1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 }; 111 static struct auditd_connection __rcu *auditd_conn; 112 static DEFINE_SPINLOCK(auditd_conn_lock); 113 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 115 * to that number per second. This prevents DoS attacks, but results in 116 * audit records being dropped. */ 117 static u32 audit_rate_limit; 118 119 /* Number of outstanding audit_buffers allowed. 120 * When set to zero, this means unlimited. */ 121 static u32 audit_backlog_limit = 64; 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 124 125 /* The identity of the user shutting down the audit system. */ 126 kuid_t audit_sig_uid = INVALID_UID; 127 pid_t audit_sig_pid = -1; 128 u32 audit_sig_sid = 0; 129 130 /* Records can be lost in several ways: 131 0) [suppressed in audit_alloc] 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 133 2) out of memory in audit_log_move [alloc_skb] 134 3) suppressed due to audit_rate_limit 135 4) suppressed due to audit_backlog_limit 136 */ 137 static atomic_t audit_lost = ATOMIC_INIT(0); 138 139 /* Hash for inode-based rules */ 140 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 141 142 static struct kmem_cache *audit_buffer_cache; 143 144 /* queue msgs to send via kauditd_task */ 145 static struct sk_buff_head audit_queue; 146 /* queue msgs due to temporary unicast send problems */ 147 static struct sk_buff_head audit_retry_queue; 148 /* queue msgs waiting for new auditd connection */ 149 static struct sk_buff_head audit_hold_queue; 150 151 /* queue servicing thread */ 152 static struct task_struct *kauditd_task; 153 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 154 155 /* waitqueue for callers who are blocked on the audit backlog */ 156 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 157 158 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 159 .mask = -1, 160 .features = 0, 161 .lock = 0,}; 162 163 static char *audit_feature_names[2] = { 164 "only_unset_loginuid", 165 "loginuid_immutable", 166 }; 167 168 /** 169 * struct audit_ctl_mutex - serialize requests from userspace 170 * @lock: the mutex used for locking 171 * @owner: the task which owns the lock 172 * 173 * Description: 174 * This is the lock struct used to ensure we only process userspace requests 175 * in an orderly fashion. We can't simply use a mutex/lock here because we 176 * need to track lock ownership so we don't end up blocking the lock owner in 177 * audit_log_start() or similar. 178 */ 179 static struct audit_ctl_mutex { 180 struct mutex lock; 181 void *owner; 182 } audit_cmd_mutex; 183 184 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 185 * audit records. Since printk uses a 1024 byte buffer, this buffer 186 * should be at least that large. */ 187 #define AUDIT_BUFSIZ 1024 188 189 /* The audit_buffer is used when formatting an audit record. The caller 190 * locks briefly to get the record off the freelist or to allocate the 191 * buffer, and locks briefly to send the buffer to the netlink layer or 192 * to place it on a transmit queue. Multiple audit_buffers can be in 193 * use simultaneously. */ 194 struct audit_buffer { 195 struct sk_buff *skb; /* formatted skb ready to send */ 196 struct audit_context *ctx; /* NULL or associated context */ 197 gfp_t gfp_mask; 198 }; 199 200 struct audit_reply { 201 __u32 portid; 202 struct net *net; 203 struct sk_buff *skb; 204 }; 205 206 /** 207 * auditd_test_task - Check to see if a given task is an audit daemon 208 * @task: the task to check 209 * 210 * Description: 211 * Return 1 if the task is a registered audit daemon, 0 otherwise. 212 */ 213 int auditd_test_task(struct task_struct *task) 214 { 215 int rc; 216 struct auditd_connection *ac; 217 218 rcu_read_lock(); 219 ac = rcu_dereference(auditd_conn); 220 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 221 rcu_read_unlock(); 222 223 return rc; 224 } 225 226 /** 227 * audit_ctl_lock - Take the audit control lock 228 */ 229 void audit_ctl_lock(void) 230 { 231 mutex_lock(&audit_cmd_mutex.lock); 232 audit_cmd_mutex.owner = current; 233 } 234 235 /** 236 * audit_ctl_unlock - Drop the audit control lock 237 */ 238 void audit_ctl_unlock(void) 239 { 240 audit_cmd_mutex.owner = NULL; 241 mutex_unlock(&audit_cmd_mutex.lock); 242 } 243 244 /** 245 * audit_ctl_owner_current - Test to see if the current task owns the lock 246 * 247 * Description: 248 * Return true if the current task owns the audit control lock, false if it 249 * doesn't own the lock. 250 */ 251 static bool audit_ctl_owner_current(void) 252 { 253 return (current == audit_cmd_mutex.owner); 254 } 255 256 /** 257 * auditd_pid_vnr - Return the auditd PID relative to the namespace 258 * 259 * Description: 260 * Returns the PID in relation to the namespace, 0 on failure. 261 */ 262 static pid_t auditd_pid_vnr(void) 263 { 264 pid_t pid; 265 const struct auditd_connection *ac; 266 267 rcu_read_lock(); 268 ac = rcu_dereference(auditd_conn); 269 if (!ac || !ac->pid) 270 pid = 0; 271 else 272 pid = pid_vnr(ac->pid); 273 rcu_read_unlock(); 274 275 return pid; 276 } 277 278 /** 279 * audit_get_sk - Return the audit socket for the given network namespace 280 * @net: the destination network namespace 281 * 282 * Description: 283 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 284 * that a reference is held for the network namespace while the sock is in use. 285 */ 286 static struct sock *audit_get_sk(const struct net *net) 287 { 288 struct audit_net *aunet; 289 290 if (!net) 291 return NULL; 292 293 aunet = net_generic(net, audit_net_id); 294 return aunet->sk; 295 } 296 297 void audit_panic(const char *message) 298 { 299 switch (audit_failure) { 300 case AUDIT_FAIL_SILENT: 301 break; 302 case AUDIT_FAIL_PRINTK: 303 if (printk_ratelimit()) 304 pr_err("%s\n", message); 305 break; 306 case AUDIT_FAIL_PANIC: 307 panic("audit: %s\n", message); 308 break; 309 } 310 } 311 312 static inline int audit_rate_check(void) 313 { 314 static unsigned long last_check = 0; 315 static int messages = 0; 316 static DEFINE_SPINLOCK(lock); 317 unsigned long flags; 318 unsigned long now; 319 unsigned long elapsed; 320 int retval = 0; 321 322 if (!audit_rate_limit) return 1; 323 324 spin_lock_irqsave(&lock, flags); 325 if (++messages < audit_rate_limit) { 326 retval = 1; 327 } else { 328 now = jiffies; 329 elapsed = now - last_check; 330 if (elapsed > HZ) { 331 last_check = now; 332 messages = 0; 333 retval = 1; 334 } 335 } 336 spin_unlock_irqrestore(&lock, flags); 337 338 return retval; 339 } 340 341 /** 342 * audit_log_lost - conditionally log lost audit message event 343 * @message: the message stating reason for lost audit message 344 * 345 * Emit at least 1 message per second, even if audit_rate_check is 346 * throttling. 347 * Always increment the lost messages counter. 348 */ 349 void audit_log_lost(const char *message) 350 { 351 static unsigned long last_msg = 0; 352 static DEFINE_SPINLOCK(lock); 353 unsigned long flags; 354 unsigned long now; 355 int print; 356 357 atomic_inc(&audit_lost); 358 359 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 360 361 if (!print) { 362 spin_lock_irqsave(&lock, flags); 363 now = jiffies; 364 if (now - last_msg > HZ) { 365 print = 1; 366 last_msg = now; 367 } 368 spin_unlock_irqrestore(&lock, flags); 369 } 370 371 if (print) { 372 if (printk_ratelimit()) 373 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 374 atomic_read(&audit_lost), 375 audit_rate_limit, 376 audit_backlog_limit); 377 audit_panic(message); 378 } 379 } 380 381 static int audit_log_config_change(char *function_name, u32 new, u32 old, 382 int allow_changes) 383 { 384 struct audit_buffer *ab; 385 int rc = 0; 386 387 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 388 if (unlikely(!ab)) 389 return rc; 390 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 391 audit_log_session_info(ab); 392 rc = audit_log_task_context(ab); 393 if (rc) 394 allow_changes = 0; /* Something weird, deny request */ 395 audit_log_format(ab, " res=%d", allow_changes); 396 audit_log_end(ab); 397 return rc; 398 } 399 400 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 401 { 402 int allow_changes, rc = 0; 403 u32 old = *to_change; 404 405 /* check if we are locked */ 406 if (audit_enabled == AUDIT_LOCKED) 407 allow_changes = 0; 408 else 409 allow_changes = 1; 410 411 if (audit_enabled != AUDIT_OFF) { 412 rc = audit_log_config_change(function_name, new, old, allow_changes); 