1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 112 /* The identity of the user shutting down the audit system. */ 113 kuid_t audit_sig_uid = INVALID_UID; 114 pid_t audit_sig_pid = -1; 115 u32 audit_sig_sid = 0; 116 117 /* Records can be lost in several ways: 118 0) [suppressed in audit_alloc] 119 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 120 2) out of memory in audit_log_move [alloc_skb] 121 3) suppressed due to audit_rate_limit 122 4) suppressed due to audit_backlog_limit 123 */ 124 static atomic_t audit_lost = ATOMIC_INIT(0); 125 126 /* The netlink socket. */ 127 static struct sock *audit_sock; 128 static unsigned int audit_net_id; 129 130 /* Hash for inode-based rules */ 131 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 132 133 /* The audit_freelist is a list of pre-allocated audit buffers (if more 134 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 135 * being placed on the freelist). */ 136 static DEFINE_SPINLOCK(audit_freelist_lock); 137 static int audit_freelist_count; 138 static LIST_HEAD(audit_freelist); 139 140 /* queue msgs to send via kauditd_task */ 141 static struct sk_buff_head audit_queue; 142 /* queue msgs due to temporary unicast send problems */ 143 static struct sk_buff_head audit_retry_queue; 144 /* queue msgs waiting for new auditd connection */ 145 static struct sk_buff_head audit_hold_queue; 146 147 /* queue servicing thread */ 148 static struct task_struct *kauditd_task; 149 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 150 151 /* waitqueue for callers who are blocked on the audit backlog */ 152 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 153 154 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 155 .mask = -1, 156 .features = 0, 157 .lock = 0,}; 158 159 static char *audit_feature_names[2] = { 160 "only_unset_loginuid", 161 "loginuid_immutable", 162 }; 163 164 165 /* Serialize requests from userspace. */ 166 DEFINE_MUTEX(audit_cmd_mutex); 167 168 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 169 * audit records. Since printk uses a 1024 byte buffer, this buffer 170 * should be at least that large. */ 171 #define AUDIT_BUFSIZ 1024 172 173 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 174 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 175 #define AUDIT_MAXFREE (2*NR_CPUS) 176 177 /* The audit_buffer is used when formatting an audit record. The caller 178 * locks briefly to get the record off the freelist or to allocate the 179 * buffer, and locks briefly to send the buffer to the netlink layer or 180 * to place it on a transmit queue. Multiple audit_buffers can be in 181 * use simultaneously. */ 182 struct audit_buffer { 183 struct list_head list; 184 struct sk_buff *skb; /* formatted skb ready to send */ 185 struct audit_context *ctx; /* NULL or associated context */ 186 gfp_t gfp_mask; 187 }; 188 189 struct audit_reply { 190 __u32 portid; 191 struct net *net; 192 struct sk_buff *skb; 193 }; 194 195 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 196 { 197 if (ab) { 198 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 199 nlh->nlmsg_pid = portid; 200 } 201 } 202 203 void audit_panic(const char *message) 204 { 205 switch (audit_failure) { 206 case AUDIT_FAIL_SILENT: 207 break; 208 case AUDIT_FAIL_PRINTK: 209 if (printk_ratelimit()) 210 pr_err("%s\n", message); 211 break; 212 case AUDIT_FAIL_PANIC: 213 /* test audit_pid since printk is always losey, why bother? */ 214 if (audit_pid) 215 panic("audit: %s\n", message); 216 break; 217 } 218 } 219 220 static inline int audit_rate_check(void) 221 { 222 static unsigned long last_check = 0; 223 static int messages = 0; 224 static DEFINE_SPINLOCK(lock); 225 unsigned long flags; 226 unsigned long now; 227 unsigned long elapsed; 228 int retval = 0; 229 230 if (!audit_rate_limit) return 1; 231 232 spin_lock_irqsave(&lock, flags); 233 if (++messages < audit_rate_limit) { 234 retval = 1; 235 } else { 236 now = jiffies; 237 elapsed = now - last_check; 238 if (elapsed > HZ) { 239 last_check = now; 240 messages = 0; 241 retval = 1; 242 } 243 } 244 spin_unlock_irqrestore(&lock, flags); 245 246 return retval; 247 } 248 249 /** 250 * audit_log_lost - conditionally log lost audit message event 251 * @message: the message stating reason for lost audit message 252 * 253 * Emit at least 1 message per second, even if audit_rate_check is 254 * throttling. 255 * Always increment the lost messages counter. 256 */ 257 void audit_log_lost(const char *message) 258 { 259 static unsigned long last_msg = 0; 260 static DEFINE_SPINLOCK(lock); 261 unsigned long flags; 262 unsigned long now; 263 int print; 264 265 atomic_inc(&audit_lost); 266 267 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 268 269 if (!print) { 270 spin_lock_irqsave(&lock, flags); 271 now = jiffies; 272 if (now - last_msg > HZ) { 273 print = 1; 274 last_msg = now; 275 } 276 spin_unlock_irqrestore(&lock, flags); 277 } 278 279 if (print) { 280 if (printk_ratelimit()) 281 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 282 atomic_read(&audit_lost), 283 audit_rate_limit, 284 audit_backlog_limit); 285 audit_panic(message); 286 } 287 } 288 289 static int audit_log_config_change(char *function_name, u32 new, u32 old, 290 int allow_changes) 291 { 292 struct audit_buffer *ab; 293 int rc = 0; 294 295 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 296 if (unlikely(!ab)) 297 return rc; 298 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 299 audit_log_session_info(ab); 300 rc = audit_log_task_context(ab); 301 if (rc) 302 allow_changes = 0; /* Something weird, deny request */ 303 audit_log_format(ab, " res=%d", allow_changes); 304 audit_log_end(ab); 305 return rc; 306 } 307 308 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 309 { 310 int allow_changes, rc = 0; 311 u32 old = *to_change; 312 313 /* check if we are locked */ 314 if (audit_enabled == AUDIT_LOCKED) 315 allow_changes = 0; 316 else 317 allow_changes = 1; 318 319 if (audit_enabled != AUDIT_OFF) { 320 rc = audit_log_config_change(function_name, new, old, allow_changes); 321 if (rc) 322 allow_changes = 0; 323 } 324 325 /* If we are allowed, make the change */ 326 if (allow_changes == 1) 327 *to_change = new; 328 /* Not allowed, update reason */ 329 else if (rc == 0) 330 rc = -EPERM; 331 return rc; 332 } 333 334 static int audit_set_rate_limit(u32 limit) 335 { 336 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 337 } 338 339 static int audit_set_backlog_limit(u32 limit) 340 { 341 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 342 } 343 344 static int audit_set_backlog_wait_time(u32 timeout) 345 { 346 return audit_do_config_change("audit_backlog_wait_time", 347 &audit_backlog_wait_time, timeout); 348 } 349 350 static int audit_set_enabled(u32 state) 351 { 352 int rc; 353 if (state > AUDIT_LOCKED) 354 return -EINVAL; 355 356 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 357 if (!rc) 358 audit_ever_enabled |= !!state; 359 360 return rc; 361 } 362 363 static int audit_set_failure(u32 state) 364 { 365 if (state != AUDIT_FAIL_SILENT 366 && state != AUDIT_FAIL_PRINTK 367 && state != AUDIT_FAIL_PANIC) 368 return -EINVAL; 369 370 return audit_do_config_change("audit_failure", &audit_failure, state); 371 } 372 373 /* 374 * For one reason or another this nlh isn't getting delivered to the userspace 375 * audit daemon, just send it to printk. 