xref: /openbmc/linux/kernel/audit.c (revision 9ac8d3fb)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/inotify.h>
59 #include <linux/freezer.h>
60 #include <linux/tty.h>
61 
62 #include "audit.h"
63 
64 /* No auditing will take place until audit_initialized != 0.
65  * (Initialization happens after skb_init is called.) */
66 static int	audit_initialized;
67 
68 #define AUDIT_OFF	0
69 #define AUDIT_ON	1
70 #define AUDIT_LOCKED	2
71 int		audit_enabled;
72 int		audit_ever_enabled;
73 
74 /* Default state when kernel boots without any parameters. */
75 static int	audit_default;
76 
77 /* If auditing cannot proceed, audit_failure selects what happens. */
78 static int	audit_failure = AUDIT_FAIL_PRINTK;
79 
80 /*
81  * If audit records are to be written to the netlink socket, audit_pid
82  * contains the pid of the auditd process and audit_nlk_pid contains
83  * the pid to use to send netlink messages to that process.
84  */
85 int		audit_pid;
86 static int	audit_nlk_pid;
87 
88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
89  * to that number per second.  This prevents DoS attacks, but results in
90  * audit records being dropped. */
91 static int	audit_rate_limit;
92 
93 /* Number of outstanding audit_buffers allowed. */
94 static int	audit_backlog_limit = 64;
95 static int	audit_backlog_wait_time = 60 * HZ;
96 static int	audit_backlog_wait_overflow = 0;
97 
98 /* The identity of the user shutting down the audit system. */
99 uid_t		audit_sig_uid = -1;
100 pid_t		audit_sig_pid = -1;
101 u32		audit_sig_sid = 0;
102 
103 /* Records can be lost in several ways:
104    0) [suppressed in audit_alloc]
105    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
106    2) out of memory in audit_log_move [alloc_skb]
107    3) suppressed due to audit_rate_limit
108    4) suppressed due to audit_backlog_limit
109 */
110 static atomic_t    audit_lost = ATOMIC_INIT(0);
111 
112 /* The netlink socket. */
113 static struct sock *audit_sock;
114 
115 /* Inotify handle. */
116 struct inotify_handle *audit_ih;
117 
118 /* Hash for inode-based rules */
119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
120 
121 /* The audit_freelist is a list of pre-allocated audit buffers (if more
122  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
123  * being placed on the freelist). */
124 static DEFINE_SPINLOCK(audit_freelist_lock);
125 static int	   audit_freelist_count;
126 static LIST_HEAD(audit_freelist);
127 
128 static struct sk_buff_head audit_skb_queue;
129 /* queue of skbs to send to auditd when/if it comes back */
130 static struct sk_buff_head audit_skb_hold_queue;
131 static struct task_struct *kauditd_task;
132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
134 
135 /* Serialize requests from userspace. */
136 static DEFINE_MUTEX(audit_cmd_mutex);
137 
138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
139  * audit records.  Since printk uses a 1024 byte buffer, this buffer
140  * should be at least that large. */
141 #define AUDIT_BUFSIZ 1024
142 
143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
144  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
145 #define AUDIT_MAXFREE  (2*NR_CPUS)
146 
147 /* The audit_buffer is used when formatting an audit record.  The caller
148  * locks briefly to get the record off the freelist or to allocate the
149  * buffer, and locks briefly to send the buffer to the netlink layer or
150  * to place it on a transmit queue.  Multiple audit_buffers can be in
151  * use simultaneously. */
152 struct audit_buffer {
153 	struct list_head     list;
154 	struct sk_buff       *skb;	/* formatted skb ready to send */
155 	struct audit_context *ctx;	/* NULL or associated context */
156 	gfp_t		     gfp_mask;
157 };
158 
159 struct audit_reply {
160 	int pid;
161 	struct sk_buff *skb;
162 };
163 
164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
165 {
166 	if (ab) {
167 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
168 		nlh->nlmsg_pid = pid;
169 	}
170 }
171 
172 void audit_panic(const char *message)
173 {
174 	switch (audit_failure)
175 	{
176 	case AUDIT_FAIL_SILENT:
177 		break;
178 	case AUDIT_FAIL_PRINTK:
179 		if (printk_ratelimit())
180 			printk(KERN_ERR "audit: %s\n", message);
181 		break;
182 	case AUDIT_FAIL_PANIC:
183 		/* test audit_pid since printk is always losey, why bother? */
184 		if (audit_pid)
185 			panic("audit: %s\n", message);
186 		break;
187 	}
188 }
189 
190 static inline int audit_rate_check(void)
191 {
192 	static unsigned long	last_check = 0;
193 	static int		messages   = 0;
194 	static DEFINE_SPINLOCK(lock);
195 	unsigned long		flags;
196 	unsigned long		now;
197 	unsigned long		elapsed;
198 	int			retval	   = 0;
199 
200 	if (!audit_rate_limit) return 1;
201 
202 	spin_lock_irqsave(&lock, flags);
203 	if (++messages < audit_rate_limit) {
204 		retval = 1;
205 	} else {
206 		now     = jiffies;
207 		elapsed = now - last_check;
208 		if (elapsed > HZ) {
209 			last_check = now;
210 			messages   = 0;
211 			retval     = 1;
212 		}
213 	}
214 	spin_unlock_irqrestore(&lock, flags);
215 
216 	return retval;
217 }
218 
219 /**
220  * audit_log_lost - conditionally log lost audit message event
221  * @message: the message stating reason for lost audit message
222  *
223  * Emit at least 1 message per second, even if audit_rate_check is
224  * throttling.