413 if (rc) 414 allow_changes = 0; 415 } 416 417 /* If we are allowed, make the change */ 418 if (allow_changes == 1) 419 *to_change = new; 420 /* Not allowed, update reason */ 421 else if (rc == 0) 422 rc = -EPERM; 423 return rc; 424 } 425 426 static int audit_set_rate_limit(u32 limit) 427 { 428 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 429 } 430 431 static int audit_set_backlog_limit(u32 limit) 432 { 433 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 434 } 435 436 static int audit_set_backlog_wait_time(u32 timeout) 437 { 438 return audit_do_config_change("audit_backlog_wait_time", 439 &audit_backlog_wait_time, timeout); 440 } 441 442 static int audit_set_enabled(u32 state) 443 { 444 int rc; 445 if (state > AUDIT_LOCKED) 446 return -EINVAL; 447 448 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 449 if (!rc) 450 audit_ever_enabled |= !!state; 451 452 return rc; 453 } 454 455 static int audit_set_failure(u32 state) 456 { 457 if (state != AUDIT_FAIL_SILENT 458 && state != AUDIT_FAIL_PRINTK 459 && state != AUDIT_FAIL_PANIC) 460 return -EINVAL; 461 462 return audit_do_config_change("audit_failure", &audit_failure, state); 463 } 464 465 /** 466 * auditd_conn_free - RCU helper to release an auditd connection struct 467 * @rcu: RCU head 468 * 469 * Description: 470 * Drop any references inside the auditd connection tracking struct and free 471 * the memory. 472 */ 473 static void auditd_conn_free(struct rcu_head *rcu) 474 { 475 struct auditd_connection *ac; 476 477 ac = container_of(rcu, struct auditd_connection, rcu); 478 put_pid(ac->pid); 479 put_net(ac->net); 480 kfree(ac); 481 } 482 483 /** 484 * auditd_set - Set/Reset the auditd connection state 485 * @pid: auditd PID 486 * @portid: auditd netlink portid 487 * @net: auditd network namespace pointer 488 * 489 * Description: 490 * This function will obtain and drop network namespace references as 491 * necessary. Returns zero on success, negative values on failure. 492 */ 493 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 494 { 495 unsigned long flags; 496 struct auditd_connection *ac_old, *ac_new; 497 498 if (!pid || !net) 499 return -EINVAL; 500 501 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 502 if (!ac_new) 503 return -ENOMEM; 504 ac_new->pid = get_pid(pid); 505 ac_new->portid = portid; 506 ac_new->net = get_net(net); 507 508 spin_lock_irqsave(&auditd_conn_lock, flags); 509 ac_old = rcu_dereference_protected(auditd_conn, 510 lockdep_is_held(&auditd_conn_lock)); 511 rcu_assign_pointer(auditd_conn, ac_new); 512 spin_unlock_irqrestore(&auditd_conn_lock, flags); 513 514 if (ac_old) 515 call_rcu(&ac_old->rcu, auditd_conn_free); 516 517 return 0; 518 } 519 520 /** 521 * kauditd_print_skb - Print the audit record to the ring buffer 522 * @skb: audit record 523 * 524 * Whatever the reason, this packet may not make it to the auditd connection 525 * so write it via printk so the information isn't completely lost. 526 */ 527 static void kauditd_printk_skb(struct sk_buff *skb) 528 { 529 struct nlmsghdr *nlh = nlmsg_hdr(skb); 530 char *data = nlmsg_data(nlh); 531 532 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 533 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 534 } 535 536 /** 537 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 538 * @skb: audit record 539 * 540 * Description: 541 * This should only be used by the kauditd_thread when it fails to flush the 542 * hold queue. 543 */ 544 static void kauditd_rehold_skb(struct sk_buff *skb) 545 { 546 /* put the record back in the queue at the same place */ 547 skb_queue_head(&audit_hold_queue, skb); 548 } 549 550 /** 551 * kauditd_hold_skb - Queue an audit record, waiting for auditd 552 * @skb: audit record 553 * 554 * Description: 555 * Queue the audit record, waiting for an instance of auditd. When this 556 * function is called we haven't given up yet on sending the record, but things 557 * are not looking good. The first thing we want to do is try to write the 558 * record via printk and then see if we want to try and hold on to the record 559 * and queue it, if we have room. If we want to hold on to the record, but we 560 * don't have room, record a record lost message. 561 */ 562 static void kauditd_hold_skb(struct sk_buff *skb) 563 { 564 /* at this point it is uncertain if we will ever send this to auditd so 565 * try to send the message via printk before we go any further */ 566 kauditd_printk_skb(skb); 567 568 /* can we just silently drop the message? */ 569 if (!audit_default) { 570 kfree_skb(skb); 571 return; 572 } 573 574 /* if we have room, queue the message */ 575 if (!audit_backlog_limit || 576 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 577 skb_queue_tail(&audit_hold_queue, skb); 578 return; 579 } 580 581 /* we have no other options - drop the message */ 582 audit_log_lost("kauditd hold queue overflow"); 583 kfree_skb(skb); 584 } 585 586 /** 587 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 588 * @skb: audit record 589 * 590 * Description: 591 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 592 * but for some reason we are having problems sending it audit records so 593 * queue the given record and attempt to resend. 594 */ 595 static void kauditd_retry_skb(struct sk_buff *skb) 596 { 597 /* NOTE: because records should only live in the retry queue for a 598 * short period of time, before either being sent or moved to the hold 599 * queue, we don't currently enforce a limit on this queue */ 600 skb_queue_tail(&audit_retry_queue, skb); 601 } 602 603 /** 604 * auditd_reset - Disconnect the auditd connection 605 * @ac: auditd connection state 606 * 607 * Description: 608 * Break the auditd/kauditd connection and move all the queued records into the 609 * hold queue in case auditd reconnects. It is important to note that the @ac 610 * pointer should never be dereferenced inside this function as it may be NULL 611 * or invalid, you can only compare the memory address! If @ac is NULL then 612 * the connection will always be reset. 613 */ 614 static void auditd_reset(const struct auditd_connection *ac) 615 { 616 unsigned long flags; 617 struct sk_buff *skb; 618 struct auditd_connection *ac_old; 619 620 /* if it isn't already broken, break the connection */ 621 spin_lock_irqsave(&auditd_conn_lock, flags); 622 ac_old = rcu_dereference_protected(auditd_conn, 623 lockdep_is_held(&auditd_conn_lock)); 624 if (ac && ac != ac_old) { 625 /* someone already registered a new auditd connection */ 626 spin_unlock_irqrestore(&auditd_conn_lock, flags); 627 return; 628 } 629 rcu_assign_pointer(auditd_conn, NULL); 630 spin_unlock_irqrestore(&auditd_conn_lock, flags); 631 632 if (ac_old) 633 call_rcu(&ac_old->rcu, auditd_conn_free); 634 635 /* flush the retry queue to the hold queue, but don't touch the main 636 * queue since we need to process that normally for multicast */ 637 while ((skb = skb_dequeue(&audit_retry_queue))) 638 kauditd_hold_skb(skb); 639 } 640 641 /** 642 * auditd_send_unicast_skb - Send a record via unicast to auditd 643 * @skb: audit record 644 * 645 * Description: 646 * Send a skb to the audit daemon, returns positive/zero values on success and 647 * negative values on failure; in all cases the skb will be consumed by this 648 * function. If the send results in -ECONNREFUSED the connection with auditd 649 * will be reset. This function may sleep so callers should not hold any locks 650 * where this would cause a problem. 651 */ 652 static int auditd_send_unicast_skb(struct sk_buff *skb) 653 { 654 int rc; 655 u32 portid; 656 struct net *net; 657 struct sock *sk; 658 struct auditd_connection *ac; 659 660 /* NOTE: we can't call netlink_unicast while in the RCU section so 661 * take a reference to the network namespace and grab local 662 * copies of the namespace, the sock, and the portid; the 663 * namespace and sock aren't going to go away while we hold a 664 * reference and if the portid does become invalid after the RCU 665 * section netlink_unicast() should safely return an error */ 666 667 rcu_read_lock(); 668 ac = rcu_dereference(auditd_conn); 669 if (!ac) { 670 rcu_read_unlock(); 671 kfree_skb(skb); 672 rc = -ECONNREFUSED; 673 goto err; 674 } 675 net = get_net(ac->net); 676 sk = audit_get_sk(net); 677 portid = ac->portid; 678 rcu_read_unlock(); 679 680 rc = netlink_unicast(sk, skb, portid, 0); 681 put_net(net); 682 if (rc < 0) 683 goto err; 684 685 return rc; 686 687 err: 688 if (ac && rc == -ECONNREFUSED) 689 auditd_reset(ac); 690 return rc; 691 } 692 693 /** 694 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 695 * @sk: the sending sock 696 * @portid: the netlink destination 697 * @queue: the skb queue to process 698 * @retry_limit: limit on number of netlink unicast failures 699 * @skb_hook: per-skb hook for additional processing 700 * @err_hook: hook called if the skb fails the netlink unicast send 701 * 702 * Description: 703 * Run through the given queue and attempt to send the audit records to auditd, 704 * returns zero on success, negative values on failure. It is up to the caller 705 * to ensure that the @sk is valid for the duration of this function. 