1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/tty.h> 68 #include <linux/pid_namespace.h> 69 #include <net/netns/generic.h> 70 71 #include "audit.h" 72 73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 74 * (Initialization happens after skb_init is called.) */ 75 #define AUDIT_DISABLED -1 76 #define AUDIT_UNINITIALIZED 0 77 #define AUDIT_INITIALIZED 1 78 static int audit_initialized; 79 80 #define AUDIT_OFF 0 81 #define AUDIT_ON 1 82 #define AUDIT_LOCKED 2 83 u32 audit_enabled; 84 u32 audit_ever_enabled; 85 86 EXPORT_SYMBOL_GPL(audit_enabled); 87 88 /* Default state when kernel boots without any parameters. */ 89 static u32 audit_default; 90 91 /* If auditing cannot proceed, audit_failure selects what happens. */ 92 static u32 audit_failure = AUDIT_FAIL_PRINTK; 93 94 /* 95 * If audit records are to be written to the netlink socket, audit_pid 96 * contains the pid of the auditd process and audit_nlk_portid contains 97 * the portid to use to send netlink messages to that process. 98 */ 99 int audit_pid; 100 static __u32 audit_nlk_portid; 101 102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 103 * to that number per second. This prevents DoS attacks, but results in 104 * audit records being dropped. */ 105 static u32 audit_rate_limit; 106 107 /* Number of outstanding audit_buffers allowed. 108 * When set to zero, this means unlimited. */ 109 static u32 audit_backlog_limit = 64; 110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; 112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 113 static u32 audit_backlog_wait_overflow = 0; 114 115 /* The identity of the user shutting down the audit system. */ 116 kuid_t audit_sig_uid = INVALID_UID; 117 pid_t audit_sig_pid = -1; 118 u32 audit_sig_sid = 0; 119 120 /* Records can be lost in several ways: 121 0) [suppressed in audit_alloc] 122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 123 2) out of memory in audit_log_move [alloc_skb] 124 3) suppressed due to audit_rate_limit 125 4) suppressed due to audit_backlog_limit 126 */ 127 static atomic_t audit_lost = ATOMIC_INIT(0); 128 129 /* The netlink socket. */ 130 static struct sock *audit_sock; 131 static int audit_net_id; 132 133 /* Hash for inode-based rules */ 134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 135 136 /* The audit_freelist is a list of pre-allocated audit buffers (if more 137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 138 * being placed on the freelist). */ 139 static DEFINE_SPINLOCK(audit_freelist_lock); 140 static int audit_freelist_count; 141 static LIST_HEAD(audit_freelist); 142 143 static struct sk_buff_head audit_skb_queue; 144 /* queue of skbs to send to auditd when/if it comes back */ 145 static struct sk_buff_head audit_skb_hold_queue; 146 static struct task_struct *kauditd_task; 147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 149 150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 151 .mask = -1, 152 .features = 0, 153 .lock = 0,}; 154 155 static char *audit_feature_names[2] = { 156 "only_unset_loginuid", 157 "loginuid_immutable", 158 }; 159 160 161 /* Serialize requests from userspace. */ 162 DEFINE_MUTEX(audit_cmd_mutex); 163 164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 165 * audit records. Since printk uses a 1024 byte buffer, this buffer 166 * should be at least that large. */ 167 #define AUDIT_BUFSIZ 1024 168 169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 171 #define AUDIT_MAXFREE (2*NR_CPUS) 172 173 /* The audit_buffer is used when formatting an audit record. The caller 174 * locks briefly to get the record off the freelist or to allocate the 175 * buffer, and locks briefly to send the buffer to the netlink layer or 176 * to place it on a transmit queue. Multiple audit_buffers can be in 177 * use simultaneously. */ 178 struct audit_buffer { 179 struct list_head list; 180 struct sk_buff *skb; /* formatted skb ready to send */ 181 struct audit_context *ctx; /* NULL or associated context */ 182 gfp_t gfp_mask; 183 }; 184 185 struct audit_reply { 186 __u32 portid; 187 struct net *net; 188 struct sk_buff *skb; 189 }; 190 191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 192 { 193 if (ab) { 194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 195 nlh->nlmsg_pid = portid; 196 } 197 } 198 199 void audit_panic(const char *message) 200 { 201 switch (audit_failure) { 202 case AUDIT_FAIL_SILENT: 203 break; 204 case AUDIT_FAIL_PRINTK: 205 if (printk_ratelimit()) 206 pr_err("%s\n", message); 207 break; 208 case AUDIT_FAIL_PANIC: 209 /* test audit_pid since printk is always losey, why bother? */ 210 if (audit_pid) 211 panic("audit: %s\n", message); 212 break; 213 } 214 } 215 216 static inline int audit_rate_check(void) 217 { 218 static unsigned long last_check = 0; 219 static int messages = 0; 220 static DEFINE_SPINLOCK(lock); 221 unsigned long flags; 222 unsigned long now; 223 unsigned long elapsed; 224 int retval = 0; 225 226 if (!audit_rate_limit) return 1; 227 228 spin_lock_irqsave(&lock, flags); 229 if (++messages < audit_rate_limit) { 230 retval = 1; 231 } else { 232 now = jiffies; 233 elapsed = now - last_check; 234 if (elapsed > HZ) { 235 last_check = now; 236 messages = 0; 237 retval = 1; 238 } 239 } 240 spin_unlock_irqrestore(&lock, flags); 241 242 return retval; 243 } 244 245 /** 246 * audit_log_lost - conditionally log lost audit message event 247 * @message: the message stating reason for lost audit message 248 * 249 * Emit at least 1 message per second, even if audit_rate_check is 250 * throttling. 251 * Always increment the lost messages counter. 252 */ 253 void audit_log_lost(const char *message) 254 { 255 static unsigned long last_msg = 0; 256 static DEFINE_SPINLOCK(lock); 257 unsigned long flags; 258 unsigned long now; 259 int print; 260 261 atomic_inc(&audit_lost); 262 263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 264 265 if (!print) { 266 spin_lock_irqsave(&lock, flags); 267 now = jiffies; 268 if (now - last_msg > HZ) { 269 print = 1; 270 last_msg = now; 271 } 272 spin_unlock_irqrestore(&lock, flags); 273 } 274 275 if (print) { 276 if (printk_ratelimit()) 277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 278 atomic_read(&audit_lost), 279 audit_rate_limit, 280 audit_backlog_limit); 281 audit_panic(message); 282 } 283 } 284 285 static int audit_log_config_change(char *function_name, u32 new, u32 old, 286 int allow_changes) 287 { 288 struct audit_buffer *ab; 289 int rc = 0; 290 291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 292 if (unlikely(!ab)) 293 return rc; 294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 295 audit_log_session_info(ab); 296 rc = audit_log_task_context(ab); 297 if (rc) 298 allow_changes = 0; /* Something weird, deny request */ 299 audit_log_format(ab, " res=%d", allow_changes); 300 audit_log_end(ab); 301 return rc; 302 } 303 304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 305 { 306 int allow_changes, rc = 0; 307 u32 old = *to_change; 308 309 /* check if we are locked */ 310 if (audit_enabled == AUDIT_LOCKED) 311 allow_changes = 0; 312 else 313 allow_changes = 1; 314 315 if (audit_enabled != AUDIT_OFF) { 316 rc = audit_log_config_change(function_name, new, old, allow_changes); 317 if (rc) 318 allow_changes = 0; 319 } 320 321 /* If we are allowed, make the change */ 322 if (allow_changes == 1) 323 *to_change = new; 324 /* Not allowed, update reason */ 325 else if (rc == 0) 326 rc = -EPERM; 327 return rc; 328 } 329 330 static int audit_set_rate_limit(u32 limit) 331 { 332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 333 } 334 335 static int audit_set_backlog_limit(u32 limit) 336 { 337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 338 } 339 340 static int audit_set_backlog_wait_time(u32 timeout) 341 { 342 return audit_do_config_change("audit_backlog_wait_time", 343 &audit_backlog_wait_time_master, timeout); 344 } 345 346 static int audit_set_enabled(u32 state) 347 { 348 int rc; 349 if (state > AUDIT_LOCKED) 350 return -EINVAL; 351 352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 353 if (!rc) 354 audit_ever_enabled |= !!state; 355 356 return rc; 357 } 358 359 static int audit_set_failure(u32 state) 360 { 361 if (state != AUDIT_FAIL_SILENT 362 && state != AUDIT_FAIL_PRINTK 363 && state != AUDIT_FAIL_PANIC) 364 return -EINVAL; 365 366 return audit_do_config_change("audit_failure", &audit_failure, state); 367 } 368 369 /* 370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 371 * already have been sent via prink/syslog and so if these messages are dropped 372 * it is not a huge concern since we already passed the audit_log_lost() 373 * notification and stuff. This is just nice to get audit messages during 374 * boot before auditd is running or messages generated while auditd is stopped. 375 * This only holds messages is audit_default is set, aka booting with audit=1 376 * or building your kernel that way. 377 */ 378 static void audit_hold_skb(struct sk_buff *skb) 379 { 380 if (audit_default && 381 (!audit_backlog_limit || 382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 383 skb_queue_tail(&audit_skb_hold_queue, skb); 384 else 385 kfree_skb(skb); 386 } 387 388 /* 389 * For one reason or another this nlh isn't getting delivered to the userspace 390 * audit daemon, just send it to printk. 391 */ 392 static void audit_printk_skb(struct sk_buff *skb) 393 { 394 struct nlmsghdr *nlh = nlmsg_hdr(skb); 395 char *data = nlmsg_data(nlh); 396 397 if (nlh->nlmsg_type != AUDIT_EOE) { 398 if (printk_ratelimit()) 399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 400 else 401 audit_log_lost("printk limit exceeded"); 402 } 403 404 audit_hold_skb(skb); 405 } 406 407 static void kauditd_send_skb(struct sk_buff *skb) 408 { 409 int err; 410 int attempts = 0; 411 #define AUDITD_RETRIES 5 412 413 restart: 414 /* take a reference in case we can't send it and we want to hold it */ 415 skb_get(skb); 416 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 417 if (err < 0) { 418 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n", 419 audit_pid, err); 420 if (audit_pid) { 421 if (err == -ECONNREFUSED || err == -EPERM 422 || ++attempts >= AUDITD_RETRIES) { 423 char s[32]; 424 425 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid); 426 audit_log_lost(s); 427 audit_pid = 0; 428 audit_sock = NULL; 429 } else { 430 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n", 431 attempts, audit_pid); 432 set_current_state(TASK_INTERRUPTIBLE); 433 schedule(); 434 __set_current_state(TASK_RUNNING); 435 goto restart; 436 } 437 } 438 /* we might get lucky and get this in the next auditd */ 439 audit_hold_skb(skb); 440 } else 441 /* drop the extra reference if sent ok */ 442 consume_skb(skb); 443 } 444 445 /* 446 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 447 * 448 * This function doesn't consume an skb as might be expected since it has to 449 * copy it anyways. 450 */ 451 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) 452 { 453 struct sk_buff *copy; 454 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 455 struct sock *sock = aunet->nlsk; 456 457 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 458 return; 459 460 /* 461 * The seemingly wasteful skb_copy() rather than bumping the refcount 462 * using skb_get() is necessary because non-standard mods are made to 463 * the skb by the original kaudit unicast socket send routine. The 464 * existing auditd daemon assumes this breakage. Fixing this would 465 * require co-ordinating a change in the established protocol between 466 * the kaudit kernel subsystem and the auditd userspace code. There is 467 * no reason for new multicast clients to continue with this 468 * non-compliance. 469 */ 470 copy = skb_copy(skb, gfp_mask); 471 if (!copy) 472 return; 473 474 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); 475 } 476 477 /* 478 * flush_hold_queue - empty the hold queue if auditd appears 479 * 480 * If auditd just started, drain the queue of messages already 481 * sent to syslog/printk. Remember loss here is ok. We already 482 * called audit_log_lost() if it didn't go out normally. so the 483 * race between the skb_dequeue and the next check for audit_pid 484 * doesn't matter. 485 * 486 * If you ever find kauditd to be too slow we can get a perf win 487 * by doing our own locking and keeping better track if there 488 * are messages in this queue. I don't see the need now, but 489 * in 5 years when I want to play with this again I'll see this 490 * note and still have no friggin idea what i'm thinking today. 491 */ 492 static void flush_hold_queue(void) 493 { 494 struct sk_buff *skb; 495 496 if (!audit_default || !audit_pid) 497 return; 498 499 skb = skb_dequeue(&audit_skb_hold_queue); 500 if (likely(!skb)) 501 return; 502 503 while (skb && audit_pid) { 504 kauditd_send_skb(skb); 505 skb = skb_dequeue(&audit_skb_hold_queue); 506 } 507 508 /* 509 * if auditd just disappeared but we 510 * dequeued an skb we need to drop ref 511 */ 512 if (skb) 513 consume_skb(skb); 514 } 515 516 static int kauditd_thread(void *dummy) 517 { 518 set_freezable(); 519 while (!kthread_should_stop()) { 520 struct sk_buff *skb; 521 522 flush_hold_queue(); 523 524 skb = skb_dequeue(&audit_skb_queue); 525 526 if (skb) { 527 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 528 wake_up(&audit_backlog_wait); 529 if (audit_pid) 530 kauditd_send_skb(skb); 531 else 532 audit_printk_skb(skb); 533 continue; 534 } 535 536 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 537 } 538 return 0; 539 } 540 541 int audit_send_list(void *_dest) 542 { 543 struct audit_netlink_list *dest = _dest; 544 struct sk_buff *skb; 545 struct net *net = dest->net; 546 struct audit_net *aunet = net_generic(net, audit_net_id); 547 548 /* wait for parent to finish and send an ACK */ 549 mutex_lock(&audit_cmd_mutex); 550 mutex_unlock(&audit_cmd_mutex); 551 552 while ((skb = __skb_dequeue(&dest->q)) != NULL) 553 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 554 555 put_net(net); 556 kfree(dest); 557 558 return 0; 559 } 560 561 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 562 int multi, const void *payload, int size) 563 { 564 struct sk_buff *skb; 565 struct nlmsghdr *nlh; 566 void *data; 567 int flags = multi ? NLM_F_MULTI : 0; 568 int t = done ? NLMSG_DONE : type; 569 570 skb = nlmsg_new(size, GFP_KERNEL); 571 if (!skb) 572 return NULL; 573 574 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 575 if (!nlh) 576 goto out_kfree_skb; 577 data = nlmsg_data(nlh); 578 memcpy(data, payload, size); 579 return skb; 580 581 out_kfree_skb: 582 kfree_skb(skb); 583 return NULL; 584 } 585 586 static int audit_send_reply_thread(void *arg) 587 { 588 struct audit_reply *reply = (struct audit_reply *)arg; 589 struct net *net = reply->net; 590 struct audit_net *aunet = net_generic(net, audit_net_id); 591 592 mutex_lock(&audit_cmd_mutex); 593 mutex_unlock(&audit_cmd_mutex); 594 595 /* Ignore failure. It'll only happen if the sender goes away, 596 because our timeout is set to infinite. */ 597 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 598 put_net(net); 599 kfree(reply); 600 return 0; 601 } 602 /** 603 * audit_send_reply - send an audit reply message via netlink 604 * @request_skb: skb of request we are replying to (used to target the reply) 605 * @seq: sequence number 606 * @type: audit message type 607 * @done: done (last) flag 608 * @multi: multi-part message flag 609 * @payload: payload data 610 * @size: payload size 611 * 612 * Allocates an skb, builds the netlink message, and sends it to the port id. 613 * No failure notifications. 614 */ 615 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 616 int multi, const void *payload, int size) 617 { 618 u32 portid = NETLINK_CB(request_skb).portid; 619 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 620 struct sk_buff *skb; 621 struct task_struct *tsk; 622 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 623 GFP_KERNEL); 624 625 if (!reply) 626 return; 627 628 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 629 if (!skb) 630 goto out; 631 632 reply->net = get_net(net); 633 reply->portid = portid; 634 reply->skb = skb; 635 636 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 637 if (!IS_ERR(tsk)) 638 return; 639 kfree_skb(skb); 640 out: 641 kfree(reply); 642 } 643 644 /* 645 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 646 * control messages. 647 */ 648 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 649 { 650 int err = 0; 651 652 /* Only support initial user namespace for now. */ 653 /* 654 * We return ECONNREFUSED because it tricks userspace into thinking 655 * that audit was not configured into the kernel. Lots of users 656 * configure their PAM stack (because that's what the distro does) 657 * to reject login if unable to send messages to audit. If we return 658 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 659 * configured in and will let login proceed. If we return EPERM 660 * userspace will reject all logins. This should be removed when we 661 * support non init namespaces!! 662 */ 663 if (current_user_ns() != &init_user_ns) 664 return -ECONNREFUSED; 665 666 switch (msg_type) { 667 case AUDIT_LIST: 668 case AUDIT_ADD: 669 case AUDIT_DEL: 670 return -EOPNOTSUPP; 671 case AUDIT_GET: 672 case AUDIT_SET: 673 case AUDIT_GET_FEATURE: 674 case AUDIT_SET_FEATURE: 675 case AUDIT_LIST_RULES: 676 case AUDIT_ADD_RULE: 677 case AUDIT_DEL_RULE: 678 case AUDIT_SIGNAL_INFO: 679 case AUDIT_TTY_GET: 680 case AUDIT_TTY_SET: 681 case AUDIT_TRIM: 682 case AUDIT_MAKE_EQUIV: 683 /* Only support auditd and auditctl in initial pid namespace 684 * for now. */ 685 if (task_active_pid_ns(current) != &init_pid_ns) 686 return -EPERM; 687 688 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 689 err = -EPERM; 690 break; 691 case AUDIT_USER: 692 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 693 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 694 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 695 err = -EPERM; 696 break; 697 default: /* bad msg */ 698 err = -EINVAL; 699 } 700 701 return err; 702 } 703 704 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 705 { 706 uid_t uid = from_kuid(&init_user_ns, current_uid()); 707 pid_t pid = task_tgid_nr(current); 708 709 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 710 *ab = NULL; 711 return; 712 } 713 714 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 715 if (unlikely(!*ab)) 716 return; 717 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 718 audit_log_session_info(*ab); 719 audit_log_task_context(*ab); 720 } 721 722 int is_audit_feature_set(int i) 723 { 724 return af.features & AUDIT_FEATURE_TO_MASK(i); 725 } 726 727 728 static int audit_get_feature(struct sk_buff *skb) 729 { 730 u32 seq; 731 732 seq = nlmsg_hdr(skb)->nlmsg_seq; 733 734 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 735 736 return 0; 737 } 738 739 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 740 u32 old_lock, u32 new_lock, int res) 741 { 742 struct audit_buffer *ab; 743 744 if (audit_enabled == AUDIT_OFF) 745 return; 746 747 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 748 audit_log_task_info(ab, current); 749 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 750 audit_feature_names[which], !!old_feature, !!new_feature, 751 !!old_lock, !!new_lock, res); 752 audit_log_end(ab); 753 } 754 755 static int audit_set_feature(struct sk_buff *skb) 756 { 757 struct audit_features *uaf; 758 int i; 759 760 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 761 uaf = nlmsg_data(nlmsg_hdr(skb)); 762 763 /* if there is ever a version 2 we should handle that here */ 764 765 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 766 u32 feature = AUDIT_FEATURE_TO_MASK(i); 767 u32 old_feature, new_feature, old_lock, new_lock; 768 769 /* if we are not changing this feature, move along */ 770 if (!(feature & uaf->mask)) 771 continue; 772 773 old_feature = af.features & feature; 774 new_feature = uaf->features & feature; 775 new_lock = (uaf->lock | af.lock) & feature; 776 old_lock = af.lock & feature; 777 778 /* are we changing a locked feature? */ 779 if (old_lock && (new_feature != old_feature)) { 780 audit_log_feature_change(i, old_feature, new_feature, 781 old_lock, new_lock, 0); 782 return -EPERM; 783 } 784 } 785 /* nothing invalid, do the changes */ 786 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 787 u32 feature = AUDIT_FEATURE_TO_MASK(i); 788 u32 old_feature, new_feature, old_lock, new_lock; 789 790 /* if we are not changing this feature, move along */ 791 if (!