1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/inotify.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 65 * (Initialization happens after skb_init is called.) */ 66 #define AUDIT_DISABLED -1 67 #define AUDIT_UNINITIALIZED 0 68 #define AUDIT_INITIALIZED 1 69 static int audit_initialized; 70 71 #define AUDIT_OFF 0 72 #define AUDIT_ON 1 73 #define AUDIT_LOCKED 2 74 int audit_enabled; 75 int audit_ever_enabled; 76 77 /* Default state when kernel boots without any parameters. */ 78 static int audit_default; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static int audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* 84 * If audit records are to be written to the netlink socket, audit_pid 85 * contains the pid of the auditd process and audit_nlk_pid contains 86 * the pid to use to send netlink messages to that process. 87 */ 88 int audit_pid; 89 static int audit_nlk_pid; 90 91 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 92 * to that number per second. This prevents DoS attacks, but results in 93 * audit records being dropped. */ 94 static int audit_rate_limit; 95 96 /* Number of outstanding audit_buffers allowed. */ 97 static int audit_backlog_limit = 64; 98 static int audit_backlog_wait_time = 60 * HZ; 99 static int audit_backlog_wait_overflow = 0; 100 101 /* The identity of the user shutting down the audit system. */ 102 uid_t audit_sig_uid = -1; 103 pid_t audit_sig_pid = -1; 104 u32 audit_sig_sid = 0; 105 106 /* Records can be lost in several ways: 107 0) [suppressed in audit_alloc] 108 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 109 2) out of memory in audit_log_move [alloc_skb] 110 3) suppressed due to audit_rate_limit 111 4) suppressed due to audit_backlog_limit 112 */ 113 static atomic_t audit_lost = ATOMIC_INIT(0); 114 115 /* The netlink socket. */ 116 static struct sock *audit_sock; 117 118 /* Hash for inode-based rules */ 119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 120 121 /* The audit_freelist is a list of pre-allocated audit buffers (if more 122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 123 * being placed on the freelist). */ 124 static DEFINE_SPINLOCK(audit_freelist_lock); 125 static int audit_freelist_count; 126 static LIST_HEAD(audit_freelist); 127 128 static struct sk_buff_head audit_skb_queue; 129 /* queue of skbs to send to auditd when/if it comes back */ 130 static struct sk_buff_head audit_skb_hold_queue; 131 static struct task_struct *kauditd_task; 132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 134 135 /* Serialize requests from userspace. */ 136 DEFINE_MUTEX(audit_cmd_mutex); 137 138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 139 * audit records. Since printk uses a 1024 byte buffer, this buffer 140 * should be at least that large. */ 141 #define AUDIT_BUFSIZ 1024 142 143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 145 #define AUDIT_MAXFREE (2*NR_CPUS) 146 147 /* The audit_buffer is used when formatting an audit record. The caller 148 * locks briefly to get the record off the freelist or to allocate the 149 * buffer, and locks briefly to send the buffer to the netlink layer or 150 * to place it on a transmit queue. Multiple audit_buffers can be in 151 * use simultaneously. */ 152 struct audit_buffer { 153 struct list_head list; 154 struct sk_buff *skb; /* formatted skb ready to send */ 155 struct audit_context *ctx; /* NULL or associated context */ 156 gfp_t gfp_mask; 157 }; 158 159 struct audit_reply { 160 int pid; 161 struct sk_buff *skb; 162 }; 163 164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 165 { 166 if (ab) { 167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 168 nlh->nlmsg_pid = pid; 169 } 170 } 171 172 void audit_panic(const char *message) 173 { 174 switch (audit_failure) 175 { 176 case AUDIT_FAIL_SILENT: 177 break; 178 case AUDIT_FAIL_PRINTK: 179 if (printk_ratelimit()) 180 printk(KERN_ERR "audit: %s\n", message); 181 break; 182 case AUDIT_FAIL_PANIC: 183 /* test audit_pid since printk is always losey, why bother? */ 184 if (audit_pid) 185 panic("audit: %s\n", message); 186 break; 187 } 188 } 189 190 static inline int audit_rate_check(void) 191 { 192 static unsigned long last_check = 0; 193 static int messages = 0; 194 static DEFINE_SPINLOCK(lock); 195 unsigned long flags; 196 unsigned long now; 197 unsigned long elapsed; 198 int retval = 0; 199 200 if (!audit_rate_limit) return 1; 201 202 spin_lock_irqsave(&lock, flags); 203 if (++messages < audit_rate_limit) { 204 retval = 1; 205 } else { 206 now = jiffies; 207 elapsed = now - last_check; 208 if (elapsed > HZ) { 209 last_check = now; 210 messages = 0; 211 retval = 1; 212 } 213 } 214 spin_unlock_irqrestore(&lock, flags); 215 216 return retval; 217 } 218 219 /** 220 * audit_log_lost - conditionally log lost audit message event 221 * @message: the message stating reason for lost audit message 222 * 223 * Emit at least 1 message per second, even if audit_rate_check is 224 * throttling. 225 * Always increment the lost messages counter. 