225  * Always increment the lost messages counter.
226 */
227 void audit_log_lost(const char *message)
228 {
229 	static unsigned long	last_msg = 0;
230 	static DEFINE_SPINLOCK(lock);
231 	unsigned long		flags;
232 	unsigned long		now;
233 	int			print;
234 
235 	atomic_inc(&audit_lost);
236 
237 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
238 
239 	if (!print) {
240 		spin_lock_irqsave(&lock, flags);
241 		now = jiffies;
242 		if (now - last_msg > HZ) {
243 			print = 1;
244 			last_msg = now;
245 		}
246 		spin_unlock_irqrestore(&lock, flags);
247 	}
248 
249 	if (print) {
250 		if (printk_ratelimit())
251 			printk(KERN_WARNING
252 				"audit: audit_lost=%d audit_rate_limit=%d "
253 				"audit_backlog_limit=%d\n",
254 				atomic_read(&audit_lost),
255 				audit_rate_limit,
256 				audit_backlog_limit);
257 		audit_panic(message);
258 	}
259 }
260 
261 static int audit_log_config_change(char *function_name, int new, int old,
262 				   uid_t loginuid, u32 sessionid, u32 sid,
263 				   int allow_changes)
264 {
265 	struct audit_buffer *ab;
266 	int rc = 0;
267 
268 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
269 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
270 			 old, loginuid, sessionid);
271 	if (sid) {
272 		char *ctx = NULL;
273 		u32 len;
274 
275 		rc = security_secid_to_secctx(sid, &ctx, &len);
276 		if (rc) {
277 			audit_log_format(ab, " sid=%u", sid);
278 			allow_changes = 0; /* Something weird, deny request */
279 		} else {
280 			audit_log_format(ab, " subj=%s", ctx);
281 			security_release_secctx(ctx, len);
282 		}
283 	}
284 	audit_log_format(ab, " res=%d", allow_changes);
285 	audit_log_end(ab);
286 	return rc;
287 }
288 
289 static int audit_do_config_change(char *function_name, int *to_change,
290 				  int new, uid_t loginuid, u32 sessionid,
291 				  u32 sid)
292 {
293 	int allow_changes, rc = 0, old = *to_change;
294 
295 	/* check if we are locked */
296 	if (audit_enabled == AUDIT_LOCKED)
297 		allow_changes = 0;
298 	else
299 		allow_changes = 1;
300 
301 	if (audit_enabled != AUDIT_OFF) {
302 		rc = audit_log_config_change(function_name, new, old, loginuid,
303 					     sessionid, sid, allow_changes);
304 		if (rc)
305 			allow_changes = 0;
306 	}
307 
308 	/* If we are allowed, make the change */
309 	if (allow_changes == 1)
310 		*to_change = new;
311 	/* Not allowed, update reason */
312 	else if (rc == 0)
313 		rc = -EPERM;
314 	return rc;
315 }
316 
317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
318 				u32 sid)
319 {
320 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
321 				      limit, loginuid, sessionid, sid);
322 }
323 
324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
325 				   u32 sid)
326 {
327 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
328 				      limit, loginuid, sessionid, sid);
329 }
330 
331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
332 {
333 	int rc;
334 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
335 		return -EINVAL;
336 
337 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
338 				     loginuid, sessionid, sid);
339 
340 	if (!rc)
341 		audit_ever_enabled |= !!state;
342 
343 	return rc;
344 }
345 
346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
347 {
348 	if (state != AUDIT_FAIL_SILENT
349 	    && state != AUDIT_FAIL_PRINTK
350 	    && state != AUDIT_FAIL_PANIC)
351 		return -EINVAL;
352 
353 	return audit_do_config_change("audit_failure", &audit_failure, state,
354 				      loginuid, sessionid, sid);
355 }
356 
357 /*
358  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
359  * already have been sent via prink/syslog and so if these messages are dropped
360  * it is not a huge concern since we already passed the audit_log_lost()
361  * notification and stuff.  This is just nice to get audit messages during
362  * boot before auditd is running or messages generated while auditd is stopped.
