }
321 
322 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
323 				u32 sid)
324 {
325 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
326 				      limit, loginuid, sessionid, sid);
327 }
328 
329 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
330 				   u32 sid)
331 {
332 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
333 				      limit, loginuid, sessionid, sid);
334 }
335 
336 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
337 {
338 	int rc;
339 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
340 		return -EINVAL;
341 
342 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
343 				     loginuid, sessionid, sid);
344 
345 	if (!rc)
346 		audit_ever_enabled |= !!state;
347 
348 	return rc;
349 }
350 
351 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
352 {
353 	if (state != AUDIT_FAIL_SILENT
354 	    && state != AUDIT_FAIL_PRINTK
355 	    && state != AUDIT_FAIL_PANIC)
356 		return -EINVAL;
357 
358 	return audit_do_config_change("audit_failure", &audit_failure, state,
359 				      loginuid, sessionid, sid);
360 }
361 
362 /*
363  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
364  * already have been sent via prink/syslog and so if these messages are dropped
365  * it is not a huge concern since we already passed the audit_log_lost()
366  * notification and stuff.  This is just nice to get audit messages during
367  * boot before auditd is running or messages generated while auditd is stopped.
368  * This only holds messages is audit_default is set, aka booting with audit=1
369  * or building your kernel that way.
370  */
371 static void audit_hold_skb(struct sk_buff *skb)
372 {
373 	if (audit_default &&
374 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
375 		skb_queue_tail(&audit_skb_hold_queue, skb);
376 	else
377 		kfree_skb(skb);
378 }
379 
380 /*
381  * For one reason or another this nlh isn't getting delivered to the userspace
382  * audit daemon, just send it to printk.
383  */
384 static void audit_printk_skb(struct sk_buff *skb)
385 {
386 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
387 	char *data = nlmsg_data(nlh);
388 
389 	if (nlh->nlmsg_type != AUDIT_EOE) {
390 		if (printk_ratelimit())
391 			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
392 		else
393 			audit_log_lost("printk limit exceeded\n");
394 	}
395 
396 	audit_hold_skb(skb);
397 }
398 
399 static void kauditd_send_skb(struct sk_buff *skb)
400 {
401 	int err;
402 	/* take a reference in case we can't send it and we want to hold it */
403 	skb_get(skb);
404 	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
405 	if (err < 0) {
406 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
407 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
408 		audit_log_lost("auditd disappeared\n");
409 		audit_pid = 0;
410 		/* we might get lucky and get this in the next auditd */
411 		audit_hold_skb(skb);
412 	} else
413 		/* drop the extra reference if sent ok */
414 		consume_skb(skb);
415 }
416 
417 static int kauditd_thread(void *dummy)
418 {
419 	struct sk_buff *skb;
420 
421 	set_freezable();
422 	while (!kthread_should_stop()) {
423 		/*
424 		 * if auditd just started drain the queue of messages already
425 		 * sent to syslog/printk.  remember loss here is ok.  we already
426 		 * called audit_log_lost() if it didn't go out normally.  so the
427 		 * race between the skb_dequeue and the next check for audit_pid
428 		 * doesn't matter.
429 		 *
430 		 * if you ever find kauditd to be too slow we can get a perf win
431 		 * by doing our own locking and keeping better track if there
432 		 * are messages in this queue.  I don't see the need now, but
433 		 * in 5 years when I want to play with this again I'll see this
434 		 * note and still have no friggin idea what i'm thinking today.
