1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/init.h> 47 #include <asm/types.h> 48 #include <linux/atomic.h> 49 #include <linux/mm.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/err.h> 53 #include <linux/kthread.h> 54 #include <linux/kernel.h> 55 #include <linux/syscalls.h> 56 57 #include <linux/audit.h> 58 59 #include <net/sock.h> 60 #include <net/netlink.h> 61 #include <linux/skbuff.h> 62 #ifdef CONFIG_SECURITY 63 #include <linux/security.h> 64 #endif 65 #include <linux/freezer.h> 66 #include <linux/tty.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 static u32 audit_backlog_wait_overflow = 0; 112 113 /* The identity of the user shutting down the audit system. */ 114 kuid_t audit_sig_uid = INVALID_UID; 115 pid_t audit_sig_pid = -1; 116 u32 audit_sig_sid = 0; 117 118 /* Records can be lost in several ways: 119 0) [suppressed in audit_alloc] 120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 121 2) out of memory in audit_log_move [alloc_skb] 122 3) suppressed due to audit_rate_limit 123 4) suppressed due to audit_backlog_limit 124 */ 125 static atomic_t audit_lost = ATOMIC_INIT(0); 126 127 /* The netlink socket. */ 128 static struct sock *audit_sock; 129 int audit_net_id; 130 131 /* Hash for inode-based rules */ 132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 133 134 /* The audit_freelist is a list of pre-allocated audit buffers (if more 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 136 * being placed on the freelist). */ 137 static DEFINE_SPINLOCK(audit_freelist_lock); 138 static int audit_freelist_count; 139 static LIST_HEAD(audit_freelist); 140 141 static struct sk_buff_head audit_skb_queue; 142 /* queue of skbs to send to auditd when/if it comes back */ 143 static struct sk_buff_head audit_skb_hold_queue; 144 static struct task_struct *kauditd_task; 145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 147 148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 149 .mask = -1, 150 .features = 0, 151 .lock = 0,}; 152 153 static char *audit_feature_names[2] = { 154 "only_unset_loginuid", 155 "loginuid_immutable", 156 }; 157 158 159 /* Serialize requests from userspace. */ 160 DEFINE_MUTEX(audit_cmd_mutex); 161 162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 163 * audit records. Since printk uses a 1024 byte buffer, this buffer 164 * should be at least that large. */ 165 #define AUDIT_BUFSIZ 1024 166 167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 169 #define AUDIT_MAXFREE (2*NR_CPUS) 170 171 /* The audit_buffer is used when formatting an audit record. The caller 172 * locks briefly to get the record off the freelist or to allocate the 173 * buffer, and locks briefly to send the buffer to the netlink layer or 174 * to place it on a transmit queue. Multiple audit_buffers can be in 175 * use simultaneously. */ 176 struct audit_buffer { 177 struct list_head list; 178 struct sk_buff *skb; /* formatted skb ready to send */ 179 struct audit_context *ctx; /* NULL or associated context */ 180 gfp_t gfp_mask; 181 }; 182 183 struct audit_reply { 184 __u32 portid; 185 struct net *net; 186 struct sk_buff *skb; 187 }; 188 189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 190 { 191 if (ab) { 192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 193 nlh->nlmsg_pid = portid; 194 } 195 } 196 197 void audit_panic(const char *message) 198 { 199 switch (audit_failure) { 200 case AUDIT_FAIL_SILENT: 201 break; 202 case AUDIT_FAIL_PRINTK: 203 if (printk_ratelimit()) 204 pr_err("%s\n", message); 205 break; 206 case AUDIT_FAIL_PANIC: 207 /* test audit_pid since printk is always losey, why bother? */ 208 if (audit_pid) 209 panic("audit: %s\n", message); 210 break; 211 } 212 } 213 214 static inline int audit_rate_check(void) 215 { 216 static unsigned long last_check = 0; 217 static int messages = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 unsigned long elapsed; 222 int retval = 0; 223 224 if (!audit_rate_limit) return 1; 225 226 spin_lock_irqsave(&lock, flags); 227 if (++messages < audit_rate_limit) { 228 retval = 1; 229 } else { 230 now = jiffies; 231 elapsed = now - last_check; 232 if (elapsed > HZ) { 233 last_check = now; 234 messages = 0; 235 retval = 1; 236 } 237 } 238 spin_unlock_irqrestore(&lock, flags); 239 240 return retval; 241 } 242 243 /** 244 * audit_log_lost - conditionally log lost audit message event 245 * @message: the message stating reason for lost audit message 246 * 247 * Emit at least 1 message per second, even if audit_rate_check is 248 * throttling. 249 * Always increment the lost messages counter. 250 */ 251 void audit_log_lost(const char *message) 252 { 253 static unsigned long last_msg = 0; 254 static DEFINE_SPINLOCK(lock); 255 unsigned long flags; 256 unsigned long now; 257 int print; 258 259 atomic_inc(&audit_lost); 260 261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 262 263 if (!print) { 264 spin_lock_irqsave(&lock, flags); 265 now = jiffies; 266 if (now - last_msg > HZ) { 267 print = 1; 268 last_msg = now; 269 } 270 spin_unlock_irqrestore(&lock, flags); 271 } 272 273 if (print) { 274 if (printk_ratelimit()) 275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 276 atomic_read(&audit_lost), 277 audit_rate_limit, 278 audit_backlog_limit); 279 audit_panic(message); 280 } 281 } 282 283 static int audit_log_config_change(char *function_name, u32 new, u32 old, 284 int allow_changes) 285 { 286 struct audit_buffer *ab; 287 int rc = 0; 288 289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 290 if (unlikely(!ab)) 291 return rc; 292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 293 audit_log_session_info(ab); 294 rc = audit_log_task_context(ab); 295 if (rc) 296 allow_changes = 0; /* Something weird, deny request */ 297 audit_log_format(ab, " res=%d", allow_changes); 298 audit_log_end(ab); 299 return rc; 300 } 301 302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 303 { 304 int allow_changes, rc = 0; 305 u32 old = *to_change; 306 307 /* check if we are locked */ 308 if (audit_enabled == AUDIT_LOCKED) 309 allow_changes = 0; 310 else 311 allow_changes = 1; 312 313 if (audit_enabled != AUDIT_OFF) { 314 rc = audit_log_config_change(function_name, new, old, allow_changes); 315 if (rc) 316 allow_changes = 0; 317 } 318 319 /* If we are allowed, make the change */ 320 if (allow_changes == 1) 321 *to_change = new; 322 /* Not allowed, update reason */ 323 else if (rc == 0) 324 rc = -EPERM; 325 return rc; 326 } 327 328 static int audit_set_rate_limit(u32 limit) 329 { 330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 331 } 332 333 static int audit_set_backlog_limit(u32 limit) 