363  * This only holds messages is audit_default is set, aka booting with audit=1
364  * or building your kernel that way.
365  */
366 static void audit_hold_skb(struct sk_buff *skb)
367 {
368 	if (audit_default &&
369 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
370 		skb_queue_tail(&audit_skb_hold_queue, skb);
371 	else
372 		kfree_skb(skb);
373 }
374 
375 static void kauditd_send_skb(struct sk_buff *skb)
376 {
377 	int err;
378 	/* take a reference in case we can't send it and we want to hold it */
379 	skb_get(skb);
380 	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
381 	if (err < 0) {
382 		BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
383 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
384 		audit_log_lost("auditd dissapeared\n");
385 		audit_pid = 0;
386 		/* we might get lucky and get this in the next auditd */
387 		audit_hold_skb(skb);
388 	} else
389 		/* drop the extra reference if sent ok */
390 		kfree_skb(skb);
391 }
392 
393 static int kauditd_thread(void *dummy)
394 {
395 	struct sk_buff *skb;
396 
397 	set_freezable();
398 	while (!kthread_should_stop()) {
399 		/*
400 		 * if auditd just started drain the queue of messages already
401 		 * sent to syslog/printk.  remember loss here is ok.  we already
402 		 * called audit_log_lost() if it didn't go out normally.  so the
403 		 * race between the skb_dequeue and the next check for audit_pid
404 		 * doesn't matter.
405 		 *
406 		 * if you ever find kauditd to be too slow we can get a perf win
407 		 * by doing our own locking and keeping better track if there
408 		 * are messages in this queue.  I don't see the need now, but
409 		 * in 5 years when I want to play with this again I'll see this
410 		 * note and still have no friggin idea what i'm thinking today.
411 		 */
412 		if (audit_default && audit_pid) {
413 			skb = skb_dequeue(&audit_skb_hold_queue);
414 			if (unlikely(skb)) {
415 				while (skb && audit_pid) {
416 					kauditd_send_skb(skb);
417 					skb = skb_dequeue(&audit_skb_hold_queue);
418 				}
419 			}
420 		}
421 
422 		skb = skb_dequeue(&audit_skb_queue);
423 		wake_up(&audit_backlog_wait);
424 		if (skb) {
425 			if (audit_pid)
426 				kauditd_send_skb(skb);
427 			else {
428 				if (printk_ratelimit())
429 					printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
430 				else
431 					audit_log_lost("printk limit exceeded\n");
432 
433 				audit_hold_skb(skb);
434 			}
435 		} else {
436 			DECLARE_WAITQUEUE(wait, current);
437 			set_current_state(TASK_INTERRUPTIBLE);
438 			add_wait_queue(&kauditd_wait, &wait);
439 
440 			if (!skb_queue_len(&audit_skb_queue)) {
441 				try_to_freeze();
442 				schedule();
443 			}
444 
445 			__set_current_state(TASK_RUNNING);
446 			remove_wait_queue(&kauditd_wait, &wait);
447 		}
448 	}
449 	return 0;
450 }
451 
452 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
453 {
454 	struct task_struct *tsk;
455 	int err;
456 
457 	read_lock(&tasklist_lock);
458 	tsk = find_task_by_vpid(pid);
459 	err = -ESRCH;
460 	if (!tsk)
461 		goto out;
462 	err = 0;
463 
464 	spin_lock_irq(&tsk->sighand->siglock);
465 	if (!tsk->signal->audit_tty)
466 		err = -EPERM;