(feature & uaf->mask)) 792 continue; 793 794 old_feature = af.features & feature; 795 new_feature = uaf->features & feature; 796 old_lock = af.lock & feature; 797 new_lock = (uaf->lock | af.lock) & feature; 798 799 if (new_feature != old_feature) 800 audit_log_feature_change(i, old_feature, new_feature, 801 old_lock, new_lock, 1); 802 803 if (new_feature) 804 af.features |= feature; 805 else 806 af.features &= ~feature; 807 af.lock |= new_lock; 808 } 809 810 return 0; 811 } 812 813 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 814 { 815 u32 seq; 816 void *data; 817 int err; 818 struct audit_buffer *ab; 819 u16 msg_type = nlh->nlmsg_type; 820 struct audit_sig_info *sig_data; 821 char *ctx = NULL; 822 u32 len; 823 824 err = audit_netlink_ok(skb, msg_type); 825 if (err) 826 return err; 827 828 /* As soon as there's any sign of userspace auditd, 829 * start kauditd to talk to it */ 830 if (!kauditd_task) { 831 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 832 if (IS_ERR(kauditd_task)) { 833 err = PTR_ERR(kauditd_task); 834 kauditd_task = NULL; 835 return err; 836 } 837 } 838 seq = nlh->nlmsg_seq; 839 data = nlmsg_data(nlh); 840 841 switch (msg_type) { 842 case AUDIT_GET: { 843 struct audit_status s; 844 memset(&s, 0, sizeof(s)); 845 s.enabled = audit_enabled; 846 s.failure = audit_failure; 847 s.pid = audit_pid; 848 s.rate_limit = audit_rate_limit; 849 s.backlog_limit = audit_backlog_limit; 850 s.lost = atomic_read(&audit_lost); 851 s.backlog = skb_queue_len(&audit_skb_queue); 852 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 853 s.backlog_wait_time = audit_backlog_wait_time_master; 854 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 855 break; 856 } 857 case AUDIT_SET: { 858 struct audit_status s; 859 memset(&s, 0, sizeof(s)); 860 /* guard against past and future API changes */ 861 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 862 if (s.mask & AUDIT_STATUS_ENABLED) { 863 err = audit_set_enabled(s.enabled); 864 if (err < 0) 865 return err; 866 } 867 if (s.mask & AUDIT_STATUS_FAILURE) { 868 err = audit_set_failure(s.failure); 869 if (err < 0) 870 return err; 871 } 872 if (s.mask & AUDIT_STATUS_PID) { 873 int new_pid = s.pid; 874 875 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 876 return -EACCES; 877 if (audit_enabled != AUDIT_OFF) 878 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 879 audit_pid = new_pid; 880 audit_nlk_portid = NETLINK_CB(skb).portid; 881 audit_sock = skb->sk; 882 } 883 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 884 err = audit_set_rate_limit(s.rate_limit); 885 if (err < 0) 886 return err; 887 } 888 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 889 err = audit_set_backlog_limit(s.backlog_limit); 890 if (err < 0) 891 return err; 892 } 893 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 894 if (sizeof(s) > (size_t)nlh->nlmsg_len) 895 return -EINVAL; 896 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 897 return -EINVAL; 898 err = audit_set_backlog_wait_time(s.backlog_wait_time); 899 if (err < 0) 900 return err; 901 } 902 break; 903 } 904 case AUDIT_GET_FEATURE: 905 err = audit_get_feature(skb); 906 if (err) 907 return err; 908 break; 909 case AUDIT_SET_FEATURE: 910 err = audit_set_feature(skb); 911 if (err) 912 return err; 913 break; 914 case AUDIT_USER: 915 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 916 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 917 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 918 return 0; 919 920 err = audit_filter_user(msg_type); 921 if (err == 1) { /* match or error */ 922 err = 0; 923 if (msg_type == AUDIT_USER_TTY) { 924 err = tty_audit_push_current(); 925 if (err) 926 break; 927 } 928 mutex_unlock(&audit_cmd_mutex); 929 audit_log_common_recv_msg(&ab, msg_type); 930 if (msg_type != AUDIT_USER_TTY) 931 audit_log_format(ab, " msg='%.*s'", 932 AUDIT_MESSAGE_TEXT_MAX, 933 (char *)data); 934 else { 935 int size; 936 937 audit_log_format(ab, " data="); 938 size = nlmsg_len(nlh); 939 if (size > 0 && 940 ((unsigned char *)data)[size - 1] == '\0') 941 size--; 942 audit_log_n_untrustedstring(ab, data, size); 943 } 944 audit_set_portid(ab, NETLINK_CB(skb).portid); 945 audit_log_end(ab); 946 mutex_lock(&audit_cmd_mutex); 947 } 948 break; 949 case AUDIT_ADD_RULE: 950 case AUDIT_DEL_RULE: 951 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 952 return -EINVAL; 953 if (audit_enabled == AUDIT_LOCKED) { 954 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 955 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 956 audit_log_end(ab); 957 return -EPERM; 958 } 959 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 960 seq, data, nlmsg_len(nlh)); 961 break; 962 case AUDIT_LIST_RULES: 963 err = audit_list_rules_send(skb, seq); 964 break; 965 case AUDIT_TRIM: 966 audit_trim_trees(); 967 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 968 audit_log_format(ab, " op=trim res=1"); 969 audit_log_end(ab); 970 break; 971 case AUDIT_MAKE_EQUIV: { 972 void *bufp = data; 973 u32 sizes[2]; 974 size_t msglen = nlmsg_len(nlh); 975 char *old, *new; 976 977 err = -EINVAL; 978 if (msglen < 2 * sizeof(u32)) 979 break; 980 memcpy(sizes, bufp, 2 * sizeof(u32)); 981 bufp += 2 * sizeof(u32); 982 msglen -= 2 * sizeof(u32); 983 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 984 if (IS_ERR(old)) { 985 err = PTR_ERR(old); 986 break; 987 } 988 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 989 if (IS_ERR(new)) { 990 err = PTR_ERR(new); 991 kfree(old); 992 break; 993 } 994 /* OK, here comes... */ 995 err = audit_tag_tree(old, new); 996 997 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 998 999 audit_log_format(ab, " op=make_equiv old="); 1000 audit_log_untrustedstring(ab, old); 1001 audit_log_format(ab, " new="); 1002 audit_log_untrustedstring(ab, new); 1003 audit_log_format(ab, " res=%d", !err); 1004 audit_log_end(ab); 1005 kfree(old); 1006 kfree(new); 1007 break; 1008 } 1009 case AUDIT_SIGNAL_INFO: 1010 len = 0; 1011 if (audit_sig_sid) { 1012 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1013 if (err) 1014 return err; 1015 } 1016 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1017 if (!sig_data) { 1018 if (audit_sig_sid) 1019 security_release_secctx(ctx, len); 1020 return -ENOMEM; 1021 } 1022 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1023 sig_data->pid = audit_sig_pid; 1024 if (audit_sig_sid) { 1025 memcpy(sig_data->ctx, ctx, len); 1026 security_release_secctx(ctx, len); 1027 } 1028 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1029 sig_data, sizeof(*sig_data) + len); 1030 kfree(sig_data); 1031 break; 1032 case AUDIT_TTY_GET: { 1033 struct audit_tty_status s; 1034 struct task_struct *tsk = current; 1035 1036 spin_lock(&tsk->sighand->siglock); 1037 s.enabled = tsk->signal->audit_tty; 1038 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1039 spin_unlock(&tsk->sighand->siglock); 1040 1041 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1042 break; 1043 } 1044 case AUDIT_TTY_SET: { 1045 struct audit_tty_status s, old; 1046 struct task_struct *tsk = current; 1047 struct audit_buffer *ab; 1048 1049 memset(&s, 0, sizeof(s)); 1050 /* guard against past and future API changes */ 1051 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1052 /* check if new data is valid */ 1053 if ((s.enabled != 0 && s.enabled != 1) || 1054 (s.log_passwd != 0 && s.log_passwd != 1)) 1055 err = -EINVAL; 1056 1057 spin_lock(&tsk->sighand->siglock); 1058 old.enabled = tsk->signal->audit_tty; 1059 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1060 if (!err) { 1061 tsk->signal->audit_tty = s.enabled; 1062 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1063 } 1064 spin_unlock(&tsk->sighand->siglock); 1065 1066 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1067 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1068 " old-log_passwd=%d new-log_passwd=%d res=%d", 1069 old.enabled, s.enabled, old.log_passwd, 1070 s.log_passwd, !err); 1071 audit_log_end(ab); 1072 break; 1073 } 1074 default: 1075 err = -EINVAL; 1076 break; 1077 } 1078 1079 return err < 0 ? err : 0; 1080 } 1081 1082 /* 1083 * Get message from skb. Each message is processed by audit_receive_msg. 1084 * Malformed skbs with wrong length are discarded silently. 