1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/inotify.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 65 * (Initialization happens after skb_init is called.) */ 66 #define AUDIT_DISABLED -1 67 #define AUDIT_UNINITIALIZED 0 68 #define AUDIT_INITIALIZED 1 69 static int audit_initialized; 70 71 #define AUDIT_OFF 0 72 #define AUDIT_ON 1 73 #define AUDIT_LOCKED 2 74 int audit_enabled; 75 int audit_ever_enabled; 76 77 /* Default state when kernel boots without any parameters. */ 78 static int audit_default; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static int audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* 84 * If audit records are to be written to the netlink socket, audit_pid 85 * contains the pid of the auditd process and audit_nlk_pid contains 86 * the pid to use to send netlink messages to that process. 87 */ 88 int audit_pid; 89 static int audit_nlk_pid; 90 91 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 92 * to that number per second. This prevents DoS attacks, but results in 93 * audit records being dropped. */ 94 static int audit_rate_limit; 95 96 /* Number of outstanding audit_buffers allowed. */ 97 static int audit_backlog_limit = 64; 98 static int audit_backlog_wait_time = 60 * HZ; 99 static int audit_backlog_wait_overflow = 0; 100 101 /* The identity of the user shutting down the audit system. */ 102 uid_t audit_sig_uid = -1; 103 pid_t audit_sig_pid = -1; 104 u32 audit_sig_sid = 0; 105 106 /* Records can be lost in several ways: 107 0) [suppressed in audit_alloc] 108 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 109 2) out of memory in audit_log_move [alloc_skb] 110 3) suppressed due to audit_rate_limit 111 4) suppressed due to audit_backlog_limit 112 */ 113 static atomic_t audit_lost = ATOMIC_INIT(0); 114 115 /* The netlink socket. */ 116 static struct sock *audit_sock; 117 118 /* Inotify handle. */ 119 struct inotify_handle *audit_ih; 120 121 /* Hash for inode-based rules */ 122 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 123 124 /* The audit_freelist is a list of pre-allocated audit buffers (if more 125 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 126 * being placed on the freelist). */ 127 static DEFINE_SPINLOCK(audit_freelist_lock); 128 static int audit_freelist_count; 129 static LIST_HEAD(audit_freelist); 130 131 static struct sk_buff_head audit_skb_queue; 132 /* queue of skbs to send to auditd when/if it comes back */ 133 static struct sk_buff_head audit_skb_hold_queue; 134 static struct task_struct *kauditd_task; 135 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 136 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 137 138 /* Serialize requests from userspace. */ 139 static DEFINE_MUTEX(audit_cmd_mutex); 140 141 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 142 * audit records. Since printk uses a 1024 byte buffer, this buffer 143 * should be at least that large. */ 144 #define AUDIT_BUFSIZ 1024 145 146 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 147 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 148 #define AUDIT_MAXFREE (2*NR_CPUS) 149 150 /* The audit_buffer is used when formatting an audit record. The caller 151 * locks briefly to get the record off the freelist or to allocate the 152 * buffer, and locks briefly to send the buffer to the netlink layer or 153 * to place it on a transmit queue. Multiple audit_buffers can be in 154 * use simultaneously. */ 155 struct audit_buffer { 156 struct list_head list; 157 struct sk_buff *skb; /* formatted skb ready to send */ 158 struct audit_context *ctx; /* NULL or associated context */ 159 gfp_t gfp_mask; 160 }; 161 162 struct audit_reply { 163 int pid; 164 struct sk_buff *skb; 165 }; 166 167 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 168 { 169 if (ab) { 170 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 171 nlh->nlmsg_pid = pid; 172 } 173 } 174 175 void audit_panic(const char *message) 176 { 177 switch (audit_failure) 178 { 179 case AUDIT_FAIL_SILENT: 180 break; 181 case AUDIT_FAIL_PRINTK: 182 if (printk_ratelimit()) 183 printk(KERN_ERR "audit: %s\n", message); 184 break; 185 case AUDIT_FAIL_PANIC: 186 /* test audit_pid since printk is always losey, why bother? */ 187 if (audit_pid) 188 panic("audit: %s\n", message); 189 break; 190 } 191 } 192 193 static inline int audit_rate_check(void) 194 { 195 static unsigned long last_check = 0; 196 static int messages = 0; 197 static DEFINE_SPINLOCK(lock); 198 unsigned long flags; 199 unsigned long now; 200 unsigned long elapsed; 201 int retval = 0; 202 203 if (!audit_rate_limit) return 1; 204 205 spin_lock_irqsave(&lock, flags); 206 if (++messages < audit_rate_limit) { 207 retval = 1; 208 } else { 209 now = jiffies; 210 elapsed = now - last_check; 211 if (elapsed > HZ) { 212 last_check = now; 213 messages = 0; 214 retval = 1; 215 } 216 } 217 spin_unlock_irqrestore(&lock, flags); 218 219 return retval; 220 } 221 222 /** 223 * audit_log_lost - conditionally log lost audit message event 224 * @message: the message stating reason for lost audit message 225 * 226 * Emit at least 1 message per second, even if audit_rate_check is 227 * throttling. 