706 * 707 */ 708 static int kauditd_send_queue(struct sock *sk, u32 portid, 709 struct sk_buff_head *queue, 710 unsigned int retry_limit, 711 void (*skb_hook)(struct sk_buff *skb), 712 void (*err_hook)(struct sk_buff *skb)) 713 { 714 int rc = 0; 715 struct sk_buff *skb; 716 static unsigned int failed = 0; 717 718 /* NOTE: kauditd_thread takes care of all our locking, we just use 719 * the netlink info passed to us (e.g. sk and portid) */ 720 721 while ((skb = skb_dequeue(queue))) { 722 /* call the skb_hook for each skb we touch */ 723 if (skb_hook) 724 (*skb_hook)(skb); 725 726 /* can we send to anyone via unicast? */ 727 if (!sk) { 728 if (err_hook) 729 (*err_hook)(skb); 730 continue; 731 } 732 733 /* grab an extra skb reference in case of error */ 734 skb_get(skb); 735 rc = netlink_unicast(sk, skb, portid, 0); 736 if (rc < 0) { 737 /* fatal failure for our queue flush attempt? */ 738 if (++failed >= retry_limit || 739 rc == -ECONNREFUSED || rc == -EPERM) { 740 /* yes - error processing for the queue */ 741 sk = NULL; 742 if (err_hook) 743 (*err_hook)(skb); 744 if (!skb_hook) 745 goto out; 746 /* keep processing with the skb_hook */ 747 continue; 748 } else 749 /* no - requeue to preserve ordering */ 750 skb_queue_head(queue, skb); 751 } else { 752 /* it worked - drop the extra reference and continue */ 753 consume_skb(skb); 754 failed = 0; 755 } 756 } 757 758 out: 759 return (rc >= 0 ? 0 : rc); 760 } 761 762 /* 763 * kauditd_send_multicast_skb - Send a record to any multicast listeners 764 * @skb: audit record 765 * 766 * Description: 767 * Write a multicast message to anyone listening in the initial network 768 * namespace. This function doesn't consume an skb as might be expected since 769 * it has to copy it anyways. 770 */ 771 static void kauditd_send_multicast_skb(struct sk_buff *skb) 772 { 773 struct sk_buff *copy; 774 struct sock *sock = audit_get_sk(&init_net); 775 struct nlmsghdr *nlh; 776 777 /* NOTE: we are not taking an additional reference for init_net since 778 * we don't have to worry about it going away */ 779 780 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 781 return; 782 783 /* 784 * The seemingly wasteful skb_copy() rather than bumping the refcount 785 * using skb_get() is necessary because non-standard mods are made to 786 * the skb by the original kaudit unicast socket send routine. The 787 * existing auditd daemon assumes this breakage. Fixing this would 788 * require co-ordinating a change in the established protocol between 789 * the kaudit kernel subsystem and the auditd userspace code. There is 790 * no reason for new multicast clients to continue with this 791 * non-compliance. 792 */ 793 copy = skb_copy(skb, GFP_KERNEL); 794 if (!copy) 795 return; 796 nlh = nlmsg_hdr(copy); 797 nlh->nlmsg_len = skb->len; 798 799 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 800 } 801 802 /** 803 * kauditd_thread - Worker thread to send audit records to userspace 804 * @dummy: unused 805 */ 806 static int kauditd_thread(void *dummy) 807 { 808 int rc; 809 u32 portid = 0; 810 struct net *net = NULL; 811 struct sock *sk = NULL; 812 struct auditd_connection *ac; 813 814 #define UNICAST_RETRIES 5 815 816 set_freezable(); 817 while (!kthread_should_stop()) { 818 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 819 rcu_read_lock(); 820 ac = rcu_dereference(auditd_conn); 821 if (!ac) { 822 rcu_read_unlock(); 823 goto main_queue; 824 } 825 net = get_net(ac->net); 826 sk = audit_get_sk(net); 827 portid = ac->portid; 828 rcu_read_unlock(); 829 830 /* attempt to flush the hold queue */ 831 rc = kauditd_send_queue(sk, portid, 832 &audit_hold_queue, UNICAST_RETRIES, 833 NULL, kauditd_rehold_skb); 834 if (rc < 0) { 835 sk = NULL; 836 auditd_reset(ac); 837 goto main_queue; 838 } 839 840 /* attempt to flush the retry queue */ 841 rc = kauditd_send_queue(sk, portid, 842 &audit_retry_queue, UNICAST_RETRIES, 843 NULL, kauditd_hold_skb); 844 if (rc < 0) { 845 sk = NULL; 846 auditd_reset(ac); 847 goto main_queue; 848 } 849 850 main_queue: 851 /* process the main queue - do the multicast send and attempt 852 * unicast, dump failed record sends to the retry queue; if 853 * sk == NULL due to previous failures we will just do the 854 * multicast send and move the record to the hold queue */ 855 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 856 kauditd_send_multicast_skb, 857 (sk ? 858 kauditd_retry_skb : kauditd_hold_skb)); 859 if (ac && rc < 0) 860 auditd_reset(ac); 861 sk = NULL; 862 863 /* drop our netns reference, no auditd sends past this line */ 864 if (net) { 865 put_net(net); 866 net = NULL; 867 } 868 869 /* we have processed all the queues so wake everyone */ 870 wake_up(&audit_backlog_wait); 871 872 /* NOTE: we want to wake up if there is anything on the queue, 873 * regardless of if an auditd is connected, as we need to 874 * do the multicast send and rotate records from the 875 * main queue to the retry/hold queues */ 876 wait_event_freezable(kauditd_wait, 877 (skb_queue_len(&audit_queue) ? 1 : 0)); 878 } 879 880 return 0; 881 } 882 883 int audit_send_list_thread(void *_dest) 884 { 885 struct audit_netlink_list *dest = _dest; 886 struct sk_buff *skb; 887 struct sock *sk = audit_get_sk(dest->net); 888 889 /* wait for parent to finish and send an ACK */ 890 audit_ctl_lock(); 891 audit_ctl_unlock(); 892 893 while ((skb = __skb_dequeue(&dest->q)) != NULL) 894 netlink_unicast(sk, skb, dest->portid, 0); 895 896 put_net(dest->net); 897 kfree(dest); 898 899 return 0; 900 } 901 902 struct sk_buff *audit_make_reply(int seq, int type, int done, 903 int multi, const void *payload, int size) 904 { 905 struct sk_buff *skb; 906 struct nlmsghdr *nlh; 907 void *data; 908 int flags = multi ? NLM_F_MULTI : 0; 909 int t = done ? NLMSG_DONE : type; 910 911 skb = nlmsg_new(size, GFP_KERNEL); 912 if (!skb) 913 return NULL; 914 915 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 916 if (!nlh) 917 goto out_kfree_skb; 918 data = nlmsg_data(nlh); 919 memcpy(data, payload, size); 920 return skb; 921 922 out_kfree_skb: 923 kfree_skb(skb); 924 return NULL; 925 } 926 927 static void audit_free_reply(struct audit_reply *reply) 928 { 929 if (!reply) 930 return; 931 932 if (reply->skb) 933 kfree_skb(reply->skb); 934 if (reply->net) 935 put_net(reply->net); 936 kfree(reply); 937 } 938 939 static int audit_send_reply_thread(void *arg) 940 { 941 struct audit_reply *reply = (struct audit_reply *)arg; 942 943 audit_ctl_lock(); 944 audit_ctl_unlock(); 945 946 /* Ignore failure. It'll only happen if the sender goes away, 947 because our timeout is set to infinite. */ 948 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 949 reply->skb = NULL; 950 audit_free_reply(reply); 951 return 0; 952 } 953 954 /** 955 * audit_send_reply - send an audit reply message via netlink 956 * @request_skb: skb of request we are replying to (used to target the reply) 957 * @seq: sequence number 958 * @type: audit message type 959 * @done: done (last) flag 960 * @multi: multi-part message flag 961 * @payload: payload data 962 * @size: payload size 963 * 964 * Allocates a skb, builds the netlink message, and sends it to the port id. 965 */ 966 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 967 int multi, const void *payload, int size) 968 { 969 struct task_struct *tsk; 970 struct audit_reply *reply; 971 972 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 973 if (!reply) 974 return; 975 976 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 977 if (!reply->skb) 978 goto err; 979 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 980 reply->portid = NETLINK_CB(request_skb).portid; 981 982 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 983 if (IS_ERR(tsk)) 984 goto err; 985 986 return; 987 988 err: 989 audit_free_reply(reply); 990 } 991 992 /* 993 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 994 * control messages. 