1085 */ 1086 static void audit_receive_skb(struct sk_buff *skb) 1087 { 1088 struct nlmsghdr *nlh; 1089 /* 1090 * len MUST be signed for nlmsg_next to be able to dec it below 0 1091 * if the nlmsg_len was not aligned 1092 */ 1093 int len; 1094 int err; 1095 1096 nlh = nlmsg_hdr(skb); 1097 len = skb->len; 1098 1099 while (nlmsg_ok(nlh, len)) { 1100 err = audit_receive_msg(skb, nlh); 1101 /* if err or if this message says it wants a response */ 1102 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1103 netlink_ack(skb, nlh, err); 1104 1105 nlh = nlmsg_next(nlh, &len); 1106 } 1107 } 1108 1109 /* Receive messages from netlink socket. */ 1110 static void audit_receive(struct sk_buff *skb) 1111 { 1112 mutex_lock(&audit_cmd_mutex); 1113 audit_receive_skb(skb); 1114 mutex_unlock(&audit_cmd_mutex); 1115 } 1116 1117 /* Run custom bind function on netlink socket group connect or bind requests. */ 1118 static int audit_bind(struct net *net, int group) 1119 { 1120 if (!capable(CAP_AUDIT_READ)) 1121 return -EPERM; 1122 1123 return 0; 1124 } 1125 1126 static int __net_init audit_net_init(struct net *net) 1127 { 1128 struct netlink_kernel_cfg cfg = { 1129 .input = audit_receive, 1130 .bind = audit_bind, 1131 .flags = NL_CFG_F_NONROOT_RECV, 1132 .groups = AUDIT_NLGRP_MAX, 1133 }; 1134 1135 struct audit_net *aunet = net_generic(net, audit_net_id); 1136 1137 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1138 if (aunet->nlsk == NULL) { 1139 audit_panic("cannot initialize netlink socket in namespace"); 1140 return -ENOMEM; 1141 } 1142 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1143 return 0; 1144 } 1145 1146 static void __net_exit audit_net_exit(struct net *net) 1147 { 1148 struct audit_net *aunet = net_generic(net, audit_net_id); 1149 struct sock *sock = aunet->nlsk; 1150 if (sock == audit_sock) { 1151 audit_pid = 0; 1152 audit_sock = NULL; 1153 } 1154 1155 RCU_INIT_POINTER(aunet->nlsk, NULL); 1156 synchronize_net(); 1157 netlink_kernel_release(sock); 1158 } 1159 1160 static struct pernet_operations audit_net_ops __net_initdata = { 1161 .init = audit_net_init, 1162 .exit = audit_net_exit, 1163 .id = &audit_net_id, 1164 .size = sizeof(struct audit_net), 1165 }; 1166 1167 /* Initialize audit support at boot time. */ 1168 static int __init audit_init(void) 1169 { 1170 int i; 1171 1172 if (audit_initialized == AUDIT_DISABLED) 1173 return 0; 1174 1175 pr_info("initializing netlink subsys (%s)\n", 1176 audit_default ? "enabled" : "disabled"); 1177 register_pernet_subsys(&audit_net_ops); 1178 1179 skb_queue_head_init(&audit_skb_queue); 1180 skb_queue_head_init(&audit_skb_hold_queue); 1181 audit_initialized = AUDIT_INITIALIZED; 1182 audit_enabled = audit_default; 1183 audit_ever_enabled |= !!audit_default; 1184 1185 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1186 1187 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1188 INIT_LIST_HEAD(&audit_inode_hash[i]); 1189 1190 return 0; 1191 } 1192 __initcall(audit_init); 1193 1194 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1195 static int __init audit_enable(char *str) 1196 { 1197 audit_default = !!simple_strtol(str, NULL, 0); 1198 if (!audit_default) 1199 audit_initialized = AUDIT_DISABLED; 1200 1201 pr_info("%s\n", audit_default ? 1202 "enabled (after initialization)" : "disabled (until reboot)"); 1203 1204 return 1; 1205 } 1206 __setup("audit=", audit_enable); 1207 1208 /* Process kernel command-line parameter at boot time. 1209 * audit_backlog_limit=<n> */ 1210 static int __init audit_backlog_limit_set(char *str) 1211 { 1212 u32 audit_backlog_limit_arg; 1213 1214 pr_info("audit_backlog_limit: "); 1215 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1216 pr_cont("using default of %u, unable to parse %s\n", 1217 audit_backlog_limit, str); 1218 return 1; 1219 } 1220 1221 audit_backlog_limit = audit_backlog_limit_arg; 1222 pr_cont("%d\n", audit_backlog_limit); 1223 1224 return 1; 1225 } 1226 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1227 1228 static void audit_buffer_free(struct audit_buffer *ab) 1229 { 1230 unsigned long flags; 1231 1232 if (!ab) 1233 return; 1234 1235 if (ab->skb) 1236 kfree_skb(ab->skb); 1237 1238 spin_lock_irqsave(&audit_freelist_lock, flags); 1239 if (audit_freelist_count > AUDIT_MAXFREE) 1240 kfree(ab); 1241 else { 1242 audit_freelist_count++; 1243 list_add(&ab->list, &audit_freelist); 1244 } 1245 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1246 } 1247 1248 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1249 gfp_t gfp_mask, int type) 1250 { 1251 unsigned long flags; 1252 struct audit_buffer *ab = NULL; 1253 struct nlmsghdr *nlh; 1254 1255 spin_lock_irqsave(&audit_freelist_lock, flags); 1256 if (!list_empty(&audit_freelist)) { 1257 ab = list_entry(audit_freelist.next, 1258 struct audit_buffer, list); 1259 list_del(&ab->list); 1260 --audit_freelist_count; 1261 } 1262 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1263 1264 if (!ab) { 1265 ab = kmalloc(sizeof(*ab), gfp_mask); 1266 if (!ab) 1267 goto err; 1268 } 1269 1270 ab->ctx = ctx; 1271 ab->gfp_mask = gfp_mask; 1272 1273 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1274 if (!ab->skb) 1275 goto err; 1276 1277 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1278 if (!nlh) 1279 goto out_kfree_skb; 1280 1281 return ab; 1282 1283 out_kfree_skb: 1284 kfree_skb(ab->skb); 1285 ab->skb = NULL; 1286 err: 1287 audit_buffer_free(ab); 1288 return NULL; 1289 } 1290 1291 /** 1292 * audit_serial - compute a serial number for the audit record 1293 * 1294 * Compute a serial number for the audit record. Audit records are 1295 * written to user-space as soon as they are generated, so a complete 1296 * audit record may be written in several pieces. The timestamp of the 1297 * record and this serial number are used by the user-space tools to 1298 * determine which pieces belong to the same audit record. The 1299 * (timestamp,serial) tuple is unique for each syscall and is live from 1300 * syscall entry to syscall exit. 1301 * 1302 * NOTE: Another possibility is to store the formatted records off the 1303 * audit context (for those records that have a context), and emit them 1304 * all at syscall exit. However, this could delay the reporting of 1305 * significant errors until syscall exit (or never, if the system 1306 * halts). 