228 * Always increment the lost messages counter. 229 */ 230 void audit_log_lost(const char *message) 231 { 232 static unsigned long last_msg = 0; 233 static DEFINE_SPINLOCK(lock); 234 unsigned long flags; 235 unsigned long now; 236 int print; 237 238 atomic_inc(&audit_lost); 239 240 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 241 242 if (!print) { 243 spin_lock_irqsave(&lock, flags); 244 now = jiffies; 245 if (now - last_msg > HZ) { 246 print = 1; 247 last_msg = now; 248 } 249 spin_unlock_irqrestore(&lock, flags); 250 } 251 252 if (print) { 253 if (printk_ratelimit()) 254 printk(KERN_WARNING 255 "audit: audit_lost=%d audit_rate_limit=%d " 256 "audit_backlog_limit=%d\n", 257 atomic_read(&audit_lost), 258 audit_rate_limit, 259 audit_backlog_limit); 260 audit_panic(message); 261 } 262 } 263 264 static int audit_log_config_change(char *function_name, int new, int old, 265 uid_t loginuid, u32 sessionid, u32 sid, 266 int allow_changes) 267 { 268 struct audit_buffer *ab; 269 int rc = 0; 270 271 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 272 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 273 old, loginuid, sessionid); 274 if (sid) { 275 char *ctx = NULL; 276 u32 len; 277 278 rc = security_secid_to_secctx(sid, &ctx, &len); 279 if (rc) { 280 audit_log_format(ab, " sid=%u", sid); 281 allow_changes = 0; /* Something weird, deny request */ 282 } else { 283 audit_log_format(ab, " subj=%s", ctx); 284 security_release_secctx(ctx, len); 285 } 286 } 287 audit_log_format(ab, " res=%d", allow_changes); 288 audit_log_end(ab); 289 return rc; 290 } 291 292 static int audit_do_config_change(char *function_name, int *to_change, 293 int new, uid_t loginuid, u32 sessionid, 294 u32 sid) 295 { 296 int allow_changes, rc = 0, old = *to_change; 297 298 /* check if we are locked */ 299 if (audit_enabled == AUDIT_LOCKED) 300 allow_changes = 0; 301 else 302 allow_changes = 1; 303 304 if (audit_enabled != AUDIT_OFF) { 305 rc = audit_log_config_change(function_name, new, old, loginuid, 306 sessionid, sid, allow_changes); 307 if (rc) 308 allow_changes = 0; 309 } 310 311 /* If we are allowed, make the change */ 312 if (allow_changes == 1) 313 *to_change = new; 314 /* Not allowed, update reason */ 315 else if (rc == 0) 316 rc = -EPERM; 317 return rc; 318 } 319 320 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 321 u32 sid) 322 { 323 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 324 limit, loginuid, sessionid, sid); 325 } 326 327 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 328 u32 sid) 329 { 330 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 331 limit, loginuid, sessionid, sid); 332 } 333 334 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 335 { 336 int rc; 337 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 338 return -EINVAL; 339 340 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 341 loginuid, sessionid, sid); 342 343 if (!rc) 344 audit_ever_enabled |= !!state; 345 346 return rc; 347 } 348 349 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 350 { 351 if (state != AUDIT_FAIL_SILENT 352 && state != AUDIT_FAIL_PRINTK 353 && state != AUDIT_FAIL_PANIC) 354 return -EINVAL; 355 356 return audit_do_config_change("audit_failure", &audit_failure, state, 357 loginuid, sessionid, sid); 358 } 359 360 /* 361 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 362 * already have been sent via prink/syslog and so if these messages are dropped 363 * it is not a huge concern since we already passed the audit_log_lost() 364 * notification and stuff. This is just nice to get audit messages during 365 * boot before auditd is running or messages generated while auditd is stopped. 366 * This only holds messages is audit_default is set, aka booting with audit=1 367 * or building your kernel that way. 368 */ 369 static void audit_hold_skb(struct sk_buff *skb) 370 { 371 if (audit_default && 372 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 373 skb_queue_tail(&audit_skb_hold_queue, skb); 374 else 375 kfree_skb(skb); 376 } 377 378 static void kauditd_send_skb(struct sk_buff *skb) 379 { 380 int err; 381 /* take a reference in case we can't send it and we want to hold it */ 382 skb_get(skb); 383 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 384 if (err < 0) { 385 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 386 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 387 audit_log_lost("auditd dissapeared\n"); 388 audit_pid = 0; 389 /* we might get lucky and get this in the next auditd */ 390 audit_hold_skb(skb); 391 } else 392 /* drop the extra reference if sent ok */ 393 kfree_skb(skb); 394 } 395 396 static int kauditd_thread(void *dummy) 397 { 398 struct sk_buff *skb; 399 400 set_freezable(); 401 while (!kthread_should_stop()) { 402 /* 403 * if auditd just started drain the queue of messages already 404 * sent to syslog/printk. remember loss here is ok. we already 405 * called audit_log_lost() if it didn't go out normally. so the 406 * race between the skb_dequeue and the next check for audit_pid 407 * doesn't matter. 