334 { 335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 336 } 337 338 static int audit_set_backlog_wait_time(u32 timeout) 339 { 340 return audit_do_config_change("audit_backlog_wait_time", 341 &audit_backlog_wait_time, timeout); 342 } 343 344 static int audit_set_enabled(u32 state) 345 { 346 int rc; 347 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 348 return -EINVAL; 349 350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 351 if (!rc) 352 audit_ever_enabled |= !!state; 353 354 return rc; 355 } 356 357 static int audit_set_failure(u32 state) 358 { 359 if (state != AUDIT_FAIL_SILENT 360 && state != AUDIT_FAIL_PRINTK 361 && state != AUDIT_FAIL_PANIC) 362 return -EINVAL; 363 364 return audit_do_config_change("audit_failure", &audit_failure, state); 365 } 366 367 /* 368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 369 * already have been sent via prink/syslog and so if these messages are dropped 370 * it is not a huge concern since we already passed the audit_log_lost() 371 * notification and stuff. This is just nice to get audit messages during 372 * boot before auditd is running or messages generated while auditd is stopped. 373 * This only holds messages is audit_default is set, aka booting with audit=1 374 * or building your kernel that way. 375 */ 376 static void audit_hold_skb(struct sk_buff *skb) 377 { 378 if (audit_default && 379 (!audit_backlog_limit || 380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 381 skb_queue_tail(&audit_skb_hold_queue, skb); 382 else 383 kfree_skb(skb); 384 } 385 386 /* 387 * For one reason or another this nlh isn't getting delivered to the userspace 388 * audit daemon, just send it to printk. 389 */ 390 static void audit_printk_skb(struct sk_buff *skb) 391 { 392 struct nlmsghdr *nlh = nlmsg_hdr(skb); 393 char *data = nlmsg_data(nlh); 394 395 if (nlh->nlmsg_type != AUDIT_EOE) { 396 if (printk_ratelimit()) 397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 398 else 399 audit_log_lost("printk limit exceeded\n"); 400 } 401 402 audit_hold_skb(skb); 403 } 404 405 static void kauditd_send_skb(struct sk_buff *skb) 406 { 407 int err; 408 /* take a reference in case we can't send it and we want to hold it */ 409 skb_get(skb); 410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 411 if (err < 0) { 412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 413 if (audit_pid) { 414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 415 audit_log_lost("auditd disappeared\n"); 416 audit_pid = 0; 417 audit_sock = NULL; 418 } 419 /* we might get lucky and get this in the next auditd */ 420 audit_hold_skb(skb); 421 } else 422 /* drop the extra reference if sent ok */ 423 consume_skb(skb); 424 } 425 426 /* 427 * flush_hold_queue - empty the hold queue if auditd appears 428 * 429 * If auditd just started, drain the queue of messages already 430 * sent to syslog/printk. Remember loss here is ok. We already 431 * called audit_log_lost() if it didn't go out normally. so the 432 * race between the skb_dequeue and the next check for audit_pid 433 * doesn't matter. 434 * 435 * If you ever find kauditd to be too slow we can get a perf win 436 * by doing our own locking and keeping better track if there 437 * are messages in this queue. I don't see the need now, but 438 * in 5 years when I want to play with this again I'll see this 439 * note and still have no friggin idea what i'm thinking today. 440 */ 441 static void flush_hold_queue(void) 442 { 443 struct sk_buff *skb; 444 445 if (!audit_default || !audit_pid) 446 return; 447 448 skb = skb_dequeue(&audit_skb_hold_queue); 449 if (likely(!skb)) 450 return; 451 452 while (skb && audit_pid) { 453 kauditd_send_skb(skb); 454 skb = skb_dequeue(&audit_skb_hold_queue); 455 } 456 457 /* 458 * if auditd just disappeared but we 459 * dequeued an skb we need to drop ref 460 */ 461 if (skb) 462 consume_skb(skb); 463 } 464 465 static int kauditd_thread(void *dummy) 466 { 467 set_freezable(); 468 while (!kthread_should_stop()) { 469 struct sk_buff *skb; 470 DECLARE_WAITQUEUE(wait, current); 471 472 flush_hold_queue(); 473 474 skb = skb_dequeue(&audit_skb_queue); 475 476 if (skb) { 477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 478 wake_up(&audit_backlog_wait); 479 if (audit_pid) 480 kauditd_send_skb(skb); 481 else 482 audit_printk_skb(skb); 483 continue; 484 } 485 set_current_state(TASK_INTERRUPTIBLE); 486 add_wait_queue(&kauditd_wait, &wait); 487 488 if (!skb_queue_len(&audit_skb_queue)) { 489 try_to_freeze(); 490 schedule(); 491 } 492 493 __set_current_state(TASK_RUNNING); 494 remove_wait_queue(&kauditd_wait, &wait); 495 } 496 return 0; 497 } 498 499 int audit_send_list(void *_dest) 500 { 501 struct audit_netlink_list *dest = _dest; 502 struct sk_buff *skb; 503 struct net *net = dest->net; 504 struct audit_net *aunet = net_generic(net, audit_net_id); 505 506 /* wait for parent to finish and send an ACK */ 507 mutex_lock(&audit_cmd_mutex); 508 mutex_unlock(&audit_cmd_mutex); 509 510 while ((skb = __skb_dequeue(&dest->q)) != NULL) 511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 512 513 put_net(net); 514 kfree(dest); 515 516 return 0; 517 } 518 519 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 520 int multi, const void *payload, int size) 521 { 522 struct sk_buff *skb; 523 struct nlmsghdr *nlh; 524 void *data; 525 int flags = multi ? NLM_F_MULTI : 0; 526 int t = done ? NLMSG_DONE : type; 527 528 skb = nlmsg_new(size, GFP_KERNEL); 529 if (!skb) 530 return NULL; 531 532 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 533 if (!nlh) 534 goto out_kfree_skb; 535 data = nlmsg_data(nlh); 536 memcpy(data, payload, size); 537 return skb; 538 539 out_kfree_skb: 540 kfree_skb(skb); 541 return NULL; 542 } 543 544 static int audit_send_reply_thread(void *arg) 545 { 546 struct audit_reply *reply = (struct audit_reply *)arg; 547 struct net *net = reply->net; 548 struct audit_net *aunet = net_generic(net, audit_net_id); 549 550 mutex_lock(&audit_cmd_mutex); 551 mutex_unlock(&audit_cmd_mutex); 552 553 /* Ignore failure. It'll only happen if the sender goes away, 554 because our timeout is set to infinite. */ 555 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 556 put_net(net); 557 kfree(reply); 558 return 0; 559 } 560 /** 561 * audit_send_reply - send an audit reply message via netlink 562 * @request_skb: skb of request we are replying to (used to target the reply) 563 * @seq: sequence number 564 * @type: audit message type 565 * @done: done (last) flag 566 * @multi: multi-part message flag 567 * @payload: payload data 568 * @size: payload size 569 * 570 * Allocates an skb, builds the netlink message, and sends it to the port id. 571 * No failure notifications. 