xref: /openbmc/linux/kernel/audit.c (revision a2fb4d78)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/init.h>
47 #include <asm/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56 
57 #include <linux/audit.h>
58 
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_overflow = 0;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	struct net *net;
186 	struct sk_buff *skb;
187 };
188 
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time, timeout);
342 }
343 
344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded\n");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	/* take a reference in case we can't send it and we want to hold it */
409 	skb_get(skb);
410 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 	if (err < 0) {
412 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 		if (audit_pid) {
414 			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 			audit_log_lost("auditd disappeared\n");
416 			audit_pid = 0;
417 			audit_sock = NULL;
418 		}
419 		/* we might get lucky and get this in the next auditd */
420 		audit_hold_skb(skb);
421 	} else
422 		/* drop the extra reference if sent ok */
423 		consume_skb(skb);
424 }
425 
426 /*
427  * flush_hold_queue - empty the hold queue if auditd appears
428  *
429  * If auditd just started, drain the queue of messages already
430  * sent to syslog/printk.  Remember loss here is ok.  We already
431  * called audit_log_lost() if it didn't go out normally.  so the
432  * race between the skb_dequeue and the next check for audit_pid
433  * doesn't matter.
434  *
435  * If you ever find kauditd to be too slow we can get a perf win
436  * by doing our own locking and keeping better track if there
437  * are messages in this queue.  I don't see the need now, but
438  * in 5 years when I want to play with this again I'll see this
439  * note and still have no friggin idea what i'm thinking today.
440  */
441 static void flush_hold_queue(void)
442 {
443 	struct sk_buff *skb;
444 
445 	if (!audit_default || !audit_pid)
446 		return;
447 
448 	skb = skb_dequeue(&audit_skb_hold_queue);
449 	if (likely(!skb))
450 		return;
451 
452 	while (skb && audit_pid) {
453 		kauditd_send_skb(skb);
454 		skb = skb_dequeue(&audit_skb_hold_queue);
455 	}
456 
457 	/*
458 	 * if auditd just disappeared but we
459 	 * dequeued an skb we need to drop ref
460 	 */
461 	if (skb)
462 		consume_skb(skb);
463 }
464 
465 static int kauditd_thread(void *dummy)
466 {
467 	set_freezable();
468 	while (!kthread_should_stop()) {
469 		struct sk_buff *skb;
470 		DECLARE_WAITQUEUE(wait, current);
471 
472 		flush_hold_queue();
473 
474 		skb = skb_dequeue(&audit_skb_queue);
475 
476 		if (skb) {
477 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 				wake_up(&audit_backlog_wait);
479 			if (audit_pid)
480 				kauditd_send_skb(skb);
481 			else
482 				audit_printk_skb(skb);
483 			continue;
484 		}
485 		set_current_state(TASK_INTERRUPTIBLE);
486 		add_wait_queue(&kauditd_wait, &wait);
487 
488 		if (!skb_queue_len(&audit_skb_queue)) {
489 			try_to_freeze();
490 			schedule();
491 		}
492 
493 		__set_current_state(TASK_RUNNING);
494 		remove_wait_queue(&kauditd_wait, &wait);
495 	}
496 	return 0;
497 }
498 
499 int audit_send_list(void *_dest)
500 {
501 	struct audit_netlink_list *dest = _dest;
502 	struct sk_buff *skb;
503 	struct net *net = dest->net;
504 	struct audit_net *aunet = net_generic(net, audit_net_id);
505 
506 	/* wait for parent to finish and send an ACK */
507 	mutex_lock(&audit_cmd_mutex);
508 	mutex_unlock(&audit_cmd_mutex);
509 
510 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512 
513 	put_net(net);
514 	kfree(dest);
515 
516 	return 0;
517 }
518 
519 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
520 				 int multi, const void *payload, int size)
521 {
522 	struct sk_buff	*skb;
523 	struct nlmsghdr	*nlh;
524 	void		*data;
525 	int		flags = multi ? NLM_F_MULTI : 0;
526 	int		t     = done  ? NLMSG_DONE  : type;
527 
528 	skb = nlmsg_new(size, GFP_KERNEL);
529 	if (!skb)
530 		return NULL;
531 
532 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
533 	if (!nlh)
534 		goto out_kfree_skb;
535 	data = nlmsg_data(nlh);
536 	memcpy(data, payload, size);
537 	return skb;
538 
539 out_kfree_skb:
540 	kfree_skb(skb);
541 	return NULL;
542 }
543 
544 static int audit_send_reply_thread(void *arg)
545 {
546 	struct audit_reply *reply = (struct audit_reply *)arg;
547 	struct net *net = reply->net;
548 	struct audit_net *aunet = net_generic(net, audit_net_id);
549 
550 	mutex_lock(&audit_cmd_mutex);
551 	mutex_unlock(&audit_cmd_mutex);
552 
553 	/* Ignore failure. It'll only happen if the sender goes away,
554 	   because our timeout is set to infinite. */
555 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
556 	put_net(net);
557 	kfree(reply);
558 	return 0;
559 }
560 /**
561  * audit_send_reply - send an audit reply message via netlink
562  * @request_skb: skb of request we are replying to (used to target the reply)
563  * @seq: sequence number
564  * @type: audit message type
565  * @done: done (last) flag
566  * @multi: multi-part message flag
567  * @payload: payload data
568  * @size: payload size
569  *
570  * Allocates an skb, builds the netlink message, and sends it to the port id.
571  * No failure notifications.
572  */
573 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
574 			     int multi, const void *payload, int size)
575 {
576 	u32 portid = NETLINK_CB(request_skb).portid;
577 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
578 	struct sk_buff *skb;
579 	struct task_struct *tsk;
580 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
581 					    GFP_KERNEL);
582 
583 	if (!reply)
584 		return;
585 
586 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
587 	if (!skb)
588 		goto out;
589 
590 	reply->net = get_net(net);
591 	reply->portid = portid;
592 	reply->skb = skb;
593 
594 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
595 	if (!IS_ERR(tsk))
596 		return;
597 	kfree_skb(skb);
598 out:
599 	kfree(reply);
600 }
601 
602 /*
603  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
604  * control messages.