408 * 409 * if you ever find kauditd to be too slow we can get a perf win 410 * by doing our own locking and keeping better track if there 411 * are messages in this queue. I don't see the need now, but 412 * in 5 years when I want to play with this again I'll see this 413 * note and still have no friggin idea what i'm thinking today. 414 */ 415 if (audit_default && audit_pid) { 416 skb = skb_dequeue(&audit_skb_hold_queue); 417 if (unlikely(skb)) { 418 while (skb && audit_pid) { 419 kauditd_send_skb(skb); 420 skb = skb_dequeue(&audit_skb_hold_queue); 421 } 422 } 423 } 424 425 skb = skb_dequeue(&audit_skb_queue); 426 wake_up(&audit_backlog_wait); 427 if (skb) { 428 if (audit_pid) 429 kauditd_send_skb(skb); 430 else { 431 if (printk_ratelimit()) 432 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 433 else 434 audit_log_lost("printk limit exceeded\n"); 435 436 audit_hold_skb(skb); 437 } 438 } else { 439 DECLARE_WAITQUEUE(wait, current); 440 set_current_state(TASK_INTERRUPTIBLE); 441 add_wait_queue(&kauditd_wait, &wait); 442 443 if (!skb_queue_len(&audit_skb_queue)) { 444 try_to_freeze(); 445 schedule(); 446 } 447 448 __set_current_state(TASK_RUNNING); 449 remove_wait_queue(&kauditd_wait, &wait); 450 } 451 } 452 return 0; 453 } 454 455 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 456 { 457 struct task_struct *tsk; 458 int err; 459 460 read_lock(&tasklist_lock); 461 tsk = find_task_by_vpid(pid); 462 err = -ESRCH; 463 if (!tsk) 464 goto out; 465 err = 0; 466 467 spin_lock_irq(&tsk->sighand->siglock); 468 if (!tsk->signal->audit_tty) 469 err = -EPERM; 470 spin_unlock_irq(&tsk->sighand->siglock); 471 if (err) 472 goto out; 473 474 tty_audit_push_task(tsk, loginuid, sessionid); 475 out: 476 read_unlock(&tasklist_lock); 477 return err; 478 } 479 480 int audit_send_list(void *_dest) 481 { 482 struct audit_netlink_list *dest = _dest; 483 int pid = dest->pid; 484 struct sk_buff *skb; 485 486 /* wait for parent to finish and send an ACK */ 487 mutex_lock(&audit_cmd_mutex); 488 mutex_unlock(&audit_cmd_mutex); 489 490 while ((skb = __skb_dequeue(&dest->q)) != NULL) 491 netlink_unicast(audit_sock, skb, pid, 0); 492 493 kfree(dest); 494 495 return 0; 496 } 497 498 #ifdef CONFIG_AUDIT_TREE 499 static int prune_tree_thread(void *unused) 500 { 501 mutex_lock(&audit_cmd_mutex); 502 audit_prune_trees(); 503 mutex_unlock(&audit_cmd_mutex); 504 return 0; 505 } 506 507 void audit_schedule_prune(void) 508 { 509 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 510 } 511 #endif 512 513 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 514 int multi, void *payload, int size) 515 { 516 struct sk_buff *skb; 517 struct nlmsghdr *nlh; 518 int len = NLMSG_SPACE(size); 519 void *data; 520 int flags = multi ? NLM_F_MULTI : 0; 521 int t = done ? NLMSG_DONE : type; 522 523 skb = alloc_skb(len, GFP_KERNEL); 524 if (!skb) 525 return NULL; 526 527 nlh = NLMSG_PUT(skb, pid, seq, t, size); 528 nlh->nlmsg_flags = flags; 529 data = NLMSG_DATA(nlh); 530 memcpy(data, payload, size); 531 return skb; 532 533 nlmsg_failure: /* Used by NLMSG_PUT */ 534 if (skb) 535 kfree_skb(skb); 536 return NULL; 537 } 538 539 static int audit_send_reply_thread(void *arg) 540 { 541 struct audit_reply *reply = (struct audit_reply *)arg; 542 543 mutex_lock(&audit_cmd_mutex); 544 mutex_unlock(&audit_cmd_mutex); 545 546 /* Ignore failure. It'll only happen if the sender goes away, 547 because our timeout is set to infinite. */ 548 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 549 kfree(reply); 550 return 0; 551 } 552 /** 553 * audit_send_reply - send an audit reply message via netlink 554 * @pid: process id to send reply to 555 * @seq: sequence number 556 * @type: audit message type 557 * @done: done (last) flag 558 * @multi: multi-part message flag 559 * @payload: payload data 560 * @size: payload size 561 * 562 * Allocates an skb, builds the netlink message, and sends it to the pid. 563 * No failure notifications. 564 */ 565 void audit_send_reply(int pid, int seq, int type, int done, int multi, 566 void *payload, int size) 567 { 568 struct sk_buff *skb; 569 struct task_struct *tsk; 570 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 571 GFP_KERNEL); 572 573 if (!reply) 574 return; 575 576 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 577 if (!skb) 578 goto out; 579 580 reply->pid = pid; 581 reply->skb = skb; 582 583 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 584 if (!IS_ERR(tsk)) 585 return; 586 kfree_skb(skb); 587 out: 588 kfree(reply); 589 } 590 591 /* 592 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 593 * control messages. 