226 */ 227 void audit_log_lost(const char *message) 228 { 229 static unsigned long last_msg = 0; 230 static DEFINE_SPINLOCK(lock); 231 unsigned long flags; 232 unsigned long now; 233 int print; 234 235 atomic_inc(&audit_lost); 236 237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 238 239 if (!print) { 240 spin_lock_irqsave(&lock, flags); 241 now = jiffies; 242 if (now - last_msg > HZ) { 243 print = 1; 244 last_msg = now; 245 } 246 spin_unlock_irqrestore(&lock, flags); 247 } 248 249 if (print) { 250 if (printk_ratelimit()) 251 printk(KERN_WARNING 252 "audit: audit_lost=%d audit_rate_limit=%d " 253 "audit_backlog_limit=%d\n", 254 atomic_read(&audit_lost), 255 audit_rate_limit, 256 audit_backlog_limit); 257 audit_panic(message); 258 } 259 } 260 261 static int audit_log_config_change(char *function_name, int new, int old, 262 uid_t loginuid, u32 sessionid, u32 sid, 263 int allow_changes) 264 { 265 struct audit_buffer *ab; 266 int rc = 0; 267 268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 270 old, loginuid, sessionid); 271 if (sid) { 272 char *ctx = NULL; 273 u32 len; 274 275 rc = security_secid_to_secctx(sid, &ctx, &len); 276 if (rc) { 277 audit_log_format(ab, " sid=%u", sid); 278 allow_changes = 0; /* Something weird, deny request */ 279 } else { 280 audit_log_format(ab, " subj=%s", ctx); 281 security_release_secctx(ctx, len); 282 } 283 } 284 audit_log_format(ab, " res=%d", allow_changes); 285 audit_log_end(ab); 286 return rc; 287 } 288 289 static int audit_do_config_change(char *function_name, int *to_change, 290 int new, uid_t loginuid, u32 sessionid, 291 u32 sid) 292 { 293 int allow_changes, rc = 0, old = *to_change; 294 295 /* check if we are locked */ 296 if (audit_enabled == AUDIT_LOCKED) 297 allow_changes = 0; 298 else 299 allow_changes = 1; 300 301 if (audit_enabled != AUDIT_OFF) { 302 rc = audit_log_config_change(function_name, new, old, loginuid, 303 sessionid, sid, allow_changes); 304 if (rc) 305 allow_changes = 0; 306 } 307 308 /* If we are allowed, make the change */ 309 if (allow_changes == 1) 310 *to_change = new; 311 /* Not allowed, update reason */ 312 else if (rc == 0) 313 rc = -EPERM; 314 return rc; 315 } 316 317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 318 u32 sid) 319 { 320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 321 limit, loginuid, sessionid, sid); 322 } 323 324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 325 u32 sid) 326 { 327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 328 limit, loginuid, sessionid, sid); 329 } 330 331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 332 { 333 int rc; 334 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 335 return -EINVAL; 336 337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 338 loginuid, sessionid, sid); 339 340 if (!rc) 341 audit_ever_enabled |= !!state; 342 343 return rc; 344 } 345 346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 347 { 348 if (state != AUDIT_FAIL_SILENT 349 && state != AUDIT_FAIL_PRINTK 350 && state != AUDIT_FAIL_PANIC) 351 return -EINVAL; 352 353 return audit_do_config_change("audit_failure", &audit_failure, state, 354 loginuid, sessionid, sid); 355 } 356 357 /* 358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 359 * already have been sent via prink/syslog and so if these messages are dropped 360 * it is not a huge concern since we already passed the audit_log_lost() 361 * notification and stuff. This is just nice to get audit messages during 362 * boot before auditd is running or messages generated while auditd is stopped. 363 * This only holds messages is audit_default is set, aka booting with audit=1 364 * or building your kernel that way. 365 */ 366 static void audit_hold_skb(struct sk_buff *skb) 367 { 368 if (audit_default && 369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 370 skb_queue_tail(&audit_skb_hold_queue, skb); 371 else 372 kfree_skb(skb); 373 } 374 375 /* 376 * For one reason or another this nlh isn't getting delivered to the userspace 377 * audit daemon, just send it to printk. 378 */ 379 static void audit_printk_skb(struct sk_buff *skb) 380 { 381 struct nlmsghdr *nlh = nlmsg_hdr(skb); 382 char *data = NLMSG_DATA(nlh); 383 384 if (nlh->nlmsg_type != AUDIT_EOE) { 385 if (printk_ratelimit()) 386 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); 387 else 388 audit_log_lost("printk limit exceeded\n"); 389 } 390 391 audit_hold_skb(skb); 392 } 393 394 static void kauditd_send_skb(struct sk_buff *skb) 395 { 396 int err; 397 /* take a reference in case we can't send it and we want to hold it */ 398 skb_get(skb); 399 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 400 if (err < 0) { 401 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 402 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 403 audit_log_lost("auditd dissapeared\n"); 404 audit_pid = 0; 405 /* we might get lucky and get this in the next auditd */ 406 audit_hold_skb(skb); 407 } else 408 /* drop the extra reference if sent ok */ 409 kfree_skb(skb); 410 } 411 412 static int kauditd_thread(void *dummy) 413 { 414 struct sk_buff *skb; 415 416 set_freezable(); 417 while (!kthread_should_stop()) { 418 /* 419 * if auditd just started drain the queue of messages already 420 * sent to syslog/printk. remember loss here is ok. we already 421 * called audit_log_lost() if it didn't go out normally. so the 422 * race between the skb_dequeue and the next check for audit_pid 423 * doesn't matter. 