467 	spin_unlock_irq(&tsk->sighand->siglock);
468 	if (err)
469 		goto out;
470 
471 	tty_audit_push_task(tsk, loginuid, sessionid);
472 out:
473 	read_unlock(&tasklist_lock);
474 	return err;
475 }
476 
477 int audit_send_list(void *_dest)
478 {
479 	struct audit_netlink_list *dest = _dest;
480 	int pid = dest->pid;
481 	struct sk_buff *skb;
482 
483 	/* wait for parent to finish and send an ACK */
484 	mutex_lock(&audit_cmd_mutex);
485 	mutex_unlock(&audit_cmd_mutex);
486 
487 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
488 		netlink_unicast(audit_sock, skb, pid, 0);
489 
490 	kfree(dest);
491 
492 	return 0;
493 }
494 
495 #ifdef CONFIG_AUDIT_TREE
496 static int prune_tree_thread(void *unused)
497 {
498 	mutex_lock(&audit_cmd_mutex);
499 	audit_prune_trees();
500 	mutex_unlock(&audit_cmd_mutex);
501 	return 0;
502 }
503 
504 void audit_schedule_prune(void)
505 {
506 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
507 }
508 #endif
509 
510 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
511 				 int multi, void *payload, int size)
512 {
513 	struct sk_buff	*skb;
514 	struct nlmsghdr	*nlh;
515 	int		len = NLMSG_SPACE(size);
516 	void		*data;
517 	int		flags = multi ? NLM_F_MULTI : 0;
518 	int		t     = done  ? NLMSG_DONE  : type;
519 
520 	skb = alloc_skb(len, GFP_KERNEL);
521 	if (!skb)
522 		return NULL;
523 
524 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
525 	nlh->nlmsg_flags = flags;
526 	data		 = NLMSG_DATA(nlh);
527 	memcpy(data, payload, size);
528 	return skb;
529 
530 nlmsg_failure:			/* Used by NLMSG_PUT */
531 	if (skb)
532 		kfree_skb(skb);
533 	return NULL;
534 }
535 
536 static int audit_send_reply_thread(void *arg)
537 {
538 	struct audit_reply *reply = (struct audit_reply *)arg;
539 
540 	mutex_lock(&audit_cmd_mutex);
541 	mutex_unlock(&audit_cmd_mutex);
542 
543 	/* Ignore failure. It'll only happen if the sender goes away,
544 	   because our timeout is set to infinite. */
545 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
546 	kfree(reply);
547 	return 0;
548 }
549 /**
550  * audit_send_reply - send an audit reply message via netlink
551  * @pid: process id to send reply to
552  * @seq: sequence number
553  * @type: audit message type
554  * @done: done (last) flag
555  * @multi: multi-part message flag
556  * @payload: payload data
557  * @size: payload size
558  *
559  * Allocates an skb, builds the netlink message, and sends it to the pid.
560  * No failure notifications.
561  */
562 void audit_send_reply(int pid, int seq, int type, int done, int multi,
563 		      void *payload, int size)
564 {
565 	struct sk_buff *skb;
566 	struct task_struct *tsk;
567 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
568 					    GFP_KERNEL);
569 
570 	if (!reply)
571 		return;
572 
573 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
574 	if (!skb)
575 		goto out;
576 
577 	reply->pid = pid;
578 	reply->skb = skb;
579 
580 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
581 	if (!IS_ERR(tsk))
582 		return;
583 	kfree_skb(skb);
584 out:
585 	kfree(reply);
586 }
587 
588 /*
589  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
590  * control messages.