572 */ 573 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 574 int multi, const void *payload, int size) 575 { 576 u32 portid = NETLINK_CB(request_skb).portid; 577 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 578 struct sk_buff *skb; 579 struct task_struct *tsk; 580 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 581 GFP_KERNEL); 582 583 if (!reply) 584 return; 585 586 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 587 if (!skb) 588 goto out; 589 590 reply->net = get_net(net); 591 reply->portid = portid; 592 reply->skb = skb; 593 594 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 595 if (!IS_ERR(tsk)) 596 return; 597 kfree_skb(skb); 598 out: 599 kfree(reply); 600 } 601 602 /* 603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 604 * control messages. 605 */ 606 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 607 { 608 int err = 0; 609 610 /* Only support the initial namespaces for now. */ 611 if ((current_user_ns() != &init_user_ns) || 612 (task_active_pid_ns(current) != &init_pid_ns)) 613 return -EPERM; 614 615 switch (msg_type) { 616 case AUDIT_LIST: 617 case AUDIT_ADD: 618 case AUDIT_DEL: 619 return -EOPNOTSUPP; 620 case AUDIT_GET: 621 case AUDIT_SET: 622 case AUDIT_GET_FEATURE: 623 case AUDIT_SET_FEATURE: 624 case AUDIT_LIST_RULES: 625 case AUDIT_ADD_RULE: 626 case AUDIT_DEL_RULE: 627 case AUDIT_SIGNAL_INFO: 628 case AUDIT_TTY_GET: 629 case AUDIT_TTY_SET: 630 case AUDIT_TRIM: 631 case AUDIT_MAKE_EQUIV: 632 if (!capable(CAP_AUDIT_CONTROL)) 633 err = -EPERM; 634 break; 635 case AUDIT_USER: 636 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 637 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 638 if (!capable(CAP_AUDIT_WRITE)) 639 err = -EPERM; 640 break; 641 default: /* bad msg */ 642 err = -EINVAL; 643 } 644 645 return err; 646 } 647 648 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 649 { 650 int rc = 0; 651 uid_t uid = from_kuid(&init_user_ns, current_uid()); 652 653 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 654 *ab = NULL; 655 return rc; 656 } 657 658 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 659 if (unlikely(!*ab)) 660 return rc; 661 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid); 662 audit_log_session_info(*ab); 663 audit_log_task_context(*ab); 664 665 return rc; 666 } 667 668 int is_audit_feature_set(int i) 669 { 670 return af.features & AUDIT_FEATURE_TO_MASK(i); 671 } 672 673 674 static int audit_get_feature(struct sk_buff *skb) 675 { 676 u32 seq; 677 678 seq = nlmsg_hdr(skb)->nlmsg_seq; 679 680 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af)); 681 682 return 0; 683 } 684 685 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 686 u32 old_lock, u32 new_lock, int res) 687 { 688 struct audit_buffer *ab; 689 690 if (audit_enabled == AUDIT_OFF) 691 return; 692 693 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 694 audit_log_task_info(ab, current); 695 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 696 audit_feature_names[which], !!old_feature, !!new_feature, 697 !!old_lock, !!new_lock, res); 698 audit_log_end(ab); 699 } 700 701 static int audit_set_feature(struct sk_buff *skb) 702 { 703 struct audit_features *uaf; 704 int i; 705 706 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0])); 707 uaf = nlmsg_data(nlmsg_hdr(skb)); 708 709 /* if there is ever a version 2 we should handle that here */ 710 711 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 712 u32 feature = AUDIT_FEATURE_TO_MASK(i); 713 u32 old_feature, new_feature, old_lock, new_lock; 714 715 /* if we are not changing this feature, move along */ 716 if (!(feature & uaf->mask)) 717 continue; 718 719 old_feature = af.features & feature; 720 new_feature = uaf->features & feature; 721 new_lock = (uaf->lock | af.lock) & feature; 722 old_lock = af.lock & feature; 723 724 /* are we changing a locked feature? */ 725 if (old_lock && (new_feature != old_feature)) { 726 audit_log_feature_change(i, old_feature, new_feature, 727 old_lock, new_lock, 0); 728 return -EPERM; 729 } 730 } 731 /* nothing invalid, do the changes */ 732 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 733 u32 feature = AUDIT_FEATURE_TO_MASK(i); 734 u32 old_feature, new_feature, old_lock, new_lock; 735 736 /* if we are not changing this feature, move along */ 737 if (!(feature & uaf->mask)) 738 continue; 739 740 old_feature = af.features & feature; 741 new_feature = uaf->features & feature; 742 old_lock = af.lock & feature; 743 new_lock = (uaf->lock | af.lock) & feature; 744 745 if (new_feature != old_feature) 746 audit_log_feature_change(i, old_feature, new_feature, 747 old_lock, new_lock, 1); 748 749 if (new_feature) 750 af.features |= feature; 751 else 752 af.features &= ~feature; 753 af.lock |= new_lock; 754 } 755 756 return 0; 757 } 758 759 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 760 { 761 u32 seq; 762 void *data; 763 int err; 764 struct audit_buffer *ab; 765 u16 msg_type = nlh->nlmsg_type; 766 struct audit_sig_info *sig_data; 767 char *ctx = NULL; 768 u32 len; 769 770 err = audit_netlink_ok(skb, msg_type); 771 if (err) 772 return err; 773 774 /* As soon as there's any sign of userspace auditd, 775 * start kauditd to talk to it */ 776 if (!kauditd_task) { 777 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 778 if (IS_ERR(kauditd_task)) { 779 err = PTR_ERR(kauditd_task); 780 kauditd_task = NULL; 781 return err; 782 } 783 } 784 seq = nlh->nlmsg_seq; 785 data = nlmsg_data(nlh); 786 787 switch (msg_type) { 788 case AUDIT_GET: { 789 struct audit_status s; 790 memset(&s, 0, sizeof(s)); 791 s.enabled = audit_enabled; 792 s.failure = audit_failure; 793 s.pid = audit_pid; 794 s.rate_limit = audit_rate_limit; 795 s.backlog_limit = audit_backlog_limit; 796 s.lost = atomic_read(&audit_lost); 797 s.backlog = skb_queue_len(&audit_skb_queue); 798 s.version = AUDIT_VERSION_LATEST; 799 s.backlog_wait_time = audit_backlog_wait_time; 800 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 801 break; 802 } 803 case AUDIT_SET: { 804 struct audit_status s; 805 memset(&s, 0, sizeof(s)); 806 /* guard against past and future API changes */ 807 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 808 if (s.mask & AUDIT_STATUS_ENABLED) { 809 err = audit_set_enabled(s.enabled); 810 if (err < 0) 811 return err; 812 } 813 if (s.mask & AUDIT_STATUS_FAILURE) { 814 err = audit_set_failure(s.failure); 815 if (err < 0) 816 return err; 817 } 818 if (s.mask & AUDIT_STATUS_PID) { 819 int new_pid = s.pid; 820 821 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 