424 * 425 * if you ever find kauditd to be too slow we can get a perf win 426 * by doing our own locking and keeping better track if there 427 * are messages in this queue. I don't see the need now, but 428 * in 5 years when I want to play with this again I'll see this 429 * note and still have no friggin idea what i'm thinking today. 430 */ 431 if (audit_default && audit_pid) { 432 skb = skb_dequeue(&audit_skb_hold_queue); 433 if (unlikely(skb)) { 434 while (skb && audit_pid) { 435 kauditd_send_skb(skb); 436 skb = skb_dequeue(&audit_skb_hold_queue); 437 } 438 } 439 } 440 441 skb = skb_dequeue(&audit_skb_queue); 442 wake_up(&audit_backlog_wait); 443 if (skb) { 444 if (audit_pid) 445 kauditd_send_skb(skb); 446 else 447 audit_printk_skb(skb); 448 } else { 449 DECLARE_WAITQUEUE(wait, current); 450 set_current_state(TASK_INTERRUPTIBLE); 451 add_wait_queue(&kauditd_wait, &wait); 452 453 if (!skb_queue_len(&audit_skb_queue)) { 454 try_to_freeze(); 455 schedule(); 456 } 457 458 __set_current_state(TASK_RUNNING); 459 remove_wait_queue(&kauditd_wait, &wait); 460 } 461 } 462 return 0; 463 } 464 465 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 466 { 467 struct task_struct *tsk; 468 int err; 469 470 read_lock(&tasklist_lock); 471 tsk = find_task_by_vpid(pid); 472 err = -ESRCH; 473 if (!tsk) 474 goto out; 475 err = 0; 476 477 spin_lock_irq(&tsk->sighand->siglock); 478 if (!tsk->signal->audit_tty) 479 err = -EPERM; 480 spin_unlock_irq(&tsk->sighand->siglock); 481 if (err) 482 goto out; 483 484 tty_audit_push_task(tsk, loginuid, sessionid); 485 out: 486 read_unlock(&tasklist_lock); 487 return err; 488 } 489 490 int audit_send_list(void *_dest) 491 { 492 struct audit_netlink_list *dest = _dest; 493 int pid = dest->pid; 494 struct sk_buff *skb; 495 496 /* wait for parent to finish and send an ACK */ 497 mutex_lock(&audit_cmd_mutex); 498 mutex_unlock(&audit_cmd_mutex); 499 500 while ((skb = __skb_dequeue(&dest->q)) != NULL) 501 netlink_unicast(audit_sock, skb, pid, 0); 502 503 kfree(dest); 504 505 return 0; 506 } 507 508 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 509 int multi, void *payload, int size) 510 { 511 struct sk_buff *skb; 512 struct nlmsghdr *nlh; 513 void *data; 514 int flags = multi ? NLM_F_MULTI : 0; 515 int t = done ? NLMSG_DONE : type; 516 517 skb = nlmsg_new(size, GFP_KERNEL); 518 if (!skb) 519 return NULL; 520 521 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags); 522 data = NLMSG_DATA(nlh); 523 memcpy(data, payload, size); 524 return skb; 525 526 nlmsg_failure: /* Used by NLMSG_NEW */ 527 if (skb) 528 kfree_skb(skb); 529 return NULL; 530 } 531 532 static int audit_send_reply_thread(void *arg) 533 { 534 struct audit_reply *reply = (struct audit_reply *)arg; 535 536 mutex_lock(&audit_cmd_mutex); 537 mutex_unlock(&audit_cmd_mutex); 538 539 /* Ignore failure. It'll only happen if the sender goes away, 540 because our timeout is set to infinite. */ 541 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 542 kfree(reply); 543 return 0; 544 } 545 /** 546 * audit_send_reply - send an audit reply message via netlink 547 * @pid: process id to send reply to 548 * @seq: sequence number 549 * @type: audit message type 550 * @done: done (last) flag 551 * @multi: multi-part message flag 552 * @payload: payload data 553 * @size: payload size 554 * 555 * Allocates an skb, builds the netlink message, and sends it to the pid. 556 * No failure notifications. 557 */ 558 void audit_send_reply(int pid, int seq, int type, int done, int multi, 559 void *payload, int size) 560 { 561 struct sk_buff *skb; 562 struct task_struct *tsk; 563 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 564 GFP_KERNEL); 565 566 if (!reply) 567 return; 568 569 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 570 if (!skb) 571 goto out; 572 573 reply->pid = pid; 574 reply->skb = skb; 575 576 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 577 if (!IS_ERR(tsk)) 578 return; 579 kfree_skb(skb); 580 out: 581 kfree(reply); 582 } 583 584 /* 585 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 586 * control messages. 587 */ 588 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 589 { 590 int err = 0; 591 592 switch (msg_type) { 593 case AUDIT_GET: 594 case AUDIT_LIST: 595 case AUDIT_LIST_RULES: 596 case AUDIT_SET: 597 case AUDIT_ADD: 598 case AUDIT_ADD_RULE: 599 case AUDIT_DEL: 600 case AUDIT_DEL_RULE: 601 case AUDIT_SIGNAL_INFO: 602 case AUDIT_TTY_GET: 603 case AUDIT_TTY_SET: 604 case AUDIT_TRIM: 605 case AUDIT_MAKE_EQUIV: 606 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 607 err = -EPERM; 608 break; 609 case AUDIT_USER: 610 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 611 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 612 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 613 err = -EPERM; 614 break; 615 default: /* bad msg */ 616 err = -EINVAL; 617 } 618 619 return err; 620 } 621 622 