594 */ 595 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 596 { 597 int err = 0; 598 599 switch (msg_type) { 600 case AUDIT_GET: 601 case AUDIT_LIST: 602 case AUDIT_LIST_RULES: 603 case AUDIT_SET: 604 case AUDIT_ADD: 605 case AUDIT_ADD_RULE: 606 case AUDIT_DEL: 607 case AUDIT_DEL_RULE: 608 case AUDIT_SIGNAL_INFO: 609 case AUDIT_TTY_GET: 610 case AUDIT_TTY_SET: 611 case AUDIT_TRIM: 612 case AUDIT_MAKE_EQUIV: 613 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 614 err = -EPERM; 615 break; 616 case AUDIT_USER: 617 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 618 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 619 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 620 err = -EPERM; 621 break; 622 default: /* bad msg */ 623 err = -EINVAL; 624 } 625 626 return err; 627 } 628 629 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 630 u32 pid, u32 uid, uid_t auid, u32 ses, 631 u32 sid) 632 { 633 int rc = 0; 634 char *ctx = NULL; 635 u32 len; 636 637 if (!audit_enabled) { 638 *ab = NULL; 639 return rc; 640 } 641 642 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 643 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 644 pid, uid, auid, ses); 645 if (sid) { 646 rc = security_secid_to_secctx(sid, &ctx, &len); 647 if (rc) 648 audit_log_format(*ab, " ssid=%u", sid); 649 else { 650 audit_log_format(*ab, " subj=%s", ctx); 651 security_release_secctx(ctx, len); 652 } 653 } 654 655 return rc; 656 } 657 658 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 659 { 660 u32 uid, pid, seq, sid; 661 void *data; 662 struct audit_status *status_get, status_set; 663 int err; 664 struct audit_buffer *ab; 665 u16 msg_type = nlh->nlmsg_type; 666 uid_t loginuid; /* loginuid of sender */ 667 u32 sessionid; 668 struct audit_sig_info *sig_data; 669 char *ctx = NULL; 670 u32 len; 671 672 err = audit_netlink_ok(skb, msg_type); 673 if (err) 674 return err; 675 676 /* As soon as there's any sign of userspace auditd, 677 * start kauditd to talk to it */ 678 if (!kauditd_task) 679 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 680 if (IS_ERR(kauditd_task)) { 681 err = PTR_ERR(kauditd_task); 682 kauditd_task = NULL; 683 return err; 684 } 685 686 pid = NETLINK_CREDS(skb)->pid; 687 uid = NETLINK_CREDS(skb)->uid; 688 loginuid = NETLINK_CB(skb).loginuid; 689 sessionid = NETLINK_CB(skb).sessionid; 690 sid = NETLINK_CB(skb).sid; 691 seq = nlh->nlmsg_seq; 692 data = NLMSG_DATA(nlh); 693 694 switch (msg_type) { 695 case AUDIT_GET: 696 status_set.enabled = audit_enabled; 697 status_set.failure = audit_failure; 698 status_set.pid = audit_pid; 699 status_set.rate_limit = audit_rate_limit; 700 status_set.backlog_limit = audit_backlog_limit; 701 status_set.lost = atomic_read(&audit_lost); 702 status_set.backlog = skb_queue_len(&audit_skb_queue); 703 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 704 &status_set, sizeof(status_set)); 705 break; 706 case AUDIT_SET: 707 if (nlh->nlmsg_len < sizeof(struct audit_status)) 708 return -EINVAL; 709 status_get = (struct audit_status *)data; 710 if (status_get->mask & AUDIT_STATUS_ENABLED) { 711 err = audit_set_enabled(status_get->enabled, 712 loginuid, sessionid, sid); 713 if (err < 0) 714 return err; 715 } 716 if (status_get->mask & AUDIT_STATUS_FAILURE) { 717 err = audit_set_failure(status_get->failure, 718 loginuid, sessionid, sid); 719 if (err < 0) 720 return err; 721 } 722 if (status_get->mask & AUDIT_STATUS_PID) { 723 int new_pid = status_get->pid; 724 725 if (audit_enabled != AUDIT_OFF) 726 audit_log_config_change("audit_pid", new_pid, 727 audit_pid, loginuid, 728 sessionid, sid, 1); 729 730 audit_pid = new_pid; 731 audit_nlk_pid = NETLINK_CB(skb).pid; 732 } 733 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 734 err = audit_set_rate_limit(status_get->rate_limit, 735 loginuid, sessionid, sid); 736 if (err < 0) 737 return err; 738 } 739 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 740 err = audit_set_backlog_limit(status_get->backlog_limit, 741 loginuid, sessionid, sid); 742 break; 743 case AUDIT_USER: 744 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 745 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 746 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 747 return 0; 748 749 err = audit_filter_user(&NETLINK_CB(skb)); 750 if (err == 1) { 751 err = 0; 752 if (msg_type == AUDIT_USER_TTY) { 753 err = audit_prepare_user_tty(pid, loginuid, 754 sessionid); 755 if (err) 756 break; 757 } 758 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 759 loginuid, sessionid, sid); 760 761 if (msg_type != AUDIT_USER_TTY) 762 audit_log_format(ab, " msg='%.1024s'", 763 (char *)data); 764 else { 765 int size; 766 767 audit_log_format(ab, " msg="); 768 size = nlmsg_len(nlh); 769 audit_log_n_untrustedstring(ab, data, size); 770 } 771 audit_set_pid(ab, pid); 772 audit_log_end(ab); 773 } 774 break; 775 case AUDIT_ADD: 776 case AUDIT_DEL: 777 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 778 return -EINVAL; 779 if (audit_enabled == AUDIT_LOCKED) { 780 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 781 uid, loginuid, sessionid, sid); 782 783 audit_log_format(ab, " audit_enabled=%d res=0", 784 audit_enabled); 785 audit_log_end(ab); 786 return -EPERM; 787 } 788 /* fallthrough */ 789 case AUDIT_LIST: 790 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 791 uid, seq, data, nlmsg_len(nlh), 792 loginuid, sessionid, sid); 793 break; 794 case AUDIT_ADD_RULE: 795 case AUDIT_DEL_RULE: 796 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 797 return -EINVAL; 798 if (audit_enabled == AUDIT_LOCKED) { 799 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 800 uid, loginuid, sessionid, sid); 801 802 audit_log_format(ab, " audit_enabled=%d res=0", 803 audit_enabled); 804 audit_log_end(ab); 805 return -EPERM; 806 } 807 /* fallthrough */ 808 case AUDIT_LIST_RULES: 809 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 810 