822 return -EACCES; 823 if (audit_enabled != AUDIT_OFF) 824 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 825 audit_pid = new_pid; 826 audit_nlk_portid = NETLINK_CB(skb).portid; 827 audit_sock = skb->sk; 828 } 829 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 830 err = audit_set_rate_limit(s.rate_limit); 831 if (err < 0) 832 return err; 833 } 834 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 835 err = audit_set_backlog_limit(s.backlog_limit); 836 if (err < 0) 837 return err; 838 } 839 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 840 if (sizeof(s) > (size_t)nlh->nlmsg_len) 841 return -EINVAL; 842 if (s.backlog_wait_time < 0 || 843 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 844 return -EINVAL; 845 err = audit_set_backlog_wait_time(s.backlog_wait_time); 846 if (err < 0) 847 return err; 848 } 849 break; 850 } 851 case AUDIT_GET_FEATURE: 852 err = audit_get_feature(skb); 853 if (err) 854 return err; 855 break; 856 case AUDIT_SET_FEATURE: 857 err = audit_set_feature(skb); 858 if (err) 859 return err; 860 break; 861 case AUDIT_USER: 862 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 863 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 864 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 865 return 0; 866 867 err = audit_filter_user(msg_type); 868 if (err == 1) { /* match or error */ 869 err = 0; 870 if (msg_type == AUDIT_USER_TTY) { 871 err = tty_audit_push_current(); 872 if (err) 873 break; 874 } 875 mutex_unlock(&audit_cmd_mutex); 876 audit_log_common_recv_msg(&ab, msg_type); 877 if (msg_type != AUDIT_USER_TTY) 878 audit_log_format(ab, " msg='%.*s'", 879 AUDIT_MESSAGE_TEXT_MAX, 880 (char *)data); 881 else { 882 int size; 883 884 audit_log_format(ab, " data="); 885 size = nlmsg_len(nlh); 886 if (size > 0 && 887 ((unsigned char *)data)[size - 1] == '\0') 888 size--; 889 audit_log_n_untrustedstring(ab, data, size); 890 } 891 audit_set_portid(ab, NETLINK_CB(skb).portid); 892 audit_log_end(ab); 893 mutex_lock(&audit_cmd_mutex); 894 } 895 break; 896 case AUDIT_ADD_RULE: 897 case AUDIT_DEL_RULE: 898 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 899 return -EINVAL; 900 if (audit_enabled == AUDIT_LOCKED) { 901 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 902 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 903 audit_log_end(ab); 904 return -EPERM; 905 } 906 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 907 seq, data, nlmsg_len(nlh)); 908 break; 909 case AUDIT_LIST_RULES: 910 err = audit_list_rules_send(skb, seq); 911 break; 912 case AUDIT_TRIM: 913 audit_trim_trees(); 914 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 915 audit_log_format(ab, " op=trim res=1"); 916 audit_log_end(ab); 917 break; 918 case AUDIT_MAKE_EQUIV: { 919 void *bufp = data; 920 u32 sizes[2]; 921 size_t msglen = nlmsg_len(nlh); 922 char *old, *new; 923 924 err = -EINVAL; 925 if (msglen < 2 * sizeof(u32)) 926 break; 927 memcpy(sizes, bufp, 2 * sizeof(u32)); 928 bufp += 2 * sizeof(u32); 929 msglen -= 2 * sizeof(u32); 930 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 931 if (IS_ERR(old)) { 932 err = PTR_ERR(old); 933 break; 934 } 935 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 936 if (IS_ERR(new)) { 937 err = PTR_ERR(new); 938 kfree(old); 939 break; 940 } 941 /* OK, here comes... */ 942 err = audit_tag_tree(old, new); 943 944 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 945 946 audit_log_format(ab, " op=make_equiv old="); 947 audit_log_untrustedstring(ab, old); 948 audit_log_format(ab, " new="); 949 audit_log_untrustedstring(ab, new); 950 audit_log_format(ab, " res=%d", !err); 951 audit_log_end(ab); 952 kfree(old); 953 kfree(new); 954 break; 955 } 956 case AUDIT_SIGNAL_INFO: 957 len = 0; 958 if (audit_sig_sid) { 959 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 960 if (err) 961 return err; 962 } 963 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 964 if (!sig_data) { 965 if (audit_sig_sid) 966 security_release_secctx(ctx, len); 967 return -ENOMEM; 968 } 969 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 970 sig_data->pid = audit_sig_pid; 971 if (audit_sig_sid) { 972 memcpy(sig_data->ctx, ctx, len); 973 security_release_secctx(ctx, len); 974 } 975 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 976 sig_data, sizeof(*sig_data) + len); 977 kfree(sig_data); 978 break; 979 case AUDIT_TTY_GET: { 980 struct audit_tty_status s; 981 struct task_struct *tsk = current; 982 983 spin_lock(&tsk->sighand->siglock); 984 s.enabled = tsk->signal->audit_tty; 985 s.log_passwd = tsk->signal->audit_tty_log_passwd; 986 spin_unlock(&tsk->sighand->siglock); 987 988 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 989 break; 990 } 991 case AUDIT_TTY_SET: { 992 struct audit_tty_status s, old; 993 struct task_struct *tsk = current; 994 struct audit_buffer *ab; 995 996 memset(&s, 0, sizeof(s)); 997 /* guard against past and future API changes */ 998 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 999 /* check if new data is valid */ 1000 if ((s.enabled != 0 && s.enabled != 1) || 1001 (s.log_passwd != 0 && s.log_passwd != 1)) 1002 err = -EINVAL; 1003 1004 spin_lock(&tsk->sighand->siglock); 1005 old.enabled = tsk->signal->audit_tty; 1006 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1007 if (!err) { 1008 tsk->signal->audit_tty = s.enabled; 1009 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1010 } 1011 spin_unlock(&tsk->sighand->siglock); 1012 1013 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1014 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1015 " old-log_passwd=%d new-log_passwd=%d res=%d", 1016 old.enabled, s.enabled, old.log_passwd, 1017 s.log_passwd, !err); 1018 audit_log_end(ab); 1019 break; 1020 } 1021 default: 1022 err = -EINVAL; 1023 break; 1024 } 1025 1026 return err < 0 ? err : 0; 1027 } 1028 1029 /* 1030 * Get message from skb. Each message is processed by audit_receive_msg. 1031 * Malformed skbs with wrong length are discarded silently. 