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 623 u32 pid, u32 uid, uid_t auid, u32 ses, 624 u32 sid) 625 { 626 int rc = 0; 627 char *ctx = NULL; 628 u32 len; 629 630 if (!audit_enabled) { 631 *ab = NULL; 632 return rc; 633 } 634 635 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 636 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 637 pid, uid, auid, ses); 638 if (sid) { 639 rc = security_secid_to_secctx(sid, &ctx, &len); 640 if (rc) 641 audit_log_format(*ab, " ssid=%u", sid); 642 else { 643 audit_log_format(*ab, " subj=%s", ctx); 644 security_release_secctx(ctx, len); 645 } 646 } 647 648 return rc; 649 } 650 651 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 652 { 653 u32 uid, pid, seq, sid; 654 void *data; 655 struct audit_status *status_get, status_set; 656 int err; 657 struct audit_buffer *ab; 658 u16 msg_type = nlh->nlmsg_type; 659 uid_t loginuid; /* loginuid of sender */ 660 u32 sessionid; 661 struct audit_sig_info *sig_data; 662 char *ctx = NULL; 663 u32 len; 664 665 err = audit_netlink_ok(skb, msg_type); 666 if (err) 667 return err; 668 669 /* As soon as there's any sign of userspace auditd, 670 * start kauditd to talk to it */ 671 if (!kauditd_task) 672 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 673 if (IS_ERR(kauditd_task)) { 674 err = PTR_ERR(kauditd_task); 675 kauditd_task = NULL; 676 return err; 677 } 678 679 pid = NETLINK_CREDS(skb)->pid; 680 uid = NETLINK_CREDS(skb)->uid; 681 loginuid = NETLINK_CB(skb).loginuid; 682 sessionid = NETLINK_CB(skb).sessionid; 683 sid = NETLINK_CB(skb).sid; 684 seq = nlh->nlmsg_seq; 685 data = NLMSG_DATA(nlh); 686 687 switch (msg_type) { 688 case AUDIT_GET: 689 status_set.enabled = audit_enabled; 690 status_set.failure = audit_failure; 691 status_set.pid = audit_pid; 692 status_set.rate_limit = audit_rate_limit; 693 status_set.backlog_limit = audit_backlog_limit; 694 status_set.lost = atomic_read(&audit_lost); 695 status_set.backlog = skb_queue_len(&audit_skb_queue); 696 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 697 &status_set, sizeof(status_set)); 698 break; 699 case AUDIT_SET: 700 if (nlh->nlmsg_len < sizeof(struct audit_status)) 701 return -EINVAL; 702 status_get = (struct audit_status *)data; 703 if (status_get->mask & AUDIT_STATUS_ENABLED) { 704 err = audit_set_enabled(status_get->enabled, 705 loginuid, sessionid, sid); 706 if (err < 0) 707 return err; 708 } 709 if (status_get->mask & AUDIT_STATUS_FAILURE) { 710 err = audit_set_failure(status_get->failure, 711 loginuid, sessionid, sid); 712 if (err < 0) 713 return err; 714 } 715 if (status_get->mask & AUDIT_STATUS_PID) { 716 int new_pid = status_get->pid; 717 718 if (audit_enabled != AUDIT_OFF) 719 audit_log_config_change("audit_pid", new_pid, 720 audit_pid, loginuid, 721 sessionid, sid, 1); 722 723 audit_pid = new_pid; 724 audit_nlk_pid = NETLINK_CB(skb).pid; 725 } 726 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 727 err = audit_set_rate_limit(status_get->rate_limit, 728 loginuid, sessionid, sid); 729 if (err < 0) 730 return err; 731 } 732 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 733 err = audit_set_backlog_limit(status_get->backlog_limit, 734 loginuid, sessionid, sid); 735 break; 736 case AUDIT_USER: 737 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 738 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 739 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 740 return 0; 741 742 err = audit_filter_user(&NETLINK_CB(skb)); 743 if (err == 1) { 744 err = 0; 745 if (msg_type == AUDIT_USER_TTY) { 746 err = audit_prepare_user_tty(pid, loginuid, 747 sessionid); 748 if (err) 749 break; 750 } 751 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 752 loginuid, sessionid, sid); 753 754 if (msg_type != AUDIT_USER_TTY) 755 audit_log_format(ab, " msg='%.1024s'", 756 (char *)data); 757 else { 758 int size; 759 760 audit_log_format(ab, " msg="); 761 size = nlmsg_len(nlh); 762 if (size > 0 && 763 ((unsigned char *)data)[size - 1] == '\0') 764 size--; 765 audit_log_n_untrustedstring(ab, data, size); 766 } 767 audit_set_pid(ab, pid); 768 audit_log_end(ab); 769 } 770 break; 771 case AUDIT_ADD: 772 case AUDIT_DEL: 773 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 774 return -EINVAL; 775 if (audit_enabled == AUDIT_LOCKED) { 776 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 777 uid, loginuid, sessionid, sid); 778 779 audit_log_format(ab, " audit_enabled=%d res=0", 780 audit_enabled); 781 audit_log_end(ab); 782 return -EPERM; 783 } 784 /* fallthrough */ 785 case AUDIT_LIST: 786 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 787 uid, seq, data, nlmsg_len(nlh), 788 loginuid, sessionid, sid); 789 break; 790 case AUDIT_ADD_RULE: 791 case AUDIT_DEL_RULE: 792 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 793 return -EINVAL; 794 if (audit_enabled == AUDIT_LOCKED) { 795 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 796 uid, loginuid, sessionid, sid); 797 798 audit_log_format(ab, " audit_enabled=%d res=0", 799 audit_enabled); 800 audit_log_end(ab); 801 return -EPERM; 802 } 803 /* fallthrough */ 804 case AUDIT_LIST_RULES: 805 