605  */
606 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
607 {
608 	int err = 0;
609 
610 	/* Only support the initial namespaces for now. */
611 	if ((current_user_ns() != &init_user_ns) ||
612 	    (task_active_pid_ns(current) != &init_pid_ns))
613 		return -EPERM;
614 
615 	switch (msg_type) {
616 	case AUDIT_LIST:
617 	case AUDIT_ADD:
618 	case AUDIT_DEL:
619 		return -EOPNOTSUPP;
620 	case AUDIT_GET:
621 	case AUDIT_SET:
622 	case AUDIT_GET_FEATURE:
623 	case AUDIT_SET_FEATURE:
624 	case AUDIT_LIST_RULES:
625 	case AUDIT_ADD_RULE:
626 	case AUDIT_DEL_RULE:
627 	case AUDIT_SIGNAL_INFO:
628 	case AUDIT_TTY_GET:
629 	case AUDIT_TTY_SET:
630 	case AUDIT_TRIM:
631 	case AUDIT_MAKE_EQUIV:
632 		if (!capable(CAP_AUDIT_CONTROL))
633 			err = -EPERM;
634 		break;
635 	case AUDIT_USER:
636 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
637 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
638 		if (!capable(CAP_AUDIT_WRITE))
639 			err = -EPERM;
640 		break;
641 	default:  /* bad msg */
642 		err = -EINVAL;
643 	}
644 
645 	return err;
646 }
647 
648 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
649 {
650 	int rc = 0;
651 	uid_t uid = from_kuid(&init_user_ns, current_uid());
652 
653 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
654 		*ab = NULL;
655 		return rc;
656 	}
657 
658 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
659 	if (unlikely(!*ab))
660 		return rc;
661 	audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
662 	audit_log_session_info(*ab);
663 	audit_log_task_context(*ab);
664 
665 	return rc;
666 }
667 
668 int is_audit_feature_set(int i)
669 {
670 	return af.features & AUDIT_FEATURE_TO_MASK(i);
671 }
672 
673 
674 static int audit_get_feature(struct sk_buff *skb)
675 {
676 	u32 seq;
677 
678 	seq = nlmsg_hdr(skb)->nlmsg_seq;
679 
680 	audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
681 
682 	return 0;
683 }
684 
685 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
686 				     u32 old_lock, u32 new_lock, int res)
687 {
688 	struct audit_buffer *ab;
689 
690 	if (audit_enabled == AUDIT_OFF)
691 		return;
692 
693 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
694 	audit_log_task_info(ab, current);
695 	audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
696 			 audit_feature_names[which], !!old_feature, !!new_feature,
697 			 !!old_lock, !!new_lock, res);
698 	audit_log_end(ab);
699 }
700 
701 static int audit_set_feature(struct sk_buff *skb)
702 {
703 	struct audit_features *uaf;
704 	int i;
705 
706 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
707 	uaf = nlmsg_data(nlmsg_hdr(skb));
708 
709 	/* if there is ever a version 2 we should handle that here */
710 
711 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
712 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
713 		u32 old_feature, new_feature, old_lock, new_lock;
714 
715 		/* if we are not changing this feature, move along */
716 		if (!(feature & uaf->mask))
717 			continue;
718 
719 		old_feature = af.features & feature;
720 		new_feature = uaf->features & feature;
721 		new_lock = (uaf->lock | af.lock) & feature;
722 		old_lock = af.lock & feature;
723 
724 		/* are we changing a locked feature? */
725 		if (old_lock && (new_feature != old_feature)) {
726 			audit_log_feature_change(i, old_feature, new_feature,
727 						 old_lock, new_lock, 0);
728 			return -EPERM;
729 		}
730 	}
731 	/* nothing invalid, do the changes */
732 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
733 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
734 		u32 old_feature, new_feature, old_lock, new_lock;
735 
736 		/* if we are not changing this feature, move along */
737 		if (!(feature & uaf->mask))
738 			continue;
739 
740 		old_feature = af.features & feature;
741 		new_feature = uaf->features & feature;
742 		old_lock = af.lock & feature;
743 		new_lock = (uaf->lock | af.lock) & feature;
744 
745 		if (new_feature != old_feature)
746 			audit_log_feature_change(i, old_feature, new_feature,
747 						 old_lock, new_lock, 1);
748 
749 		if (new_feature)
750 			af.features |= feature;
751 		else
752 			af.features &= ~feature;
753 		af.lock |= new_lock;
754 	}
755 
756 	return 0;
757 }
758 
759 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
760 {
761 	u32			seq;
762 	void			*data;
763 	int			err;
764 	struct audit_buffer	*ab;
765 	u16			msg_type = nlh->nlmsg_type;
766 	struct audit_sig_info   *sig_data;
767 	char			*ctx = NULL;
768 	u32			len;
769 
770 	err = audit_netlink_ok(skb, msg_type);
771 	if (err)
772 		return err;
773 
774 	/* As soon as there's any sign of userspace auditd,
775 	 * start kauditd to talk to it */
776 	if (!kauditd_task) {
777 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
778 		if (IS_ERR(kauditd_task)) {
779 			err = PTR_ERR(kauditd_task);
780 			kauditd_task = NULL;
781 			return err;
782 		}
783 	}
784 	seq  = nlh->nlmsg_seq;
785 	data = nlmsg_data(nlh);
786 
787 	switch (msg_type) {
788 	case AUDIT_GET: {
789 		struct audit_status	s;
790 		memset(&s, 0, sizeof(s));
791 		s.enabled		= audit_enabled;
792 		s.failure		= audit_failure;
793 		s.pid			= audit_pid;
794 		s.rate_limit		= audit_rate_limit;
795 		s.backlog_limit		= audit_backlog_limit;
796 		s.lost			= atomic_read(&audit_lost);
797 		s.backlog		= skb_queue_len(&audit_skb_queue);
798 		s.version		= AUDIT_VERSION_LATEST;
799 		s.backlog_wait_time	= audit_backlog_wait_time;
800 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
801 		break;
802 	}
803 	case AUDIT_SET: {
804 		struct audit_status	s;
805 		memset(&s, 0, sizeof(s));
806 		/* guard against past and future API changes */
807 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
808 		if (s.mask & AUDIT_STATUS_ENABLED) {
809 			err = audit_set_enabled(s.enabled);
810 			if (err < 0)
811 				return err;
812 		}
813 		if (s.mask & AUDIT_STATUS_FAILURE) {
814 			err = audit_set_failure(s.failure);
815 			if (err < 0)
816 				return err;
817 		}
818 		if (s.mask & AUDIT_STATUS_PID) {
819 			int new_pid = s.pid;
820 
821 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
822 				return -EACCES;
823 			if (audit_enabled != AUDIT_OFF)
824 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
825 			audit_pid = new_pid;