1307 */ 1308 unsigned int audit_serial(void) 1309 { 1310 static atomic_t serial = ATOMIC_INIT(0); 1311 1312 return atomic_add_return(1, &serial); 1313 } 1314 1315 static inline void audit_get_stamp(struct audit_context *ctx, 1316 struct timespec *t, unsigned int *serial) 1317 { 1318 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1319 *t = CURRENT_TIME; 1320 *serial = audit_serial(); 1321 } 1322 } 1323 1324 /* 1325 * Wait for auditd to drain the queue a little 1326 */ 1327 static long wait_for_auditd(long sleep_time) 1328 { 1329 DECLARE_WAITQUEUE(wait, current); 1330 set_current_state(TASK_UNINTERRUPTIBLE); 1331 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1332 1333 if (audit_backlog_limit && 1334 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1335 sleep_time = schedule_timeout(sleep_time); 1336 1337 __set_current_state(TASK_RUNNING); 1338 remove_wait_queue(&audit_backlog_wait, &wait); 1339 1340 return sleep_time; 1341 } 1342 1343 /** 1344 * audit_log_start - obtain an audit buffer 1345 * @ctx: audit_context (may be NULL) 1346 * @gfp_mask: type of allocation 1347 * @type: audit message type 1348 * 1349 * Returns audit_buffer pointer on success or NULL on error. 1350 * 1351 * Obtain an audit buffer. This routine does locking to obtain the 1352 * audit buffer, but then no locking is required for calls to 1353 * audit_log_*format. If the task (ctx) is a task that is currently in a 1354 * syscall, then the syscall is marked as auditable and an audit record 1355 * will be written at syscall exit. If there is no associated task, then 1356 * task context (ctx) should be NULL. 1357 */ 1358 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1359 int type) 1360 { 1361 struct audit_buffer *ab = NULL; 1362 struct timespec t; 1363 unsigned int uninitialized_var(serial); 1364 int reserve = 5; /* Allow atomic callers to go up to five 1365 entries over the normal backlog limit */ 1366 unsigned long timeout_start = jiffies; 1367 1368 if (audit_initialized != AUDIT_INITIALIZED) 1369 return NULL; 1370 1371 if (unlikely(audit_filter_type(type))) 1372 return NULL; 1373 1374 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 1375 if (audit_pid && audit_pid == current->pid) 1376 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 1377 else 1378 reserve = 0; 1379 } 1380 1381 while (audit_backlog_limit 1382 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1383 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) { 1384 long sleep_time; 1385 1386 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1387 if (sleep_time > 0) { 1388 sleep_time = wait_for_auditd(sleep_time); 1389 if (sleep_time > 0) 1390 continue; 1391 } 1392 } 1393 if (audit_rate_check() && printk_ratelimit()) 1394 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1395 skb_queue_len(&audit_skb_queue), 1396 audit_backlog_limit); 1397 audit_log_lost("backlog limit exceeded"); 1398 audit_backlog_wait_time = audit_backlog_wait_overflow; 1399 wake_up(&audit_backlog_wait); 1400 return NULL; 1401 } 1402 1403 if (!reserve) 1404 audit_backlog_wait_time = audit_backlog_wait_time_master; 1405 1406 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1407 if (!ab) { 1408 audit_log_lost("out of memory in audit_log_start"); 1409 return NULL; 1410 } 1411 1412 audit_get_stamp(ab->ctx, &t, &serial); 1413 1414 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1415 t.tv_sec, t.tv_nsec/1000000, serial); 1416 return ab; 1417 } 1418 1419 /** 1420 * audit_expand - expand skb in the audit buffer 1421 * @ab: audit_buffer 1422 * @extra: space to add at tail of the skb 1423 * 1424 * Returns 0 (no space) on failed expansion, or available space if 1425 * successful. 1426 */ 1427 static inline int audit_expand(struct audit_buffer *ab, int extra) 1428 { 1429 struct sk_buff *skb = ab->skb; 1430 int oldtail = skb_tailroom(skb); 1431 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1432 int newtail = skb_tailroom(skb); 1433 1434 if (ret < 0) { 1435 audit_log_lost("out of memory in audit_expand"); 1436 return 0; 1437 } 1438 1439 skb->truesize += newtail - oldtail; 1440 return newtail; 1441 } 1442 1443 /* 1444 * Format an audit message into the audit buffer. If there isn't enough 1445 * room in the audit buffer, more room will be allocated and vsnprint 1446 * will be called a second time. Currently, we assume that a printk 1447 * can't format message larger than 1024 bytes, so we don't either. 1448 */ 1449 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1450 va_list args) 1451 { 1452 int len, avail; 1453 struct sk_buff *skb; 1454 va_list args2; 1455 1456 if (!ab) 1457 return; 1458 1459 BUG_ON(!ab->skb); 1460 skb = ab->skb; 1461 avail = skb_tailroom(skb); 1462 if (avail == 0) { 1463 avail = audit_expand(ab, AUDIT_BUFSIZ); 1464 if (!avail) 1465 goto out; 1466 } 1467 va_copy(args2, args); 1468 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1469 if (len >= avail) { 1470 /* The printk buffer is 1024 bytes long, so if we get 1471 * here and AUDIT_BUFSIZ is at least 1024, then we can 1472 * log everything that printk could have logged. */ 1473 avail = audit_expand(ab, 1474 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1475 if (!avail) 1476 goto out_va_end; 1477 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1478 } 1479 if (len > 0) 1480 skb_put(skb, len); 1481 out_va_end: 1482 va_end(args2); 1483 out: 1484 return; 1485 } 1486 1487 /** 1488 * audit_log_format - format a message into the audit buffer. 1489 * @ab: audit_buffer 1490 * @fmt: format string 1491 * @...: optional parameters matching @fmt string 1492 * 1493 * All the work is done in audit_log_vformat. 1494 */ 1495 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1496 { 1497 va_list args; 1498 1499 if (!ab) 1500 return; 1501 va_start(args, fmt); 1502 audit_log_vformat(ab, fmt, args); 1503 va_end(args); 1504 } 1505 1506 /** 1507 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1508 * @ab: the audit_buffer 1509 * @buf: buffer to convert to hex 1510 * @len: length of @buf to be converted 1511 * 1512 * No return value; failure to expand is silently ignored. 1513 * 1514 * This function will take the passed buf and convert it into a string of 1515 * ascii hex digits. The new string is placed onto the skb. 1516 */ 1517 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1518 size_t len) 1519 { 1520 int i, avail, new_len; 1521 unsigned char *ptr; 1522 struct sk_buff *skb; 1523 1524 if (!ab) 1525 return; 1526 1527 BUG_ON(!ab->skb); 1528 skb = ab->skb; 1529 avail = skb_tailroom(skb); 1530 new_len = len<<1; 1531 if (new_len >= avail) { 1532 /* Round the buffer request up to the next multiple */ 1533 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1534 avail = audit_expand(ab, new_len); 1535 if (!avail) 1536 return; 1537 } 1538 1539 ptr = skb_tail_pointer(skb); 1540 for (i = 0; i < len; i++) 1541 ptr = hex_byte_pack_upper(ptr, buf[i]); 1542 *ptr = 0; 1543 skb_put(skb, len << 1); /* new string is twice the old string */ 1544 } 1545 1546 /* 1547 * Format a string of no more than slen characters into the audit buffer, 1548 * enclosed in quote marks. 