376 */ 377 static void kauditd_printk_skb(struct sk_buff *skb) 378 { 379 struct nlmsghdr *nlh = nlmsg_hdr(skb); 380 char *data = nlmsg_data(nlh); 381 382 if (nlh->nlmsg_type != AUDIT_EOE) { 383 if (printk_ratelimit()) 384 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 385 else 386 audit_log_lost("printk limit exceeded"); 387 } 388 } 389 390 /** 391 * kauditd_hold_skb - Queue an audit record, waiting for auditd 392 * @skb: audit record 393 * 394 * Description: 395 * Queue the audit record, waiting for an instance of auditd. When this 396 * function is called we haven't given up yet on sending the record, but things 397 * are not looking good. The first thing we want to do is try to write the 398 * record via printk and then see if we want to try and hold on to the record 399 * and queue it, if we have room. If we want to hold on to the record, but we 400 * don't have room, record a record lost message. 401 */ 402 static void kauditd_hold_skb(struct sk_buff *skb) 403 { 404 /* at this point it is uncertain if we will ever send this to auditd so 405 * try to send the message via printk before we go any further */ 406 kauditd_printk_skb(skb); 407 408 /* can we just silently drop the message? */ 409 if (!audit_default) { 410 kfree_skb(skb); 411 return; 412 } 413 414 /* if we have room, queue the message */ 415 if (!audit_backlog_limit || 416 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 417 skb_queue_tail(&audit_hold_queue, skb); 418 return; 419 } 420 421 /* we have no other options - drop the message */ 422 audit_log_lost("kauditd hold queue overflow"); 423 kfree_skb(skb); 424 } 425 426 /** 427 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 428 * @skb: audit record 429 * 430 * Description: 431 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 432 * but for some reason we are having problems sending it audit records so 433 * queue the given record and attempt to resend. 434 */ 435 static void kauditd_retry_skb(struct sk_buff *skb) 436 { 437 /* NOTE: because records should only live in the retry queue for a 438 * short period of time, before either being sent or moved to the hold 439 * queue, we don't currently enforce a limit on this queue */ 440 skb_queue_tail(&audit_retry_queue, skb); 441 } 442 443 /** 444 * auditd_reset - Disconnect the auditd connection 445 * 446 * Description: 447 * Break the auditd/kauditd connection and move all the records in the retry 448 * queue into the hold queue in case auditd reconnects. The audit_cmd_mutex 449 * must be held when calling this function. 450 */ 451 static void auditd_reset(void) 452 { 453 struct sk_buff *skb; 454 455 /* break the connection */ 456 if (audit_sock) { 457 sock_put(audit_sock); 458 audit_sock = NULL; 459 } 460 audit_pid = 0; 461 audit_nlk_portid = 0; 462 463 /* flush all of the retry queue to the hold queue */ 464 while ((skb = skb_dequeue(&audit_retry_queue))) 465 kauditd_hold_skb(skb); 466 } 467 468 /** 469 * kauditd_send_unicast_skb - Send a record via unicast to auditd 470 * @skb: audit record 471 */ 472 static int kauditd_send_unicast_skb(struct sk_buff *skb) 473 { 474 int rc; 475 476 /* if we know nothing is connected, don't even try the netlink call */ 477 if (!audit_pid) 478 return -ECONNREFUSED; 479 480 /* get an extra skb reference in case we fail to send */ 481 skb_get(skb); 482 rc = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 483 if (rc >= 0) { 484 consume_skb(skb); 485 rc = 0; 486 } 487 488 return rc; 489 } 490 491 /* 492 * kauditd_send_multicast_skb - Send a record to any multicast listeners 493 * @skb: audit record 494 * 495 * Description: 496 * This function doesn't consume an skb as might be expected since it has to 497 * copy it anyways. 498 */ 499 static void kauditd_send_multicast_skb(struct sk_buff *skb) 500 { 501 struct sk_buff *copy; 502 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 503 struct sock *sock = aunet->nlsk; 504 struct nlmsghdr *nlh; 505 506 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 507 return; 508 509 /* 510 * The seemingly wasteful skb_copy() rather than bumping the refcount 511 * using skb_get() is necessary because non-standard mods are made to 512 * the skb by the original kaudit unicast socket send routine. The 513 * existing auditd daemon assumes this breakage. Fixing this would 514 * require co-ordinating a change in the established protocol between 515 * the kaudit kernel subsystem and the auditd userspace code. There is 516 * no reason for new multicast clients to continue with this 517 * non-compliance. 518 */ 519 copy = skb_copy(skb, GFP_KERNEL); 520 if (!copy) 521 return; 522 nlh = nlmsg_hdr(copy); 523 nlh->nlmsg_len = skb->len; 524 525 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 526 } 527 528 /** 529 * kauditd_wake_condition - Return true when it is time to wake kauditd_thread 530 * 531 * Description: 532 * This function is for use by the wait_event_freezable() call in 533 * kauditd_thread(). 534 */ 535 static int kauditd_wake_condition(void) 536 { 537 static int pid_last = 0; 538 int rc; 539 int pid = audit_pid; 540 541 /* wake on new messages or a change in the connected auditd */ 542 rc = skb_queue_len(&audit_queue) || (pid && pid != pid_last); 543 if (rc) 544 pid_last = pid; 545 546 return rc; 547 } 548 549 static int kauditd_thread(void *dummy) 550 { 551 int rc; 552 int auditd = 0; 553 int reschedule = 0; 554 struct sk_buff *skb; 555 struct nlmsghdr *nlh; 556 557 #define UNICAST_RETRIES 5 558 #define AUDITD_BAD(x,y) \ 559 ((x) == -ECONNREFUSED || (x) == -EPERM || ++(y) >= UNICAST_RETRIES) 560 561 /* NOTE: we do invalidate the auditd connection flag on any sending 562 * errors, but we only "restore" the connection flag at specific places 563 * in the loop in order to help ensure proper ordering of audit 564 * records */ 565 566 set_freezable(); 567 while (!kthread_should_stop()) { 568 /* NOTE: possible area for future improvement is to look at 569 * the hold and retry queues, since only this thread 570 * has access to these queues we might be able to do 571 * our own queuing and skip some/all of the locking */ 572 573 /* NOTE: it might be a fun experiment to split the hold and 574 * retry queue handling to another thread, but the 575 * synchronization issues and other overhead might kill 576 * any performance gains */ 577 578 /* attempt to flush the hold queue */ 579 while (auditd && (skb = skb_dequeue(&audit_hold_queue))) { 580 rc = kauditd_send_unicast_skb(skb); 581 if (rc) { 582 /* requeue to the same spot */ 583 skb_queue_head(&audit_hold_queue, skb); 584 585 auditd = 0; 586 if (AUDITD_BAD(rc, reschedule)) { 587 mutex_lock(&audit_cmd_mutex); 588 auditd_reset(); 589 mutex_unlock(&audit_cmd_mutex); 590 reschedule = 0; 591 } 592 } else 593 /* we were able to send successfully */ 594 reschedule = 0; 595 } 596 597 /* attempt to flush the retry queue */ 598 while (auditd && (skb = skb_dequeue(&audit_retry_queue))) { 599 rc = kauditd_send_unicast_skb(skb); 600 if (rc) { 601 auditd = 0; 602 if (AUDITD_BAD(rc, reschedule)) { 603 kauditd_hold_skb(skb); 604 mutex_lock(&audit_cmd_mutex); 605 auditd_reset(); 606 mutex_unlock(&audit_cmd_mutex); 607 reschedule = 0; 608 } else 609 /* temporary problem (we hope), queue 610 * to the same spot and retry */ 611 skb_queue_head(&audit_retry_queue, skb); 612 } else 613 /* we were able to send successfully */ 614 reschedule = 0; 615 } 616 617 /* standard queue processing, try to be as quick as possible */ 618 quick_loop: 619 skb = skb_dequeue(&audit_queue); 620 if (skb) { 621 /* setup the netlink header, see the comments in 622 * kauditd_send_multicast_skb() for length quirks */ 623 nlh = nlmsg_hdr(skb); 624 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 625 626 /* attempt to send to any multicast listeners */ 627 