826 			audit_nlk_portid = NETLINK_CB(skb).portid;
827 			audit_sock = skb->sk;
828 		}
829 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
830 			err = audit_set_rate_limit(s.rate_limit);
831 			if (err < 0)
832 				return err;
833 		}
834 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
835 			err = audit_set_backlog_limit(s.backlog_limit);
836 			if (err < 0)
837 				return err;
838 		}
839 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
840 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
841 				return -EINVAL;
842 			if (s.backlog_wait_time < 0 ||
843 			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
844 				return -EINVAL;
845 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
846 			if (err < 0)
847 				return err;
848 		}
849 		break;
850 	}
851 	case AUDIT_GET_FEATURE:
852 		err = audit_get_feature(skb);
853 		if (err)
854 			return err;
855 		break;
856 	case AUDIT_SET_FEATURE:
857 		err = audit_set_feature(skb);
858 		if (err)
859 			return err;
860 		break;
861 	case AUDIT_USER:
862 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
863 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
864 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
865 			return 0;
866 
867 		err = audit_filter_user(msg_type);
868 		if (err == 1) { /* match or error */
869 			err = 0;
870 			if (msg_type == AUDIT_USER_TTY) {
871 				err = tty_audit_push_current();
872 				if (err)
873 					break;
874 			}
875 			mutex_unlock(&audit_cmd_mutex);
876 			audit_log_common_recv_msg(&ab, msg_type);
877 			if (msg_type != AUDIT_USER_TTY)
878 				audit_log_format(ab, " msg='%.*s'",
879 						 AUDIT_MESSAGE_TEXT_MAX,
880 						 (char *)data);
881 			else {
882 				int size;
883 
884 				audit_log_format(ab, " data=");
885 				size = nlmsg_len(nlh);
886 				if (size > 0 &&
887 				    ((unsigned char *)data)[size - 1] == '\0')
888 					size--;
889 				audit_log_n_untrustedstring(ab, data, size);
890 			}
891 			audit_set_portid(ab, NETLINK_CB(skb).portid);
892 			audit_log_end(ab);
893 			mutex_lock(&audit_cmd_mutex);
894 		}
895 		break;
896 	case AUDIT_ADD_RULE:
897 	case AUDIT_DEL_RULE:
898 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
899 			return -EINVAL;
900 		if (audit_enabled == AUDIT_LOCKED) {
901 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
902 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
903 			audit_log_end(ab);
904 			return -EPERM;
905 		}
906 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
907 					   seq, data, nlmsg_len(nlh));
908 		break;
909 	case AUDIT_LIST_RULES:
910 		err = audit_list_rules_send(skb, seq);
911 		break;
912 	case AUDIT_TRIM:
913 		audit_trim_trees();
914 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
915 		audit_log_format(ab, " op=trim res=1");
916 		audit_log_end(ab);
917 		break;
918 	case AUDIT_MAKE_EQUIV: {
919 		void *bufp = data;
920 		u32 sizes[2];
921 		size_t msglen = nlmsg_len(nlh);
922 		char *old, *new;
923 
924 		err = -EINVAL;
925 		if (msglen < 2 * sizeof(u32))
926 			break;
927 		memcpy(sizes, bufp, 2 * sizeof(u32));
928 		bufp += 2 * sizeof(u32);
929 		msglen -= 2 * sizeof(u32);
930 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
931 		if (IS_ERR(old)) {
932 			err = PTR_ERR(old);
933 			break;
934 		}
935 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
936 		if (IS_ERR(new)) {
937 			err = PTR_ERR(new);
938 			kfree(old);
939 			break;
940 		}
941 		/* OK, here comes... */
942 		err = audit_tag_tree(old, new);
943 
944 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
945 
946 		audit_log_format(ab, " op=make_equiv old=");
947 		audit_log_untrustedstring(ab, old);
948 		audit_log_format(ab, " new=");
949 		audit_log_untrustedstring(ab, new);
950 		audit_log_format(ab, " res=%d", !err);
951 		audit_log_end(ab);
952 		kfree(old);
953 		kfree(new);
954 		break;
955 	}
956 	case AUDIT_SIGNAL_INFO:
957 		len = 0;
958 		if (audit_sig_sid) {
959 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
960 			if (err)
961 				return err;
962 		}
963 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
964 		if (!sig_data) {
965 			if (audit_sig_sid)
966 				security_release_secctx(ctx, len);
967 			return -ENOMEM;
968 		}
969 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
970 		sig_data->pid = audit_sig_pid;
971 		if (audit_sig_sid) {
972 			memcpy(sig_data->ctx, ctx, len);
973 			security_release_secctx(ctx, len);
974 		}
975 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
976 				 sig_data, sizeof(*sig_data) + len);
977 		kfree(sig_data);
978 		break;
979 	case AUDIT_TTY_GET: {
980 		struct audit_tty_status s;
981 		struct task_struct *tsk = current;
982 
983 		spin_lock(&tsk->sighand->siglock);
984 		s.enabled = tsk->signal->audit_tty;
985 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
986 		spin_unlock(&tsk->sighand->siglock);
987 
988 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
989 		break;
990 	}
991 	case AUDIT_TTY_SET: {
992 		struct audit_tty_status s, old;
993 		struct task_struct *tsk = current;
994 		struct audit_buffer	*ab;
995 
996 		memset(&s, 0, sizeof(s));
997 		/* guard against past and future API changes */
998 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
999 		/* check if new data is valid */
1000 		if ((s.enabled != 0 && s.enabled != 1) ||
1001 		    (s.log_passwd != 0 && s.log_passwd != 1))
1002 			err = -EINVAL;
1003 
1004 		spin_lock(&tsk->sighand->siglock);
1005 		old.enabled = tsk->signal->audit_tty;
1006 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1007 		if (!err) {
1008 			tsk->signal->audit_tty = s.enabled;
1009 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1010 		}
1011 		spin_unlock(&tsk->sighand->siglock);
1012 
1013 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1014 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1015 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1016 				 old.enabled, s.enabled, old.log_passwd,
1017 				 s.log_passwd, !err);
1018 		audit_log_end(ab);
1019 		break;
1020 	}
1021 	default:
1022 		err = -EINVAL;
1023 		break;
1024 	}
1025 
1026 	return err < 0 ? err : 0;
1027 }
1028 
1029 /*
1030  * Get message from skb.  Each message is processed by audit_receive_msg.