435 		 */
436 		if (audit_default && audit_pid) {
437 			skb = skb_dequeue(&audit_skb_hold_queue);
438 			if (unlikely(skb)) {
439 				while (skb && audit_pid) {
440 					kauditd_send_skb(skb);
441 					skb = skb_dequeue(&audit_skb_hold_queue);
442 				}
443 			}
444 		}
445 
446 		skb = skb_dequeue(&audit_skb_queue);
447 		wake_up(&audit_backlog_wait);
448 		if (skb) {
449 			if (audit_pid)
450 				kauditd_send_skb(skb);
451 			else
452 				audit_printk_skb(skb);
453 		} else {
454 			DECLARE_WAITQUEUE(wait, current);
455 			set_current_state(TASK_INTERRUPTIBLE);
456 			add_wait_queue(&kauditd_wait, &wait);
457 
458 			if (!skb_queue_len(&audit_skb_queue)) {
459 				try_to_freeze();
460 				schedule();
461 			}
462 
463 			__set_current_state(TASK_RUNNING);
464 			remove_wait_queue(&kauditd_wait, &wait);
465 		}
466 	}
467 	return 0;
468 }
469 
470 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
471 {
472 	struct task_struct *tsk;
473 	int err;
474 
475 	rcu_read_lock();
476 	tsk = find_task_by_vpid(pid);
477 	if (!tsk) {
478 		rcu_read_unlock();
479 		return -ESRCH;
480 	}
481 	get_task_struct(tsk);
482 	rcu_read_unlock();
483 	err = tty_audit_push_task(tsk, loginuid, sessionid);
484 	put_task_struct(tsk);
485 	return err;
486 }
487 
488 int audit_send_list(void *_dest)
489 {
490 	struct audit_netlink_list *dest = _dest;
491 	int pid = dest->pid;
492 	struct sk_buff *skb;
493 
494 	/* wait for parent to finish and send an ACK */
495 	mutex_lock(&audit_cmd_mutex);
496 	mutex_unlock(&audit_cmd_mutex);
497 
498 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
499 		netlink_unicast(audit_sock, skb, pid, 0);
500 
501 	kfree(dest);
502 
503 	return 0;
504 }
505 
506 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
507 				 int multi, const void *payload, int size)
508 {
509 	struct sk_buff	*skb;
510 	struct nlmsghdr	*nlh;
511 	void		*data;
512 	int		flags = multi ? NLM_F_MULTI : 0;
513 	int		t     = done  ? NLMSG_DONE  : type;
514 
515 	skb = nlmsg_new(size, GFP_KERNEL);
516 	if (!skb)
517 		return NULL;
518 
519 	nlh	= nlmsg_put(skb, pid, seq, t, size, flags);
520 	if (!nlh)
521 		goto out_kfree_skb;
522 	data = nlmsg_data(nlh);
523 	memcpy(data, payload, size);
524 	return skb;
525 
526 out_kfree_skb:
527 	kfree_skb(skb);
528 	return NULL;
529 }
530 
531 static int audit_send_reply_thread(void *arg)
532 {
533 	struct audit_reply *reply = (struct audit_reply *)arg;
534 
535 	mutex_lock(&audit_cmd_mutex);
536 	mutex_unlock(&audit_cmd_mutex);
537 
538 	/* Ignore failure. It'll only happen if the sender goes away,
539 	   because our timeout is set to infinite. */
540 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
541 	kfree(reply);
542 	return 0;
543 }
544 /**
545  * audit_send_reply - send an audit reply message via netlink
546  * @pid: process id to send reply to
547  * @seq: sequence number
548  * @type: audit message type
549  * @done: done (last) flag
550  * @multi: multi-part message flag
551  * @payload: payload data
552  * @size: payload size
553  *
554  * Allocates an skb, builds the netlink message, and sends it to the pid.
555  * No failure notifications.
556  */
557 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
558 			     const void *payload, int size)
559 {
560 	struct sk_buff *skb;
561 	struct task_struct *tsk;
562 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
563 					    GFP_KERNEL);
564 
565 	if (!reply)
566 		return;
567 
568 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
569 	if (!skb)
570 		goto out;
571 
572 	reply->pid = pid;
573 	reply->skb = skb;
574 
575 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
576 	if (!IS_ERR(tsk))
577 		return;
578 	kfree_skb(skb);
579 out:
580 	kfree(reply);
581 }
582 
583 /*
584  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
585  * control messages.
586  */
587 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
588 {
589 	int err = 0;
590 
591 	switch (msg_type) {
592 	case AUDIT_GET:
593 	case AUDIT_LIST:
594 	case AUDIT_LIST_RULES:
595 	case AUDIT_SET:
596 	case AUDIT_ADD:
597 	case AUDIT_ADD_RULE:
598 	case AUDIT_DEL:
599 	case AUDIT_DEL_RULE:
600 	case AUDIT_SIGNAL_INFO:
601 	case AUDIT_TTY_GET:
602 	case AUDIT_TTY_SET:
603 	case AUDIT_TRIM:
604 	case AUDIT_MAKE_EQUIV:
605 		if (!capable(CAP_AUDIT_CONTROL))
606 			err = -EPERM;
607 		break;
608 	case AUDIT_USER:
609 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
610 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
611 		if (!capable(CAP_AUDIT_WRITE))
612 			err = -EPERM;
613 		break;
614 	default:  /* bad msg */
615 		err = -EINVAL;