kauditd_send_multicast_skb(skb); 628 629 /* attempt to send to auditd, queue on failure */ 630 if (auditd) { 631 rc = kauditd_send_unicast_skb(skb); 632 if (rc) { 633 auditd = 0; 634 if (AUDITD_BAD(rc, reschedule)) { 635 mutex_lock(&audit_cmd_mutex); 636 auditd_reset(); 637 mutex_unlock(&audit_cmd_mutex); 638 reschedule = 0; 639 } 640 641 /* move to the retry queue */ 642 kauditd_retry_skb(skb); 643 } else 644 /* everything is working so go fast! */ 645 goto quick_loop; 646 } else if (reschedule) 647 /* we are currently having problems, move to 648 * the retry queue */ 649 kauditd_retry_skb(skb); 650 else 651 /* dump the message via printk and hold it */ 652 kauditd_hold_skb(skb); 653 } else { 654 /* we have flushed the backlog so wake everyone */ 655 wake_up(&audit_backlog_wait); 656 657 /* if everything is okay with auditd (if present), go 658 * to sleep until there is something new in the queue 659 * or we have a change in the connected auditd; 660 * otherwise simply reschedule to give things a chance 661 * to recover */ 662 if (reschedule) { 663 set_current_state(TASK_INTERRUPTIBLE); 664 schedule(); 665 } else 666 wait_event_freezable(kauditd_wait, 667 kauditd_wake_condition()); 668 669 /* update the auditd connection status */ 670 auditd = (audit_pid ? 1 : 0); 671 } 672 } 673 674 return 0; 675 } 676 677 int audit_send_list(void *_dest) 678 { 679 struct audit_netlink_list *dest = _dest; 680 struct sk_buff *skb; 681 struct net *net = dest->net; 682 struct audit_net *aunet = net_generic(net, audit_net_id); 683 684 /* wait for parent to finish and send an ACK */ 685 mutex_lock(&audit_cmd_mutex); 686 mutex_unlock(&audit_cmd_mutex); 687 688 while ((skb = __skb_dequeue(&dest->q)) != NULL) 689 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 690 691 put_net(net); 692 kfree(dest); 693 694 return 0; 695 } 696 697 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 698 int multi, const void *payload, int size) 699 { 700 struct sk_buff *skb; 701 struct nlmsghdr *nlh; 702 void *data; 703 int flags = multi ? NLM_F_MULTI : 0; 704 int t = done ? NLMSG_DONE : type; 705 706 skb = nlmsg_new(size, GFP_KERNEL); 707 if (!skb) 708 return NULL; 709 710 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 711 if (!nlh) 712 goto out_kfree_skb; 713 data = nlmsg_data(nlh); 714 memcpy(data, payload, size); 715 return skb; 716 717 out_kfree_skb: 718 kfree_skb(skb); 719 return NULL; 720 } 721 722 static int audit_send_reply_thread(void *arg) 723 { 724 struct audit_reply *reply = (struct audit_reply *)arg; 725 struct net *net = reply->net; 726 struct audit_net *aunet = net_generic(net, audit_net_id); 727 728 mutex_lock(&audit_cmd_mutex); 729 mutex_unlock(&audit_cmd_mutex); 730 731 /* Ignore failure. It'll only happen if the sender goes away, 732 because our timeout is set to infinite. */ 733 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 734 put_net(net); 735 kfree(reply); 736 return 0; 737 } 738 739 /** 740 * audit_send_reply - send an audit reply message via netlink 741 * @request_skb: skb of request we are replying to (used to target the reply) 742 * @seq: sequence number 743 * @type: audit message type 744 * @done: done (last) flag 745 * @multi: multi-part message flag 746 * @payload: payload data 747 * @size: payload size 748 * 749 * Allocates an skb, builds the netlink message, and sends it to the port id. 750 * No failure notifications. 751 */ 752 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 753 int multi, const void *payload, int size) 754 { 755 u32 portid = NETLINK_CB(request_skb).portid; 756 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 757 struct sk_buff *skb; 758 struct task_struct *tsk; 759 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 760 GFP_KERNEL); 761 762 if (!reply) 763 return; 764 765 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 766 if (!skb) 767 goto out; 768 769 reply->net = get_net(net); 770 reply->portid = portid; 771 reply->skb = skb; 772 773 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 774 if (!IS_ERR(tsk)) 775 return; 776 kfree_skb(skb); 777 out: 778 kfree(reply); 779 } 780 781 /* 782 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 783 * control messages. 784 */ 785 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 786 { 787 int err = 0; 788 789 /* Only support initial user namespace for now. */ 790 /* 791 * We return ECONNREFUSED because it tricks userspace into thinking 792 * that audit was not configured into the kernel. Lots of users 793 * configure their PAM stack (because that's what the distro does) 794 * to reject login if unable to send messages to audit. If we return 795 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 796 * configured in and will let login proceed. If we return EPERM 797 * userspace will reject all logins. This should be removed when we 798 * support non init namespaces!! 799 */ 800 if (current_user_ns() != &init_user_ns) 801 return -ECONNREFUSED; 802 803 switch (msg_type) { 804 case AUDIT_LIST: 805 case AUDIT_ADD: 806 case AUDIT_DEL: 807 return -EOPNOTSUPP; 808 case AUDIT_GET: 809 case AUDIT_SET: 810 case AUDIT_GET_FEATURE: 811 case AUDIT_SET_FEATURE: 812 case AUDIT_LIST_RULES: 813 case AUDIT_ADD_RULE: 814 case AUDIT_DEL_RULE: 815 case AUDIT_SIGNAL_INFO: 816 case AUDIT_TTY_GET: 817 case AUDIT_TTY_SET: 818 case AUDIT_TRIM: 819 case AUDIT_MAKE_EQUIV: 820 /* Only support auditd and auditctl in initial pid namespace 821 * for now. */ 822 if (task_active_pid_ns(current) != &init_pid_ns) 823 return -EPERM; 824 825 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 826 err = -EPERM; 827 break; 828 case AUDIT_USER: 829 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 830 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 831 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 832 err = -EPERM; 833 break; 834 default: /* bad msg */ 835 err = -EINVAL; 836 } 837 838 return err; 839 } 840 841 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 842 { 843 uid_t uid = from_kuid(&init_user_ns, current_uid()); 844 pid_t pid = task_tgid_nr(current); 845 846 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 847 *ab = NULL; 848 return; 849 } 850 851 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 852 if (unlikely(!*ab)) 853 return; 854 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 855 audit_log_session_info(*ab); 856 audit_log_task_context(*ab); 857 } 858 859 int is_audit_feature_set(int i) 860 { 861 return af.features & AUDIT_FEATURE_TO_MASK(i); 862 } 863 864 865 static int audit_get_feature(struct sk_buff *skb) 866 { 867 u32 seq; 868 869 seq = nlmsg_hdr(skb)->nlmsg_seq; 870 871 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 872 873 return 0; 874 } 875 876 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 877 u32 old_lock, u32 new_lock, int res) 878 { 879 struct audit_buffer *ab; 880 881 if (audit_enabled == AUDIT_OFF) 882 return; 883 884 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 885 audit_log_task_info(ab, current); 886 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 887 audit_feature_names[which], !!old_feature, !!new_feature, 888 !!old_lock, !!new_lock, res); 889 audit_log_end(ab); 890 } 891 892 static int audit_set_feature(struct sk_buff *skb) 893 { 894 struct audit_features *uaf; 895 int i; 896 897 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 898 uaf = nlmsg_data(nlmsg_hdr(skb)); 899 900 /* if there is ever a version 2 we should handle that here */ 901 902 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 903 u32 feature = AUDIT_FEATURE_TO_MASK(i); 904 u32 old_feature, new_feature, old_lock, new_lock; 905 906 /* if we are not changing this feature, move along */ 907 if (!