1549 */ 1550 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1551 size_t slen) 1552 { 1553 int avail, new_len; 1554 unsigned char *ptr; 1555 struct sk_buff *skb; 1556 1557 if (!ab) 1558 return; 1559 1560 BUG_ON(!ab->skb); 1561 skb = ab->skb; 1562 avail = skb_tailroom(skb); 1563 new_len = slen + 3; /* enclosing quotes + null terminator */ 1564 if (new_len > avail) { 1565 avail = audit_expand(ab, new_len); 1566 if (!avail) 1567 return; 1568 } 1569 ptr = skb_tail_pointer(skb); 1570 *ptr++ = '"'; 1571 memcpy(ptr, string, slen); 1572 ptr += slen; 1573 *ptr++ = '"'; 1574 *ptr = 0; 1575 skb_put(skb, slen + 2); /* don't include null terminator */ 1576 } 1577 1578 /** 1579 * audit_string_contains_control - does a string need to be logged in hex 1580 * @string: string to be checked 1581 * @len: max length of the string to check 1582 */ 1583 bool audit_string_contains_control(const char *string, size_t len) 1584 { 1585 const unsigned char *p; 1586 for (p = string; p < (const unsigned char *)string + len; p++) { 1587 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1588 return true; 1589 } 1590 return false; 1591 } 1592 1593 /** 1594 * audit_log_n_untrustedstring - log a string that may contain random characters 1595 * @ab: audit_buffer 1596 * @len: length of string (not including trailing null) 1597 * @string: string to be logged 1598 * 1599 * This code will escape a string that is passed to it if the string 1600 * contains a control character, unprintable character, double quote mark, 1601 * or a space. Unescaped strings will start and end with a double quote mark. 1602 * Strings that are escaped are printed in hex (2 digits per char). 1603 * 1604 * The caller specifies the number of characters in the string to log, which may 1605 * or may not be the entire string. 1606 */ 1607 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1608 size_t len) 1609 { 1610 if (audit_string_contains_control(string, len)) 1611 audit_log_n_hex(ab, string, len); 1612 else 1613 audit_log_n_string(ab, string, len); 1614 } 1615 1616 /** 1617 * audit_log_untrustedstring - log a string that may contain random characters 1618 * @ab: audit_buffer 1619 * @string: string to be logged 1620 * 1621 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1622 * determine string length. 1623 */ 1624 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1625 { 1626 audit_log_n_untrustedstring(ab, string, strlen(string)); 1627 } 1628 1629 /* This is a helper-function to print the escaped d_path */ 1630 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1631 const struct path *path) 1632 { 1633 char *p, *pathname; 1634 1635 if (prefix) 1636 audit_log_format(ab, "%s", prefix); 1637 1638 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1639 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1640 if (!pathname) { 1641 audit_log_string(ab, "<no_memory>"); 1642 return; 1643 } 1644 p = d_path(path, pathname, PATH_MAX+11); 1645 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1646 /* FIXME: can we save some information here? */ 1647 audit_log_string(ab, "<too_long>"); 1648 } else 1649 audit_log_untrustedstring(ab, p); 1650 kfree(pathname); 1651 } 1652 1653 void audit_log_session_info(struct audit_buffer *ab) 1654 { 1655 unsigned int sessionid = audit_get_sessionid(current); 1656 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1657 1658 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1659 } 1660 1661 void audit_log_key(struct audit_buffer *ab, char *key) 1662 { 1663 audit_log_format(ab, " key="); 1664 if (key) 1665 audit_log_untrustedstring(ab, key); 1666 else 1667 audit_log_format(ab, "(null)"); 1668 } 1669 1670 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1671 { 1672 int i; 1673 1674 audit_log_format(ab, " %s=", prefix); 1675 CAP_FOR_EACH_U32(i) { 1676 audit_log_format(ab, "%08x", 1677 cap->cap[CAP_LAST_U32 - i]); 1678 } 1679 } 1680 1681 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1682 { 1683 kernel_cap_t *perm = &name->fcap.permitted; 1684 kernel_cap_t *inh = &name->fcap.inheritable; 1685 int log = 0; 1686 1687 if (!cap_isclear(*perm)) { 1688 audit_log_cap(ab, "cap_fp", perm); 1689 log = 1; 1690 } 1691 if (!cap_isclear(*inh)) { 1692 audit_log_cap(ab, "cap_fi", inh); 1693 log = 1; 1694 } 1695 1696 if (log) 1697 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1698 name->fcap.fE, name->fcap_ver); 1699 } 1700 1701 static inline int audit_copy_fcaps(struct audit_names *name, 1702 const struct dentry *dentry) 1703 { 1704 struct cpu_vfs_cap_data caps; 1705 int rc; 1706 1707 if (!dentry) 1708 return 0; 1709 1710 rc = get_vfs_caps_from_disk(dentry, &caps); 1711 if (rc) 1712 return rc; 1713 1714 name->fcap.permitted = caps.permitted; 1715 name->fcap.inheritable = caps.inheritable; 1716 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1717 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1718 VFS_CAP_REVISION_SHIFT; 1719 1720 return 0; 1721 } 1722 1723 /* Copy inode data into an audit_names. */ 1724 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1725 const struct inode *inode) 1726 { 1727 name->ino = inode->i_ino; 1728 name->dev = inode->i_sb->s_dev; 1729 name->mode = inode->i_mode; 1730 name->uid = inode->i_uid; 1731 name->gid = inode->i_gid; 1732 name->rdev = inode->i_rdev; 1733 security_inode_getsecid(inode, &name->osid); 1734 audit_copy_fcaps(name, dentry); 1735 } 1736 1737 /** 1738 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1739 * @context: audit_context for the task 1740 * @n: audit_names structure with reportable details 1741 * @path: optional path to report instead of audit_names->name 1742 * @record_num: record number to report when handling a list of names 1743 * @call_panic: optional pointer to int that will be updated if secid fails 1744 */ 1745 void audit_log_name(struct audit_context *context, struct audit_names *n, 1746 struct path *path, int record_num, int *call_panic) 1747 { 1748 struct audit_buffer *ab; 1749 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1750 if (!ab) 1751 return; 1752 1753 audit_log_format(ab, "item=%d", record_num); 1754 1755 if (path) 1756 audit_log_d_path(ab, " name=", path); 1757 else if (n->name) { 1758 switch (n->name_len) { 1759 case AUDIT_NAME_FULL: 1760 /* log the full path */ 1761 audit_log_format(ab, " name="); 1762 audit_log_untrustedstring(ab, n->name->name); 1763 break; 1764 case 0: 1765 /* name was specified as a relative path and the 1766 * directory component is the cwd */ 1767 audit_log_d_path(ab, " name=", &context->pwd); 1768 break; 1769 default: 1770 /* log the name's directory component */ 1771 audit_log_format(ab, " name="); 1772 audit_log_n_untrustedstring(ab, n->name->name, 1773 n->name_len); 1774 } 1775 } else 1776 audit_log_format(ab, " name=(null)"); 1777 1778 if (n->ino != AUDIT_INO_UNSET) 1779 audit_log_format(ab, " inode=%lu" 1780 " dev=%02x:%02x mode=%#ho" 1781 " ouid=%u ogid=%u rdev=%02x:%02x", 1782 n->ino, 1783 MAJOR(n->dev), 1784 MINOR(n->dev), 1785 n->mode, 1786 from_kuid(&init_user_ns, n->uid), 1787 from_kgid(&init_user_ns, n->gid), 1788 MAJOR(n->rdev), 1789 MINOR(n->rdev)); 1790 if (n->osid != 0) { 1791 char *ctx = NULL; 1792 u32 len; 1793 if (security_secid_to_secctx( 1794 n->osid, &ctx, &len)) { 1795 audit_log_format(ab, " osid=%u", n->osid); 1796 if (call_panic) 1797 *call_panic = 2; 1798 } else { 1799 audit_log_format(ab, " obj=%s", ctx); 1800 security_release_secctx(ctx, len); 1801 } 1802 } 1803 1804 /* log the