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 806 uid, seq, data, nlmsg_len(nlh), 807 loginuid, sessionid, sid); 808 break; 809 case AUDIT_TRIM: 810 audit_trim_trees(); 811 812 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 813 uid, loginuid, sessionid, sid); 814 815 audit_log_format(ab, " op=trim res=1"); 816 audit_log_end(ab); 817 break; 818 case AUDIT_MAKE_EQUIV: { 819 void *bufp = data; 820 u32 sizes[2]; 821 size_t msglen = nlmsg_len(nlh); 822 char *old, *new; 823 824 err = -EINVAL; 825 if (msglen < 2 * sizeof(u32)) 826 break; 827 memcpy(sizes, bufp, 2 * sizeof(u32)); 828 bufp += 2 * sizeof(u32); 829 msglen -= 2 * sizeof(u32); 830 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 831 if (IS_ERR(old)) { 832 err = PTR_ERR(old); 833 break; 834 } 835 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 836 if (IS_ERR(new)) { 837 err = PTR_ERR(new); 838 kfree(old); 839 break; 840 } 841 /* OK, here comes... */ 842 err = audit_tag_tree(old, new); 843 844 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 845 uid, loginuid, sessionid, sid); 846 847 audit_log_format(ab, " op=make_equiv old="); 848 audit_log_untrustedstring(ab, old); 849 audit_log_format(ab, " new="); 850 audit_log_untrustedstring(ab, new); 851 audit_log_format(ab, " res=%d", !err); 852 audit_log_end(ab); 853 kfree(old); 854 kfree(new); 855 break; 856 } 857 case AUDIT_SIGNAL_INFO: 858 len = 0; 859 if (audit_sig_sid) { 860 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 861 if (err) 862 return err; 863 } 864 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 865 if (!sig_data) { 866 if (audit_sig_sid) 867 security_release_secctx(ctx, len); 868 return -ENOMEM; 869 } 870 sig_data->uid = audit_sig_uid; 871 sig_data->pid = audit_sig_pid; 872 if (audit_sig_sid) { 873 memcpy(sig_data->ctx, ctx, len); 874 security_release_secctx(ctx, len); 875 } 876 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 877 0, 0, sig_data, sizeof(*sig_data) + len); 878 kfree(sig_data); 879 break; 880 case AUDIT_TTY_GET: { 881 struct audit_tty_status s; 882 struct task_struct *tsk; 883 884 read_lock(&tasklist_lock); 885 tsk = find_task_by_vpid(pid); 886 if (!tsk) 887 err = -ESRCH; 888 else { 889 spin_lock_irq(&tsk->sighand->siglock); 890 s.enabled = tsk->signal->audit_tty != 0; 891 spin_unlock_irq(&tsk->sighand->siglock); 892 } 893 read_unlock(&tasklist_lock); 894 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 895 &s, sizeof(s)); 896 break; 897 } 898 case AUDIT_TTY_SET: { 899 struct audit_tty_status *s; 900 struct task_struct *tsk; 901 902 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 903 return -EINVAL; 904 s = data; 905 if (s->enabled != 0 && s->enabled != 1) 906 return -EINVAL; 907 read_lock(&tasklist_lock); 908 tsk = find_task_by_vpid(pid); 909 if (!tsk) 910 err = -ESRCH; 911 else { 912 spin_lock_irq(&tsk->sighand->siglock); 913 tsk->signal->audit_tty = s->enabled != 0; 914 spin_unlock_irq(&tsk->sighand->siglock); 915 } 916 read_unlock(&tasklist_lock); 917 break; 918 } 919 default: 920 err = -EINVAL; 921 break; 922 } 923 924 return err < 0 ? err : 0; 925 } 926 927 /* 928 * Get message from skb. Each message is processed by audit_receive_msg. 929 * Malformed skbs with wrong length are discarded silently. 930 */ 931 static void audit_receive_skb(struct sk_buff *skb) 932 { 933 struct nlmsghdr *nlh; 934 /* 935 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0 936 * if the nlmsg_len was not aligned 937 */ 938 int len; 939 int err; 940 941 nlh = nlmsg_hdr(skb); 942 len = skb->len; 943 944 while (NLMSG_OK(nlh, len)) { 945 err = audit_receive_msg(skb, nlh); 946 /* if err or if this message says it wants a response */ 947 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 948 netlink_ack(skb, nlh, err); 949 950 nlh = NLMSG_NEXT(nlh, len); 951 } 952 } 953 954 /* Receive messages from netlink socket. */ 955 static void audit_receive(struct sk_buff *skb) 956 { 957 mutex_lock(&audit_cmd_mutex); 958 audit_receive_skb(skb); 959 mutex_unlock(&audit_cmd_mutex); 960 } 961 962 /* Initialize audit support at boot time. */ 963 static int __init audit_init(void) 964 { 965 int i; 966 967 if (audit_initialized == AUDIT_DISABLED) 968 return 0; 969 970 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 971 audit_default ? "enabled" : "disabled"); 972 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 973 audit_receive, NULL, THIS_MODULE); 974 if (!audit_sock) 975 audit_panic("cannot initialize netlink socket"); 976 else 977 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 978 979 skb_queue_head_init(&audit_skb_queue); 980 skb_queue_head_init(&audit_skb_hold_queue); 981 audit_initialized = AUDIT_INITIALIZED; 982 audit_enabled = audit_default; 983 audit_ever_enabled |= !!audit_default; 984 985 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 986 987 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 988 INIT_LIST_HEAD(&audit_inode_hash[i]); 989 990 return 0; 991 } 992 __initcall(audit_init); 993 994 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 995 static int __init audit_enable(char *str) 996 { 997 audit_default = !!simple_strtol(str, NULL, 0); 