(feature & uaf->mask)) 908 continue; 909 910 old_feature = af.features & feature; 911 new_feature = uaf->features & feature; 912 new_lock = (uaf->lock | af.lock) & feature; 913 old_lock = af.lock & feature; 914 915 /* are we changing a locked feature? */ 916 if (old_lock && (new_feature != old_feature)) { 917 audit_log_feature_change(i, old_feature, new_feature, 918 old_lock, new_lock, 0); 919 return -EPERM; 920 } 921 } 922 /* nothing invalid, do the changes */ 923 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 924 u32 feature = AUDIT_FEATURE_TO_MASK(i); 925 u32 old_feature, new_feature, old_lock, new_lock; 926 927 /* if we are not changing this feature, move along */ 928 if (!(feature & uaf->mask)) 929 continue; 930 931 old_feature = af.features & feature; 932 new_feature = uaf->features & feature; 933 old_lock = af.lock & feature; 934 new_lock = (uaf->lock | af.lock) & feature; 935 936 if (new_feature != old_feature) 937 audit_log_feature_change(i, old_feature, new_feature, 938 old_lock, new_lock, 1); 939 940 if (new_feature) 941 af.features |= feature; 942 else 943 af.features &= ~feature; 944 af.lock |= new_lock; 945 } 946 947 return 0; 948 } 949 950 static int audit_replace(pid_t pid) 951 { 952 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, 953 &pid, sizeof(pid)); 954 955 if (!skb) 956 return -ENOMEM; 957 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 958 } 959 960 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 961 { 962 u32 seq; 963 void *data; 964 int err; 965 struct audit_buffer *ab; 966 u16 msg_type = nlh->nlmsg_type; 967 struct audit_sig_info *sig_data; 968 char *ctx = NULL; 969 u32 len; 970 971 err = audit_netlink_ok(skb, msg_type); 972 if (err) 973 return err; 974 975 seq = nlh->nlmsg_seq; 976 data = nlmsg_data(nlh); 977 978 switch (msg_type) { 979 case AUDIT_GET: { 980 struct audit_status s; 981 memset(&s, 0, sizeof(s)); 982 s.enabled = audit_enabled; 983 s.failure = audit_failure; 984 s.pid = audit_pid; 985 s.rate_limit = audit_rate_limit; 986 s.backlog_limit = audit_backlog_limit; 987 s.lost = atomic_read(&audit_lost); 988 s.backlog = skb_queue_len(&audit_queue); 989 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 990 s.backlog_wait_time = audit_backlog_wait_time; 991 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 992 break; 993 } 994 case AUDIT_SET: { 995 struct audit_status s; 996 memset(&s, 0, sizeof(s)); 997 /* guard against past and future API changes */ 998 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 999 if (s.mask & AUDIT_STATUS_ENABLED) { 1000 err = audit_set_enabled(s.enabled); 1001 if (err < 0) 1002 return err; 1003 } 1004 if (s.mask & AUDIT_STATUS_FAILURE) { 1005 err = audit_set_failure(s.failure); 1006 if (err < 0) 1007 return err; 1008 } 1009 if (s.mask & AUDIT_STATUS_PID) { 1010 /* NOTE: we are using task_tgid_vnr() below because 1011 * the s.pid value is relative to the namespace 1012 * of the caller; at present this doesn't matter 1013 * much since you can really only run auditd 1014 * from the initial pid namespace, but something 1015 * to keep in mind if this changes */ 1016 int new_pid = s.pid; 1017 pid_t requesting_pid = task_tgid_vnr(current); 1018 1019 if ((!new_pid) && (requesting_pid != audit_pid)) { 1020 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 1021 return -EACCES; 1022 } 1023 if (audit_pid && new_pid && 1024 audit_replace(requesting_pid) != -ECONNREFUSED) { 1025 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 1026 return -EEXIST; 1027 } 1028 if (audit_enabled != AUDIT_OFF) 1029 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 1030 if (new_pid) { 1031 if (audit_sock) 1032 sock_put(audit_sock); 1033 audit_pid = new_pid; 1034 audit_nlk_portid = NETLINK_CB(skb).portid; 1035 sock_hold(skb->sk); 1036 audit_sock = skb->sk; 1037 } else { 1038 auditd_reset(); 1039 } 1040 wake_up_interruptible(&kauditd_wait); 1041 } 1042 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1043 err = audit_set_rate_limit(s.rate_limit); 1044 if (err < 0) 1045 return err; 1046 } 1047 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1048 err = audit_set_backlog_limit(s.backlog_limit); 1049 if (err < 0) 1050 return err; 1051 } 1052 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1053 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1054 return -EINVAL; 1055 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1056 return -EINVAL; 1057 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1058 if (err < 0) 1059 return err; 1060 } 1061 if (s.mask == AUDIT_STATUS_LOST) { 1062 u32 lost = atomic_xchg(&audit_lost, 0); 1063 1064 audit_log_config_change("lost", 0, lost, 1); 1065 return lost; 1066 } 1067 break; 1068 } 1069 case AUDIT_GET_FEATURE: 1070 err = audit_get_feature(skb); 1071 if (err) 1072 return err; 1073 break; 1074 case AUDIT_SET_FEATURE: 1075 err = audit_set_feature(skb); 1076 if (err) 1077 return err; 1078 break; 1079 case AUDIT_USER: 1080 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1081 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1082 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1083 return 0; 1084 1085 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1086 if (err == 1) { /* match or error */ 1087 err = 0; 1088 if (msg_type == AUDIT_USER_TTY) { 1089 err = tty_audit_push(); 1090 if (err) 1091 break; 1092 } 1093 mutex_unlock(&audit_cmd_mutex); 1094 audit_log_common_recv_msg(&ab, msg_type); 1095 if (msg_type != AUDIT_USER_TTY) 1096 audit_log_format(ab, " msg='%.*s'", 1097 AUDIT_MESSAGE_TEXT_MAX, 1098 (char *)data); 1099 else { 1100 int size; 1101 1102 audit_log_format(ab, " data="); 1103 size = nlmsg_len(nlh); 1104 if (size > 0 && 1105 ((unsigned char *)data)[size - 1] == '\0') 1106 size--; 1107 audit_log_n_untrustedstring(ab, data, size); 1108 } 1109 audit_set_portid(ab, NETLINK_CB(skb).portid); 1110 audit_log_end(ab); 1111 mutex_lock(&audit_cmd_mutex); 1112 } 1113 break; 1114 case AUDIT_ADD_RULE: 1115 case AUDIT_DEL_RULE: 1116 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1117 return -EINVAL; 1118 if (audit_enabled == AUDIT_LOCKED) { 1119 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1120 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1121 audit_log_end(ab); 1122 return -EPERM; 1123 } 1124 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 1125 seq, data, nlmsg_len(nlh)); 1126 break; 1127 case AUDIT_LIST_RULES: 1128 err = audit_list_rules_send(skb, seq); 1129 break; 1130 case AUDIT_TRIM: 1131 audit_trim_trees(); 1132 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1133 audit_log_format(ab, " op=trim res=1"); 1134 audit_log_end(ab); 1135 break; 1136 case AUDIT_MAKE_EQUIV: { 1137 void *bufp = data; 1138 u32 sizes[2]; 1139 size_t msglen = nlmsg_len(nlh); 1140 char *old, *new; 1141 1142 err = -EINVAL; 1143 if (msglen < 2 * sizeof(u32)) 1144 break; 1145 memcpy(sizes, bufp, 2 * sizeof(u32)); 1146 bufp += 2 * sizeof(u32); 1147 msglen -= 2 * sizeof(u32); 1148 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1149 if (IS_ERR(old)) { 1150 err = PTR_ERR(old); 1151 break; 1152 } 1153 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1154 if (IS_ERR(new)) { 1155 err = PTR_ERR(new); 1156 kfree(old); 1157 break; 1158 } 1159 /* OK, here comes... */ 1160 err = audit_tag_tree(old, new); 1161 1162 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1163 1164 audit_log_format(ab, " op=make_equiv old="); 1165 audit_log_untrustedstring(ab, old); 1166 audit_log_format(ab, " new="); 1167 