995 */ 996 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 997 { 998 int err = 0; 999 1000 /* Only support initial user namespace for now. */ 1001 /* 1002 * We return ECONNREFUSED because it tricks userspace into thinking 1003 * that audit was not configured into the kernel. Lots of users 1004 * configure their PAM stack (because that's what the distro does) 1005 * to reject login if unable to send messages to audit. If we return 1006 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1007 * configured in and will let login proceed. If we return EPERM 1008 * userspace will reject all logins. This should be removed when we 1009 * support non init namespaces!! 1010 */ 1011 if (current_user_ns() != &init_user_ns) 1012 return -ECONNREFUSED; 1013 1014 switch (msg_type) { 1015 case AUDIT_LIST: 1016 case AUDIT_ADD: 1017 case AUDIT_DEL: 1018 return -EOPNOTSUPP; 1019 case AUDIT_GET: 1020 case AUDIT_SET: 1021 case AUDIT_GET_FEATURE: 1022 case AUDIT_SET_FEATURE: 1023 case AUDIT_LIST_RULES: 1024 case AUDIT_ADD_RULE: 1025 case AUDIT_DEL_RULE: 1026 case AUDIT_SIGNAL_INFO: 1027 case AUDIT_TTY_GET: 1028 case AUDIT_TTY_SET: 1029 case AUDIT_TRIM: 1030 case AUDIT_MAKE_EQUIV: 1031 /* Only support auditd and auditctl in initial pid namespace 1032 * for now. */ 1033 if (task_active_pid_ns(current) != &init_pid_ns) 1034 return -EPERM; 1035 1036 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1037 err = -EPERM; 1038 break; 1039 case AUDIT_USER: 1040 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1041 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1042 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1043 err = -EPERM; 1044 break; 1045 default: /* bad msg */ 1046 err = -EINVAL; 1047 } 1048 1049 return err; 1050 } 1051 1052 static void audit_log_common_recv_msg(struct audit_context *context, 1053 struct audit_buffer **ab, u16 msg_type) 1054 { 1055 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1056 pid_t pid = task_tgid_nr(current); 1057 1058 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1059 *ab = NULL; 1060 return; 1061 } 1062 1063 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1064 if (unlikely(!*ab)) 1065 return; 1066 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1067 audit_log_session_info(*ab); 1068 audit_log_task_context(*ab); 1069 } 1070 1071 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1072 u16 msg_type) 1073 { 1074 audit_log_common_recv_msg(NULL, ab, msg_type); 1075 } 1076 1077 int is_audit_feature_set(int i) 1078 { 1079 return af.features & AUDIT_FEATURE_TO_MASK(i); 1080 } 1081 1082 1083 static int audit_get_feature(struct sk_buff *skb) 1084 { 1085 u32 seq; 1086 1087 seq = nlmsg_hdr(skb)->nlmsg_seq; 1088 1089 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1090 1091 return 0; 1092 } 1093 1094 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1095 u32 old_lock, u32 new_lock, int res) 1096 { 1097 struct audit_buffer *ab; 1098 1099 if (audit_enabled == AUDIT_OFF) 1100 return; 1101 1102 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1103 if (!ab) 1104 return; 1105 audit_log_task_info(ab); 1106 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1107 audit_feature_names[which], !!old_feature, !!new_feature, 1108 !!old_lock, !!new_lock, res); 1109 audit_log_end(ab); 1110 } 1111 1112 static int audit_set_feature(struct audit_features *uaf) 1113 { 1114 int i; 1115 1116 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1117 1118 /* if there is ever a version 2 we should handle that here */ 1119 1120 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1121 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1122 u32 old_feature, new_feature, old_lock, new_lock; 1123 1124 /* if we are not changing this feature, move along */ 1125 if (!(feature & uaf->mask)) 1126 continue; 1127 1128 old_feature = af.features & feature; 1129 new_feature = uaf->features & feature; 1130 new_lock = (uaf->lock | af.lock) & feature; 1131 old_lock = af.lock & feature; 1132 1133 /* are we changing a locked feature? */ 1134 if (old_lock && (new_feature != old_feature)) { 1135 audit_log_feature_change(i, old_feature, new_feature, 1136 old_lock, new_lock, 0); 1137 return -EPERM; 1138 } 1139 } 1140 /* nothing invalid, do the changes */ 1141 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1142 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1143 u32 old_feature, new_feature, old_lock, new_lock; 1144 1145 /* if we are not changing this feature, move along */ 1146 if (!(feature & uaf->mask)) 1147 continue; 1148 1149 old_feature = af.features & feature; 1150 new_feature = uaf->features & feature; 1151 old_lock = af.lock & feature; 1152 new_lock = (uaf->lock | af.lock) & feature; 1153 1154 if (new_feature != old_feature) 1155 audit_log_feature_change(i, old_feature, new_feature, 1156 old_lock, new_lock, 1); 1157 1158 if (new_feature) 1159 af.features |= feature; 1160 else 1161 af.features &= ~feature; 1162 af.lock |= new_lock; 1163 } 1164 1165 return 0; 1166 } 1167 1168 static int audit_replace(struct pid *pid) 1169 { 1170 pid_t pvnr; 1171 struct sk_buff *skb; 1172 1173 pvnr = pid_vnr(pid); 1174 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1175 if (!skb) 1176 return -ENOMEM; 1177 return auditd_send_unicast_skb(skb); 1178 } 1179 1180 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1181 { 1182 u32 seq; 1183 void *data; 1184 int data_len; 1185 int err; 1186 struct audit_buffer *ab; 1187 u16 msg_type = nlh->nlmsg_type; 1188 struct audit_sig_info *sig_data; 1189 char *ctx = NULL; 1190 u32 len; 1191 1192 err = audit_netlink_ok(skb, msg_type); 1193 if (err) 1194 return err; 1195 1196 seq = nlh->nlmsg_seq; 1197 data = nlmsg_data(nlh); 1198 data_len = nlmsg_len(nlh); 1199 1200 switch (msg_type) { 1201 case AUDIT_GET: { 1202 struct audit_status s; 1203 memset(&s, 0, sizeof(s)); 1204 s.enabled = audit_enabled; 1205 s.failure = audit_failure; 1206 /* NOTE: use pid_vnr() so the PID is relative to the current 1207 * namespace */ 1208 s.pid = auditd_pid_vnr(); 1209 s.rate_limit = audit_rate_limit; 1210 s.backlog_limit = audit_backlog_limit; 1211 s.lost = atomic_read(&audit_lost); 1212 s.backlog = skb_queue_len(&audit_queue); 1213 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1214 s.backlog_wait_time = audit_backlog_wait_time; 1215 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1216 break; 1217 } 1218 case AUDIT_SET: { 1219 struct audit_status s; 1220 memset(&s, 0, sizeof(s)); 1221 /* guard against past and future API changes */ 1222 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1223 if (s.mask & AUDIT_STATUS_ENABLED) { 1224 err = audit_set_enabled(s.enabled); 1225 if (err < 0) 1226 return err; 1227 } 1228 if (s.mask & AUDIT_STATUS_FAILURE) { 1229 err = audit_set_failure(s.failure); 1230 if (err < 0) 1231 return err; 1232 } 1233 if (s.mask & AUDIT_STATUS_PID) { 1234 /* NOTE: we are using the vnr PID functions below 1235 * because the s.pid value is relative to the 1236 * namespace of the caller; at present this 1237 * doesn't matter much since you can really only 1238 * run auditd from the initial pid namespace, but 1239 * something to keep in mind if this changes */ 1240 pid_t new_pid = s.pid; 1241 pid_t auditd_pid; 1242 struct pid *req_pid = task_tgid(current); 1243 1244 /* Sanity check - PID values must match. Setting 1245 * pid to 0 is how auditd ends auditing. */ 1246 if (new_pid && (new_pid != pid_vnr(req_pid))) 1247 return -EINVAL; 1248 1249 /* test the auditd connection */ 1250 audit_replace(req_pid); 1251 1252 auditd_pid = auditd_pid_vnr(); 1253 if (auditd_pid) { 1254 /* replacing a healthy auditd is not allowed */ 1255 if (new_pid) { 1256 audit_log_config_change("audit_pid", 1257 new_pid, auditd_pid, 0); 1258 return -EEXIST; 1259 } 1260 /* only current auditd can unregister itself */ 1261 if (pid_vnr(req_pid) != auditd_pid) { 1262 audit_log_config_change("audit_pid", 1263 new_pid, auditd_pid, 0); 1264 return -EACCES; 1265 } 1266 } 1267 1268 if (new_pid) { 1269 /* register a new auditd connection */ 1270 err = auditd_set(req_pid, 1271 NETLINK_CB(skb).portid, 1272 sock_net(NETLINK_CB(skb).sk)); 1273 if (audit_enabled != AUDIT_OFF) 1274 audit_log_config_change("audit_pid", 1275 new_pid, 1276 auditd_pid, 1277 err ? 