998 if (!audit_default) 999 audit_initialized = AUDIT_DISABLED; 1000 1001 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); 1002 1003 if (audit_initialized == AUDIT_INITIALIZED) { 1004 audit_enabled = audit_default; 1005 audit_ever_enabled |= !!audit_default; 1006 } else if (audit_initialized == AUDIT_UNINITIALIZED) { 1007 printk(" (after initialization)"); 1008 } else { 1009 printk(" (until reboot)"); 1010 } 1011 printk("\n"); 1012 1013 return 1; 1014 } 1015 1016 __setup("audit=", audit_enable); 1017 1018 static void audit_buffer_free(struct audit_buffer *ab) 1019 { 1020 unsigned long flags; 1021 1022 if (!ab) 1023 return; 1024 1025 if (ab->skb) 1026 kfree_skb(ab->skb); 1027 1028 spin_lock_irqsave(&audit_freelist_lock, flags); 1029 if (audit_freelist_count > AUDIT_MAXFREE) 1030 kfree(ab); 1031 else { 1032 audit_freelist_count++; 1033 list_add(&ab->list, &audit_freelist); 1034 } 1035 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1036 } 1037 1038 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1039 gfp_t gfp_mask, int type) 1040 { 1041 unsigned long flags; 1042 struct audit_buffer *ab = NULL; 1043 struct nlmsghdr *nlh; 1044 1045 spin_lock_irqsave(&audit_freelist_lock, flags); 1046 if (!list_empty(&audit_freelist)) { 1047 ab = list_entry(audit_freelist.next, 1048 struct audit_buffer, list); 1049 list_del(&ab->list); 1050 --audit_freelist_count; 1051 } 1052 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1053 1054 if (!ab) { 1055 ab = kmalloc(sizeof(*ab), gfp_mask); 1056 if (!ab) 1057 goto err; 1058 } 1059 1060 ab->ctx = ctx; 1061 ab->gfp_mask = gfp_mask; 1062 1063 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1064 if (!ab->skb) 1065 goto nlmsg_failure; 1066 1067 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0); 1068 1069 return ab; 1070 1071 nlmsg_failure: /* Used by NLMSG_NEW */ 1072 kfree_skb(ab->skb); 1073 ab->skb = NULL; 1074 err: 1075 audit_buffer_free(ab); 1076 return NULL; 1077 } 1078 1079 /** 1080 * audit_serial - compute a serial number for the audit record 1081 * 1082 * Compute a serial number for the audit record. Audit records are 1083 * written to user-space as soon as they are generated, so a complete 1084 * audit record may be written in several pieces. The timestamp of the 1085 * record and this serial number are used by the user-space tools to 1086 * determine which pieces belong to the same audit record. The 1087 * (timestamp,serial) tuple is unique for each syscall and is live from 1088 * syscall entry to syscall exit. 1089 * 1090 * NOTE: Another possibility is to store the formatted records off the 1091 * audit context (for those records that have a context), and emit them 1092 * all at syscall exit. However, this could delay the reporting of 1093 * significant errors until syscall exit (or never, if the system 1094 * halts). 1095 */ 1096 unsigned int audit_serial(void) 1097 { 1098 static DEFINE_SPINLOCK(serial_lock); 1099 static unsigned int serial = 0; 1100 1101 unsigned long flags; 1102 unsigned int ret; 1103 1104 spin_lock_irqsave(&serial_lock, flags); 1105 do { 1106 ret = ++serial; 1107 } while (unlikely(!ret)); 1108 spin_unlock_irqrestore(&serial_lock, flags); 1109 1110 return ret; 1111 } 1112 1113 static inline void audit_get_stamp(struct audit_context *ctx, 1114 struct timespec *t, unsigned int *serial) 1115 { 1116 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1117 *t = CURRENT_TIME; 1118 *serial = audit_serial(); 1119 } 1120 } 1121 1122 /* Obtain an audit buffer. This routine does locking to obtain the 1123 * audit buffer, but then no locking is required for calls to 1124 * audit_log_*format. If the tsk is a task that is currently in a 1125 * syscall, then the syscall is marked as auditable and an audit record 1126 * will be written at syscall exit. If there is no associated task, tsk 1127 * should be NULL. */ 1128 1129 /** 1130 * audit_log_start - obtain an audit buffer 1131 * @ctx: audit_context (may be NULL) 1132 * @gfp_mask: type of allocation 1133 * @type: audit message type 1134 * 1135 * Returns audit_buffer pointer on success or NULL on error. 1136 * 1137 * Obtain an audit buffer. This routine does locking to obtain the 1138 * audit buffer, but then no locking is required for calls to 1139 * audit_log_*format. If the task (ctx) is a task that is currently in a 1140 * syscall, then the syscall is marked as auditable and an audit record 1141 * will be written at syscall exit. If there is no associated task, then 1142 * task context (ctx) should be NULL. 1143 */ 1144 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1145 int type) 1146 { 1147 struct audit_buffer *ab = NULL; 1148 struct timespec t; 1149 unsigned int uninitialized_var(serial); 1150 int reserve; 1151 unsigned long timeout_start = jiffies; 1152 1153 if (audit_initialized != AUDIT_INITIALIZED) 1154 return NULL; 1155 1156 if (unlikely(audit_filter_type(type))) 1157 return NULL; 1158 1159 if (gfp_mask & __GFP_WAIT) 1160 reserve = 0; 1161 else 1162 reserve = 5; /* Allow atomic callers to go up to five 1163 entries over the normal backlog limit */ 1164 1165 while (audit_backlog_limit 1166 