591  */
592 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
593 {
594 	int err = 0;
595 
596 	switch (msg_type) {
597 	case AUDIT_GET:
598 	case AUDIT_LIST:
599 	case AUDIT_LIST_RULES:
600 	case AUDIT_SET:
601 	case AUDIT_ADD:
602 	case AUDIT_ADD_RULE:
603 	case AUDIT_DEL:
604 	case AUDIT_DEL_RULE:
605 	case AUDIT_SIGNAL_INFO:
606 	case AUDIT_TTY_GET:
607 	case AUDIT_TTY_SET:
608 	case AUDIT_TRIM:
609 	case AUDIT_MAKE_EQUIV:
610 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
611 			err = -EPERM;
612 		break;
613 	case AUDIT_USER:
614 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
615 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
616 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
617 			err = -EPERM;
618 		break;
619 	default:  /* bad msg */
620 		err = -EINVAL;
621 	}
622 
623 	return err;
624 }
625 
626 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
627 				     u32 pid, u32 uid, uid_t auid, u32 ses,
628 				     u32 sid)
629 {
630 	int rc = 0;
631 	char *ctx = NULL;
632 	u32 len;
633 
634 	if (!audit_enabled) {
635 		*ab = NULL;
636 		return rc;
637 	}
638 
639 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
640 	audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
641 			 pid, uid, auid, ses);
642 	if (sid) {
643 		rc = security_secid_to_secctx(sid, &ctx, &len);
644 		if (rc)
645 			audit_log_format(*ab, " ssid=%u", sid);
646 		else {
647 			audit_log_format(*ab, " subj=%s", ctx);
648 			security_release_secctx(ctx, len);
649 		}
650 	}
651 
652 	return rc;
653 }
654 
655 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
656 {
657 	u32			uid, pid, seq, sid;
658 	void			*data;
659 	struct audit_status	*status_get, status_set;
660 	int			err;
661 	struct audit_buffer	*ab;
662 	u16			msg_type = nlh->nlmsg_type;
663 	uid_t			loginuid; /* loginuid of sender */
664 	u32			sessionid;
665 	struct audit_sig_info   *sig_data;
666 	char			*ctx = NULL;
667 	u32			len;
668 
669 	err = audit_netlink_ok(skb, msg_type);
670 	if (err)
671 		return err;
672 
673 	/* As soon as there's any sign of userspace auditd,
674 	 * start kauditd to talk to it */
675 	if (!kauditd_task)
676 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
677 	if (IS_ERR(kauditd_task)) {
678 		err = PTR_ERR(kauditd_task);
679 		kauditd_task = NULL;
680 		return err;
681 	}
682 
683 	pid  = NETLINK_CREDS(skb)->pid;
684 	uid  = NETLINK_CREDS(skb)->uid;
685 	loginuid = NETLINK_CB(skb).loginuid;
686 	sessionid = NETLINK_CB(skb).sessionid;
687 	sid  = NETLINK_CB(skb).sid;
688 	seq  = nlh->nlmsg_seq;
689 	data = NLMSG_DATA(nlh);
690 
691 	switch (msg_type) {
692 	case AUDIT_GET:
693 		status_set.enabled	 = audit_enabled;
694 		status_set.failure	 = audit_failure;
695 		status_set.pid		 = audit_pid;
696 		status_set.rate_limit	 = audit_rate_limit;
697 		status_set.backlog_limit = audit_backlog_limit;
698 		status_set.lost		 = atomic_read(&audit_lost);
699 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
700 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
701 				 &status_set, sizeof(status_set));
702 		break;
703 	case AUDIT_SET:
704 		if (nlh->nlmsg_len < sizeof(struct audit_status))
705 			return -EINVAL;
706 		status_get   = (struct audit_status *)data;
707 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
708 			err = audit_set_enabled(status_get->enabled,
709 						loginuid, sessionid, sid);
710 			if (err < 0)
711 				return err;
712 		}
713 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
714 			err = audit_set_failure(status_get->failure,
715 						loginuid, sessionid, sid);
716 			if (err < 0)
717 				return err;
718 		}
719 		if (status_get->mask & AUDIT_STATUS_PID) {
720 			int new_pid = status_get->pid;
721 
722 			if (audit_enabled != AUDIT_OFF)
723 				audit_log_config_change("audit_pid", new_pid,
724 							audit_pid, loginuid,
725 							sessionid, sid, 1);
726 
727 			audit_pid = new_pid;
728 			audit_nlk_pid = NETLINK_CB(skb).pid;
729 		}
730 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
731 			err = audit_set_rate_limit(status_get->rate_limit,
732 						   loginuid, sessionid, sid);
733 			if (err < 0)
734 				return err;
735 		}
736 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