audit_log_untrustedstring(ab, new); 1168 audit_log_format(ab, " res=%d", !err); 1169 audit_log_end(ab); 1170 kfree(old); 1171 kfree(new); 1172 break; 1173 } 1174 case AUDIT_SIGNAL_INFO: 1175 len = 0; 1176 if (audit_sig_sid) { 1177 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1178 if (err) 1179 return err; 1180 } 1181 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1182 if (!sig_data) { 1183 if (audit_sig_sid) 1184 security_release_secctx(ctx, len); 1185 return -ENOMEM; 1186 } 1187 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1188 sig_data->pid = audit_sig_pid; 1189 if (audit_sig_sid) { 1190 memcpy(sig_data->ctx, ctx, len); 1191 security_release_secctx(ctx, len); 1192 } 1193 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1194 sig_data, sizeof(*sig_data) + len); 1195 kfree(sig_data); 1196 break; 1197 case AUDIT_TTY_GET: { 1198 struct audit_tty_status s; 1199 unsigned int t; 1200 1201 t = READ_ONCE(current->signal->audit_tty); 1202 s.enabled = t & AUDIT_TTY_ENABLE; 1203 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1204 1205 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1206 break; 1207 } 1208 case AUDIT_TTY_SET: { 1209 struct audit_tty_status s, old; 1210 struct audit_buffer *ab; 1211 unsigned int t; 1212 1213 memset(&s, 0, sizeof(s)); 1214 /* guard against past and future API changes */ 1215 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1216 /* check if new data is valid */ 1217 if ((s.enabled != 0 && s.enabled != 1) || 1218 (s.log_passwd != 0 && s.log_passwd != 1)) 1219 err = -EINVAL; 1220 1221 if (err) 1222 t = READ_ONCE(current->signal->audit_tty); 1223 else { 1224 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1225 t = xchg(¤t->signal->audit_tty, t); 1226 } 1227 old.enabled = t & AUDIT_TTY_ENABLE; 1228 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1229 1230 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1231 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1232 " old-log_passwd=%d new-log_passwd=%d res=%d", 1233 old.enabled, s.enabled, old.log_passwd, 1234 s.log_passwd, !err); 1235 audit_log_end(ab); 1236 break; 1237 } 1238 default: 1239 err = -EINVAL; 1240 break; 1241 } 1242 1243 return err < 0 ? err : 0; 1244 } 1245 1246 /* 1247 * Get message from skb. Each message is processed by audit_receive_msg. 1248 * Malformed skbs with wrong length are discarded silently. 1249 */ 1250 static void audit_receive_skb(struct sk_buff *skb) 1251 { 1252 struct nlmsghdr *nlh; 1253 /* 1254 * len MUST be signed for nlmsg_next to be able to dec it below 0 1255 * if the nlmsg_len was not aligned 1256 */ 1257 int len; 1258 int err; 1259 1260 nlh = nlmsg_hdr(skb); 1261 len = skb->len; 1262 1263 while (nlmsg_ok(nlh, len)) { 1264 err = audit_receive_msg(skb, nlh); 1265 /* if err or if this message says it wants a response */ 1266 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1267 netlink_ack(skb, nlh, err); 1268 1269 nlh = nlmsg_next(nlh, &len); 1270 } 1271 } 1272 1273 /* Receive messages from netlink socket. */ 1274 static void audit_receive(struct sk_buff *skb) 1275 { 1276 mutex_lock(&audit_cmd_mutex); 1277 audit_receive_skb(skb); 1278 mutex_unlock(&audit_cmd_mutex); 1279 } 1280 1281 /* Run custom bind function on netlink socket group connect or bind requests. */ 1282 static int audit_bind(struct net *net, int group) 1283 { 1284 if (!capable(CAP_AUDIT_READ)) 1285 return -EPERM; 1286 1287 return 0; 1288 } 1289 1290 static int __net_init audit_net_init(struct net *net) 1291 { 1292 struct netlink_kernel_cfg cfg = { 1293 .input = audit_receive, 1294 .bind = audit_bind, 1295 .flags = NL_CFG_F_NONROOT_RECV, 1296 .groups = AUDIT_NLGRP_MAX, 1297 }; 1298 1299 struct audit_net *aunet = net_generic(net, audit_net_id); 1300 1301 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1302 if (aunet->nlsk == NULL) { 1303 audit_panic("cannot initialize netlink socket in namespace"); 1304 return -ENOMEM; 1305 } 1306 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1307 return 0; 1308 } 1309 1310 static void __net_exit audit_net_exit(struct net *net) 1311 { 1312 struct audit_net *aunet = net_generic(net, audit_net_id); 1313 struct sock *sock = aunet->nlsk; 1314 mutex_lock(&audit_cmd_mutex); 1315 if (sock == audit_sock) 1316 auditd_reset(); 1317 mutex_unlock(&audit_cmd_mutex); 1318 1319 netlink_kernel_release(sock); 1320 aunet->nlsk = NULL; 1321 } 1322 1323 static struct pernet_operations audit_net_ops __net_initdata = { 1324 .init = audit_net_init, 1325 .exit = audit_net_exit, 1326 .id = &audit_net_id, 1327 .size = sizeof(struct audit_net), 1328 }; 1329 1330 /* Initialize audit support at boot time. */ 1331 static int __init audit_init(void) 1332 { 1333 int i; 1334 1335 if (audit_initialized == AUDIT_DISABLED) 1336 return 0; 1337 1338 pr_info("initializing netlink subsys (%s)\n", 1339 audit_default ? "enabled" : "disabled"); 1340 register_pernet_subsys(&audit_net_ops); 1341 1342 skb_queue_head_init(&audit_queue); 1343 skb_queue_head_init(&audit_retry_queue); 1344 skb_queue_head_init(&audit_hold_queue); 1345 audit_initialized = AUDIT_INITIALIZED; 1346 audit_enabled = audit_default; 1347 audit_ever_enabled |= !!audit_default; 1348 1349 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1350 INIT_LIST_HEAD(&audit_inode_hash[i]); 1351 1352 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1353 if (IS_ERR(kauditd_task)) { 1354 int err = PTR_ERR(kauditd_task); 1355 panic("audit: failed to start the kauditd thread (%d)\n", err); 1356 } 1357 1358 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1359 "state=initialized audit_enabled=%u res=1", 1360 audit_enabled); 1361 1362 return 0; 1363 } 1364 __initcall(audit_init); 1365 1366 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1367 static int __init audit_enable(char *str) 1368 { 1369 audit_default = !!simple_strtol(str, NULL, 0); 1370 if (!audit_default) 1371 audit_initialized = AUDIT_DISABLED; 1372 1373 pr_info("%s\n", audit_default ? 1374 "enabled (after initialization)" : "disabled (until reboot)"); 1375 1376 return 1; 1377 } 1378 __setup("audit=", audit_enable); 1379 1380 /* Process kernel command-line parameter at boot time. 1381 * audit_backlog_limit=<n> */ 1382 static int __init audit_backlog_limit_set(char *str) 1383 { 1384 u32 audit_backlog_limit_arg; 1385 1386 pr_info("audit_backlog_limit: "); 1387 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1388 pr_cont("using default of %u, unable to parse %s\n", 1389 audit_backlog_limit, str); 1390 return 1; 1391 } 1392 1393 audit_backlog_limit = audit_backlog_limit_arg; 1394 pr_cont("%d\n", audit_backlog_limit); 1395 1396 return 1; 1397 } 1398 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1399 1400 static void audit_buffer_free(struct audit_buffer *ab) 1401 { 1402 unsigned long flags; 1403 1404 if (!ab) 1405 return; 1406 1407 kfree_skb(ab->skb); 1408 spin_lock_irqsave(&audit_freelist_lock, flags); 1409 if (audit_freelist_count > AUDIT_MAXFREE) 1410 kfree(ab); 1411 else { 1412 audit_freelist_count++; 1413 list_add(&ab->list, &audit_freelist); 1414 } 1415 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1416 } 1417 1418 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1419 gfp_t gfp_mask, int type) 1420 { 1421 unsigned long flags; 1422 struct audit_buffer *ab = NULL; 1423 struct nlmsghdr *nlh; 1424 1425 spin_lock_irqsave(&audit_freelist_lock, flags); 1426 if (!list_empty(&audit_freelist)) { 1427 ab = list_entry(audit_freelist.next, 1428 struct audit_buffer, list); 1429 list_del(&ab->list); 1430 --audit_freelist_count; 1431 } 1432 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1433 