0 : 1); 1278 if (err) 1279 return err; 1280 1281 /* try to process any backlog */ 1282 wake_up_interruptible(&kauditd_wait); 1283 } else { 1284 if (audit_enabled != AUDIT_OFF) 1285 audit_log_config_change("audit_pid", 1286 new_pid, 1287 auditd_pid, 1); 1288 1289 /* unregister the auditd connection */ 1290 auditd_reset(NULL); 1291 } 1292 } 1293 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1294 err = audit_set_rate_limit(s.rate_limit); 1295 if (err < 0) 1296 return err; 1297 } 1298 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1299 err = audit_set_backlog_limit(s.backlog_limit); 1300 if (err < 0) 1301 return err; 1302 } 1303 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1304 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1305 return -EINVAL; 1306 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1307 return -EINVAL; 1308 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1309 if (err < 0) 1310 return err; 1311 } 1312 if (s.mask == AUDIT_STATUS_LOST) { 1313 u32 lost = atomic_xchg(&audit_lost, 0); 1314 1315 audit_log_config_change("lost", 0, lost, 1); 1316 return lost; 1317 } 1318 break; 1319 } 1320 case AUDIT_GET_FEATURE: 1321 err = audit_get_feature(skb); 1322 if (err) 1323 return err; 1324 break; 1325 case AUDIT_SET_FEATURE: 1326 if (data_len < sizeof(struct audit_features)) 1327 return -EINVAL; 1328 err = audit_set_feature(data); 1329 if (err) 1330 return err; 1331 break; 1332 case AUDIT_USER: 1333 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1334 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1335 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1336 return 0; 1337 /* exit early if there isn't at least one character to print */ 1338 if (data_len < 2) 1339 return -EINVAL; 1340 1341 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1342 if (err == 1) { /* match or error */ 1343 char *str = data; 1344 1345 err = 0; 1346 if (msg_type == AUDIT_USER_TTY) { 1347 err = tty_audit_push(); 1348 if (err) 1349 break; 1350 } 1351 audit_log_user_recv_msg(&ab, msg_type); 1352 if (msg_type != AUDIT_USER_TTY) { 1353 /* ensure NULL termination */ 1354 str[data_len - 1] = '\0'; 1355 audit_log_format(ab, " msg='%.*s'", 1356 AUDIT_MESSAGE_TEXT_MAX, 1357 str); 1358 } else { 1359 audit_log_format(ab, " data="); 1360 if (data_len > 0 && str[data_len - 1] == '\0') 1361 data_len--; 1362 audit_log_n_untrustedstring(ab, str, data_len); 1363 } 1364 audit_log_end(ab); 1365 } 1366 break; 1367 case AUDIT_ADD_RULE: 1368 case AUDIT_DEL_RULE: 1369 if (data_len < sizeof(struct audit_rule_data)) 1370 return -EINVAL; 1371 if (audit_enabled == AUDIT_LOCKED) { 1372 audit_log_common_recv_msg(audit_context(), &ab, 1373 AUDIT_CONFIG_CHANGE); 1374 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1375 msg_type == AUDIT_ADD_RULE ? 1376 "add_rule" : "remove_rule", 1377 audit_enabled); 1378 audit_log_end(ab); 1379 return -EPERM; 1380 } 1381 err = audit_rule_change(msg_type, seq, data, data_len); 1382 break; 1383 case AUDIT_LIST_RULES: 1384 err = audit_list_rules_send(skb, seq); 1385 break; 1386 case AUDIT_TRIM: 1387 audit_trim_trees(); 1388 audit_log_common_recv_msg(audit_context(), &ab, 1389 AUDIT_CONFIG_CHANGE); 1390 audit_log_format(ab, " op=trim res=1"); 1391 audit_log_end(ab); 1392 break; 1393 case AUDIT_MAKE_EQUIV: { 1394 void *bufp = data; 1395 u32 sizes[2]; 1396 size_t msglen = data_len; 1397 char *old, *new; 1398 1399 err = -EINVAL; 1400 if (msglen < 2 * sizeof(u32)) 1401 break; 1402 memcpy(sizes, bufp, 2 * sizeof(u32)); 1403 bufp += 2 * sizeof(u32); 1404 msglen -= 2 * sizeof(u32); 1405 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1406 if (IS_ERR(old)) { 1407 err = PTR_ERR(old); 1408 break; 1409 } 1410 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1411 if (IS_ERR(new)) { 1412 err = PTR_ERR(new); 1413 kfree(old); 1414 break; 1415 } 1416 /* OK, here comes... */ 1417 err = audit_tag_tree(old, new); 1418 1419 audit_log_common_recv_msg(audit_context(), &ab, 1420 AUDIT_CONFIG_CHANGE); 1421 audit_log_format(ab, " op=make_equiv old="); 1422 audit_log_untrustedstring(ab, old); 1423 audit_log_format(ab, " new="); 1424 audit_log_untrustedstring(ab, new); 1425 audit_log_format(ab, " res=%d", !err); 1426 audit_log_end(ab); 1427 kfree(old); 1428 kfree(new); 1429 break; 1430 } 1431 case AUDIT_SIGNAL_INFO: 1432 len = 0; 1433 if (audit_sig_sid) { 1434 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1435 if (err) 1436 return err; 1437 } 1438 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1439 if (!sig_data) { 1440 if (audit_sig_sid) 1441 security_release_secctx(ctx, len); 1442 return -ENOMEM; 1443 } 1444 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1445 sig_data->pid = audit_sig_pid; 1446 if (audit_sig_sid) { 1447 memcpy(sig_data->ctx, ctx, len); 1448 security_release_secctx(ctx, len); 1449 } 1450 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1451 sig_data, sizeof(*sig_data) + len); 1452 kfree(sig_data); 1453 break; 1454 case AUDIT_TTY_GET: { 1455 struct audit_tty_status s; 1456 unsigned int t; 1457 1458 t = READ_ONCE(current->signal->audit_tty); 1459 s.enabled = t & AUDIT_TTY_ENABLE; 1460 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1461 1462 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1463 break; 1464 } 1465 case AUDIT_TTY_SET: { 1466 struct audit_tty_status s, old; 1467 struct audit_buffer *ab; 1468 unsigned int t; 1469 1470 memset(&s, 0, sizeof(s)); 1471 /* guard against past and future API changes */ 1472 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1473 /* check if new data is valid */ 1474 if ((s.enabled != 0 && s.enabled != 1) || 1475 (s.log_passwd != 0 && s.log_passwd != 1)) 1476 err = -EINVAL; 1477 1478 if (err) 1479 t = READ_ONCE(current->signal->audit_tty); 1480 else { 1481 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1482 t = xchg(¤t->signal->audit_tty, t); 1483 } 1484 old.enabled = t & AUDIT_TTY_ENABLE; 1485 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1486 1487 audit_log_common_recv_msg(audit_context(), &ab, 1488 AUDIT_CONFIG_CHANGE); 1489 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1490 " old-log_passwd=%d new-log_passwd=%d res=%d", 1491 old.enabled, s.enabled, old.log_passwd, 1492 s.log_passwd, !err); 1493 audit_log_end(ab); 1494 break; 1495 } 1496 default: 1497 err = -EINVAL; 1498 break; 1499 } 1500 1501 return err < 0 ? err : 0; 1502 } 1503 1504 /** 1505 * audit_receive - receive messages from a netlink control socket 1506 * @skb: the message buffer 1507 * 1508 * Parse the provided skb and deal with any messages that may be present, 1509 * malformed skbs are discarded. 1510 */ 1511 static void audit_receive(struct sk_buff *skb) 1512 { 1513 struct nlmsghdr *nlh; 1514 /* 1515 * len MUST be signed for nlmsg_next to be able to dec it below 0 1516 * if the nlmsg_len was not aligned 1517 */ 1518 int len; 1519 int err; 1520 1521 nlh = nlmsg_hdr(skb); 1522 len = skb->len; 1523 1524 audit_ctl_lock(); 1525 while (nlmsg_ok(nlh, len)) { 1526 err = audit_receive_msg(skb, nlh); 1527 /* if err or if this message says it wants a response */ 1528 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1529 netlink_ack(skb, nlh, err, NULL); 1530 1531 nlh = nlmsg_next(nlh, &len); 1532 } 1533 audit_ctl_unlock(); 1534 } 1535 1536 /* Log information about who is connecting to the audit multicast socket */ 1537 static void audit_log_multicast(int group, const char *op, int err) 1538 { 1539 const struct cred *cred; 1540 struct tty_struct *tty; 1541 char comm[sizeof(current->comm)]; 1542 struct audit_buffer *ab; 1543 1544 if (!audit_enabled) 1545 return; 1546 1547 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1548 if (!ab) 1549 return; 1550 1551 cred = current_cred(); 1552 tty = audit_get_tty(); 1553 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1554 task_pid_nr(current), 1555 from_kuid(&init_user_ns, cred->uid), 1556 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1557 tty ? tty_name(tty) : "(none)", 1558 audit_get_sessionid(current)); 1559 audit_put_tty(tty); 1560 audit_log_task_context(ab); /* subj= */ 1561 audit_log_format(ab, " comm="); 1562 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1563 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1564 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1565 audit_log_end(ab); 1566 } 1567 1568 /* Run custom bind function on netlink socket group connect or bind requests. */ 1569 static int audit_multicast_bind(struct net *net, int group) 1570 { 1571 int err = 0; 1572 1573 if (!capable(CAP_AUDIT_READ)) 1574 err = -EPERM; 1575 audit_log_multicast(group, "connect", err); 1576 return err; 1577 } 1578 1579 static void audit_multicast_unbind(struct net *net, int group) 1580 { 1581 audit_log_multicast(group, "disconnect", 0); 1582 } 1583 1584 static int __net_init audit_net_init(struct net *net) 1585 { 1586 struct netlink_kernel_cfg cfg = { 1587 .input = audit_receive, 1588 .bind = audit_multicast_bind, 1589 .unbind = audit_multicast_unbind, 1590 .flags = NL_CFG_F_NONROOT_RECV, 1591 .groups = AUDIT_NLGRP_MAX, 1592 }; 1593 1594 struct audit_net *aunet = net_generic(net, audit_net_id); 1595 1596 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1597 if (aunet->sk == NULL) { 1598 audit_panic("cannot initialize netlink socket in namespace"); 1599 return -ENOMEM; 1600 } 1601 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1602 1603 return 0; 1604 } 1605 1606 static void __net_exit audit_net_exit(struct net *net) 1607 { 1608 struct audit_net *aunet = net_generic(net, audit_net_id); 1609 1610 /* NOTE: you would think that we would want to check the auditd 1611 * connection and potentially reset it here if it lives in this 1612 * namespace, but since the auditd connection tracking struct holds a 1613 * reference to this namespace (see auditd_set()) we are only ever 1614 * going to get here after that connection has been released */ 1615 1616 netlink_kernel_release(aunet->sk); 1617 } 1618 1619 static struct pernet_operations audit_net_ops __net_initdata = { 1620 .init = audit_net_init, 1621 .exit = audit_net_exit, 1622 .id = &audit_net_id, 1623 .size = sizeof(struct audit_net), 1624 }; 1625 1626 /* Initialize audit support at boot time. */ 1627 static int __init audit_init(void) 1628 { 1629 int i; 1630 1631 if (audit_initialized == AUDIT_DISABLED) 1632 return 0; 1633 1634 audit_buffer_cache = kmem_cache_create("audit_buffer", 1635 sizeof(struct audit_buffer), 1636 0, SLAB_PANIC, NULL); 1637 1638 skb_queue_head_init(&audit_queue); 1639 skb_queue_head_init(&audit_retry_queue); 1640 skb_queue_head_init(&audit_hold_queue); 1641 1642 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1643 INIT_LIST_HEAD(&audit_inode_hash[i]); 1644 1645 mutex_init(&audit_cmd_mutex.lock); 1646 audit_cmd_mutex.owner = NULL; 1647 1648 pr_info("initializing netlink subsys (%s)\n", 1649 audit_default ? "enabled" : "disabled"); 1650 register_pernet_subsys(&audit_net_ops); 1651 1652 audit_initialized = AUDIT_INITIALIZED; 1653 1654 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1655 if (IS_ERR(kauditd_task)) { 1656 int err = PTR_ERR(kauditd_task); 1657 panic("audit: failed to start the kauditd thread (%d)\n", err); 1658 } 1659 1660 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1661 "state=initialized audit_enabled=%u res=1", 1662 audit_enabled); 1663 1664 return 0; 1665 } 1666 postcore_initcall(audit_init); 1667 1668 /* 1669 * Process kernel command-line parameter at boot time. 1670 * audit={0|off} or audit={1|on}. 1671 */ 1672 static int __init audit_enable(char *str) 1673 { 1674 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1675 audit_default = AUDIT_OFF; 1676 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1677 audit_default = AUDIT_ON; 1678 else { 1679 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1680 audit_default = AUDIT_ON; 1681 } 1682 1683 if (audit_default == AUDIT_OFF) 1684 audit_initialized = AUDIT_DISABLED; 1685 if (audit_set_enabled(audit_default)) 1686 pr_err("audit: error setting audit state (%d)\n", 1687 audit_default); 1688 1689 pr_info("%s\n", audit_default ? 1690 "enabled (after initialization)" : "disabled (until reboot)"); 1691 1692 return 1; 1693 } 1694 __setup("audit=", audit_enable); 1695 1696 /* Process kernel command-line parameter at boot time. 1697 * audit_backlog_limit=<n> */ 1698 static int __init audit_backlog_limit_set(char *str) 1699 { 1700 u32 audit_backlog_limit_arg; 1701 1702 pr_info("audit_backlog_limit: "); 1703 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1704 pr_cont("using default of %u, unable to parse %s\n", 1705 audit_backlog_limit, str); 1706 return 1; 1707 } 1708 1709 audit_backlog_limit = audit_backlog_limit_arg; 1710 pr_cont("%d\n", audit_backlog_limit); 1711 1712 return 1; 1713 } 1714 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1715 1716 static void audit_buffer_free(struct audit_buffer *ab) 1717 { 1718 if (!ab) 1719 return; 1720 1721 kfree_skb(ab->skb); 1722 kmem_cache_free(audit_buffer_cache, ab); 1723 } 1724 1725 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1726 gfp_t gfp_mask, int type) 1727 { 1728 struct audit_buffer *ab; 1729 1730 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1731 if (!ab) 1732 return NULL; 1733 1734 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1735 if (!ab->skb) 1736 goto err; 1737 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1738 goto err; 1739 1740 ab->ctx = ctx; 1741 ab->gfp_mask = gfp_mask; 1742 1743 return ab; 1744 1745 err: 1746 audit_buffer_free(ab); 1747 return NULL; 1748 } 1749 1750 /** 1751 * audit_serial - compute a serial number for the audit record 1752 * 1753 * Compute a serial number for the audit record. Audit records are 1754 * written to user-space as soon as they are generated, so a complete 1755 * audit record may be written in several pieces. The timestamp of the 1756 * record and this serial number are used by the user-space tools to 1757 * determine which pieces belong to the same audit record. The 1758 * (timestamp,serial) tuple is unique for each syscall and is live from 1759 * syscall entry to syscall exit. 1760 * 1761 * NOTE: Another possibility is to store the formatted records off the 1762 * audit context (for those records that have a context), and emit them 1763 * all at syscall exit. However, this could delay the reporting of 1764 * significant errors until syscall exit (or never, if the system 1765 * halts). 1766 */ 1767 unsigned int audit_serial(void) 1768 { 1769 static atomic_t serial = ATOMIC_INIT(0); 1770 1771 return atomic_add_return(1, &serial); 1772 } 1773 1774 static inline void audit_get_stamp(struct audit_context *ctx, 1775 struct timespec64 *t, unsigned int *serial) 1776 { 1777 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1778 ktime_get_coarse_real_ts64(t); 1779 *serial = audit_serial(); 1780 } 1781 } 1782 1783 /** 1784 * audit_log_start - obtain an audit buffer 1785 * @ctx: audit_context (may be NULL) 1786 * @gfp_mask: type of allocation 1787 * @type: audit message type 1788 * 1789 * Returns audit_buffer pointer on success or NULL on error. 1790 * 1791 * Obtain an audit buffer. This routine does locking to obtain the 1792 * audit buffer, but then no locking is required for calls to 1793 * audit_log_*format. If the task (ctx) is a task that is currently in a 1794 * syscall, then the syscall is marked as auditable and an audit record 1795 * will be written at syscall exit. If there is no associated task, then 1796 * task context (ctx) should be NULL. 1797 */ 1798 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1799 int type) 1800 { 1801 struct audit_buffer *ab; 1802 struct timespec64 t; 1803 unsigned int uninitialized_var(serial); 1804 1805 if (audit_initialized != AUDIT_INITIALIZED) 1806 return NULL; 1807 1808 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1809 return NULL; 1810 1811 /* NOTE: don't ever fail/sleep on these two conditions: 1812 * 1. auditd generated record - since we need auditd to drain the 1813 * queue; also, when we are checking for auditd, compare PIDs using 1814 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1815 * using a PID anchored in the caller's namespace 1816 * 2. generator holding the audit_cmd_mutex - we don't want to block 1817 * while holding the mutex */ 1818 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1819 long stime = audit_backlog_wait_time; 1820 1821 while (audit_backlog_limit && 1822 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1823 /* wake kauditd to try and flush the queue */ 1824 wake_up_interruptible(&kauditd_wait); 1825 1826 /* sleep if we are allowed and we haven't exhausted our 1827 * backlog wait limit */ 1828 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1829 DECLARE_WAITQUEUE(wait, current); 1830 1831 add_wait_queue_exclusive(&audit_backlog_wait, 1832 &wait); 1833 set_current_state(TASK_UNINTERRUPTIBLE); 1834 stime = schedule_timeout(stime); 1835 remove_wait_queue(&audit_backlog_wait, &wait); 1836 } else { 1837 if (audit_rate_check() && printk_ratelimit()) 1838 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1839 skb_queue_len(&audit_queue), 1840 audit_backlog_limit); 1841 audit_log_lost("backlog limit exceeded"); 1842 return NULL; 1843 } 1844 } 1845 } 1846 1847 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1848 if (!ab) { 1849 audit_log_lost("out of memory in audit_log_start"); 1850 return NULL; 1851 } 1852 1853 audit_get_stamp(ab->ctx, &t, &serial); 1854 audit_clear_dummy(ab->ctx); 1855 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1856 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1857 1858 return ab; 1859 } 1860 1861 /** 1862 * audit_expand - expand skb in the audit buffer 1863 * @ab: audit_buffer 1864 * @extra: space to add at tail of the skb 1865 * 1866 * Returns 0 (no space) on failed expansion, or available space if 1867 * successful. 