uid, seq, data, nlmsg_len(nlh), 811 loginuid, sessionid, sid); 812 break; 813 case AUDIT_TRIM: 814 audit_trim_trees(); 815 816 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 817 uid, loginuid, sessionid, sid); 818 819 audit_log_format(ab, " op=trim res=1"); 820 audit_log_end(ab); 821 break; 822 case AUDIT_MAKE_EQUIV: { 823 void *bufp = data; 824 u32 sizes[2]; 825 size_t msglen = nlmsg_len(nlh); 826 char *old, *new; 827 828 err = -EINVAL; 829 if (msglen < 2 * sizeof(u32)) 830 break; 831 memcpy(sizes, bufp, 2 * sizeof(u32)); 832 bufp += 2 * sizeof(u32); 833 msglen -= 2 * sizeof(u32); 834 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 835 if (IS_ERR(old)) { 836 err = PTR_ERR(old); 837 break; 838 } 839 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 840 if (IS_ERR(new)) { 841 err = PTR_ERR(new); 842 kfree(old); 843 break; 844 } 845 /* OK, here comes... */ 846 err = audit_tag_tree(old, new); 847 848 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 849 uid, loginuid, sessionid, sid); 850 851 audit_log_format(ab, " op=make_equiv old="); 852 audit_log_untrustedstring(ab, old); 853 audit_log_format(ab, " new="); 854 audit_log_untrustedstring(ab, new); 855 audit_log_format(ab, " res=%d", !err); 856 audit_log_end(ab); 857 kfree(old); 858 kfree(new); 859 break; 860 } 861 case AUDIT_SIGNAL_INFO: 862 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 863 if (err) 864 return err; 865 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 866 if (!sig_data) { 867 security_release_secctx(ctx, len); 868 return -ENOMEM; 869 } 870 sig_data->uid = audit_sig_uid; 871 sig_data->pid = audit_sig_pid; 872 memcpy(sig_data->ctx, ctx, len); 873 security_release_secctx(ctx, len); 874 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 875 0, 0, sig_data, sizeof(*sig_data) + len); 876 kfree(sig_data); 877 break; 878 case AUDIT_TTY_GET: { 879 struct audit_tty_status s; 880 struct task_struct *tsk; 881 882 read_lock(&tasklist_lock); 883 tsk = find_task_by_vpid(pid); 884 if (!tsk) 885 err = -ESRCH; 886 else { 887 spin_lock_irq(&tsk->sighand->siglock); 888 s.enabled = tsk->signal->audit_tty != 0; 889 spin_unlock_irq(&tsk->sighand->siglock); 890 } 891 read_unlock(&tasklist_lock); 892 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 893 &s, sizeof(s)); 894 break; 895 } 896 case AUDIT_TTY_SET: { 897 struct audit_tty_status *s; 898 struct task_struct *tsk; 899 900 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 901 return -EINVAL; 902 s = data; 903 if (s->enabled != 0 && s->enabled != 1) 904 return -EINVAL; 905 read_lock(&tasklist_lock); 906 tsk = find_task_by_vpid(pid); 907 if (!tsk) 908 err = -ESRCH; 909 else { 910 spin_lock_irq(&tsk->sighand->siglock); 911 tsk->signal->audit_tty = s->enabled != 0; 912 spin_unlock_irq(&tsk->sighand->siglock); 913 } 914 read_unlock(&tasklist_lock); 915 break; 916 } 917 default: 918 err = -EINVAL; 919 break; 920 } 921 922 return err < 0 ? err : 0; 923 } 924 925 /* 926 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 927 * processed by audit_receive_msg. Malformed skbs with wrong length are 928 * discarded silently. 929 */ 930 static void audit_receive_skb(struct sk_buff *skb) 931 { 932 int err; 933 struct nlmsghdr *nlh; 934 u32 rlen; 935 936 while (skb->len >= NLMSG_SPACE(0)) { 937 nlh = nlmsg_hdr(skb); 938 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 939 return; 940 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 941 if (rlen > skb->len) 942 rlen = skb->len; 943 if ((err = audit_receive_msg(skb, nlh))) { 944 netlink_ack(skb, nlh, err); 945 } else if (nlh->nlmsg_flags & NLM_F_ACK) 946 netlink_ack(skb, nlh, 0); 947 skb_pull(skb, rlen); 948 } 949 } 950 951 /* Receive messages from netlink socket. */ 952 static void audit_receive(struct sk_buff *skb) 953 { 954 mutex_lock(&audit_cmd_mutex); 955 audit_receive_skb(skb); 956 mutex_unlock(&audit_cmd_mutex); 957 } 958 959 #ifdef CONFIG_AUDITSYSCALL 960 static const struct inotify_operations audit_inotify_ops = { 961 .handle_event = audit_handle_ievent, 962 .destroy_watch = audit_free_parent, 963 }; 964 #endif 965 966 /* Initialize audit support at boot time. */ 967 static int __init audit_init(void) 968 { 969 int i; 970 971 if (audit_initialized == AUDIT_DISABLED) 972 return 0; 973 974 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 975 audit_default ? "enabled" : "disabled"); 976 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 977 audit_receive, NULL, THIS_MODULE); 978 if (!audit_sock) 979 audit_panic("cannot initialize netlink socket"); 980 else 981 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 982 983 skb_queue_head_init(&audit_skb_queue); 984 skb_queue_head_init(&audit_skb_hold_queue); 985 audit_initialized = AUDIT_INITIALIZED; 986 audit_enabled = audit_default; 987 audit_ever_enabled |= !!audit_default; 988 989 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 990 991 #ifdef CONFIG_AUDITSYSCALL 992 audit_ih = inotify_init(&audit_inotify_ops); 993 if (IS_ERR(audit_ih)) 994 audit_panic("cannot initialize inotify handle"); 995 #endif 996 997 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 998 INIT_LIST_HEAD(&audit_inode_hash[i]); 999 1000 return 0; 1001 } 1002 __initcall(audit_init); 1003 1004 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1005 static int __init audit_enable(char *str) 1006 { 1007 audit_default = !!simple_strtol(str, NULL, 0); 1008 if (!audit_default) 1009 audit_initialized = AUDIT_DISABLED; 1010 1011 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); 1012 1013 if (audit_initialized == AUDIT_INITIALIZED) { 1014 audit_enabled = audit_default; 1015 audit_ever_enabled |= !!audit_default; 1016 } else if (audit_initialized == AUDIT_UNINITIALIZED) { 1017 printk(" (after initialization)"); 1018 } else { 1019 printk(" (until reboot)"); 1020 } 1021 printk("\n"); 1022 1023 return 1; 1024 } 1025 1026 __setup("audit=", audit_enable); 1027 1028 static void audit_buffer_free(struct audit_buffer *ab) 1029 { 1030 unsigned long flags; 1031 1032 if (!ab) 1033 return; 1034 1035 if (ab->skb) 1036 kfree_skb(ab->skb); 1037 1038 spin_lock_irqsave(&audit_freelist_lock, flags); 1039 if (audit_freelist_count > AUDIT_MAXFREE) 1040 kfree(ab); 1041 else { 1042 audit_freelist_count++; 1043 list_add(&ab->list, &audit_freelist); 1044 } 1045 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1046 } 1047 1048 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1049 gfp_t gfp_mask, int type) 1050 { 1051 unsigned long flags; 1052 struct audit_buffer *ab = NULL; 1053 struct nlmsghdr *nlh; 1054 1055 spin_lock_irqsave(&audit_freelist_lock, flags); 1056 if (!list_empty(&audit_freelist)) { 1057 ab = list_entry(audit_freelist.next, 1058 struct audit_buffer, list); 1059 list_del(&ab->list); 1060 --audit_freelist_count; 1061 } 1062 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1063 1064 if (!ab) { 1065 ab = kmalloc(sizeof(*ab), gfp_mask); 1066 if (!ab) 1067 goto err; 1068 } 1069 1070 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 1071 if (!ab->skb) 1072 goto err; 1073 1074 ab->ctx = ctx; 1075 ab->gfp_mask = gfp_mask; 1076 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 1077 nlh->nlmsg_type = type; 1078 nlh->nlmsg_flags = 0; 1079 nlh->nlmsg_pid = 0; 1080 nlh->nlmsg_seq = 0; 1081 return ab; 1082 err: 1083 audit_buffer_free(ab); 1084 return NULL; 1085 } 1086 1087 /** 1088 * audit_serial - compute a serial number for the audit record 1089 * 1090 * Compute a serial number for the audit record. Audit records are 1091 * written to user-space as soon as they are generated, so a complete 1092 * audit record may be written in several pieces. The timestamp of the 1093 * record and this serial number are used by the user-space tools to 1094 * determine which pieces belong to the same audit record. The 1095 * (timestamp,serial) tuple is unique for each syscall and is live from 1096 * syscall entry to syscall exit. 1097 * 1098 * NOTE: Another possibility is to store the formatted records off the 1099 * audit context (for those records that have a context), and emit them 1100 * all at syscall exit. However, this could delay the reporting of 1101 * significant errors until syscall exit (or never, if the system 1102 * halts). 1103 */ 1104 unsigned int audit_serial(void) 1105 { 1106 static DEFINE_SPINLOCK(serial_lock); 1107 static unsigned int serial = 0; 1108 1109 unsigned long flags; 1110 unsigned int ret; 1111 1112 spin_lock_irqsave(&serial_lock, flags); 1113 do { 1114 ret = ++serial; 1115 } while (unlikely(!ret)); 1116 spin_unlock_irqrestore(&serial_lock, flags); 1117 1118 return ret; 1119 } 1120 1121 static inline void audit_get_stamp(struct audit_context *ctx, 1122 struct timespec *t, unsigned int *serial) 1123 { 1124 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1125 *t = CURRENT_TIME; 1126 *serial = audit_serial(); 1127 } 1128 } 1129 1130 /* Obtain an audit buffer. This routine does locking to obtain the 1131 * audit buffer, but then no locking is required for calls to 1132 * audit_log_*format. If the tsk is a task that is currently in a 1133 * syscall, then the syscall is marked as auditable and an audit record 1134 * will be written at syscall exit. If there is no associated task, tsk 1135 * should be NULL. */ 1136 1137 /** 1138 * audit_log_start - obtain an audit buffer 1139 * @ctx: audit_context (may be NULL) 1140 * @gfp_mask: type of allocation 1141 * @type: audit message type 1142 * 1143 * Returns audit_buffer pointer on success or NULL on error. 1144 * 1145 * Obtain an audit buffer. This routine does locking to obtain the 1146 * audit buffer, but then no locking is required for calls to 1147 * audit_log_*format. If the task (ctx) is a task that is currently in a 1148 * syscall, then the syscall is marked as auditable and an audit record 1149 * will be written at syscall exit. If there is no associated task, then 1150 * task context (ctx) should be NULL. 1151 */ 1152 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1153 int type) 1154 { 1155 struct audit_buffer *ab = NULL; 1156 struct timespec t; 1157 unsigned int uninitialized_var(serial); 1158 int reserve; 1159 unsigned long timeout_start = jiffies; 1160 1161 if (audit_initialized != AUDIT_INITIALIZED) 1162 return NULL; 1163 1164 if (unlikely(audit_filter_type(type))) 1165 return NULL; 1166 1167 if (gfp_mask & __GFP_WAIT) 1168 reserve = 0; 1169 else 1170 reserve = 5; /* Allow atomic