1032 */ 1033 static void audit_receive_skb(struct sk_buff *skb) 1034 { 1035 struct nlmsghdr *nlh; 1036 /* 1037 * len MUST be signed for nlmsg_next to be able to dec it below 0 1038 * if the nlmsg_len was not aligned 1039 */ 1040 int len; 1041 int err; 1042 1043 nlh = nlmsg_hdr(skb); 1044 len = skb->len; 1045 1046 while (nlmsg_ok(nlh, len)) { 1047 err = audit_receive_msg(skb, nlh); 1048 /* if err or if this message says it wants a response */ 1049 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1050 netlink_ack(skb, nlh, err); 1051 1052 nlh = nlmsg_next(nlh, &len); 1053 } 1054 } 1055 1056 /* Receive messages from netlink socket. */ 1057 static void audit_receive(struct sk_buff *skb) 1058 { 1059 mutex_lock(&audit_cmd_mutex); 1060 audit_receive_skb(skb); 1061 mutex_unlock(&audit_cmd_mutex); 1062 } 1063 1064 static int __net_init audit_net_init(struct net *net) 1065 { 1066 struct netlink_kernel_cfg cfg = { 1067 .input = audit_receive, 1068 }; 1069 1070 struct audit_net *aunet = net_generic(net, audit_net_id); 1071 1072 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1073 if (aunet->nlsk == NULL) { 1074 audit_panic("cannot initialize netlink socket in namespace"); 1075 return -ENOMEM; 1076 } 1077 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1078 return 0; 1079 } 1080 1081 static void __net_exit audit_net_exit(struct net *net) 1082 { 1083 struct audit_net *aunet = net_generic(net, audit_net_id); 1084 struct sock *sock = aunet->nlsk; 1085 if (sock == audit_sock) { 1086 audit_pid = 0; 1087 audit_sock = NULL; 1088 } 1089 1090 rcu_assign_pointer(aunet->nlsk, NULL); 1091 synchronize_net(); 1092 netlink_kernel_release(sock); 1093 } 1094 1095 static struct pernet_operations audit_net_ops __net_initdata = { 1096 .init = audit_net_init, 1097 .exit = audit_net_exit, 1098 .id = &audit_net_id, 1099 .size = sizeof(struct audit_net), 1100 }; 1101 1102 /* Initialize audit support at boot time. */ 1103 static int __init audit_init(void) 1104 { 1105 int i; 1106 1107 if (audit_initialized == AUDIT_DISABLED) 1108 return 0; 1109 1110 pr_info("initializing netlink subsys (%s)\n", 1111 audit_default ? "enabled" : "disabled"); 1112 register_pernet_subsys(&audit_net_ops); 1113 1114 skb_queue_head_init(&audit_skb_queue); 1115 skb_queue_head_init(&audit_skb_hold_queue); 1116 audit_initialized = AUDIT_INITIALIZED; 1117 audit_enabled = audit_default; 1118 audit_ever_enabled |= !!audit_default; 1119 1120 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1121 1122 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1123 INIT_LIST_HEAD(&audit_inode_hash[i]); 1124 1125 return 0; 1126 } 1127 __initcall(audit_init); 1128 1129 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1130 static int __init audit_enable(char *str) 1131 { 1132 audit_default = !!simple_strtol(str, NULL, 0); 1133 if (!audit_default) 1134 audit_initialized = AUDIT_DISABLED; 1135 1136 pr_info("%s\n", audit_default ? 1137 "enabled (after initialization)" : "disabled (until reboot)"); 1138 1139 return 1; 1140 } 1141 __setup("audit=", audit_enable); 1142 1143 /* Process kernel command-line parameter at boot time. 1144 * audit_backlog_limit=<n> */ 1145 static int __init audit_backlog_limit_set(char *str) 1146 { 1147 u32 audit_backlog_limit_arg; 1148 1149 pr_info("audit_backlog_limit: "); 1150 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1151 pr_cont("using default of %u, unable to parse %s\n", 1152 audit_backlog_limit, str); 1153 return 1; 1154 } 1155 1156 audit_backlog_limit = audit_backlog_limit_arg; 1157 pr_cont("%d\n", audit_backlog_limit); 1158 1159 return 1; 1160 } 1161 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1162 1163 static void audit_buffer_free(struct audit_buffer *ab) 1164 { 1165 unsigned long flags; 1166 1167 if (!ab) 1168 return; 1169 1170 if (ab->skb) 1171 kfree_skb(ab->skb); 1172 1173 spin_lock_irqsave(&audit_freelist_lock, flags); 1174 if (audit_freelist_count > AUDIT_MAXFREE) 1175 kfree(ab); 1176 else { 1177 audit_freelist_count++; 1178 list_add(&ab->list, &audit_freelist); 1179 } 1180 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1181 } 1182 1183 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1184 gfp_t gfp_mask, int type) 1185 { 1186 unsigned long flags; 1187 struct audit_buffer *ab = NULL; 1188 struct nlmsghdr *nlh; 1189 1190 spin_lock_irqsave(&audit_freelist_lock, flags); 1191 if (!list_empty(&audit_freelist)) { 1192 ab = list_entry(audit_freelist.next, 1193 struct audit_buffer, list); 1194 list_del(&ab->list); 1195 --audit_freelist_count; 1196 } 1197 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1198 1199 if (!ab) { 1200 ab = kmalloc(sizeof(*ab), gfp_mask); 1201 if (!ab) 1202 goto err; 1203 } 1204 1205 ab->ctx = ctx; 1206 ab->gfp_mask = gfp_mask; 1207 1208 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1209 if (!ab->skb) 1210 goto err; 1211 1212 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1213 if (!nlh) 1214 goto out_kfree_skb; 1215 1216 return ab; 1217 1218 out_kfree_skb: 1219 kfree_skb(ab->skb); 1220 ab->skb = NULL; 1221 err: 1222 audit_buffer_free(ab); 1223 return NULL; 1224 } 1225 1226 /** 1227 * audit_serial - compute a serial number for the audit record 1228 * 1229 * Compute a serial number for the audit record. Audit records are 1230 * written to user-space as soon as they are generated, so a complete 1231 * audit record may be written in several pieces. The timestamp of the 1232 * record and this serial number are used by the user-space tools to 1233 * determine which pieces belong to the same audit record. The 1234 * (timestamp,serial) tuple is unique for each syscall and is live from 1235 * syscall entry to syscall exit. 1236 * 1237 * NOTE: Another possibility is to store the formatted records off the 1238 * audit context (for those records that have a context), and emit them 1239 * all at syscall exit. However, this could delay the reporting of 1240 * significant errors until syscall exit (or never, if the system 1241 * halts). 1242 */ 1243 unsigned int audit_serial(void) 1244 { 1245 static DEFINE_SPINLOCK(serial_lock); 1246 static unsigned int serial = 0; 1247 1248 unsigned long flags; 1249 unsigned int ret; 1250 1251 spin_lock_irqsave(&serial_lock, flags); 1252 do { 1253 ret = ++serial; 1254 } while (unlikely(!ret)); 1255 spin_unlock_irqrestore(&serial_lock, flags); 1256 1257 return ret; 1258 } 1259 1260 static inline void audit_get_stamp(struct audit_context *ctx, 1261 struct timespec *t, unsigned int *serial) 1262 { 1263 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1264 *t = CURRENT_TIME; 1265 *serial = audit_serial(); 1266 } 1267 } 1268 1269 /* 1270 * Wait for auditd to drain the queue a little 1271 */ 1272 static long wait_for_auditd(long sleep_time) 1273 { 1274 DECLARE_WAITQUEUE(wait, current); 1275 set_current_state(TASK_UNINTERRUPTIBLE); 1276 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1277 1278 if (audit_backlog_limit && 1279 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1280 sleep_time = schedule_timeout(sleep_time); 1281 1282 __set_current_state(TASK_RUNNING); 1283 remove_wait_queue(&audit_backlog_wait, &wait); 1284 1285 return sleep_time; 1286 } 1287 1288 /** 1289 * audit_log_start - obtain an audit buffer 1290 * @ctx: audit_context (may be NULL) 1291 * @gfp_mask: type of allocation 1292 * @type: audit message type 1293 * 1294 * Returns audit_buffer pointer on success or NULL on error. 