audit_names record type */ 1805 audit_log_format(ab, " nametype="); 1806 switch(n->type) { 1807 case AUDIT_TYPE_NORMAL: 1808 audit_log_format(ab, "NORMAL"); 1809 break; 1810 case AUDIT_TYPE_PARENT: 1811 audit_log_format(ab, "PARENT"); 1812 break; 1813 case AUDIT_TYPE_CHILD_DELETE: 1814 audit_log_format(ab, "DELETE"); 1815 break; 1816 case AUDIT_TYPE_CHILD_CREATE: 1817 audit_log_format(ab, "CREATE"); 1818 break; 1819 default: 1820 audit_log_format(ab, "UNKNOWN"); 1821 break; 1822 } 1823 1824 audit_log_fcaps(ab, n); 1825 audit_log_end(ab); 1826 } 1827 1828 int audit_log_task_context(struct audit_buffer *ab) 1829 { 1830 char *ctx = NULL; 1831 unsigned len; 1832 int error; 1833 u32 sid; 1834 1835 security_task_getsecid(current, &sid); 1836 if (!sid) 1837 return 0; 1838 1839 error = security_secid_to_secctx(sid, &ctx, &len); 1840 if (error) { 1841 if (error != -EINVAL) 1842 goto error_path; 1843 return 0; 1844 } 1845 1846 audit_log_format(ab, " subj=%s", ctx); 1847 security_release_secctx(ctx, len); 1848 return 0; 1849 1850 error_path: 1851 audit_panic("error in audit_log_task_context"); 1852 return error; 1853 } 1854 EXPORT_SYMBOL(audit_log_task_context); 1855 1856 void audit_log_d_path_exe(struct audit_buffer *ab, 1857 struct mm_struct *mm) 1858 { 1859 struct file *exe_file; 1860 1861 if (!mm) 1862 goto out_null; 1863 1864 exe_file = get_mm_exe_file(mm); 1865 if (!exe_file) 1866 goto out_null; 1867 1868 audit_log_d_path(ab, " exe=", &exe_file->f_path); 1869 fput(exe_file); 1870 return; 1871 out_null: 1872 audit_log_format(ab, " exe=(null)"); 1873 } 1874 1875 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1876 { 1877 const struct cred *cred; 1878 char comm[sizeof(tsk->comm)]; 1879 char *tty; 1880 1881 if (!ab) 1882 return; 1883 1884 /* tsk == current */ 1885 cred = current_cred(); 1886 1887 spin_lock_irq(&tsk->sighand->siglock); 1888 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1889 tty = tsk->signal->tty->name; 1890 else 1891 tty = "(none)"; 1892 spin_unlock_irq(&tsk->sighand->siglock); 1893 1894 audit_log_format(ab, 1895 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1896 " euid=%u suid=%u fsuid=%u" 1897 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1898 task_ppid_nr(tsk), 1899 task_pid_nr(tsk), 1900 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1901 from_kuid(&init_user_ns, cred->uid), 1902 from_kgid(&init_user_ns, cred->gid), 1903 from_kuid(&init_user_ns, cred->euid), 1904 from_kuid(&init_user_ns, cred->suid), 1905 from_kuid(&init_user_ns, cred->fsuid), 1906 from_kgid(&init_user_ns, cred->egid), 1907 from_kgid(&init_user_ns, cred->sgid), 1908 from_kgid(&init_user_ns, cred->fsgid), 1909 tty, audit_get_sessionid(tsk)); 1910 1911 audit_log_format(ab, " comm="); 1912 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1913 1914 audit_log_d_path_exe(ab, tsk->mm); 1915 audit_log_task_context(ab); 1916 } 1917 EXPORT_SYMBOL(audit_log_task_info); 1918 1919 /** 1920 * audit_log_link_denied - report a link restriction denial 1921 * @operation: specific link operation 1922 * @link: the path that triggered the restriction 1923 */ 1924 void audit_log_link_denied(const char *operation, struct path *link) 1925 { 1926 struct audit_buffer *ab; 1927 struct audit_names *name; 1928 1929 name = kzalloc(sizeof(*name), GFP_NOFS); 1930 if (!name) 1931 return; 1932 1933 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1934 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1935 AUDIT_ANOM_LINK); 1936 if (!ab) 1937 goto out; 1938 audit_log_format(ab, "op=%s", operation); 1939 audit_log_task_info(ab, current); 1940 audit_log_format(ab, " res=0"); 1941 audit_log_end(ab); 1942 1943 /* Generate AUDIT_PATH record with object. */ 1944 name->type = AUDIT_TYPE_NORMAL; 1945 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 1946 audit_log_name(current->audit_context, name, link, 0, NULL); 1947 out: 1948 kfree(name); 1949 } 1950 1951 /** 1952 * audit_log_end - end one audit record 1953 * @ab: the audit_buffer 1954 * 1955 * netlink_unicast() cannot be called inside an irq context because it blocks 1956 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1957 * on a queue and a tasklet is scheduled to remove them from the queue outside 1958 * the irq context. May be called in any context. 1959 */ 1960 void audit_log_end(struct audit_buffer *ab) 1961 { 1962 if (!ab) 1963 return; 1964 if (!audit_rate_check()) { 1965 audit_log_lost("rate limit exceeded"); 1966 } else { 1967 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1968 1969 nlh->nlmsg_len = ab->skb->len; 1970 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); 1971 1972 /* 1973 * The original kaudit unicast socket sends up messages with 1974 * nlmsg_len set to the payload length rather than the entire 1975 * message length. This breaks the standard set by netlink. 1976 * The existing auditd daemon assumes this breakage. Fixing 1977 * this would require co-ordinating a change in the established 1978 * protocol between the kaudit kernel subsystem and the auditd 1979 * userspace code. 1980 */ 1981 nlh->nlmsg_len -= NLMSG_HDRLEN; 1982 1983 if (audit_pid) { 1984 skb_queue_tail(&audit_skb_queue, ab->skb); 1985 wake_up_interruptible(&kauditd_wait); 1986 } else { 1987 audit_printk_skb(ab->skb); 1988 } 1989 ab->skb = NULL; 1990 } 1991 audit_buffer_free(ab); 1992 } 1993 1994 /** 1995 * audit_log - Log an audit record 1996 * @ctx: audit context 1997 * @gfp_mask: type of allocation 1998 * @type: audit message type 1999 * @fmt: format string to use 2000 * @...: variable parameters matching the format string 2001 * 2002 * This is a convenience function that calls audit_log_start, 2003 * audit_log_vformat, and audit_log_end. It may be called 2004 * in any context. 2005 */ 2006 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2007 const char *fmt, ...) 2008 { 2009 struct audit_buffer *ab; 2010 va_list args; 2011 2012 ab = audit_log_start(ctx, gfp_mask, type); 2013 if (ab) { 2014 va_start(args, fmt); 2015 audit_log_vformat(ab, fmt, args); 2016 va_end(args); 2017 audit_log_end(ab); 2018 } 2019 } 2020 2021 #ifdef CONFIG_SECURITY 2022 /** 2023 * audit_log_secctx - Converts and logs SELinux context 2024 * @ab: audit_buffer 2025 * @secid: security number 2026 * 2027 * This is a helper function that calls security_secid_to_secctx to convert 2028 * secid to secctx and then adds the (converted) SELinux context to the audit 2029 * log by calling audit_log_format, thus also preventing leak of internal secid 2030 * to userspace. If secid cannot be converted audit_panic is called. 2031 */ 2032 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2033 { 2034 u32 len; 2035 char *secctx; 2036 2037 if (security_secid_to_secctx(secid, &secctx, &len)) { 2038 audit_panic("Cannot convert secid to context"); 2039 } else { 2040 audit_log_format(ab, " obj=%s", secctx); 2041 security_release_secctx(secctx, len); 2042 } 2043 } 2044 EXPORT_SYMBOL(audit_log_secctx); 2045 #endif 2046 2047 EXPORT_SYMBOL(audit_log_start); 2048 EXPORT_SYMBOL(audit_log_end); 2049 EXPORT_SYMBOL(audit_log_format); 2050 EXPORT_SYMBOL(audit_log); 2051