1868 */ 1869 static inline int audit_expand(struct audit_buffer *ab, int extra) 1870 { 1871 struct sk_buff *skb = ab->skb; 1872 int oldtail = skb_tailroom(skb); 1873 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1874 int newtail = skb_tailroom(skb); 1875 1876 if (ret < 0) { 1877 audit_log_lost("out of memory in audit_expand"); 1878 return 0; 1879 } 1880 1881 skb->truesize += newtail - oldtail; 1882 return newtail; 1883 } 1884 1885 /* 1886 * Format an audit message into the audit buffer. If there isn't enough 1887 * room in the audit buffer, more room will be allocated and vsnprint 1888 * will be called a second time. Currently, we assume that a printk 1889 * can't format message larger than 1024 bytes, so we don't either. 1890 */ 1891 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1892 va_list args) 1893 { 1894 int len, avail; 1895 struct sk_buff *skb; 1896 va_list args2; 1897 1898 if (!ab) 1899 return; 1900 1901 BUG_ON(!ab->skb); 1902 skb = ab->skb; 1903 avail = skb_tailroom(skb); 1904 if (avail == 0) { 1905 avail = audit_expand(ab, AUDIT_BUFSIZ); 1906 if (!avail) 1907 goto out; 1908 } 1909 va_copy(args2, args); 1910 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1911 if (len >= avail) { 1912 /* The printk buffer is 1024 bytes long, so if we get 1913 * here and AUDIT_BUFSIZ is at least 1024, then we can 1914 * log everything that printk could have logged. */ 1915 avail = audit_expand(ab, 1916 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1917 if (!avail) 1918 goto out_va_end; 1919 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1920 } 1921 if (len > 0) 1922 skb_put(skb, len); 1923 out_va_end: 1924 va_end(args2); 1925 out: 1926 return; 1927 } 1928 1929 /** 1930 * audit_log_format - format a message into the audit buffer. 1931 * @ab: audit_buffer 1932 * @fmt: format string 1933 * @...: optional parameters matching @fmt string 1934 * 1935 * All the work is done in audit_log_vformat. 1936 */ 1937 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1938 { 1939 va_list args; 1940 1941 if (!ab) 1942 return; 1943 va_start(args, fmt); 1944 audit_log_vformat(ab, fmt, args); 1945 va_end(args); 1946 } 1947 1948 /** 1949 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1950 * @ab: the audit_buffer 1951 * @buf: buffer to convert to hex 1952 * @len: length of @buf to be converted 1953 * 1954 * No return value; failure to expand is silently ignored. 1955 * 1956 * This function will take the passed buf and convert it into a string of 1957 * ascii hex digits. The new string is placed onto the skb. 1958 */ 1959 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1960 size_t len) 1961 { 1962 int i, avail, new_len; 1963 unsigned char *ptr; 1964 struct sk_buff *skb; 1965 1966 if (!ab) 1967 return; 1968 1969 BUG_ON(!ab->skb); 1970 skb = ab->skb; 1971 avail = skb_tailroom(skb); 1972 new_len = len<<1; 1973 if (new_len >= avail) { 1974 /* Round the buffer request up to the next multiple */ 1975 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1976 avail = audit_expand(ab, new_len); 1977 if (!avail) 1978 return; 1979 } 1980 1981 ptr = skb_tail_pointer(skb); 1982 for (i = 0; i < len; i++) 1983 ptr = hex_byte_pack_upper(ptr, buf[i]); 1984 *ptr = 0; 1985 skb_put(skb, len << 1); /* new string is twice the old string */ 1986 } 1987 1988 /* 1989 * Format a string of no more than slen characters into the audit buffer, 1990 * enclosed in quote marks. 1991 */ 1992 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1993 size_t slen) 1994 { 1995 int avail, new_len; 1996 unsigned char *ptr; 1997 struct sk_buff *skb; 1998 1999 if (!ab) 2000 return; 2001 2002 BUG_ON(!ab->skb); 2003 skb = ab->skb; 2004 avail = skb_tailroom(skb); 2005 new_len = slen + 3; /* enclosing quotes + null terminator */ 2006 if (new_len > avail) { 2007 avail = audit_expand(ab, new_len); 2008 if (!avail) 2009 return; 2010 } 2011 ptr = skb_tail_pointer(skb); 2012 *ptr++ = '"'; 2013 memcpy(ptr, string, slen); 2014 ptr += slen; 2015 *ptr++ = '"'; 2016 *ptr = 0; 2017 skb_put(skb, slen + 2); /* don't include null terminator */ 2018 } 2019 2020 /** 2021 * audit_string_contains_control - does a string need to be logged in hex 2022 * @string: string to be checked 2023 * @len: max length of the string to check 2024 */ 2025 bool audit_string_contains_control(const char *string, size_t len) 2026 { 2027 const unsigned char *p; 2028 for (p = string; p < (const unsigned char *)string + len; p++) { 2029 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2030 return true; 2031 } 2032 return false; 2033 } 2034 2035 /** 2036 * audit_log_n_untrustedstring - log a string that may contain random characters 2037 * @ab: audit_buffer 2038 * @len: length of string (not including trailing null) 2039 * @string: string to be logged 2040 * 2041 * This code will escape a string that is passed to it if the string 2042 * contains a control character, unprintable character, double quote mark, 2043 * or a space. Unescaped strings will start and end with a double quote mark. 2044 * Strings that are escaped are printed in hex (2 digits per char). 2045 * 2046 * The caller specifies the number of characters in the string to log, which may 2047 * or may not be the entire string. 2048 */ 2049 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2050 size_t len) 2051 { 2052 if (audit_string_contains_control(string, len)) 2053 audit_log_n_hex(ab, string, len); 2054 else 2055 audit_log_n_string(ab, string, len); 2056 } 2057 2058 /** 2059 * audit_log_untrustedstring - log a string that may contain random characters 2060 * @ab: audit_buffer 2061 * @string: string to be logged 2062 * 2063 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2064 * determine string length. 2065 */ 2066 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2067 { 2068 audit_log_n_untrustedstring(ab, string, strlen(string)); 2069 } 2070 2071 /* This is a helper-function to print the escaped d_path */ 2072 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2073 const struct path *path) 2074 { 2075 char *p, *pathname; 2076 2077 if (prefix) 2078 audit_log_format(ab, "%s", prefix); 2079 2080 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2081 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2082 if (!pathname) { 2083 audit_log_string(ab, "<no_memory>"); 2084 return; 2085 } 2086 p = d_path(path, pathname, PATH_MAX+11); 2087 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2088 /* FIXME: can we save some information here? */ 2089 audit_log_string(ab, "<too_long>"); 2090 } else 2091 audit_log_untrustedstring(ab, p); 2092 kfree(pathname); 2093 } 2094 2095 void audit_log_session_info(struct audit_buffer *ab) 2096 { 2097 unsigned int sessionid = audit_get_sessionid(current); 2098 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2099 2100 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2101 } 2102 2103 void audit_log_key(struct audit_buffer *ab, char *key) 2104 { 2105 audit_log_format(ab, " key="); 2106 if (key) 2107 audit_log_untrustedstring(ab, key); 2108 else 2109 audit_log_format(ab, "(null)"); 2110 } 2111 2112 int audit_log_task_context(struct audit_buffer *ab) 2113 { 2114 char *ctx = NULL; 2115 unsigned len; 2116 int error; 2117 u32 sid; 2118 2119 security_task_getsecid(current, &sid); 2120 if (!sid) 