616 	}
617 
618 	return err;
619 }
620 
621 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
622 				     u32 pid, u32 uid, uid_t auid, u32 ses,
623 				     u32 sid)
624 {
625 	int rc = 0;
626 	char *ctx = NULL;
627 	u32 len;
628 
629 	if (!audit_enabled) {
630 		*ab = NULL;
631 		return rc;
632 	}
633 
634 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
635 	audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
636 			 pid, uid, auid, ses);
637 	if (sid) {
638 		rc = security_secid_to_secctx(sid, &ctx, &len);
639 		if (rc)
640 			audit_log_format(*ab, " ssid=%u", sid);
641 		else {
642 			audit_log_format(*ab, " subj=%s", ctx);
643 			security_release_secctx(ctx, len);
644 		}
645 	}
646 
647 	return rc;
648 }
649 
650 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
651 {
652 	u32			uid, pid, seq, sid;
653 	void			*data;
654 	struct audit_status	*status_get, status_set;
655 	int			err;
656 	struct audit_buffer	*ab;
657 	u16			msg_type = nlh->nlmsg_type;
658 	uid_t			loginuid; /* loginuid of sender */
659 	u32			sessionid;
660 	struct audit_sig_info   *sig_data;
661 	char			*ctx = NULL;
662 	u32			len;
663 
664 	err = audit_netlink_ok(skb, msg_type);
665 	if (err)
666 		return err;
667 
668 	/* As soon as there's any sign of userspace auditd,
669 	 * start kauditd to talk to it */
670 	if (!kauditd_task)
671 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
672 	if (IS_ERR(kauditd_task)) {
673 		err = PTR_ERR(kauditd_task);
674 		kauditd_task = NULL;
675 		return err;
676 	}
677 
678 	pid  = NETLINK_CREDS(skb)->pid;
679 	uid  = NETLINK_CREDS(skb)->uid;
680 	loginuid = audit_get_loginuid(current);
681 	sessionid = audit_get_sessionid(current);
682 	security_task_getsecid(current, &sid);
683 	seq  = nlh->nlmsg_seq;
684 	data = nlmsg_data(nlh);
685 
686 	switch (msg_type) {
687 	case AUDIT_GET:
688 		status_set.enabled	 = audit_enabled;
689 		status_set.failure	 = audit_failure;
690 		status_set.pid		 = audit_pid;
691 		status_set.rate_limit	 = audit_rate_limit;
692 		status_set.backlog_limit = audit_backlog_limit;
693 		status_set.lost		 = atomic_read(&audit_lost);
694 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
695 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
696 				 &status_set, sizeof(status_set));
697 		break;
698 	case AUDIT_SET:
699 		if (nlh->nlmsg_len < sizeof(struct audit_status))
700 			return -EINVAL;
701 		status_get   = (struct audit_status *)data;
702 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
703 			err = audit_set_enabled(status_get->enabled,
704 						loginuid, sessionid, sid);
705 			if (err < 0)
706 				return err;
707 		}
708 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
709 			err = audit_set_failure(status_get->failure,
710 						loginuid, sessionid, sid);
711 			if (err < 0)
712 				return err;
713 		}
714 		if (status_get->mask & AUDIT_STATUS_PID) {
715 			int new_pid = status_get->pid;
716 
717 			if (audit_enabled != AUDIT_OFF)
718 				audit_log_config_change("audit_pid", new_pid,
719 							audit_pid, loginuid,
720 							sessionid, sid, 1);
721 
722 			audit_pid = new_pid;
723 			audit_nlk_pid = NETLINK_CB(skb).pid;
724 		}
725 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
726 			err = audit_set_rate_limit(status_get->rate_limit,
727 						   loginuid, sessionid, sid);
728 			if (err < 0)
729 				return err;
730 		}
731 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
732 			err = audit_set_backlog_limit(status_get->backlog_limit,
733 						      loginuid, sessionid, sid);
734 		break;
735 	case AUDIT_USER:
736 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
737 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
738 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
739 			return 0;
740 
741 		err = audit_filter_user(&NETLINK_CB(skb));
742 		if (err == 1) {
743 			err = 0;
744 			if (msg_type == AUDIT_USER_TTY) {
745 				err = audit_prepare_user_tty(pid, loginuid,
746 							     sessionid);
747 				if (err)
748 					break;
749 			}
750 			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
751 						  loginuid, sessionid, sid);
752 
753 			if (msg_type != AUDIT_USER_TTY)
754 				audit_log_format(ab, " msg='%.1024s'",
755 						 (char *)data);
756 			else {
757 				int size;
758 
759 				audit_log_format(ab, " msg=");
760 				size = nlmsg_len(nlh);
761 				if (size > 0 &&
762 				    ((unsigned char *)data)[size - 1] == '\0')
763 					size--;
764 				audit_log_n_untrustedstring(ab, data, size);
765 			}
766 			audit_set_pid(ab, pid);
767 			audit_log_end(ab);
768 		}
769 		break;
770 	case AUDIT_ADD:
771 	case AUDIT_DEL:
772 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
773 			return -EINVAL;
774 		if (audit_enabled == AUDIT_LOCKED) {
775 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
776 						  uid, loginuid, sessionid, sid);
777 
778 			audit_log_format(ab, " audit_enabled=%d res=0",
779 					 audit_enabled);
780 			audit_log_end(ab);
781 			return -EPERM;
782 		}
783 		/* fallthrough */
784 	case AUDIT_LIST:
785 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
786 					   uid, seq, data, nlmsg_len(nlh),
787 					   loginuid, sessionid, sid);
788 		break;
789 	case AUDIT_ADD_RULE:
790 	case AUDIT_DEL_RULE:
791 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
792 			return -EINVAL;
793 		if (audit_enabled == AUDIT_LOCKED) {
794 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
795 						  uid, loginuid, sessionid, sid);
796 
797 			audit_log_format(ab, " audit_enabled=%d res=0",
798 					 audit_enabled);
799 			audit_log_end(ab);
800 			return -EPERM;
801 		}
802 		/* fallthrough */
803 	case AUDIT_LIST_RULES:
804 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
805 					   uid, seq, data, nlmsg_len(nlh),
806 					   loginuid, sessionid, sid);
807 		break;
808 	case AUDIT_TRIM:
809 		audit_trim_trees();
810 
811 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
812 					  uid, loginuid, sessionid, sid);
813 
814 		audit_log_format(ab, " op=trim res=1");
815 		audit_log_end(ab);
816 		break;
817 	case AUDIT_MAKE_EQUIV: {
818 		void *bufp = data;
819 		u32 sizes[2];
820 		size_t msglen = nlmsg_len(nlh);
821 		char *old, *new;
822 
823 		err = -EINVAL;
824 		if (msglen < 2 * sizeof(u32))
825 			break;
826 		memcpy(sizes, bufp, 2 * sizeof(u32));
827 		bufp += 2 * sizeof(u32);
828 		msglen -= 2 * sizeof(u32);
829 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
830 		if (IS_ERR(old)) {
831 			err = PTR_ERR(old);
832 			break;
833 		}
834 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
835 		if (IS_ERR(new)) {
836 			err = PTR_ERR(new);
837 			kfree(old);
838 			break;
839 		}
840 		/* OK, here comes... */
841 		err = audit_tag_tree(old, new);
842 
843 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
844 					  uid, loginuid, sessionid, sid);
845 
846 		audit_log_format(ab, " op=make_equiv old=");
847 		audit_log_untrustedstring(ab, old);
848 		audit_log_format(ab, " new=");
849 		audit_log_untrustedstring(ab, new);
850 		audit_log_format(ab, " res=%d", !err);
851 		audit_log_end(ab);
852 		kfree(old);
853 		kfree(new);
854 		break;
855 	}
856 	case AUDIT_SIGNAL_INFO:
857 		len = 0;
858 		if (audit_sig_sid) {
859 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
860 			if (err)
861 				return err;
862 		}
863 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
864 		if (!sig_data) {
865 			if (audit_sig_sid)
866 				security_release_secctx(ctx, len);
867 			return -ENOMEM;
868 		}
869 		sig_data->uid = audit_sig_uid;
870 		sig_data->pid = audit_sig_pid;
871 		if (audit_sig_sid) {
872 			memcpy(sig_data->ctx, ctx, len);
873 			security_release_secctx(ctx, len);
874 		}
875 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
876 				0, 0, sig_data, sizeof(*sig_data) + len);
877 		kfree(sig_data);
878 		break;
879 	case AUDIT_TTY_GET: {
880 		struct audit_tty_status s;
881 		struct task_struct *tsk;
882 		unsigned long flags;
883 
884 		rcu_read_lock();
885 		tsk = find_task_by_vpid(pid);
886 		if (tsk && lock_task_sighand(tsk, &flags)) {
887 			s.enabled = tsk->signal->audit_tty != 0;
888 			unlock_task_sighand(tsk, &flags);
889 		} else
890 			err = -ESRCH;
891 		rcu_read_unlock();
892 
893 		if (!err)
894 			audit_send_reply(NETLINK_CB(skb).pid, seq,
895 					 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
896 		break;
897 	}
898 	case AUDIT_TTY_SET: {
899 		struct audit_tty_status *s;
900 		struct task_struct *tsk;
901 		unsigned long flags;
902 
903 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
904 			return -EINVAL;
905 		s = data;
906 		if (s->enabled != 0 && s->enabled != 1)
907 			return -EINVAL;
908 		rcu_read_lock();
909 		tsk = find_task_by_vpid(pid);
910 		if (tsk && lock_task_sighand(tsk, &flags)) {
911 			tsk->signal->audit_tty = s->enabled != 0;
912 			unlock_task_sighand(tsk, &flags);
913 		} else
914 			err = -ESRCH;
915 		rcu_read_unlock();
916 		break;
917 	}
918 	default:
919 		err = -EINVAL;
920 		break;
921 	}
922 
923 	return err < 0 ? err : 0;
924 }
925 
926 /*
927  * Get message from skb.  Each message is processed by audit_receive_msg.
928  * Malformed skbs with wrong length are discarded silently.