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1167 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1168 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1169 1170 /* Wait for auditd to drain the queue a little */ 1171 DECLARE_WAITQUEUE(wait, current); 1172 set_current_state(TASK_INTERRUPTIBLE); 1173 add_wait_queue(&audit_backlog_wait, &wait); 1174 1175 if (audit_backlog_limit && 1176 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1177 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1178 1179 __set_current_state(TASK_RUNNING); 1180 remove_wait_queue(&audit_backlog_wait, &wait); 1181 continue; 1182 } 1183 if (audit_rate_check() && printk_ratelimit()) 1184 printk(KERN_WARNING 1185 "audit: audit_backlog=%d > " 1186 "audit_backlog_limit=%d\n", 1187 skb_queue_len(&audit_skb_queue), 1188 audit_backlog_limit); 1189 audit_log_lost("backlog limit exceeded"); 1190 audit_backlog_wait_time = audit_backlog_wait_overflow; 1191 wake_up(&audit_backlog_wait); 1192 return NULL; 1193 } 1194 1195 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1196 if (!ab) { 1197 audit_log_lost("out of memory in audit_log_start"); 1198 return NULL; 1199 } 1200 1201 audit_get_stamp(ab->ctx, &t, &serial); 1202 1203 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1204 t.tv_sec, t.tv_nsec/1000000, serial); 1205 return ab; 1206 } 1207 1208 /** 1209 * audit_expand - expand skb in the audit buffer 1210 * @ab: audit_buffer 1211 * @extra: space to add at tail of the skb 1212 * 1213 * Returns 0 (no space) on failed expansion, or available space if 1214 * successful. 1215 */ 1216 static inline int audit_expand(struct audit_buffer *ab, int extra) 1217 { 1218 struct sk_buff *skb = ab->skb; 1219 int oldtail = skb_tailroom(skb); 1220 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1221 int newtail = skb_tailroom(skb); 1222 1223 if (ret < 0) { 1224 audit_log_lost("out of memory in audit_expand"); 1225 return 0; 1226 } 1227 1228 skb->truesize += newtail - oldtail; 1229 return newtail; 1230 } 1231 1232 /* 1233 * Format an audit message into the audit buffer. If there isn't enough 1234 * room in the audit buffer, more room will be allocated and vsnprint 1235 * will be called a second time. Currently, we assume that a printk 1236 * can't format message larger than 1024 bytes, so we don't either. 1237 */ 1238 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1239 va_list args) 1240 { 1241 int len, avail; 1242 struct sk_buff *skb; 1243 va_list args2; 1244 1245 if (!ab) 1246 return; 1247 1248 BUG_ON(!ab->skb); 1249 skb = ab->skb; 1250 avail = skb_tailroom(skb); 1251 if (avail == 0) { 1252 avail = audit_expand(ab, AUDIT_BUFSIZ); 1253 if (!avail) 1254 goto out; 1255 } 1256 va_copy(args2, args); 1257 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1258 if (len >= avail) { 1259 /* The printk buffer is 1024 bytes long, so if we get 1260 * here and AUDIT_BUFSIZ is at least 1024, then we can 1261 * log everything that printk could have logged. */ 1262 avail = audit_expand(ab, 1263 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1264 if (!avail) 1265 goto out; 1266 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1267 } 1268 va_end(args2); 1269 if (len > 0) 1270 skb_put(skb, len); 1271 out: 1272 return; 1273 } 1274 1275 /** 1276 * audit_log_format - format a message into the audit buffer. 1277 * @ab: audit_buffer 1278 * @fmt: format string 1279 * @...: optional parameters matching @fmt string 1280 * 1281 * All the work is done in audit_log_vformat. 1282 */ 1283 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1284 { 1285 va_list args; 1286 1287 if (!ab) 1288 return; 1289 va_start(args, fmt); 1290 audit_log_vformat(ab, fmt, args); 1291 va_end(args); 1292 } 1293 1294 /** 1295 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1296 * @ab: the audit_buffer 1297 * @buf: buffer to convert to hex 1298 * @len: length of @buf to be converted 1299 * 1300 * No return value; failure to expand is silently ignored. 1301 * 1302 * This function will take the passed buf and convert it into a string of 1303 * ascii hex digits. The new string is placed onto the skb. 1304 */ 1305 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1306 size_t len) 1307 { 1308 int i, avail, new_len; 1309 unsigned char *ptr; 1310 struct sk_buff *skb; 1311 static const unsigned char *hex = "0123456789ABCDEF"; 1312 1313 if (!ab) 1314 return; 1315 1316 BUG_ON(!ab->skb); 1317 skb = ab->skb; 1318 avail = skb_tailroom(skb); 1319 new_len = len<<1; 1320 if (new_len >= avail) { 1321 /* Round the buffer request up to the next multiple */ 1322 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1323 avail = audit_expand(ab, new_len); 1324 if (!avail) 1325 return; 1326 } 1327 1328 ptr = skb_tail_pointer(skb); 1329 for (i=0; i<len; i++) { 1330 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1331 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1332 } 1333 *ptr = 0; 1334 skb_put(skb, len << 1); /* new string is twice the old string */ 1335 } 1336 1337 /* 1338 * Format a string of no more than slen characters into the audit buffer, 1339 * enclosed in quote marks. 