1434 if (!ab) { 1435 ab = kmalloc(sizeof(*ab), gfp_mask); 1436 if (!ab) 1437 goto err; 1438 } 1439 1440 ab->ctx = ctx; 1441 ab->gfp_mask = gfp_mask; 1442 1443 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1444 if (!ab->skb) 1445 goto err; 1446 1447 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1448 if (!nlh) 1449 goto out_kfree_skb; 1450 1451 return ab; 1452 1453 out_kfree_skb: 1454 kfree_skb(ab->skb); 1455 ab->skb = NULL; 1456 err: 1457 audit_buffer_free(ab); 1458 return NULL; 1459 } 1460 1461 /** 1462 * audit_serial - compute a serial number for the audit record 1463 * 1464 * Compute a serial number for the audit record. Audit records are 1465 * written to user-space as soon as they are generated, so a complete 1466 * audit record may be written in several pieces. The timestamp of the 1467 * record and this serial number are used by the user-space tools to 1468 * determine which pieces belong to the same audit record. The 1469 * (timestamp,serial) tuple is unique for each syscall and is live from 1470 * syscall entry to syscall exit. 1471 * 1472 * NOTE: Another possibility is to store the formatted records off the 1473 * audit context (for those records that have a context), and emit them 1474 * all at syscall exit. However, this could delay the reporting of 1475 * significant errors until syscall exit (or never, if the system 1476 * halts). 1477 */ 1478 unsigned int audit_serial(void) 1479 { 1480 static atomic_t serial = ATOMIC_INIT(0); 1481 1482 return atomic_add_return(1, &serial); 1483 } 1484 1485 static inline void audit_get_stamp(struct audit_context *ctx, 1486 struct timespec *t, unsigned int *serial) 1487 { 1488 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1489 *t = CURRENT_TIME; 1490 *serial = audit_serial(); 1491 } 1492 } 1493 1494 /** 1495 * audit_log_start - obtain an audit buffer 1496 * @ctx: audit_context (may be NULL) 1497 * @gfp_mask: type of allocation 1498 * @type: audit message type 1499 * 1500 * Returns audit_buffer pointer on success or NULL on error. 1501 * 1502 * Obtain an audit buffer. This routine does locking to obtain the 1503 * audit buffer, but then no locking is required for calls to 1504 * audit_log_*format. If the task (ctx) is a task that is currently in a 1505 * syscall, then the syscall is marked as auditable and an audit record 1506 * will be written at syscall exit. If there is no associated task, then 1507 * task context (ctx) should be NULL. 1508 */ 1509 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1510 int type) 1511 { 1512 struct audit_buffer *ab; 1513 struct timespec t; 1514 unsigned int uninitialized_var(serial); 1515 1516 if (audit_initialized != AUDIT_INITIALIZED) 1517 return NULL; 1518 1519 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1520 return NULL; 1521 1522 /* don't ever fail/sleep on these two conditions: 1523 * 1. auditd generated record - since we need auditd to drain the 1524 * queue; also, when we are checking for auditd, compare PIDs using 1525 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1526 * using a PID anchored in the caller's namespace 1527 * 2. audit command message - record types 1000 through 1099 inclusive 1528 * are command messages/records used to manage the kernel subsystem 1529 * and the audit userspace, blocking on these messages could cause 1530 * problems under load so don't do it (note: not all of these 1531 * command types are valid as record types, but it is quicker to 1532 * just check two ints than a series of ints in a if/switch stmt) */ 1533 if (!((audit_pid && audit_pid == task_tgid_vnr(current)) || 1534 (type >= 1000 && type <= 1099))) { 1535 long sleep_time = audit_backlog_wait_time; 1536 1537 while (audit_backlog_limit && 1538 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1539 /* wake kauditd to try and flush the queue */ 1540 wake_up_interruptible(&kauditd_wait); 1541 1542 /* sleep if we are allowed and we haven't exhausted our 1543 * backlog wait limit */ 1544 if ((gfp_mask & __GFP_DIRECT_RECLAIM) && 1545 (sleep_time > 0)) { 1546 DECLARE_WAITQUEUE(wait, current); 1547 1548 add_wait_queue_exclusive(&audit_backlog_wait, 1549 &wait); 1550 set_current_state(TASK_UNINTERRUPTIBLE); 1551 sleep_time = schedule_timeout(sleep_time); 1552 remove_wait_queue(&audit_backlog_wait, &wait); 1553 } else { 1554 if (audit_rate_check() && printk_ratelimit()) 1555 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1556 skb_queue_len(&audit_queue), 1557 audit_backlog_limit); 1558 audit_log_lost("backlog limit exceeded"); 1559 return NULL; 1560 } 1561 } 1562 } 1563 1564 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1565 if (!ab) { 1566 audit_log_lost("out of memory in audit_log_start"); 1567 return NULL; 1568 } 1569 1570 audit_get_stamp(ab->ctx, &t, &serial); 1571 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1572 t.tv_sec, t.tv_nsec/1000000, serial); 1573 1574 return ab; 1575 } 1576 1577 /** 1578 * audit_expand - expand skb in the audit buffer 1579 * @ab: audit_buffer 1580 * @extra: space to add at tail of the skb 1581 * 1582 * Returns 0 (no space) on failed expansion, or available space if 1583 * successful. 1584 */ 1585 static inline int audit_expand(struct audit_buffer *ab, int extra) 1586 { 1587 struct sk_buff *skb = ab->skb; 1588 int oldtail = skb_tailroom(skb); 1589 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1590 int newtail = skb_tailroom(skb); 1591 1592 if (ret < 0) { 1593 audit_log_lost("out of memory in audit_expand"); 1594 return 0; 1595 } 1596 1597 skb->truesize += newtail - oldtail; 1598 return newtail; 1599 } 1600 1601 /* 1602 * Format an audit message into the audit buffer. If there isn't enough 1603 * room in the audit buffer, more room will be allocated and vsnprint 1604 * will be called a second time. Currently, we assume that a printk 1605 * can't format message larger than 1024 bytes, so we don't either. 1606 */ 1607 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1608 va_list args) 1609 { 1610 int len, avail; 1611 struct sk_buff *skb; 1612 va_list args2; 1613 1614 if (!ab) 1615 return; 1616 1617 BUG_ON(!ab->skb); 1618 skb = ab->skb; 1619 avail = skb_tailroom(skb); 1620 if (avail == 0) { 1621 avail = audit_expand(ab, AUDIT_BUFSIZ); 1622 if (!avail) 1623 goto out; 1624 } 1625 va_copy(args2, args); 1626 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1627 if (len >= avail) { 1628 /* The printk buffer is 1024 bytes long, so if we get 1629 * here and AUDIT_BUFSIZ is at least 1024, then we can 1630 * log everything that printk could have logged. */ 1631 avail = audit_expand(ab, 1632 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1633 if (!avail) 1634 goto out_va_end; 1635 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1636 } 1637 if (len > 0) 1638 skb_put(skb, len); 1639 out_va_end: 1640 va_end(args2); 1641 out: 1642 return; 1643 } 1644 1645 /** 1646 * audit_log_format - format a message into the audit buffer. 1647 * @ab: audit_buffer 1648 * @fmt: format string 1649 * @...: optional parameters matching @fmt string 1650 * 1651 * All the work is done in audit_log_vformat. 1652 */ 1653 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1654 { 1655 va_list args; 1656 1657 if (!ab) 1658 return; 1659 va_start(args, fmt); 1660 audit_log_vformat(ab, fmt, args); 1661 va_end(args); 1662 } 1663 1664 /** 1665 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1666 * @ab: the audit_buffer 1667 * @buf: buffer to convert to hex 1668 * @len: length of @buf to be converted 1669 * 1670 * No return value; failure to expand is silently ignored. 