1031  * Malformed skbs with wrong length are discarded silently.
1032  */
1033 static void audit_receive_skb(struct sk_buff *skb)
1034 {
1035 	struct nlmsghdr *nlh;
1036 	/*
1037 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1038 	 * if the nlmsg_len was not aligned
1039 	 */
1040 	int len;
1041 	int err;
1042 
1043 	nlh = nlmsg_hdr(skb);
1044 	len = skb->len;
1045 
1046 	while (nlmsg_ok(nlh, len)) {
1047 		err = audit_receive_msg(skb, nlh);
1048 		/* if err or if this message says it wants a response */
1049 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1050 			netlink_ack(skb, nlh, err);
1051 
1052 		nlh = nlmsg_next(nlh, &len);
1053 	}
1054 }
1055 
1056 /* Receive messages from netlink socket. */
1057 static void audit_receive(struct sk_buff  *skb)
1058 {
1059 	mutex_lock(&audit_cmd_mutex);
1060 	audit_receive_skb(skb);
1061 	mutex_unlock(&audit_cmd_mutex);
1062 }
1063 
1064 static int __net_init audit_net_init(struct net *net)
1065 {
1066 	struct netlink_kernel_cfg cfg = {
1067 		.input	= audit_receive,
1068 	};
1069 
1070 	struct audit_net *aunet = net_generic(net, audit_net_id);
1071 
1072 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1073 	if (aunet->nlsk == NULL) {
1074 		audit_panic("cannot initialize netlink socket in namespace");
1075 		return -ENOMEM;
1076 	}
1077 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1078 	return 0;
1079 }
1080 
1081 static void __net_exit audit_net_exit(struct net *net)
1082 {
1083 	struct audit_net *aunet = net_generic(net, audit_net_id);
1084 	struct sock *sock = aunet->nlsk;
1085 	if (sock == audit_sock) {
1086 		audit_pid = 0;
1087 		audit_sock = NULL;
1088 	}
1089 
1090 	rcu_assign_pointer(aunet->nlsk, NULL);
1091 	synchronize_net();
1092 	netlink_kernel_release(sock);
1093 }
1094 
1095 static struct pernet_operations audit_net_ops __net_initdata = {
1096 	.init = audit_net_init,
1097 	.exit = audit_net_exit,
1098 	.id = &audit_net_id,
1099 	.size = sizeof(struct audit_net),
1100 };
1101 
1102 /* Initialize audit support at boot time. */
1103 static int __init audit_init(void)
1104 {
1105 	int i;
1106 
1107 	if (audit_initialized == AUDIT_DISABLED)
1108 		return 0;
1109 
1110 	pr_info("initializing netlink subsys (%s)\n",
1111 		audit_default ? "enabled" : "disabled");
1112 	register_pernet_subsys(&audit_net_ops);
1113 
1114 	skb_queue_head_init(&audit_skb_queue);
1115 	skb_queue_head_init(&audit_skb_hold_queue);
1116 	audit_initialized = AUDIT_INITIALIZED;
1117 	audit_enabled = audit_default;
1118 	audit_ever_enabled |= !!audit_default;
1119 
1120 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1121 
1122 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1123 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1124 
1125 	return 0;
1126 }
1127 __initcall(audit_init);
1128 
1129 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1130 static int __init audit_enable(char *str)
1131 {
1132 	audit_default = !!simple_strtol(str, NULL, 0);
1133 	if (!audit_default)
1134 		audit_initialized = AUDIT_DISABLED;
1135 
1136 	pr_info("%s\n", audit_default ?
1137 		"enabled (after initialization)" : "disabled (until reboot)");
1138 
1139 	return 1;
1140 }
1141 __setup("audit=", audit_enable);
1142 
1143 /* Process kernel command-line parameter at boot time.
1144  * audit_backlog_limit=<n> */
1145 static int __init audit_backlog_limit_set(char *str)
1146 {
1147 	u32 audit_backlog_limit_arg;
1148 
1149 	pr_info("audit_backlog_limit: ");
1150 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1151 		pr_cont("using default of %u, unable to parse %s\n",
1152 			audit_backlog_limit, str);
1153 		return 1;
1154 	}
1155 
1156 	audit_backlog_limit = audit_backlog_limit_arg;
1157 	pr_cont("%d\n", audit_backlog_limit);
1158 
1159 	return 1;
1160 }
1161 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1162 
1163 static void audit_buffer_free(struct audit_buffer *ab)
1164 {
1165 	unsigned long flags;
1166 
1167 	if (!ab)
1168 		return;
1169 
1170 	if (ab->skb)
1171 		kfree_skb(ab->skb);
1172 
1173 	spin_lock_irqsave(&audit_freelist_lock, flags);
1174 	if (audit_freelist_count > AUDIT_MAXFREE)
1175 		kfree(ab);
1176 	else {
1177 		audit_freelist_count++;
1178 		list_add(&ab->list, &audit_freelist);
1179 	}
1180 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1181 }
1182 
1183 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1184 						gfp_t gfp_mask, int type)
1185 {
1186 	unsigned long flags;
1187 	struct audit_buffer *ab = NULL;
1188 	struct nlmsghdr *nlh;
1189 
1190 	spin_lock_irqsave(&audit_freelist_lock, flags);
1191 	if (!list_empty(&audit_freelist)) {
1192 		ab = list_entry(audit_freelist.next,
1193 				struct audit_buffer, list);
1194 		list_del(&ab->list);
1195 		--audit_freelist_count;
1196 	}
1197 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1198 
1199 	if (!ab) {
1200 		ab = kmalloc(sizeof(*ab), gfp_mask);
1201 		if (!ab)
1202 			goto err;
1203 	}
1204 
1205 	ab->ctx = ctx;
1206 	ab->gfp_mask = gfp_mask;
1207 
1208 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1209 	if (!ab->skb)
1210 		goto err;
1211 
1212 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1213 	if (!nlh)
1214 		goto out_kfree_skb;
1215 
1216 	return ab;
1217 
1218 out_kfree_skb:
1219 	kfree_skb(ab->skb);
1220 	ab->skb = NULL;
1221 err:
1222 	audit_buffer_free(ab);
1223 	return NULL;
1224 }
1225 
1226 /**
1227  * audit_serial - compute a serial number for the audit record
1228  *
1229  * Compute a serial number for the audit record.  Audit records are
1230  * written to user-space as soon as they are generated, so a complete
1231  * audit record may be written in several pieces.  The timestamp of the
1232  * record and this serial number are used by the user-space tools to
1233  * determine which pieces belong to the same audit record.  The
1234  * (timestamp,serial) tuple is unique for each syscall and is live from
1235  * syscall entry to syscall exit.