929  */
930 static void audit_receive_skb(struct sk_buff *skb)
931 {
932 	struct nlmsghdr *nlh;
933 	/*
934 	 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
935 	 * if the nlmsg_len was not aligned
936 	 */
937 	int len;
938 	int err;
939 
940 	nlh = nlmsg_hdr(skb);
941 	len = skb->len;
942 
943 	while (NLMSG_OK(nlh, len)) {
944 		err = audit_receive_msg(skb, nlh);
945 		/* if err or if this message says it wants a response */
946 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
947 			netlink_ack(skb, nlh, err);
948 
949 		nlh = NLMSG_NEXT(nlh, len);
950 	}
951 }
952 
953 /* Receive messages from netlink socket. */
954 static void audit_receive(struct sk_buff  *skb)
955 {
956 	mutex_lock(&audit_cmd_mutex);
957 	audit_receive_skb(skb);
958 	mutex_unlock(&audit_cmd_mutex);
959 }
960 
961 /* Initialize audit support at boot time. */
962 static int __init audit_init(void)
963 {
964 	int i;
965 	struct netlink_kernel_cfg cfg = {
966 		.input	= audit_receive,
967 	};
968 
969 	if (audit_initialized == AUDIT_DISABLED)
970 		return 0;
971 
972 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
973 	       audit_default ? "enabled" : "disabled");
974 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT,
975 					   THIS_MODULE, &cfg);
976 	if (!audit_sock)
977 		audit_panic("cannot initialize netlink socket");
978 	else
979 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
980 
981 	skb_queue_head_init(&audit_skb_queue);
982 	skb_queue_head_init(&audit_skb_hold_queue);
983 	audit_initialized = AUDIT_INITIALIZED;
984 	audit_enabled = audit_default;
985 	audit_ever_enabled |= !!audit_default;
986 
987 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
988 
989 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
990 		INIT_LIST_HEAD(&audit_inode_hash[i]);
991 
992 	return 0;
993 }
994 __initcall(audit_init);
995 
996 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
997 static int __init audit_enable(char *str)
998 {
999 	audit_default = !!simple_strtol(str, NULL, 0);
1000 	if (!audit_default)
1001 		audit_initialized = AUDIT_DISABLED;
1002 
1003 	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1004 
1005 	if (audit_initialized == AUDIT_INITIALIZED) {
1006 		audit_enabled = audit_default;
1007 		audit_ever_enabled |= !!audit_default;
1008 	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
1009 		printk(" (after initialization)");
1010 	} else {
1011 		printk(" (until reboot)");
1012 	}
1013 	printk("\n");
1014 
1015 	return 1;
1016 }
1017 
1018 __setup("audit=", audit_enable);
1019 
1020 static void audit_buffer_free(struct audit_buffer *ab)
1021 {
1022 	unsigned long flags;
1023 
1024 	if (!ab)
1025 		return;
1026 
1027 	if (ab->skb)
1028 		kfree_skb(ab->skb);
1029 
1030 	spin_lock_irqsave(&audit_freelist_lock, flags);
1031 	if (audit_freelist_count > AUDIT_MAXFREE)
1032 		kfree(ab);
1033 	else {
1034 		audit_freelist_count++;
1035 		list_add(&ab->list, &audit_freelist);
1036 	}
1037 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1038 }
1039 
1040 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1041 						gfp_t gfp_mask, int type)
1042 {
1043 	unsigned long flags;
1044 	struct audit_buffer *ab = NULL;
1045 	struct nlmsghdr *nlh;
1046 
1047 	spin_lock_irqsave(&audit_freelist_lock, flags);
1048 	if (!list_empty(&audit_freelist)) {
1049 		ab = list_entry(audit_freelist.next,
1050 				struct audit_buffer, list);
1051 		list_del(&ab->list);
1052 		--audit_freelist_count;
1053 	}
1054 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1055 
1056 	if (!ab) {
1057 		ab = kmalloc(sizeof(*ab), gfp_mask);
1058 		if (!ab)
1059 			goto err;
1060 	}
1061 
1062 	ab->ctx = ctx;
1063 	ab->gfp_mask = gfp_mask;
1064 
1065 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1066 	if (!ab->skb)
1067 		goto err;
1068 
1069 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1070 	if (!nlh)
1071 		goto out_kfree_skb;
1072 
1073 	return ab;
1074 
1075 out_kfree_skb:
1076 	kfree_skb(ab->skb);
1077 	ab->skb = NULL;
1078 err:
1079 	audit_buffer_free(ab);
1080 	return NULL;
1081 }
1082 
1083 /**
1084  * audit_serial - compute a serial number for the audit record
1085  *
1086  * Compute a serial number for the audit record.  Audit records are
1087  * written to user-space as soon as they are generated, so a complete
1088  * audit record may be written in several pieces.  The timestamp of the
1089  * record and this serial number are used by the user-space tools to
1090  * determine which pieces belong to the same audit record.  The
1091  * (timestamp,serial) tuple is unique for each syscall and is live from
1092  * syscall entry to syscall exit.