callers to go up to five 1171 entries over the normal backlog limit */ 1172 1173 while (audit_backlog_limit 1174 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1175 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1176 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1177 1178 /* Wait for auditd to drain the queue a little */ 1179 DECLARE_WAITQUEUE(wait, current); 1180 set_current_state(TASK_INTERRUPTIBLE); 1181 add_wait_queue(&audit_backlog_wait, &wait); 1182 1183 if (audit_backlog_limit && 1184 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1185 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1186 1187 __set_current_state(TASK_RUNNING); 1188 remove_wait_queue(&audit_backlog_wait, &wait); 1189 continue; 1190 } 1191 if (audit_rate_check() && printk_ratelimit()) 1192 printk(KERN_WARNING 1193 "audit: audit_backlog=%d > " 1194 "audit_backlog_limit=%d\n", 1195 skb_queue_len(&audit_skb_queue), 1196 audit_backlog_limit); 1197 audit_log_lost("backlog limit exceeded"); 1198 audit_backlog_wait_time = audit_backlog_wait_overflow; 1199 wake_up(&audit_backlog_wait); 1200 return NULL; 1201 } 1202 1203 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1204 if (!ab) { 1205 audit_log_lost("out of memory in audit_log_start"); 1206 return NULL; 1207 } 1208 1209 audit_get_stamp(ab->ctx, &t, &serial); 1210 1211 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1212 t.tv_sec, t.tv_nsec/1000000, serial); 1213 return ab; 1214 } 1215 1216 /** 1217 * audit_expand - expand skb in the audit buffer 1218 * @ab: audit_buffer 1219 * @extra: space to add at tail of the skb 1220 * 1221 * Returns 0 (no space) on failed expansion, or available space if 1222 * successful. 1223 */ 1224 static inline int audit_expand(struct audit_buffer *ab, int extra) 1225 { 1226 struct sk_buff *skb = ab->skb; 1227 int oldtail = skb_tailroom(skb); 1228 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1229 int newtail = skb_tailroom(skb); 1230 1231 if (ret < 0) { 1232 audit_log_lost("out of memory in audit_expand"); 1233 return 0; 1234 } 1235 1236 skb->truesize += newtail - oldtail; 1237 return newtail; 1238 } 1239 1240 /* 1241 * Format an audit message into the audit buffer. If there isn't enough 1242 * room in the audit buffer, more room will be allocated and vsnprint 1243 * will be called a second time. Currently, we assume that a printk 1244 * can't format message larger than 1024 bytes, so we don't either. 1245 */ 1246 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1247 va_list args) 1248 { 1249 int len, avail; 1250 struct sk_buff *skb; 1251 va_list args2; 1252 1253 if (!ab) 1254 return; 1255 1256 BUG_ON(!ab->skb); 1257 skb = ab->skb; 1258 avail = skb_tailroom(skb); 1259 if (avail == 0) { 1260 avail = audit_expand(ab, AUDIT_BUFSIZ); 1261 if (!avail) 1262 goto out; 1263 } 1264 va_copy(args2, args); 1265 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1266 if (len >= avail) { 1267 /* The printk buffer is 1024 bytes long, so if we get 1268 * here and AUDIT_BUFSIZ is at least 1024, then we can 1269 * log everything that printk could have logged. */ 1270 avail = audit_expand(ab, 1271 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1272 if (!avail) 1273 goto out; 1274 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1275 } 1276 va_end(args2); 1277 if (len > 0) 1278 skb_put(skb, len); 1279 out: 1280 return; 1281 } 1282 1283 /** 1284 * audit_log_format - format a message into the audit buffer. 1285 * @ab: audit_buffer 1286 * @fmt: format string 1287 * @...: optional parameters matching @fmt string 1288 * 1289 * All the work is done in audit_log_vformat. 1290 */ 1291 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1292 { 1293 va_list args; 1294 1295 if (!ab) 1296 return; 1297 va_start(args, fmt); 1298 audit_log_vformat(ab, fmt, args); 1299 va_end(args); 1300 } 1301 1302 /** 1303 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1304 * @ab: the audit_buffer 1305 * @buf: buffer to convert to hex 1306 * @len: length of @buf to be converted 1307 * 1308 * No return value; failure to expand is silently ignored. 1309 * 1310 * This function will take the passed buf and convert it into a string of 1311 * ascii hex digits. The new string is placed onto the skb. 1312 */ 1313 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1314 size_t len) 1315 { 1316 int i, avail, new_len; 1317 unsigned char *ptr; 1318 struct sk_buff *skb; 1319 static const unsigned char *hex = "0123456789ABCDEF"; 1320 1321 if (!ab) 1322 return; 1323 1324 BUG_ON(!ab->skb); 1325 skb = ab->skb; 1326 avail = skb_tailroom(skb); 1327 new_len = len<<1; 1328 if (new_len >= avail) { 1329 /* Round the buffer request up to the next multiple */ 1330 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1331 avail = audit_expand(ab, new_len); 1332 if (!avail) 1333 return; 1334 } 1335 1336 ptr = skb_tail_pointer(skb); 1337 for (i=0; i<len; i++) { 1338 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1339 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1340 } 1341 *ptr = 0; 1342 skb_put(skb, len << 1); /* new string is twice the old string */ 1343 } 1344 1345 /* 1346 * Format a string of no more than slen characters into the audit buffer, 1347 * enclosed in quote marks. 