1236  *
1237  * NOTE: Another possibility is to store the formatted records off the
1238  * audit context (for those records that have a context), and emit them
1239  * all at syscall exit.  However, this could delay the reporting of
1240  * significant errors until syscall exit (or never, if the system
1241  * halts).
1242  */
1243 unsigned int audit_serial(void)
1244 {
1245 	static DEFINE_SPINLOCK(serial_lock);
1246 	static unsigned int serial = 0;
1247 
1248 	unsigned long flags;
1249 	unsigned int ret;
1250 
1251 	spin_lock_irqsave(&serial_lock, flags);
1252 	do {
1253 		ret = ++serial;
1254 	} while (unlikely(!ret));
1255 	spin_unlock_irqrestore(&serial_lock, flags);
1256 
1257 	return ret;
1258 }
1259 
1260 static inline void audit_get_stamp(struct audit_context *ctx,
1261 				   struct timespec *t, unsigned int *serial)
1262 {
1263 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1264 		*t = CURRENT_TIME;
1265 		*serial = audit_serial();
1266 	}
1267 }
1268 
1269 /*
1270  * Wait for auditd to drain the queue a little
1271  */
1272 static long wait_for_auditd(long sleep_time)
1273 {
1274 	DECLARE_WAITQUEUE(wait, current);
1275 	set_current_state(TASK_UNINTERRUPTIBLE);
1276 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1277 
1278 	if (audit_backlog_limit &&
1279 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1280 		sleep_time = schedule_timeout(sleep_time);
1281 
1282 	__set_current_state(TASK_RUNNING);
1283 	remove_wait_queue(&audit_backlog_wait, &wait);
1284 
1285 	return sleep_time;
1286 }
1287 
1288 /**
1289  * audit_log_start - obtain an audit buffer
1290  * @ctx: audit_context (may be NULL)
1291  * @gfp_mask: type of allocation
1292  * @type: audit message type
1293  *
1294  * Returns audit_buffer pointer on success or NULL on error.
1295  *
1296  * Obtain an audit buffer.  This routine does locking to obtain the
1297  * audit buffer, but then no locking is required for calls to
1298  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1299  * syscall, then the syscall is marked as auditable and an audit record
1300  * will be written at syscall exit.  If there is no associated task, then
1301  * task context (ctx) should be NULL.
1302  */
1303 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1304 				     int type)
1305 {
1306 	struct audit_buffer	*ab	= NULL;
1307 	struct timespec		t;
1308 	unsigned int		uninitialized_var(serial);
1309 	int reserve = 5; /* Allow atomic callers to go up to five
1310 			    entries over the normal backlog limit */
1311 	unsigned long timeout_start = jiffies;
1312 
1313 	if (audit_initialized != AUDIT_INITIALIZED)
1314 		return NULL;
1315 
1316 	if (unlikely(audit_filter_type(type)))
1317 		return NULL;
1318 
1319 	if (gfp_mask & __GFP_WAIT) {
1320 		if (audit_pid && audit_pid == current->pid)
1321 			gfp_mask &= ~__GFP_WAIT;
1322 		else
1323 			reserve = 0;
1324 	}
1325 
1326 	while (audit_backlog_limit
1327 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1328 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1329 			long sleep_time;
1330 
1331 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1332 			if (sleep_time > 0) {
1333 				sleep_time = wait_for_auditd(sleep_time);
1334 				if (sleep_time > 0)
1335 					continue;
1336 			}
1337 		}
1338 		if (audit_rate_check() && printk_ratelimit())
1339 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1340 				skb_queue_len(&audit_skb_queue),
1341 				audit_backlog_limit);
1342 		audit_log_lost("backlog limit exceeded");
1343 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1344 		wake_up(&audit_backlog_wait);
1345 		return NULL;
1346 	}
1347 
1348 	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1349 
1350 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1351 	if (!ab) {
1352 		audit_log_lost("out of memory in audit_log_start");
1353 		return NULL;
1354 	}
1355 
1356 	audit_get_stamp(ab->ctx, &t, &serial);
1357 
1358 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1359 			 t.tv_sec, t.tv_nsec/1000000, serial);
1360 	return ab;
1361 }
1362 
1363 /**
1364  * audit_expand - expand skb in the audit buffer
1365  * @ab: audit_buffer
1366  * @extra: space to add at tail of the skb
1367  *
1368  * Returns 0 (no space) on failed expansion, or available space if
1369  * successful.
1370  */
1371 static inline int audit_expand(struct audit_buffer *ab, int extra)
1372 {
1373 	struct sk_buff *skb = ab->skb;
1374 	int oldtail = skb_tailroom(skb);
1375 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1376 	int newtail = skb_tailroom(skb);
1377 
1378 	if (ret < 0) {
1379 		audit_log_lost("out of memory in audit_expand");
1380 		return 0;
1381 	}
1382 
1383 	skb->truesize += newtail - oldtail;
1384 	return newtail;
1385 }
1386 
1387 /*
1388  * Format an audit message into the audit buffer.  If there isn't enough
1389  * room in the audit buffer, more room will be allocated and vsnprint
1390  * will be called a second time.  Currently, we assume that a printk
1391  * can't format message larger than 1024 bytes, so we don't either.