1340 */ 1341 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1342 size_t slen) 1343 { 1344 int avail, new_len; 1345 unsigned char *ptr; 1346 struct sk_buff *skb; 1347 1348 if (!ab) 1349 return; 1350 1351 BUG_ON(!ab->skb); 1352 skb = ab->skb; 1353 avail = skb_tailroom(skb); 1354 new_len = slen + 3; /* enclosing quotes + null terminator */ 1355 if (new_len > avail) { 1356 avail = audit_expand(ab, new_len); 1357 if (!avail) 1358 return; 1359 } 1360 ptr = skb_tail_pointer(skb); 1361 *ptr++ = '"'; 1362 memcpy(ptr, string, slen); 1363 ptr += slen; 1364 *ptr++ = '"'; 1365 *ptr = 0; 1366 skb_put(skb, slen + 2); /* don't include null terminator */ 1367 } 1368 1369 /** 1370 * audit_string_contains_control - does a string need to be logged in hex 1371 * @string: string to be checked 1372 * @len: max length of the string to check 1373 */ 1374 int audit_string_contains_control(const char *string, size_t len) 1375 { 1376 const unsigned char *p; 1377 for (p = string; p < (const unsigned char *)string + len; p++) { 1378 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1379 return 1; 1380 } 1381 return 0; 1382 } 1383 1384 /** 1385 * audit_log_n_untrustedstring - log a string that may contain random characters 1386 * @ab: audit_buffer 1387 * @len: length of string (not including trailing null) 1388 * @string: string to be logged 1389 * 1390 * This code will escape a string that is passed to it if the string 1391 * contains a control character, unprintable character, double quote mark, 1392 * or a space. Unescaped strings will start and end with a double quote mark. 1393 * Strings that are escaped are printed in hex (2 digits per char). 1394 * 1395 * The caller specifies the number of characters in the string to log, which may 1396 * or may not be the entire string. 1397 */ 1398 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1399 size_t len) 1400 { 1401 if (audit_string_contains_control(string, len)) 1402 audit_log_n_hex(ab, string, len); 1403 else 1404 audit_log_n_string(ab, string, len); 1405 } 1406 1407 /** 1408 * audit_log_untrustedstring - log a string that may contain random characters 1409 * @ab: audit_buffer 1410 * @string: string to be logged 1411 * 1412 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1413 * determine string length. 1414 */ 1415 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1416 { 1417 audit_log_n_untrustedstring(ab, string, strlen(string)); 1418 } 1419 1420 /* This is a helper-function to print the escaped d_path */ 1421 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1422 struct path *path) 1423 { 1424 char *p, *pathname; 1425 1426 if (prefix) 1427 audit_log_format(ab, " %s", prefix); 1428 1429 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1430 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1431 if (!pathname) { 1432 audit_log_string(ab, "<no_memory>"); 1433 return; 1434 } 1435 p = d_path(path, pathname, PATH_MAX+11); 1436 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1437 /* FIXME: can we save some information here? */ 1438 audit_log_string(ab, "<too_long>"); 1439 } else 1440 audit_log_untrustedstring(ab, p); 1441 kfree(pathname); 1442 } 1443 1444 void audit_log_key(struct audit_buffer *ab, char *key) 1445 { 1446 audit_log_format(ab, " key="); 1447 if (key) 1448 audit_log_untrustedstring(ab, key); 1449 else 1450 audit_log_format(ab, "(null)"); 1451 } 1452 1453 /** 1454 * audit_log_end - end one audit record 1455 * @ab: the audit_buffer 1456 * 1457 * The netlink_* functions cannot be called inside an irq context, so 1458 * the audit buffer is placed on a queue and a tasklet is scheduled to 1459 * remove them from the queue outside the irq context. May be called in 1460 * any context. 1461 */ 1462 void audit_log_end(struct audit_buffer *ab) 1463 { 1464 if (!ab) 1465 return; 1466 if (!audit_rate_check()) { 1467 audit_log_lost("rate limit exceeded"); 1468 } else { 1469 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1470 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1471 1472 if (audit_pid) { 1473 skb_queue_tail(&audit_skb_queue, ab->skb); 1474 wake_up_interruptible(&kauditd_wait); 1475 } else { 1476 audit_printk_skb(ab->skb); 1477 } 1478 ab->skb = NULL; 1479 } 1480 audit_buffer_free(ab); 1481 } 1482 1483 /** 1484 * audit_log - Log an audit record 1485 * @ctx: audit context 1486 * @gfp_mask: type of allocation 1487 * @type: audit message type 1488 * @fmt: format string to use 1489 * @...: variable parameters matching the format string 1490 * 1491 * This is a convenience function that calls audit_log_start, 1492 * audit_log_vformat, and audit_log_end. It may be called 1493 * in any context. 1494 */ 1495 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1496 const char *fmt, ...) 1497 { 1498 struct audit_buffer *ab; 1499 va_list args; 1500 1501 ab = audit_log_start(ctx, gfp_mask, type); 1502 if (ab) { 1503 va_start(args, fmt); 1504 audit_log_vformat(ab, fmt, args); 1505 va_end(args); 1506 audit_log_end(ab); 1507 } 1508 } 1509 1510 EXPORT_SYMBOL(audit_log_start); 1511 EXPORT_SYMBOL(audit_log_end); 1512 EXPORT_SYMBOL(audit_log_format); 1513 EXPORT_SYMBOL(audit_log); 1514