1093  *
1094  * NOTE: Another possibility is to store the formatted records off the
1095  * audit context (for those records that have a context), and emit them
1096  * all at syscall exit.  However, this could delay the reporting of
1097  * significant errors until syscall exit (or never, if the system
1098  * halts).
1099  */
1100 unsigned int audit_serial(void)
1101 {
1102 	static DEFINE_SPINLOCK(serial_lock);
1103 	static unsigned int serial = 0;
1104 
1105 	unsigned long flags;
1106 	unsigned int ret;
1107 
1108 	spin_lock_irqsave(&serial_lock, flags);
1109 	do {
1110 		ret = ++serial;
1111 	} while (unlikely(!ret));
1112 	spin_unlock_irqrestore(&serial_lock, flags);
1113 
1114 	return ret;
1115 }
1116 
1117 static inline void audit_get_stamp(struct audit_context *ctx,
1118 				   struct timespec *t, unsigned int *serial)
1119 {
1120 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1121 		*t = CURRENT_TIME;
1122 		*serial = audit_serial();
1123 	}
1124 }
1125 
1126 /* Obtain an audit buffer.  This routine does locking to obtain the
1127  * audit buffer, but then no locking is required for calls to
1128  * audit_log_*format.  If the tsk is a task that is currently in a
1129  * syscall, then the syscall is marked as auditable and an audit record
1130  * will be written at syscall exit.  If there is no associated task, tsk
1131  * should be NULL. */
1132 
1133 /**
1134  * audit_log_start - obtain an audit buffer
1135  * @ctx: audit_context (may be NULL)
1136  * @gfp_mask: type of allocation
1137  * @type: audit message type
1138  *
1139  * Returns audit_buffer pointer on success or NULL on error.
1140  *
1141  * Obtain an audit buffer.  This routine does locking to obtain the
1142  * audit buffer, but then no locking is required for calls to
1143  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1144  * syscall, then the syscall is marked as auditable and an audit record
1145  * will be written at syscall exit.  If there is no associated task, then
1146  * task context (ctx) should be NULL.
1147  */
1148 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1149 				     int type)
1150 {
1151 	struct audit_buffer	*ab	= NULL;
1152 	struct timespec		t;
1153 	unsigned int		uninitialized_var(serial);
1154 	int reserve;
1155 	unsigned long timeout_start = jiffies;
1156 
1157 	if (audit_initialized != AUDIT_INITIALIZED)
1158 		return NULL;
1159 
1160 	if (unlikely(audit_filter_type(type)))
1161 		return NULL;
1162 
1163 	if (gfp_mask & __GFP_WAIT)
1164 		reserve = 0;
1165 	else
1166 		reserve = 5; /* Allow atomic callers to go up to five
1167 				entries over the normal backlog limit */
1168 
1169 	while (audit_backlog_limit
1170 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1171 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1172 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1173 
1174 			/* Wait for auditd to drain the queue a little */
1175 			DECLARE_WAITQUEUE(wait, current);
1176 			set_current_state(TASK_INTERRUPTIBLE);
1177 			add_wait_queue(&audit_backlog_wait, &wait);
1178 
1179 			if (audit_backlog_limit &&
1180 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1181 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1182 
1183 			__set_current_state(TASK_RUNNING);
1184 			remove_wait_queue(&audit_backlog_wait, &wait);
1185 			continue;
1186 		}
1187 		if (audit_rate_check() && printk_ratelimit())
1188 			printk(KERN_WARNING
1189 			       "audit: audit_backlog=%d > "
1190 			       "audit_backlog_limit=%d\n",
1191 			       skb_queue_len(&audit_skb_queue),
1192 			       audit_backlog_limit);
1193 		audit_log_lost("backlog limit exceeded");
1194 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1195 		wake_up(&audit_backlog_wait);
1196 		return NULL;
1197 	}
1198 
1199 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1200 	if (!ab) {
1201 		audit_log_lost("out of memory in audit_log_start");
1202 		return NULL;
1203 	}
1204 
1205 	audit_get_stamp(ab->ctx, &t, &serial);
1206 
1207 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1208 			 t.tv_sec, t.tv_nsec/1000000, serial);
1209 	return ab;
1210 }
1211 
1212 /**
1213  * audit_expand - expand skb in the audit buffer
1214  * @ab: audit_buffer
1215  * @extra: space to add at tail of the skb
1216  *
1217  * Returns 0 (no space) on failed expansion, or available space if
1218  * successful.
1219  */
1220 static inline int audit_expand(struct audit_buffer *ab, int extra)
1221 {
1222 	struct sk_buff *skb = ab->skb;
1223 	int oldtail = skb_tailroom(skb);
1224 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1225 	int newtail = skb_tailroom(skb);
1226 
1227 	if (ret < 0) {
1228 		audit_log_lost("out of memory in audit_expand");
1229 		return 0;
1230 	}
1231 
1232 	skb->truesize += newtail - oldtail;
1233 	return newtail;
1234 }
1235 
1236 /*
1237  * Format an audit message into the audit buffer.  If there isn't enough
1238  * room in the audit buffer, more room will be allocated and vsnprint
1239  * will be called a second time.  Currently, we assume that a printk
1240  * can't format message larger than 1024 bytes, so we don't either.