1295 * 1296 * Obtain an audit buffer. This routine does locking to obtain the 1297 * audit buffer, but then no locking is required for calls to 1298 * audit_log_*format. If the task (ctx) is a task that is currently in a 1299 * syscall, then the syscall is marked as auditable and an audit record 1300 * will be written at syscall exit. If there is no associated task, then 1301 * task context (ctx) should be NULL. 1302 */ 1303 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1304 int type) 1305 { 1306 struct audit_buffer *ab = NULL; 1307 struct timespec t; 1308 unsigned int uninitialized_var(serial); 1309 int reserve = 5; /* Allow atomic callers to go up to five 1310 entries over the normal backlog limit */ 1311 unsigned long timeout_start = jiffies; 1312 1313 if (audit_initialized != AUDIT_INITIALIZED) 1314 return NULL; 1315 1316 if (unlikely(audit_filter_type(type))) 1317 return NULL; 1318 1319 if (gfp_mask & __GFP_WAIT) { 1320 if (audit_pid && audit_pid == current->pid) 1321 gfp_mask &= ~__GFP_WAIT; 1322 else 1323 reserve = 0; 1324 } 1325 1326 while (audit_backlog_limit 1327 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1328 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1329 long sleep_time; 1330 1331 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1332 if (sleep_time > 0) { 1333 sleep_time = wait_for_auditd(sleep_time); 1334 if (sleep_time > 0) 1335 continue; 1336 } 1337 } 1338 if (audit_rate_check() && printk_ratelimit()) 1339 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1340 skb_queue_len(&audit_skb_queue), 1341 audit_backlog_limit); 1342 audit_log_lost("backlog limit exceeded"); 1343 audit_backlog_wait_time = audit_backlog_wait_overflow; 1344 wake_up(&audit_backlog_wait); 1345 return NULL; 1346 } 1347 1348 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 1349 1350 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1351 if (!ab) { 1352 audit_log_lost("out of memory in audit_log_start"); 1353 return NULL; 1354 } 1355 1356 audit_get_stamp(ab->ctx, &t, &serial); 1357 1358 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1359 t.tv_sec, t.tv_nsec/1000000, serial); 1360 return ab; 1361 } 1362 1363 /** 1364 * audit_expand - expand skb in the audit buffer 1365 * @ab: audit_buffer 1366 * @extra: space to add at tail of the skb 1367 * 1368 * Returns 0 (no space) on failed expansion, or available space if 1369 * successful. 1370 */ 1371 static inline int audit_expand(struct audit_buffer *ab, int extra) 1372 { 1373 struct sk_buff *skb = ab->skb; 1374 int oldtail = skb_tailroom(skb); 1375 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1376 int newtail = skb_tailroom(skb); 1377 1378 if (ret < 0) { 1379 audit_log_lost("out of memory in audit_expand"); 1380 return 0; 1381 } 1382 1383 skb->truesize += newtail - oldtail; 1384 return newtail; 1385 } 1386 1387 /* 1388 * Format an audit message into the audit buffer. If there isn't enough 1389 * room in the audit buffer, more room will be allocated and vsnprint 1390 * will be called a second time. Currently, we assume that a printk 1391 * can't format message larger than 1024 bytes, so we don't either. 1392 */ 1393 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1394 va_list args) 1395 { 1396 int len, avail; 1397 struct sk_buff *skb; 1398 va_list args2; 1399 1400 if (!ab) 1401 return; 1402 1403 BUG_ON(!ab->skb); 1404 skb = ab->skb; 1405 avail = skb_tailroom(skb); 1406 if (avail == 0) { 1407 avail = audit_expand(ab, AUDIT_BUFSIZ); 1408 if (!avail) 1409 goto out; 1410 } 1411 va_copy(args2, args); 1412 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1413 if (len >= avail) { 1414 /* The printk buffer is 1024 bytes long, so if we get 1415 * here and AUDIT_BUFSIZ is at least 1024, then we can 1416 * log everything that printk could have logged. */ 1417 avail = audit_expand(ab, 1418 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1419 if (!avail) 1420 goto out_va_end; 1421 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1422 } 1423 if (len > 0) 1424 skb_put(skb, len); 1425 out_va_end: 1426 va_end(args2); 1427 out: 1428 return; 1429 } 1430 1431 /** 1432 * audit_log_format - format a message into the audit buffer. 1433 * @ab: audit_buffer 1434 * @fmt: format string 1435 * @...: optional parameters matching @fmt string 1436 * 1437 * All the work is done in audit_log_vformat. 1438 */ 1439 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1440 { 1441 va_list args; 1442 1443 if (!ab) 1444 return; 1445 va_start(args, fmt); 1446 audit_log_vformat(ab, fmt, args); 1447 va_end(args); 1448 } 1449 1450 /** 1451 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1452 * @ab: the audit_buffer 1453 * @buf: buffer to convert to hex 1454 * @len: length of @buf to be converted 1455 * 1456 * No return value; failure to expand is silently ignored. 1457 * 1458 * This function will take the passed buf and convert it into a string of 1459 * ascii hex digits. The new string is placed onto the skb. 1460 */ 1461 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1462 size_t len) 1463 { 1464 int i, avail, new_len; 1465 unsigned char *ptr; 1466 struct sk_buff *skb; 1467 1468 if (!ab) 1469 return; 1470 1471 BUG_ON(!ab->skb); 1472 skb = ab->skb; 1473 avail = skb_tailroom(skb); 1474 new_len = len<<1; 1475 if (new_len >= avail) { 1476 /* Round the buffer request up to the next multiple */ 1477 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1478 avail = audit_expand(ab, new_len); 1479 if (!avail) 1480 return; 1481 } 1482 1483 ptr = skb_tail_pointer(skb); 1484 for (i = 0; i < len; i++) 1485 ptr = hex_byte_pack_upper(ptr, buf[i]); 1486 *ptr = 0; 1487 skb_put(skb, len << 1); /* new string is twice the old string */ 1488 } 1489 1490 /* 1491 * Format a string of no more than slen characters into the audit buffer, 1492 * enclosed in quote marks. 