1671 * 1672 * This function will take the passed buf and convert it into a string of 1673 * ascii hex digits. The new string is placed onto the skb. 1674 */ 1675 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1676 size_t len) 1677 { 1678 int i, avail, new_len; 1679 unsigned char *ptr; 1680 struct sk_buff *skb; 1681 1682 if (!ab) 1683 return; 1684 1685 BUG_ON(!ab->skb); 1686 skb = ab->skb; 1687 avail = skb_tailroom(skb); 1688 new_len = len<<1; 1689 if (new_len >= avail) { 1690 /* Round the buffer request up to the next multiple */ 1691 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1692 avail = audit_expand(ab, new_len); 1693 if (!avail) 1694 return; 1695 } 1696 1697 ptr = skb_tail_pointer(skb); 1698 for (i = 0; i < len; i++) 1699 ptr = hex_byte_pack_upper(ptr, buf[i]); 1700 *ptr = 0; 1701 skb_put(skb, len << 1); /* new string is twice the old string */ 1702 } 1703 1704 /* 1705 * Format a string of no more than slen characters into the audit buffer, 1706 * enclosed in quote marks. 1707 */ 1708 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1709 size_t slen) 1710 { 1711 int avail, new_len; 1712 unsigned char *ptr; 1713 struct sk_buff *skb; 1714 1715 if (!ab) 1716 return; 1717 1718 BUG_ON(!ab->skb); 1719 skb = ab->skb; 1720 avail = skb_tailroom(skb); 1721 new_len = slen + 3; /* enclosing quotes + null terminator */ 1722 if (new_len > avail) { 1723 avail = audit_expand(ab, new_len); 1724 if (!avail) 1725 return; 1726 } 1727 ptr = skb_tail_pointer(skb); 1728 *ptr++ = '"'; 1729 memcpy(ptr, string, slen); 1730 ptr += slen; 1731 *ptr++ = '"'; 1732 *ptr = 0; 1733 skb_put(skb, slen + 2); /* don't include null terminator */ 1734 } 1735 1736 /** 1737 * audit_string_contains_control - does a string need to be logged in hex 1738 * @string: string to be checked 1739 * @len: max length of the string to check 1740 */ 1741 bool audit_string_contains_control(const char *string, size_t len) 1742 { 1743 const unsigned char *p; 1744 for (p = string; p < (const unsigned char *)string + len; p++) { 1745 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1746 return true; 1747 } 1748 return false; 1749 } 1750 1751 /** 1752 * audit_log_n_untrustedstring - log a string that may contain random characters 1753 * @ab: audit_buffer 1754 * @len: length of string (not including trailing null) 1755 * @string: string to be logged 1756 * 1757 * This code will escape a string that is passed to it if the string 1758 * contains a control character, unprintable character, double quote mark, 1759 * or a space. Unescaped strings will start and end with a double quote mark. 1760 * Strings that are escaped are printed in hex (2 digits per char). 1761 * 1762 * The caller specifies the number of characters in the string to log, which may 1763 * or may not be the entire string. 1764 */ 1765 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1766 size_t len) 1767 { 1768 if (audit_string_contains_control(string, len)) 1769 audit_log_n_hex(ab, string, len); 1770 else 1771 audit_log_n_string(ab, string, len); 1772 } 1773 1774 /** 1775 * audit_log_untrustedstring - log a string that may contain random characters 1776 * @ab: audit_buffer 1777 * @string: string to be logged 1778 * 1779 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1780 * determine string length. 1781 */ 1782 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1783 { 1784 audit_log_n_untrustedstring(ab, string, strlen(string)); 1785 } 1786 1787 /* This is a helper-function to print the escaped d_path */ 1788 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1789 const struct path *path) 1790 { 1791 char *p, *pathname; 1792 1793 if (prefix) 1794 audit_log_format(ab, "%s", prefix); 1795 1796 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1797 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1798 if (!pathname) { 1799 audit_log_string(ab, "<no_memory>"); 1800 return; 1801 } 1802 p = d_path(path, pathname, PATH_MAX+11); 1803 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1804 /* FIXME: can we save some information here? */ 1805 audit_log_string(ab, "<too_long>"); 1806 } else 1807 audit_log_untrustedstring(ab, p); 1808 kfree(pathname); 1809 } 1810 1811 void audit_log_session_info(struct audit_buffer *ab) 1812 { 1813 unsigned int sessionid = audit_get_sessionid(current); 1814 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1815 1816 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1817 } 1818 1819 void audit_log_key(struct audit_buffer *ab, char *key) 1820 { 1821 audit_log_format(ab, " key="); 1822 if (key) 1823 audit_log_untrustedstring(ab, key); 1824 else 1825 audit_log_format(ab, "(null)"); 1826 } 1827 1828 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1829 { 1830 int i; 1831 1832 audit_log_format(ab, " %s=", prefix); 1833 CAP_FOR_EACH_U32(i) { 1834 audit_log_format(ab, "%08x", 1835 cap->cap[CAP_LAST_U32 - i]); 1836 } 1837 } 1838 1839 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1840 { 1841 kernel_cap_t *perm = &name->fcap.permitted; 1842 kernel_cap_t *inh = &name->fcap.inheritable; 1843 int log = 0; 1844 1845 if (!cap_isclear(*perm)) { 1846 audit_log_cap(ab, "cap_fp", perm); 1847 log = 1; 1848 } 1849 if (!cap_isclear(*inh)) { 1850 audit_log_cap(ab, "cap_fi", inh); 1851 log = 1; 1852 } 1853 1854 if (log) 1855 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1856 name->fcap.fE, name->fcap_ver); 1857 } 1858 1859 static inline int audit_copy_fcaps(struct audit_names *name, 1860 const struct dentry *dentry) 1861 { 1862 struct cpu_vfs_cap_data caps; 1863 int rc; 1864 1865 if (!dentry) 1866 return 0; 1867 1868 rc = get_vfs_caps_from_disk(dentry, &caps); 1869 if (rc) 1870 return rc; 1871 1872 name->fcap.permitted = caps.permitted; 1873 name->fcap.inheritable = caps.inheritable; 1874 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1875 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1876 VFS_CAP_REVISION_SHIFT; 1877 1878 return 0; 1879 } 1880 1881 /* Copy inode data into an audit_names. */ 1882 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1883 struct inode *inode) 1884 { 1885 name->ino = inode->i_ino; 1886 name->dev = inode->i_sb->s_dev; 1887 name->mode = inode->i_mode; 1888 name->uid = inode->i_uid; 1889 name->gid = inode->i_gid; 1890 name->rdev = inode->i_rdev; 1891 security_inode_getsecid(inode, &name->osid); 1892 audit_copy_fcaps(name, dentry); 1893 } 1894 1895 /** 1896 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1897 * @context: audit_context for the task 1898 * @n: audit_names structure with reportable details 1899 * @path: optional path to report instead of audit_names->name 1900 * @record_num: record number to report when handling a list of names 1901 * @call_panic: optional pointer to int that will be updated if secid fails 1902 */ 1903 void audit_log_name(struct audit_context *context, struct audit_names *n, 1904 const struct path *path, int record_num, int *call_panic) 1905 { 1906 struct audit_buffer *ab; 1907 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1908 if (!ab) 1909 return; 1910 1911 audit_log_format(ab, "item=%d", record_num); 1912 1913 if (path) 1914 audit_log_d_path(ab, " name=", path); 1915 else if (n->name) { 1916 switch (n->name_len) { 1917 case AUDIT_NAME_FULL: 1918 /* log the full path */ 1919 audit_log_format(ab, " name="); 1920 audit_log_untrustedstring(ab, n->name->name); 1921 break; 1922 case 0: 1923 /* name was specified as a relative path and the 1924 * directory component is the cwd */ 1925 audit_log_d_path(ab, " name=", &context->pwd); 1926 break; 1927 default: 1928 /* log