1241  */
1242 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1243 			      va_list args)
1244 {
1245 	int len, avail;
1246 	struct sk_buff *skb;
1247 	va_list args2;
1248 
1249 	if (!ab)
1250 		return;
1251 
1252 	BUG_ON(!ab->skb);
1253 	skb = ab->skb;
1254 	avail = skb_tailroom(skb);
1255 	if (avail == 0) {
1256 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1257 		if (!avail)
1258 			goto out;
1259 	}
1260 	va_copy(args2, args);
1261 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1262 	if (len >= avail) {
1263 		/* The printk buffer is 1024 bytes long, so if we get
1264 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1265 		 * log everything that printk could have logged. */
1266 		avail = audit_expand(ab,
1267 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1268 		if (!avail)
1269 			goto out_va_end;
1270 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1271 	}
1272 	if (len > 0)
1273 		skb_put(skb, len);
1274 out_va_end:
1275 	va_end(args2);
1276 out:
1277 	return;
1278 }
1279 
1280 /**
1281  * audit_log_format - format a message into the audit buffer.
1282  * @ab: audit_buffer
1283  * @fmt: format string
1284  * @...: optional parameters matching @fmt string
1285  *
1286  * All the work is done in audit_log_vformat.
1287  */
1288 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1289 {
1290 	va_list args;
1291 
1292 	if (!ab)
1293 		return;
1294 	va_start(args, fmt);
1295 	audit_log_vformat(ab, fmt, args);
1296 	va_end(args);
1297 }
1298 
1299 /**
1300  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1301  * @ab: the audit_buffer
1302  * @buf: buffer to convert to hex
1303  * @len: length of @buf to be converted
1304  *
1305  * No return value; failure to expand is silently ignored.
1306  *
1307  * This function will take the passed buf and convert it into a string of
1308  * ascii hex digits. The new string is placed onto the skb.
1309  */
1310 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1311 		size_t len)
1312 {
1313 	int i, avail, new_len;
1314 	unsigned char *ptr;
1315 	struct sk_buff *skb;
1316 	static const unsigned char *hex = "0123456789ABCDEF";
1317 
1318 	if (!ab)
1319 		return;
1320 
1321 	BUG_ON(!ab->skb);
1322 	skb = ab->skb;
1323 	avail = skb_tailroom(skb);
1324 	new_len = len<<1;
1325 	if (new_len >= avail) {
1326 		/* Round the buffer request up to the next multiple */
1327 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1328 		avail = audit_expand(ab, new_len);
1329 		if (!avail)
1330 			return;
1331 	}
1332 
1333 	ptr = skb_tail_pointer(skb);
1334 	for (i=0; i<len; i++) {
1335 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1336 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1337 	}
1338 	*ptr = 0;
1339 	skb_put(skb, len << 1); /* new string is twice the old string */
1340 }
1341 
1342 /*
1343  * Format a string of no more than slen characters into the audit buffer,
1344  * enclosed in quote marks.
1345  */
1346 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1347 			size_t slen)
1348 {
1349 	int avail, new_len;
1350 	unsigned char *ptr;
1351 	struct sk_buff *skb;
1352 
1353 	if (!ab)
1354 		return;
1355 
1356 	BUG_ON(!ab->skb);
1357 	skb = ab->skb;
1358 	avail = skb_tailroom(skb);
1359 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1360 	if (new_len > avail) {
1361 		avail = audit_expand(ab, new_len);
1362 		if (!avail)
1363 			return;
1364 	}
1365 	ptr = skb_tail_pointer(skb);
1366 	*ptr++ = '"';
1367 	memcpy(ptr, string, slen);
1368 	ptr += slen;
1369 	*ptr++ = '"';
1370 	*ptr = 0;
1371 	skb_put(skb, slen + 2);	/* don't include null terminator */
1372 }
1373 
1374 /**
1375  * audit_string_contains_control - does a string need to be logged in hex
1376  * @string: string to be checked
1377  * @len: max length of the string to check
1378  */
1379 int audit_string_contains_control(const char *string, size_t len)
1380 {
1381 	const unsigned char *p;
1382 	for (p = string; p < (const unsigned char *)string + len; p++) {
1383 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1384 			return 1;
1385 	}
1386 	return 0;
1387 }
1388 
1389 /**
1390  * audit_log_n_untrustedstring - log a string that may contain random characters
1391  * @ab: audit_buffer
1392  * @len: length of string (not including trailing null)
1393  * @string: string to be logged
1394  *
1395  * This code will escape a string that is passed to it if the string
1396  * contains a control character, unprintable character, double quote mark,
1397  * or a space. Unescaped strings will start and end with a double quote mark.