1392  */
1393 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1394 			      va_list args)
1395 {
1396 	int len, avail;
1397 	struct sk_buff *skb;
1398 	va_list args2;
1399 
1400 	if (!ab)
1401 		return;
1402 
1403 	BUG_ON(!ab->skb);
1404 	skb = ab->skb;
1405 	avail = skb_tailroom(skb);
1406 	if (avail == 0) {
1407 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1408 		if (!avail)
1409 			goto out;
1410 	}
1411 	va_copy(args2, args);
1412 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1413 	if (len >= avail) {
1414 		/* The printk buffer is 1024 bytes long, so if we get
1415 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1416 		 * log everything that printk could have logged. */
1417 		avail = audit_expand(ab,
1418 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1419 		if (!avail)
1420 			goto out_va_end;
1421 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1422 	}
1423 	if (len > 0)
1424 		skb_put(skb, len);
1425 out_va_end:
1426 	va_end(args2);
1427 out:
1428 	return;
1429 }
1430 
1431 /**
1432  * audit_log_format - format a message into the audit buffer.
1433  * @ab: audit_buffer
1434  * @fmt: format string
1435  * @...: optional parameters matching @fmt string
1436  *
1437  * All the work is done in audit_log_vformat.
1438  */
1439 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1440 {
1441 	va_list args;
1442 
1443 	if (!ab)
1444 		return;
1445 	va_start(args, fmt);
1446 	audit_log_vformat(ab, fmt, args);
1447 	va_end(args);
1448 }
1449 
1450 /**
1451  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1452  * @ab: the audit_buffer
1453  * @buf: buffer to convert to hex
1454  * @len: length of @buf to be converted
1455  *
1456  * No return value; failure to expand is silently ignored.
1457  *
1458  * This function will take the passed buf and convert it into a string of
1459  * ascii hex digits. The new string is placed onto the skb.
1460  */
1461 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1462 		size_t len)
1463 {
1464 	int i, avail, new_len;
1465 	unsigned char *ptr;
1466 	struct sk_buff *skb;
1467 
1468 	if (!ab)
1469 		return;
1470 
1471 	BUG_ON(!ab->skb);
1472 	skb = ab->skb;
1473 	avail = skb_tailroom(skb);
1474 	new_len = len<<1;
1475 	if (new_len >= avail) {
1476 		/* Round the buffer request up to the next multiple */
1477 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1478 		avail = audit_expand(ab, new_len);
1479 		if (!avail)
1480 			return;
1481 	}
1482 
1483 	ptr = skb_tail_pointer(skb);
1484 	for (i = 0; i < len; i++)
1485 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1486 	*ptr = 0;
1487 	skb_put(skb, len << 1); /* new string is twice the old string */
1488 }
1489 
1490 /*
1491  * Format a string of no more than slen characters into the audit buffer,
1492  * enclosed in quote marks.
1493  */
1494 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1495 			size_t slen)
1496 {
1497 	int avail, new_len;
1498 	unsigned char *ptr;
1499 	struct sk_buff *skb;
1500 
1501 	if (!ab)
1502 		return;
1503 
1504 	BUG_ON(!ab->skb);
1505 	skb = ab->skb;
1506 	avail = skb_tailroom(skb);
1507 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1508 	if (new_len > avail) {
1509 		avail = audit_expand(ab, new_len);
1510 		if (!avail)
1511 			return;
1512 	}
1513 	ptr = skb_tail_pointer(skb);
1514 	*ptr++ = '"';
1515 	memcpy(ptr, string, slen);
1516 	ptr += slen;
1517 	*ptr++ = '"';
1518 	*ptr = 0;
1519 	skb_put(skb, slen + 2);	/* don't include null terminator */
1520 }
1521 
1522 /**
1523  * audit_string_contains_control - does a string need to be logged in hex
1524  * @string: string to be checked
1525  * @len: max length of the string to check
1526  */
1527 int audit_string_contains_control(const char *string, size_t len)
1528 {
1529 	const unsigned char *p;
1530 	for (p = string; p < (const unsigned char *)string + len; p++) {
1531 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1532 			return 1;
1533 	}
1534 	return 0;
1535 }
1536 
1537 /**
1538  * audit_log_n_untrustedstring - log a string that may contain random characters
1539  * @ab: audit_buffer
1540  * @len: length of string (not including trailing null)
1541  * @string: string to be logged
1542  *
1543  * This code will escape a string that is passed to it if the string
1544  * contains a control character, unprintable character, double quote mark,
1545  * or a space. Unescaped strings will start and end with a double quote mark.
1546  * Strings that are escaped are printed in hex (2 digits per char).
1547  *
1548  * The caller specifies the number of characters in the string to log, which may
1549  * or may not be the entire string.
1550  */
1551 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1552 				 size_t len)
1553 {
1554 	if (audit_string_contains_control(string, len))
1555 		audit_log_n_hex(ab, string, len);
1556 	else
1557 		audit_log_n_string(ab, string, len);
1558 }
1559 
1560 /**
1561  * audit_log_untrustedstring - log a string that may contain random characters
1562  * @ab: audit_buffer
1563  * @string: string to be logged
1564  *
1565  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1566  * determine string length.