the name's directory component */ 1929 audit_log_format(ab, " name="); 1930 audit_log_n_untrustedstring(ab, n->name->name, 1931 n->name_len); 1932 } 1933 } else 1934 audit_log_format(ab, " name=(null)"); 1935 1936 if (n->ino != AUDIT_INO_UNSET) 1937 audit_log_format(ab, " inode=%lu" 1938 " dev=%02x:%02x mode=%#ho" 1939 " ouid=%u ogid=%u rdev=%02x:%02x", 1940 n->ino, 1941 MAJOR(n->dev), 1942 MINOR(n->dev), 1943 n->mode, 1944 from_kuid(&init_user_ns, n->uid), 1945 from_kgid(&init_user_ns, n->gid), 1946 MAJOR(n->rdev), 1947 MINOR(n->rdev)); 1948 if (n->osid != 0) { 1949 char *ctx = NULL; 1950 u32 len; 1951 if (security_secid_to_secctx( 1952 n->osid, &ctx, &len)) { 1953 audit_log_format(ab, " osid=%u", n->osid); 1954 if (call_panic) 1955 *call_panic = 2; 1956 } else { 1957 audit_log_format(ab, " obj=%s", ctx); 1958 security_release_secctx(ctx, len); 1959 } 1960 } 1961 1962 /* log the audit_names record type */ 1963 audit_log_format(ab, " nametype="); 1964 switch(n->type) { 1965 case AUDIT_TYPE_NORMAL: 1966 audit_log_format(ab, "NORMAL"); 1967 break; 1968 case AUDIT_TYPE_PARENT: 1969 audit_log_format(ab, "PARENT"); 1970 break; 1971 case AUDIT_TYPE_CHILD_DELETE: 1972 audit_log_format(ab, "DELETE"); 1973 break; 1974 case AUDIT_TYPE_CHILD_CREATE: 1975 audit_log_format(ab, "CREATE"); 1976 break; 1977 default: 1978 audit_log_format(ab, "UNKNOWN"); 1979 break; 1980 } 1981 1982 audit_log_fcaps(ab, n); 1983 audit_log_end(ab); 1984 } 1985 1986 int audit_log_task_context(struct audit_buffer *ab) 1987 { 1988 char *ctx = NULL; 1989 unsigned len; 1990 int error; 1991 u32 sid; 1992 1993 security_task_getsecid(current, &sid); 1994 if (!sid) 1995 return 0; 1996 1997 error = security_secid_to_secctx(sid, &ctx, &len); 1998 if (error) { 1999 if (error != -EINVAL) 2000 goto error_path; 2001 return 0; 2002 } 2003 2004 audit_log_format(ab, " subj=%s", ctx); 2005 security_release_secctx(ctx, len); 2006 return 0; 2007 2008 error_path: 2009 audit_panic("error in audit_log_task_context"); 2010 return error; 2011 } 2012 EXPORT_SYMBOL(audit_log_task_context); 2013 2014 void audit_log_d_path_exe(struct audit_buffer *ab, 2015 struct mm_struct *mm) 2016 { 2017 struct file *exe_file; 2018 2019 if (!mm) 2020 goto out_null; 2021 2022 exe_file = get_mm_exe_file(mm); 2023 if (!exe_file) 2024 goto out_null; 2025 2026 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2027 fput(exe_file); 2028 return; 2029 out_null: 2030 audit_log_format(ab, " exe=(null)"); 2031 } 2032 2033 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2034 { 2035 struct tty_struct *tty = NULL; 2036 unsigned long flags; 2037 2038 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2039 if (tsk->signal) 2040 tty = tty_kref_get(tsk->signal->tty); 2041 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2042 return tty; 2043 } 2044 2045 void audit_put_tty(struct tty_struct *tty) 2046 { 2047 tty_kref_put(tty); 2048 } 2049 2050 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2051 { 2052 const struct cred *cred; 2053 char comm[sizeof(tsk->comm)]; 2054 struct tty_struct *tty; 2055 2056 if (!ab) 2057 return; 2058 2059 /* tsk == current */ 2060 cred = current_cred(); 2061 tty = audit_get_tty(tsk); 2062 audit_log_format(ab, 2063 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2064 " euid=%u suid=%u fsuid=%u" 2065 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2066 task_ppid_nr(tsk), 2067 task_tgid_nr(tsk), 2068 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2069 from_kuid(&init_user_ns, cred->uid), 2070 from_kgid(&init_user_ns, cred->gid), 2071 from_kuid(&init_user_ns, cred->euid), 2072 from_kuid(&init_user_ns, cred->suid), 2073 from_kuid(&init_user_ns, cred->fsuid), 2074 from_kgid(&init_user_ns, cred->egid), 2075 from_kgid(&init_user_ns, cred->sgid), 2076 from_kgid(&init_user_ns, cred->fsgid), 2077 tty ? tty_name(tty) : "(none)", 2078 audit_get_sessionid(tsk)); 2079 audit_put_tty(tty); 2080 audit_log_format(ab, " comm="); 2081 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2082 audit_log_d_path_exe(ab, tsk->mm); 2083 audit_log_task_context(ab); 2084 } 2085 EXPORT_SYMBOL(audit_log_task_info); 2086 2087 /** 2088 * audit_log_link_denied - report a link restriction denial 2089 * @operation: specific link operation 2090 * @link: the path that triggered the restriction 2091 */ 2092 void audit_log_link_denied(const char *operation, const struct path *link) 2093 { 2094 struct audit_buffer *ab; 2095 struct audit_names *name; 2096 2097 name = kzalloc(sizeof(*name), GFP_NOFS); 2098 if (!name) 2099 return; 2100 2101 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2102 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2103 AUDIT_ANOM_LINK); 2104 if (!ab) 2105 goto out; 2106 audit_log_format(ab, "op=%s", operation); 2107 audit_log_task_info(ab, current); 2108 audit_log_format(ab, " res=0"); 2109 audit_log_end(ab); 2110 2111 /* Generate AUDIT_PATH record with object. */ 2112 name->type = AUDIT_TYPE_NORMAL; 2113 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2114 audit_log_name(current->audit_context, name, link, 0, NULL); 2115 out: 2116 kfree(name); 2117 } 2118 2119 /** 2120 * audit_log_end - end one audit record 2121 * @ab: the audit_buffer 2122 * 2123 * We can not do a netlink send inside an irq context because it blocks (last 2124 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2125 * queue and a tasklet is scheduled to remove them from the queue outside the 2126 * irq context. May be called in any context. 2127 */ 2128 void audit_log_end(struct audit_buffer *ab) 2129 { 2130 if (!ab) 2131 return; 2132 if (!audit_rate_check()) { 2133 audit_log_lost("rate limit exceeded"); 2134 } else { 2135 skb_queue_tail(&audit_queue, ab->skb); 2136 wake_up_interruptible(&kauditd_wait); 2137 ab->skb = NULL; 2138 } 2139 audit_buffer_free(ab); 2140 } 2141 2142 /** 2143 * audit_log - Log an audit record 2144 * @ctx: audit context 2145 * @gfp_mask: type of allocation 2146 * @type: audit message type 2147 * @fmt: format string to use 2148 * @...: variable parameters matching the format string 2149 * 2150 * This is a convenience function that calls audit_log_start, 2151 * audit_log_vformat, and audit_log_end. It may be called 2152 * in any context. 2153 */ 2154 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2155 const char *fmt, ...) 2156 { 2157 struct audit_buffer *ab; 2158 va_list args; 2159 2160 ab = audit_log_start(ctx, gfp_mask, type); 2161 if (ab) { 2162 va_start(args, fmt); 2163 audit_log_vformat(ab, fmt, args); 2164 va_end(args); 2165 audit_log_end(ab); 2166 } 2167 } 2168 2169 #ifdef CONFIG_SECURITY 2170 /** 2171 * audit_log_secctx - Converts and logs SELinux context 2172 * @ab: audit_buffer 2173 * @secid: security number 2174 * 2175 * This is a helper function that calls security_secid_to_secctx to convert 2176 * secid to secctx and then adds the (converted) SELinux context to the audit 2177 * log by calling audit_log_format, thus also preventing leak of internal secid 2178 * to userspace. If secid cannot be converted audit_panic is called. 2179 */ 2180 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2181 { 2182 u32 len; 2183 char *secctx; 2184 2185 if (security_secid_to_secctx(secid, &secctx, &len)) { 2186 audit_panic("Cannot convert secid to context"); 2187 } else { 2188 audit_log_format(ab, " obj=%s", secctx); 2189 security_release_secctx(secctx, len); 2190 } 2191 } 2192 EXPORT_SYMBOL(audit_log_secctx); 2193 #endif 2194 2195 EXPORT_SYMBOL(audit_log_start); 2196 EXPORT_SYMBOL(audit_log_end); 2197 EXPORT_SYMBOL(audit_log_format); 2198 EXPORT_SYMBOL(audit_log); 2199