1398  * Strings that are escaped are printed in hex (2 digits per char).
1399  *
1400  * The caller specifies the number of characters in the string to log, which may
1401  * or may not be the entire string.
1402  */
1403 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1404 				 size_t len)
1405 {
1406 	if (audit_string_contains_control(string, len))
1407 		audit_log_n_hex(ab, string, len);
1408 	else
1409 		audit_log_n_string(ab, string, len);
1410 }
1411 
1412 /**
1413  * audit_log_untrustedstring - log a string that may contain random characters
1414  * @ab: audit_buffer
1415  * @string: string to be logged
1416  *
1417  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1418  * determine string length.
1419  */
1420 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1421 {
1422 	audit_log_n_untrustedstring(ab, string, strlen(string));
1423 }
1424 
1425 /* This is a helper-function to print the escaped d_path */
1426 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1427 		      const struct path *path)
1428 {
1429 	char *p, *pathname;
1430 
1431 	if (prefix)
1432 		audit_log_format(ab, "%s", prefix);
1433 
1434 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1435 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1436 	if (!pathname) {
1437 		audit_log_string(ab, "<no_memory>");
1438 		return;
1439 	}
1440 	p = d_path(path, pathname, PATH_MAX+11);
1441 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1442 		/* FIXME: can we save some information here? */
1443 		audit_log_string(ab, "<too_long>");
1444 	} else
1445 		audit_log_untrustedstring(ab, p);
1446 	kfree(pathname);
1447 }
1448 
1449 void audit_log_key(struct audit_buffer *ab, char *key)
1450 {
1451 	audit_log_format(ab, " key=");
1452 	if (key)
1453 		audit_log_untrustedstring(ab, key);
1454 	else
1455 		audit_log_format(ab, "(null)");
1456 }
1457 
1458 /**
1459  * audit_log_end - end one audit record
1460  * @ab: the audit_buffer
1461  *
1462  * The netlink_* functions cannot be called inside an irq context, so
1463  * the audit buffer is placed on a queue and a tasklet is scheduled to
1464  * remove them from the queue outside the irq context.  May be called in
1465  * any context.
1466  */
1467 void audit_log_end(struct audit_buffer *ab)
1468 {
1469 	if (!ab)
1470 		return;
1471 	if (!audit_rate_check()) {
1472 		audit_log_lost("rate limit exceeded");
1473 	} else {
1474 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1475 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1476 
1477 		if (audit_pid) {
1478 			skb_queue_tail(&audit_skb_queue, ab->skb);
1479 			wake_up_interruptible(&kauditd_wait);
1480 		} else {
1481 			audit_printk_skb(ab->skb);
1482 		}
1483 		ab->skb = NULL;
1484 	}
1485 	audit_buffer_free(ab);
1486 }
1487 
1488 /**
1489  * audit_log - Log an audit record
1490  * @ctx: audit context
1491  * @gfp_mask: type of allocation
1492  * @type: audit message type
1493  * @fmt: format string to use
1494  * @...: variable parameters matching the format string
1495  *
1496  * This is a convenience function that calls audit_log_start,
1497  * audit_log_vformat, and audit_log_end.  It may be called
1498  * in any context.
1499  */
1500 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1501 	       const char *fmt, ...)
1502 {
1503 	struct audit_buffer *ab;
1504 	va_list args;
1505 
1506 	ab = audit_log_start(ctx, gfp_mask, type);
1507 	if (ab) {
1508 		va_start(args, fmt);
1509 		audit_log_vformat(ab, fmt, args);
1510 		va_end(args);
1511 		audit_log_end(ab);
1512 	}
1513 }
1514 
1515 #ifdef CONFIG_SECURITY
1516 /**
1517  * audit_log_secctx - Converts and logs SELinux context
1518  * @ab: audit_buffer
1519  * @secid: security number
1520  *
1521  * This is a helper function that calls security_secid_to_secctx to convert
1522  * secid to secctx and then adds the (converted) SELinux context to the audit
1523  * log by calling audit_log_format, thus also preventing leak of internal secid
1524  * to userspace. If secid cannot be converted audit_panic is called.
1525  */
1526 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1527 {
1528 	u32 len;
1529 	char *secctx;
1530 
1531 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1532 		audit_panic("Cannot convert secid to context");
1533 	} else {
1534 		audit_log_format(ab, " obj=%s", secctx);
1535 		security_release_secctx(secctx, len);
1536 	}
1537 }
1538 EXPORT_SYMBOL(audit_log_secctx);
1539 #endif
1540 
1541 EXPORT_SYMBOL(audit_log_start);
1542 EXPORT_SYMBOL(audit_log_end);
1543 EXPORT_SYMBOL(audit_log_format);
1544 EXPORT_SYMBOL(audit_log);
1545