2121 return 0; 2122 2123 error = security_secid_to_secctx(sid, &ctx, &len); 2124 if (error) { 2125 if (error != -EINVAL) 2126 goto error_path; 2127 return 0; 2128 } 2129 2130 audit_log_format(ab, " subj=%s", ctx); 2131 security_release_secctx(ctx, len); 2132 return 0; 2133 2134 error_path: 2135 audit_panic("error in audit_log_task_context"); 2136 return error; 2137 } 2138 EXPORT_SYMBOL(audit_log_task_context); 2139 2140 void audit_log_d_path_exe(struct audit_buffer *ab, 2141 struct mm_struct *mm) 2142 { 2143 struct file *exe_file; 2144 2145 if (!mm) 2146 goto out_null; 2147 2148 exe_file = get_mm_exe_file(mm); 2149 if (!exe_file) 2150 goto out_null; 2151 2152 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2153 fput(exe_file); 2154 return; 2155 out_null: 2156 audit_log_format(ab, " exe=(null)"); 2157 } 2158 2159 struct tty_struct *audit_get_tty(void) 2160 { 2161 struct tty_struct *tty = NULL; 2162 unsigned long flags; 2163 2164 spin_lock_irqsave(¤t->sighand->siglock, flags); 2165 if (current->signal) 2166 tty = tty_kref_get(current->signal->tty); 2167 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2168 return tty; 2169 } 2170 2171 void audit_put_tty(struct tty_struct *tty) 2172 { 2173 tty_kref_put(tty); 2174 } 2175 2176 void audit_log_task_info(struct audit_buffer *ab) 2177 { 2178 const struct cred *cred; 2179 char comm[sizeof(current->comm)]; 2180 struct tty_struct *tty; 2181 2182 if (!ab) 2183 return; 2184 2185 cred = current_cred(); 2186 tty = audit_get_tty(); 2187 audit_log_format(ab, 2188 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2189 " euid=%u suid=%u fsuid=%u" 2190 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2191 task_ppid_nr(current), 2192 task_tgid_nr(current), 2193 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2194 from_kuid(&init_user_ns, cred->uid), 2195 from_kgid(&init_user_ns, cred->gid), 2196 from_kuid(&init_user_ns, cred->euid), 2197 from_kuid(&init_user_ns, cred->suid), 2198 from_kuid(&init_user_ns, cred->fsuid), 2199 from_kgid(&init_user_ns, cred->egid), 2200 from_kgid(&init_user_ns, cred->sgid), 2201 from_kgid(&init_user_ns, cred->fsgid), 2202 tty ? tty_name(tty) : "(none)", 2203 audit_get_sessionid(current)); 2204 audit_put_tty(tty); 2205 audit_log_format(ab, " comm="); 2206 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2207 audit_log_d_path_exe(ab, current->mm); 2208 audit_log_task_context(ab); 2209 } 2210 EXPORT_SYMBOL(audit_log_task_info); 2211 2212 /** 2213 * audit_log_path_denied - report a path restriction denial 2214 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2215 * @operation: specific operation name 2216 */ 2217 void audit_log_path_denied(int type, const char *operation) 2218 { 2219 struct audit_buffer *ab; 2220 2221 if (!audit_enabled || audit_dummy_context()) 2222 return; 2223 2224 /* Generate log with subject, operation, outcome. */ 2225 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2226 if (!ab) 2227 return; 2228 audit_log_format(ab, "op=%s", operation); 2229 audit_log_task_info(ab); 2230 audit_log_format(ab, " res=0"); 2231 audit_log_end(ab); 2232 } 2233 2234 /* global counter which is incremented every time something logs in */ 2235 static atomic_t session_id = ATOMIC_INIT(0); 2236 2237 static int audit_set_loginuid_perm(kuid_t loginuid) 2238 { 2239 /* if we are unset, we don't need privs */ 2240 if (!audit_loginuid_set(current)) 2241 return 0; 2242 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2243 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2244 return -EPERM; 2245 /* it is set, you need permission */ 2246 if (!capable(CAP_AUDIT_CONTROL)) 2247 return -EPERM; 2248 /* reject if this is not an unset and we don't allow that */ 2249 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2250 && uid_valid(loginuid)) 2251 return -EPERM; 2252 return 0; 2253 } 2254 2255 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2256 unsigned int oldsessionid, 2257 unsigned int sessionid, int rc) 2258 { 2259 struct audit_buffer *ab; 2260 uid_t uid, oldloginuid, loginuid; 2261 struct tty_struct *tty; 2262 2263 if (!audit_enabled) 2264 return; 2265 2266 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2267 if (!ab) 2268 return; 2269 2270 uid = from_kuid(&init_user_ns, task_uid(current)); 2271 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2272 loginuid = from_kuid(&init_user_ns, kloginuid), 2273 tty = audit_get_tty(); 2274 2275 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2276 audit_log_task_context(ab); 2277 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2278 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2279 oldsessionid, sessionid, !rc); 2280 audit_put_tty(tty); 2281 audit_log_end(ab); 2282 } 2283 2284 /** 2285 * audit_set_loginuid - set current task's loginuid 2286 * @loginuid: loginuid value 2287 * 2288 * Returns 0. 2289 * 2290 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2291 */ 2292 int audit_set_loginuid(kuid_t loginuid) 2293 { 2294 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2295 kuid_t oldloginuid; 2296 int rc; 2297 2298 oldloginuid = audit_get_loginuid(current); 2299 oldsessionid = audit_get_sessionid(current); 2300 2301 rc = audit_set_loginuid_perm(loginuid); 2302 if (rc) 2303 goto out; 2304 2305 /* are we setting or clearing? */ 2306 if (uid_valid(loginuid)) { 2307 sessionid = (unsigned int)atomic_inc_return(&session_id); 2308 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2309 sessionid = (unsigned int)atomic_inc_return(&session_id); 2310 } 2311 2312 current->sessionid = sessionid; 2313 current->loginuid = loginuid; 2314 out: 2315 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2316 return rc; 2317 } 2318 2319 /** 2320 * audit_signal_info - record signal info for shutting down audit subsystem 2321 * @sig: signal value 2322 * @t: task being signaled 2323 * 2324 * If the audit subsystem is being terminated, record the task (pid) 2325 * and uid that is doing that. 2326 */ 2327 int audit_signal_info(int sig, struct task_struct *t) 2328 { 2329 kuid_t uid = current_uid(), auid; 2330 2331 if (auditd_test_task(t) && 2332 (sig == SIGTERM || sig == SIGHUP || 2333 sig == SIGUSR1 || sig == SIGUSR2)) { 2334 audit_sig_pid = task_tgid_nr(current); 2335 auid = audit_get_loginuid(current); 2336 if (uid_valid(auid)) 2337 audit_sig_uid = auid; 2338 else 2339 audit_sig_uid = uid; 2340 security_task_getsecid(current, &audit_sig_sid); 2341 } 2342 2343 return audit_signal_info_syscall(t); 2344 } 2345 2346 /** 2347 * audit_log_end - end one audit record 2348 * @ab: the audit_buffer 2349 * 2350 * We can not do a netlink send inside an irq context because it blocks (last 2351 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2352 * queue and a tasklet is scheduled to remove them from the queue outside the 2353 * irq context. May be called in any context. 2354 */ 2355 void audit_log_end(struct audit_buffer *ab) 2356 { 2357 struct sk_buff *skb; 2358 struct nlmsghdr *nlh; 2359 2360 if (!ab) 2361 return; 2362 2363 if (audit_rate_check()) { 2364 skb = ab->skb; 2365 ab->skb = NULL; 2366 2367 /* setup the netlink header, see the comments in 2368 * kauditd_send_multicast_skb() for length quirks */ 2369 nlh = nlmsg_hdr(skb); 2370 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2371 2372 /* queue the netlink packet and poke the kauditd thread */ 2373 skb_queue_tail(&audit_queue, skb); 2374 wake_up_interruptible(&kauditd_wait); 2375 } else 2376 audit_log_lost("rate limit exceeded"); 2377 2378 audit_buffer_free(ab); 2379 } 2380 2381 /** 2382 * audit_log - Log an audit record 2383 * @ctx: audit context 2384 * @gfp_mask: type of allocation 2385 * @type: audit message type 2386 * @fmt: format string to use 2387 * @...: variable parameters matching the format string 2388 * 2389 * This is a convenience function that calls audit_log_start, 2390 * audit_log_vformat, and audit_log_end. It may be called 2391 * in any context. 2392 */ 2393 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2394 const char *fmt, ...) 2395 { 2396 struct audit_buffer *ab; 2397 va_list args; 2398 2399 ab = audit_log_start(ctx, gfp_mask, type); 2400 if (ab) { 2401 va_start(args, fmt); 2402 audit_log_vformat(ab, fmt, args); 2403 va_end(args); 2404 audit_log_end(ab); 2405 } 2406 } 2407 2408 EXPORT_SYMBOL(audit_log_start); 2409 EXPORT_SYMBOL(audit_log_end); 2410 EXPORT_SYMBOL(audit_log_format); 2411 EXPORT_SYMBOL(audit_log); 2412