1348 */ 1349 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1350 size_t slen) 1351 { 1352 int avail, new_len; 1353 unsigned char *ptr; 1354 struct sk_buff *skb; 1355 1356 if (!ab) 1357 return; 1358 1359 BUG_ON(!ab->skb); 1360 skb = ab->skb; 1361 avail = skb_tailroom(skb); 1362 new_len = slen + 3; /* enclosing quotes + null terminator */ 1363 if (new_len > avail) { 1364 avail = audit_expand(ab, new_len); 1365 if (!avail) 1366 return; 1367 } 1368 ptr = skb_tail_pointer(skb); 1369 *ptr++ = '"'; 1370 memcpy(ptr, string, slen); 1371 ptr += slen; 1372 *ptr++ = '"'; 1373 *ptr = 0; 1374 skb_put(skb, slen + 2); /* don't include null terminator */ 1375 } 1376 1377 /** 1378 * audit_string_contains_control - does a string need to be logged in hex 1379 * @string: string to be checked 1380 * @len: max length of the string to check 1381 */ 1382 int audit_string_contains_control(const char *string, size_t len) 1383 { 1384 const unsigned char *p; 1385 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1386 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1387 return 1; 1388 } 1389 return 0; 1390 } 1391 1392 /** 1393 * audit_log_n_untrustedstring - log a string that may contain random characters 1394 * @ab: audit_buffer 1395 * @len: length of string (not including trailing null) 1396 * @string: string to be logged 1397 * 1398 * This code will escape a string that is passed to it if the string 1399 * contains a control character, unprintable character, double quote mark, 1400 * or a space. Unescaped strings will start and end with a double quote mark. 1401 * Strings that are escaped are printed in hex (2 digits per char). 1402 * 1403 * The caller specifies the number of characters in the string to log, which may 1404 * or may not be the entire string. 1405 */ 1406 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1407 size_t len) 1408 { 1409 if (audit_string_contains_control(string, len)) 1410 audit_log_n_hex(ab, string, len); 1411 else 1412 audit_log_n_string(ab, string, len); 1413 } 1414 1415 /** 1416 * audit_log_untrustedstring - log a string that may contain random characters 1417 * @ab: audit_buffer 1418 * @string: string to be logged 1419 * 1420 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1421 * determine string length. 1422 */ 1423 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1424 { 1425 audit_log_n_untrustedstring(ab, string, strlen(string)); 1426 } 1427 1428 /* This is a helper-function to print the escaped d_path */ 1429 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1430 struct path *path) 1431 { 1432 char *p, *pathname; 1433 1434 if (prefix) 1435 audit_log_format(ab, " %s", prefix); 1436 1437 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1438 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1439 if (!pathname) { 1440 audit_log_format(ab, "<no memory>"); 1441 return; 1442 } 1443 p = d_path(path, pathname, PATH_MAX+11); 1444 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1445 /* FIXME: can we save some information here? */ 1446 audit_log_format(ab, "<too long>"); 1447 } else 1448 audit_log_untrustedstring(ab, p); 1449 kfree(pathname); 1450 } 1451 1452 /** 1453 * audit_log_end - end one audit record 1454 * @ab: the audit_buffer 1455 * 1456 * The netlink_* functions cannot be called inside an irq context, so 1457 * the audit buffer is placed on a queue and a tasklet is scheduled to 1458 * remove them from the queue outside the irq context. May be called in 1459 * any context. 1460 */ 1461 void audit_log_end(struct audit_buffer *ab) 1462 { 1463 if (!ab) 1464 return; 1465 if (!audit_rate_check()) { 1466 audit_log_lost("rate limit exceeded"); 1467 } else { 1468 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1469 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1470 1471 if (audit_pid) { 1472 skb_queue_tail(&audit_skb_queue, ab->skb); 1473 wake_up_interruptible(&kauditd_wait); 1474 } else { 1475 if (nlh->nlmsg_type != AUDIT_EOE) { 1476 if (printk_ratelimit()) { 1477 printk(KERN_NOTICE "type=%d %s\n", 1478 nlh->nlmsg_type, 1479 ab->skb->data + NLMSG_SPACE(0)); 1480 } else 1481 audit_log_lost("printk limit exceeded\n"); 1482 } 1483 audit_hold_skb(ab->skb); 1484 } 1485 ab->skb = NULL; 1486 } 1487 audit_buffer_free(ab); 1488 } 1489 1490 /** 1491 * audit_log - Log an audit record 1492 * @ctx: audit context 1493 * @gfp_mask: type of allocation 1494 * @type: audit message type 1495 * @fmt: format string to use 1496 * @...: variable parameters matching the format string 1497 * 1498 * This is a convenience function that calls audit_log_start, 1499 * audit_log_vformat, and audit_log_end. It may be called 1500 * in any context. 1501 */ 1502 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1503 const char *fmt, ...) 1504 { 1505 struct audit_buffer *ab; 1506 va_list args; 1507 1508 ab = audit_log_start(ctx, gfp_mask, type); 1509 if (ab) { 1510 va_start(args, fmt); 1511 audit_log_vformat(ab, fmt, args); 1512 va_end(args); 1513 audit_log_end(ab); 1514 } 1515 } 1516 1517 EXPORT_SYMBOL(audit_log_start); 1518 EXPORT_SYMBOL(audit_log_end); 1519 EXPORT_SYMBOL(audit_log_format); 1520 EXPORT_SYMBOL(audit_log); 1521