1493 */ 1494 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1495 size_t slen) 1496 { 1497 int avail, new_len; 1498 unsigned char *ptr; 1499 struct sk_buff *skb; 1500 1501 if (!ab) 1502 return; 1503 1504 BUG_ON(!ab->skb); 1505 skb = ab->skb; 1506 avail = skb_tailroom(skb); 1507 new_len = slen + 3; /* enclosing quotes + null terminator */ 1508 if (new_len > avail) { 1509 avail = audit_expand(ab, new_len); 1510 if (!avail) 1511 return; 1512 } 1513 ptr = skb_tail_pointer(skb); 1514 *ptr++ = '"'; 1515 memcpy(ptr, string, slen); 1516 ptr += slen; 1517 *ptr++ = '"'; 1518 *ptr = 0; 1519 skb_put(skb, slen + 2); /* don't include null terminator */ 1520 } 1521 1522 /** 1523 * audit_string_contains_control - does a string need to be logged in hex 1524 * @string: string to be checked 1525 * @len: max length of the string to check 1526 */ 1527 int audit_string_contains_control(const char *string, size_t len) 1528 { 1529 const unsigned char *p; 1530 for (p = string; p < (const unsigned char *)string + len; p++) { 1531 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1532 return 1; 1533 } 1534 return 0; 1535 } 1536 1537 /** 1538 * audit_log_n_untrustedstring - log a string that may contain random characters 1539 * @ab: audit_buffer 1540 * @len: length of string (not including trailing null) 1541 * @string: string to be logged 1542 * 1543 * This code will escape a string that is passed to it if the string 1544 * contains a control character, unprintable character, double quote mark, 1545 * or a space. Unescaped strings will start and end with a double quote mark. 1546 * Strings that are escaped are printed in hex (2 digits per char). 1547 * 1548 * The caller specifies the number of characters in the string to log, which may 1549 * or may not be the entire string. 1550 */ 1551 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1552 size_t len) 1553 { 1554 if (audit_string_contains_control(string, len)) 1555 audit_log_n_hex(ab, string, len); 1556 else 1557 audit_log_n_string(ab, string, len); 1558 } 1559 1560 /** 1561 * audit_log_untrustedstring - log a string that may contain random characters 1562 * @ab: audit_buffer 1563 * @string: string to be logged 1564 * 1565 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1566 * determine string length. 1567 */ 1568 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1569 { 1570 audit_log_n_untrustedstring(ab, string, strlen(string)); 1571 } 1572 1573 /* This is a helper-function to print the escaped d_path */ 1574 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1575 const struct path *path) 1576 { 1577 char *p, *pathname; 1578 1579 if (prefix) 1580 audit_log_format(ab, "%s", prefix); 1581 1582 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1583 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1584 if (!pathname) { 1585 audit_log_string(ab, "<no_memory>"); 1586 return; 1587 } 1588 p = d_path(path, pathname, PATH_MAX+11); 1589 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1590 /* FIXME: can we save some information here? */ 1591 audit_log_string(ab, "<too_long>"); 1592 } else 1593 audit_log_untrustedstring(ab, p); 1594 kfree(pathname); 1595 } 1596 1597 void audit_log_session_info(struct audit_buffer *ab) 1598 { 1599 unsigned int sessionid = audit_get_sessionid(current); 1600 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1601 1602 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1603 } 1604 1605 void audit_log_key(struct audit_buffer *ab, char *key) 1606 { 1607 audit_log_format(ab, " key="); 1608 if (key) 1609 audit_log_untrustedstring(ab, key); 1610 else 1611 audit_log_format(ab, "(null)"); 1612 } 1613 1614 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1615 { 1616 int i; 1617 1618 audit_log_format(ab, " %s=", prefix); 1619 CAP_FOR_EACH_U32(i) { 1620 audit_log_format(ab, "%08x", 1621 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1622 } 1623 } 1624 1625 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1626 { 1627 kernel_cap_t *perm = &name->fcap.permitted; 1628 kernel_cap_t *inh = &name->fcap.inheritable; 1629 int log = 0; 1630 1631 if (!cap_isclear(*perm)) { 1632 audit_log_cap(ab, "cap_fp", perm); 1633 log = 1; 1634 } 1635 if (!cap_isclear(*inh)) { 1636 audit_log_cap(ab, "cap_fi", inh); 1637 log = 1; 1638 } 1639 1640 if (log) 1641 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1642 name->fcap.fE, name->fcap_ver); 1643 } 1644 1645 static inline int audit_copy_fcaps(struct audit_names *name, 1646 const struct dentry *dentry) 1647 { 1648 struct cpu_vfs_cap_data caps; 1649 int rc; 1650 1651 if (!dentry) 1652 return 0; 1653 1654 rc = get_vfs_caps_from_disk(dentry, &caps); 1655 if (rc) 1656 return rc; 1657 1658 name->fcap.permitted = caps.permitted; 1659 name->fcap.inheritable = caps.inheritable; 1660 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1661 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1662 VFS_CAP_REVISION_SHIFT; 1663 1664 return 0; 1665 } 1666 1667 /* Copy inode data into an audit_names. */ 1668 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1669 const struct inode *inode) 1670 { 1671 name->ino = inode->i_ino; 1672 name->dev = inode->i_sb->s_dev; 1673 name->mode = inode->i_mode; 1674 name->uid = inode->i_uid; 1675 name->gid = inode->i_gid; 1676 name->rdev = inode->i_rdev; 1677 security_inode_getsecid(inode, &name->osid); 1678 audit_copy_fcaps(name, dentry); 1679 } 1680 1681 /** 1682 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1683 * @context: audit_context for the task 1684 * @n: audit_names structure with reportable details 1685 * @path: optional path to report instead of audit_names->name 1686 * @record_num: record number to report when handling a list of names 1687 * @call_panic: optional pointer to int that will be updated if secid fails 1688 */ 1689 void audit_log_name(struct audit_context *context, struct audit_names *n, 1690 struct path *path, int record_num, int *call_panic) 1691 { 1692 struct audit_buffer *ab; 1693 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1694 if (!ab) 1695 return; 1696 1697 audit_log_format(ab, "item=%d", record_num); 1698 1699 if (path) 1700 audit_log_d_path(ab, " name=", path); 1701 else if (n->name) { 1702 switch (n->name_len) { 1703 case AUDIT_NAME_FULL: 1704 /* log the full path */ 1705 audit_log_format(ab, " name="); 1706 audit_log_untrustedstring(ab, n->name->name); 1707 break; 1708 case 0: 1709 /* name was specified as a relative path and the 1710 * directory component is the cwd */ 1711 audit_log_d_path(ab, " name=", &context->pwd); 1712 break; 1713 default: 1714 /* log the name's directory component */ 1715 audit_log_format(ab, " name="); 1716 audit_log_n_untrustedstring(ab, n->name->name, 1717 n->name_len); 1718 } 1719 } else 1720 audit_log_format(ab, " name=(null)"); 1721 1722 if (n->ino != (unsigned long)-1) { 1723 audit_log_format(ab, " inode=%lu" 1724 " dev=%02x:%02x mode=%#ho" 1725 " ouid=%u ogid=%u rdev=%02x:%02x", 1726 n->ino, 1727 MAJOR(n->dev), 1728 MINOR(n->dev), 1729 n->mode, 1730 from_kuid(&init_user_ns, n->uid), 1731 from_kgid(&init_user_ns, n->gid), 1732 MAJOR(n->rdev), 1733 MINOR(n->rdev)); 1734 } 1735 if (n->osid != 0) { 1736 char *ctx = NULL; 1737 u32 len; 1738 if (security_secid_to_secctx( 1739 n->osid, &ctx, &len)) { 1740 audit_log_format(ab, " osid=%u", n->osid); 1741 if (call_panic) 1742 *call_panic = 2; 1743 } else { 1744 audit_log_format(ab, " obj=%s", ctx); 1745 security_release_secctx(ctx, len); 1746 } 1747 } 1748 1749 /* log the audit_names record type */ 1750 audit_log_format(ab, " nametype="); 1751 switch(n->type) { 1752 case AUDIT_TYPE_NORMAL: 1753 audit_log_format(ab, "NORMAL"); 1754 break; 1755 case AUDIT_TYPE_PARENT: 1756 audit_log_format(ab, "PARENT"); 1757 break; 1758 case AUDIT_TYPE_CHILD_DELETE: 1759 audit_log_format(ab, "DELETE"); 1760 break; 1761 case AUDIT_TYPE_CHILD_CREATE: 1762 audit_log_format(ab, "CREATE"); 1763 break; 1764 default: 1765 audit_log_format(ab, "UNKNOWN"); 1766 break; 1767 } 1768 1769 audit_log_fcaps(ab, n); 1770 audit_log_end(ab); 1771 } 1772 1773 int audit_log_task_context(struct audit_buffer *ab) 1774 { 1775 char *ctx = NULL; 1776 unsigned len; 1777 int error; 1778 u32 sid; 1779 1780 security_task_getsecid(current, &sid); 1781 if (!sid) 1782 return 0; 1783 1784 error = security_secid_to_secctx(sid, &ctx, &len); 1785 if (error) { 1786 if (error != -EINVAL) 1787 goto error_path; 1788 return 0; 1789 } 1790 1791 audit_log_format(ab, " subj=%s", ctx); 1792 security_release_secctx(ctx, len); 1793 return 0; 1794 1795 error_path: 1796 audit_panic("error in audit_log_task_context"); 1797 return error; 1798 } 1799 EXPORT_SYMBOL(audit_log_task_context); 1800 1801 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1802 { 1803 const struct cred *cred; 1804 char name[sizeof(tsk->comm)]; 1805 struct mm_struct *mm = tsk->mm; 1806 char *tty; 1807 1808 if (!ab) 1809 return; 1810 1811 /* tsk == current */ 1812 cred = current_cred(); 1813 1814 spin_lock_irq(&tsk->sighand->siglock); 1815 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1816 tty = tsk->signal->tty->name; 1817 else 1818 tty = "(none)"; 1819 spin_unlock_irq(&tsk->sighand->siglock); 1820 1821 audit_log_format(ab, 1822 " ppid=%ld pid=%d auid=%u uid=%u gid=%u" 1823 " euid=%u suid=%u fsuid=%u" 1824 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1825 sys_getppid(), 1826 tsk->pid, 1827 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1828 from_kuid(&init_user_ns, cred->uid), 1829 from_kgid(&init_user_ns, cred->gid), 1830 from_kuid(&init_user_ns, cred->euid), 1831 from_kuid(&init_user_ns, cred->suid), 1832 from_kuid(&init_user_ns, cred->fsuid), 1833 from_kgid(&init_user_ns, cred->egid), 1834 from_kgid(&init_user_ns, cred->sgid), 1835 from_kgid(&init_user_ns, cred->fsgid), 1836 tty, audit_get_sessionid(tsk)); 1837 1838 get_task_comm(name, tsk); 1839 audit_log_format(ab, " comm="); 1840 audit_log_untrustedstring(ab, name); 1841 1842 if (mm) { 1843 down_read(&mm->mmap_sem); 1844 if (mm->exe_file) 1845 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1846 up_read(&mm->mmap_sem); 1847 } else 1848 audit_log_format(ab, " exe=(null)"); 1849 audit_log_task_context(ab); 1850 } 1851 EXPORT_SYMBOL(audit_log_task_info); 1852 1853 /** 1854 * audit_log_link_denied - report a link restriction denial 1855 * @operation: specific link opreation 1856 * @link: the path that triggered the restriction 1857 */ 1858 void audit_log_link_denied(const char *operation, struct path *link) 1859 { 1860 struct audit_buffer *ab; 1861 struct audit_names *name; 1862 1863 name = kzalloc(sizeof(*name), GFP_NOFS); 1864 if (!name) 1865 return; 1866 1867 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1868 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1869 AUDIT_ANOM_LINK); 1870 if (!ab) 1871 goto out; 1872 audit_log_format(ab, "op=%s", operation); 1873 audit_log_task_info(ab, current); 1874 audit_log_format(ab, " res=0"); 1875 audit_log_end(ab); 1876 1877 /* Generate AUDIT_PATH record with object. */ 1878 name->type = AUDIT_TYPE_NORMAL; 1879 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1880 audit_log_name(current->audit_context, name, link, 0, NULL); 1881 out: 1882 kfree(name); 1883 } 1884 1885 /** 1886 * audit_log_end - end one audit record 1887 * @ab: the audit_buffer 1888 * 1889 * The netlink_* functions cannot be called inside an irq context, so 1890 * the audit buffer is placed on a queue and a tasklet is scheduled to 1891 * remove them from the queue outside the irq context. May be called in 1892 * any context. 1893 */ 1894 void audit_log_end(struct audit_buffer *ab) 1895 { 1896 if (!ab) 1897 return; 1898 if (!audit_rate_check()) { 1899 audit_log_lost("rate limit exceeded"); 1900 } else { 1901 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1902 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN; 1903 1904 if (audit_pid) { 1905 skb_queue_tail(&audit_skb_queue, ab->skb); 1906 wake_up_interruptible(&kauditd_wait); 1907 } else { 1908 audit_printk_skb(ab->skb); 1909 } 1910 ab->skb = NULL; 1911 } 1912 audit_buffer_free(ab); 1913 } 1914 1915 /** 1916 * audit_log - Log an audit record 1917 * @ctx: audit context 1918 * @gfp_mask: type of allocation 1919 * @type: audit message type 1920 * @fmt: format string to use 1921 * @...: variable parameters matching the format string 1922 * 1923 * This is a convenience function that calls audit_log_start, 1924 * audit_log_vformat, and audit_log_end. It may be called 1925 * in any context. 1926 */ 1927 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1928 const char *fmt, ...) 1929 { 1930 struct audit_buffer *ab; 1931 va_list args; 1932 1933 ab = audit_log_start(ctx, gfp_mask, type); 1934 if (ab) { 1935 va_start(args, fmt); 1936 audit_log_vformat(ab, fmt, args); 1937 va_end(args); 1938 audit_log_end(ab); 1939 } 1940 } 1941 1942 #ifdef CONFIG_SECURITY 1943 /** 1944 * audit_log_secctx - Converts and logs SELinux context 1945 * @ab: audit_buffer 1946 * @secid: security number 1947 * 1948 * This is a helper function that calls security_secid_to_secctx to convert 1949 * secid to secctx and then adds the (converted) SELinux context to the audit 1950 * log by calling audit_log_format, thus also preventing leak of internal secid 1951 * to userspace. If secid cannot be converted audit_panic is called. 1952 */ 1953 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 1954 { 1955 u32 len; 1956 char *secctx; 1957 1958 if (security_secid_to_secctx(secid, &secctx, &len)) { 1959 audit_panic("Cannot convert secid to context"); 1960 } else { 1961 audit_log_format(ab, " obj=%s", secctx); 1962 security_release_secctx(secctx, len); 1963 } 1964 } 1965 EXPORT_SYMBOL(audit_log_secctx); 1966 #endif 1967 1968 EXPORT_SYMBOL(audit_log_start); 1969 EXPORT_SYMBOL(audit_log_end); 1970 EXPORT_SYMBOL(audit_log_format); 1971 EXPORT_SYMBOL(audit_log); 1972