1567  */
1568 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1569 {
1570 	audit_log_n_untrustedstring(ab, string, strlen(string));
1571 }
1572 
1573 /* This is a helper-function to print the escaped d_path */
1574 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1575 		      const struct path *path)
1576 {
1577 	char *p, *pathname;
1578 
1579 	if (prefix)
1580 		audit_log_format(ab, "%s", prefix);
1581 
1582 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1583 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1584 	if (!pathname) {
1585 		audit_log_string(ab, "<no_memory>");
1586 		return;
1587 	}
1588 	p = d_path(path, pathname, PATH_MAX+11);
1589 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1590 		/* FIXME: can we save some information here? */
1591 		audit_log_string(ab, "<too_long>");
1592 	} else
1593 		audit_log_untrustedstring(ab, p);
1594 	kfree(pathname);
1595 }
1596 
1597 void audit_log_session_info(struct audit_buffer *ab)
1598 {
1599 	unsigned int sessionid = audit_get_sessionid(current);
1600 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1601 
1602 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1603 }
1604 
1605 void audit_log_key(struct audit_buffer *ab, char *key)
1606 {
1607 	audit_log_format(ab, " key=");
1608 	if (key)
1609 		audit_log_untrustedstring(ab, key);
1610 	else
1611 		audit_log_format(ab, "(null)");
1612 }
1613 
1614 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1615 {
1616 	int i;
1617 
1618 	audit_log_format(ab, " %s=", prefix);
1619 	CAP_FOR_EACH_U32(i) {
1620 		audit_log_format(ab, "%08x",
1621 				 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1622 	}
1623 }
1624 
1625 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1626 {
1627 	kernel_cap_t *perm = &name->fcap.permitted;
1628 	kernel_cap_t *inh = &name->fcap.inheritable;
1629 	int log = 0;
1630 
1631 	if (!cap_isclear(*perm)) {
1632 		audit_log_cap(ab, "cap_fp", perm);
1633 		log = 1;
1634 	}
1635 	if (!cap_isclear(*inh)) {
1636 		audit_log_cap(ab, "cap_fi", inh);
1637 		log = 1;
1638 	}
1639 
1640 	if (log)
1641 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1642 				 name->fcap.fE, name->fcap_ver);
1643 }
1644 
1645 static inline int audit_copy_fcaps(struct audit_names *name,
1646 				   const struct dentry *dentry)
1647 {
1648 	struct cpu_vfs_cap_data caps;
1649 	int rc;
1650 
1651 	if (!dentry)
1652 		return 0;
1653 
1654 	rc = get_vfs_caps_from_disk(dentry, &caps);
1655 	if (rc)
1656 		return rc;
1657 
1658 	name->fcap.permitted = caps.permitted;
1659 	name->fcap.inheritable = caps.inheritable;
1660 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1661 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1662 				VFS_CAP_REVISION_SHIFT;
1663 
1664 	return 0;
1665 }
1666 
1667 /* Copy inode data into an audit_names. */
1668 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1669 		      const struct inode *inode)
1670 {
1671 	name->ino   = inode->i_ino;
1672 	name->dev   = inode->i_sb->s_dev;
1673 	name->mode  = inode->i_mode;
1674 	name->uid   = inode->i_uid;
1675 	name->gid   = inode->i_gid;
1676 	name->rdev  = inode->i_rdev;
1677 	security_inode_getsecid(inode, &name->osid);
1678 	audit_copy_fcaps(name, dentry);
1679 }
1680 
1681 /**
1682  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1683  * @context: audit_context for the task
1684  * @n: audit_names structure with reportable details
1685  * @path: optional path to report instead of audit_names->name
1686  * @record_num: record number to report when handling a list of names
1687  * @call_panic: optional pointer to int that will be updated if secid fails
1688  */
1689 void audit_log_name(struct audit_context *context, struct audit_names *n,
1690 		    struct path *path, int record_num, int *call_panic)
1691 {
1692 	struct audit_buffer *ab;
1693 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1694 	if (!ab)
1695 		return;
1696 
1697 	audit_log_format(ab, "item=%d", record_num);
1698 
1699 	if (path)
1700 		audit_log_d_path(ab, " name=", path);
1701 	else if (n->name) {
1702 		switch (n->name_len) {
1703 		case AUDIT_NAME_FULL:
1704 			/* log the full path */
1705 			audit_log_format(ab, " name=");
1706 			audit_log_untrustedstring(ab, n->name->name);
1707 			break;
1708 		case 0:
1709 			/* name was specified as a relative path and the
1710 			 * directory component is the cwd */
1711 			audit_log_d_path(ab, " name=", &context->pwd);
1712 			break;
1713 		default:
1714 			/* log the name's directory component */
1715 			audit_log_format(ab, " name=");
1716 			audit_log_n_untrustedstring(ab, n->name->name,
1717 						    n->name_len);
1718 		}
1719 	} else
1720 		audit_log_format(ab, " name=(null)");
1721 
1722 	if (n->ino != (unsigned long)-1) {
1723 		audit_log_format(ab, " inode=%lu"
1724 				 " dev=%02x:%02x mode=%#ho"
1725 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1726 				 n->ino,
1727 				 MAJOR(n->dev),
1728 				 MINOR(n->dev),
1729 				 n->mode,
1730 				 from_kuid(&init_user_ns, n->uid),
1731 				 from_kgid(&init_user_ns, n->gid),
1732 				 MAJOR(n->rdev),
1733 				 MINOR(n->rdev));
1734 	}
1735 	if (n->osid != 0) {
1736 		char *ctx = NULL;
1737 		u32 len;
1738 		if (security_secid_to_secctx(
1739 			n->osid, &ctx, &len)) {
1740 			audit_log_format(ab, " osid=%u", n->osid);
1741 			if (call_panic)
1742 				*call_panic = 2;
1743 		} else {
1744 			audit_log_format(ab, " obj=%s", ctx);
1745 			security_release_secctx(ctx, len);
1746 		}
1747 	}
1748 
1749 	/* log the audit_names record type */
1750 	audit_log_format(ab, " nametype=");
1751 	switch(n->type) {
1752 	case AUDIT_TYPE_NORMAL:
1753 		audit_log_format(ab, "NORMAL");
1754 		break;
1755 	case AUDIT_TYPE_PARENT:
1756 		audit_log_format(ab, "PARENT");
1757 		break;
1758 	case AUDIT_TYPE_CHILD_DELETE:
1759 		audit_log_format(ab, "DELETE");
1760 		break;
1761 	case AUDIT_TYPE_CHILD_CREATE:
1762 		audit_log_format(ab, "CREATE");
1763 		break;
1764 	default:
1765 		audit_log_format(ab, "UNKNOWN");
1766 		break;
1767 	}
1768 
1769 	audit_log_fcaps(ab, n);
1770 	audit_log_end(ab);
1771 }
1772 
1773 int audit_log_task_context(struct audit_buffer *ab)
1774 {
1775 	char *ctx = NULL;
1776 	unsigned len;
1777 	int error;
1778 	u32 sid;
1779 
1780 	security_task_getsecid(current, &sid);
1781 	if (!sid)
1782 		return 0;
1783 
1784 	error = security_secid_to_secctx(sid, &ctx, &len);
1785 	if (error) {
1786 		if (error != -EINVAL)
1787 			goto error_path;
1788 		return 0;
1789 	}
1790 
1791 	audit_log_format(ab, " subj=%s", ctx);
1792 	security_release_secctx(ctx, len);
1793 	return 0;
1794 
1795 error_path:
1796 	audit_panic("error in audit_log_task_context");
1797 	return error;
1798 }
1799 EXPORT_SYMBOL(audit_log_task_context);
1800 
1801 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1802 {
1803 	const struct cred *cred;
1804 	char name[sizeof(tsk->comm)];
1805 	struct mm_struct *mm = tsk->mm;
1806 	char *tty;
1807 
1808 	if (!ab)
1809 		return;
1810 
1811 	/* tsk == current */
1812 	cred = current_cred();
1813 
1814 	spin_lock_irq(&tsk->sighand->siglock);
1815 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1816 		tty = tsk->signal->tty->name;
1817 	else
1818 		tty = "(none)";
1819 	spin_unlock_irq(&tsk->sighand->siglock);
1820 
1821 	audit_log_format(ab,
1822 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1823 			 " euid=%u suid=%u fsuid=%u"
1824 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1825 			 sys_getppid(),
1826 			 tsk->pid,
1827 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1828 			 from_kuid(&init_user_ns, cred->uid),
1829 			 from_kgid(&init_user_ns, cred->gid),
1830 			 from_kuid(&init_user_ns, cred->euid),
1831 			 from_kuid(&init_user_ns, cred->suid),
1832 			 from_kuid(&init_user_ns, cred->fsuid),
1833 			 from_kgid(&init_user_ns, cred->egid),
1834 			 from_kgid(&init_user_ns, cred->sgid),
1835 			 from_kgid(&init_user_ns, cred->fsgid),
1836 			 tty, audit_get_sessionid(tsk));
1837 
1838 	get_task_comm(name, tsk);
1839 	audit_log_format(ab, " comm=");
1840 	audit_log_untrustedstring(ab, name);
1841 
1842 	if (mm) {
1843 		down_read(&mm->mmap_sem);
1844 		if (mm->exe_file)
1845 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1846 		up_read(&mm->mmap_sem);
1847 	} else
1848 		audit_log_format(ab, " exe=(null)");
1849 	audit_log_task_context(ab);
1850 }
1851 EXPORT_SYMBOL(audit_log_task_info);
1852 
1853 /**
1854  * audit_log_link_denied - report a link restriction denial
1855  * @operation: specific link opreation
1856  * @link: the path that triggered the restriction
1857  */
1858 void audit_log_link_denied(const char *operation, struct path *link)
1859 {
1860 	struct audit_buffer *ab;
1861 	struct audit_names *name;
1862 
1863 	name = kzalloc(sizeof(*name), GFP_NOFS);
1864 	if (!name)
1865 		return;
1866 
1867 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1868 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1869 			     AUDIT_ANOM_LINK);
1870 	if (!ab)
1871 		goto out;
1872 	audit_log_format(ab, "op=%s", operation);
1873 	audit_log_task_info(ab, current);
1874 	audit_log_format(ab, " res=0");
1875 	audit_log_end(ab);
1876 
1877 	/* Generate AUDIT_PATH record with object. */
1878 	name->type = AUDIT_TYPE_NORMAL;
1879 	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1880 	audit_log_name(current->audit_context, name, link, 0, NULL);
1881 out:
1882 	kfree(name);
1883 }
1884 
1885 /**
1886  * audit_log_end - end one audit record
1887  * @ab: the audit_buffer
1888  *
1889  * The netlink_* functions cannot be called inside an irq context, so
1890  * the audit buffer is placed on a queue and a tasklet is scheduled to
1891  * remove them from the queue outside the irq context.  May be called in
1892  * any context.
1893  */
1894 void audit_log_end(struct audit_buffer *ab)
1895 {
1896 	if (!ab)
1897 		return;
1898 	if (!audit_rate_check()) {
1899 		audit_log_lost("rate limit exceeded");
1900 	} else {
1901 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1902 		nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1903 
1904 		if (audit_pid) {
1905 			skb_queue_tail(&audit_skb_queue, ab->skb);
1906 			wake_up_interruptible(&kauditd_wait);
1907 		} else {
1908 			audit_printk_skb(ab->skb);
1909 		}
1910 		ab->skb = NULL;
1911 	}
1912 	audit_buffer_free(ab);
1913 }
1914 
1915 /**
1916  * audit_log - Log an audit record
1917  * @ctx: audit context
1918  * @gfp_mask: type of allocation
1919  * @type: audit message type
1920  * @fmt: format string to use
1921  * @...: variable parameters matching the format string
1922  *
1923  * This is a convenience function that calls audit_log_start,
1924  * audit_log_vformat, and audit_log_end.  It may be called
1925  * in any context.
1926  */
1927 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1928 	       const char *fmt, ...)
1929 {
1930 	struct audit_buffer *ab;
1931 	va_list args;
1932 
1933 	ab = audit_log_start(ctx, gfp_mask, type);
1934 	if (ab) {
1935 		va_start(args, fmt);
1936 		audit_log_vformat(ab, fmt, args);
1937 		va_end(args);
1938 		audit_log_end(ab);
1939 	}
1940 }
1941 
1942 #ifdef CONFIG_SECURITY
1943 /**
1944  * audit_log_secctx - Converts and logs SELinux context
1945  * @ab: audit_buffer
1946  * @secid: security number
1947  *
1948  * This is a helper function that calls security_secid_to_secctx to convert
1949  * secid to secctx and then adds the (converted) SELinux context to the audit
1950  * log by calling audit_log_format, thus also preventing leak of internal secid
1951  * to userspace. If secid cannot be converted audit_panic is called.
1952  */
1953 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1954 {
1955 	u32 len;
1956 	char *secctx;
1957 
1958 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1959 		audit_panic("Cannot convert secid to context");
1960 	} else {
1961 		audit_log_format(ab, " obj=%s", secctx);
1962 		security_release_secctx(secctx, len);
1963 	}
1964 }
1965 EXPORT_SYMBOL(audit_log_secctx);
1966 #endif
1967 
1968 EXPORT_SYMBOL(audit_log_start);
1969 EXPORT_SYMBOL(audit_log_end);
1970 EXPORT_SYMBOL(audit_log_format);
1971 EXPORT_SYMBOL(audit_log);
1972