737 			err = audit_set_backlog_limit(status_get->backlog_limit,
738 						      loginuid, sessionid, sid);
739 		break;
740 	case AUDIT_USER:
741 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
742 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
743 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
744 			return 0;
745 
746 		err = audit_filter_user(&NETLINK_CB(skb));
747 		if (err == 1) {
748 			err = 0;
749 			if (msg_type == AUDIT_USER_TTY) {
750 				err = audit_prepare_user_tty(pid, loginuid,
751 							     sessionid);
752 				if (err)
753 					break;
754 			}
755 			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
756 						  loginuid, sessionid, sid);
757 
758 			if (msg_type != AUDIT_USER_TTY)
759 				audit_log_format(ab, " msg='%.1024s'",
760 						 (char *)data);
761 			else {
762 				int size;
763 
764 				audit_log_format(ab, " msg=");
765 				size = nlmsg_len(nlh);
766 				audit_log_n_untrustedstring(ab, data, size);
767 			}
768 			audit_set_pid(ab, pid);
769 			audit_log_end(ab);
770 		}
771 		break;
772 	case AUDIT_ADD:
773 	case AUDIT_DEL:
774 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
775 			return -EINVAL;
776 		if (audit_enabled == AUDIT_LOCKED) {
777 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
778 						  uid, loginuid, sessionid, sid);
779 
780 			audit_log_format(ab, " audit_enabled=%d res=0",
781 					 audit_enabled);
782 			audit_log_end(ab);
783 			return -EPERM;
784 		}
785 		/* fallthrough */
786 	case AUDIT_LIST:
787 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
788 					   uid, seq, data, nlmsg_len(nlh),
789 					   loginuid, sessionid, sid);
790 		break;
791 	case AUDIT_ADD_RULE:
792 	case AUDIT_DEL_RULE:
793 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
794 			return -EINVAL;
795 		if (audit_enabled == AUDIT_LOCKED) {
796 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
797 						  uid, loginuid, sessionid, sid);
798 
799 			audit_log_format(ab, " audit_enabled=%d res=0",
800 					 audit_enabled);
801 			audit_log_end(ab);
802 			return -EPERM;
803 		}
804 		/* fallthrough */
805 	case AUDIT_LIST_RULES:
806 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
807 					   uid, seq, data, nlmsg_len(nlh),
808 					   loginuid, sessionid, sid);
809 		break;
810 	case AUDIT_TRIM:
811 		audit_trim_trees();
812 
813 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
814 					  uid, loginuid, sessionid, sid);
815 
816 		audit_log_format(ab, " op=trim res=1");
817 		audit_log_end(ab);
818 		break;
819 	case AUDIT_MAKE_EQUIV: {
820 		void *bufp = data;
821 		u32 sizes[2];
822 		size_t msglen = nlmsg_len(nlh);
823 		char *old, *new;
824 
825 		err = -EINVAL;
826 		if (msglen < 2 * sizeof(u32))
827 			break;
828 		memcpy(sizes, bufp, 2 * sizeof(u32));
829 		bufp += 2 * sizeof(u32);
830 		msglen -= 2 * sizeof(u32);
831 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
832 		if (IS_ERR(old)) {
833 			err = PTR_ERR(old);
834 			break;
835 		}
836 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
837 		if (IS_ERR(new)) {
838 			err = PTR_ERR(new);
839 			kfree(old);
840 			break;
841 		}
842 		/* OK, here comes... */
843 		err = audit_tag_tree(old, new);
844 
845 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
846 					  uid, loginuid, sessionid, sid);
847 
848 		audit_log_format(ab, " op=make_equiv old=");
849 		audit_log_untrustedstring(ab, old);
850 		audit_log_format(ab, " new=");
851 		audit_log_untrustedstring(ab, new);
852 		audit_log_format(ab, " res=%d", !err);
853 		audit_log_end(ab);
854 		kfree(old);
855 		kfree(new);
856 		break;
857 	}
858 	case AUDIT_SIGNAL_INFO:
859 		err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
860 		if (err)
861 			return err;
862 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
863 		if (!sig_data) {
864 			security_release_secctx(ctx, len);
865 			return -ENOMEM;
866 		}
867 		sig_data->uid = audit_sig_uid;
868 		sig_data->pid = audit_sig_pid;
869 		memcpy(sig_data->ctx, ctx, len);
870 		security_release_secctx(ctx, len);
871 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
872 				0, 0, sig_data, sizeof(*sig_data) + len);
873 		kfree(sig_data);
874 		break;
875 	case AUDIT_TTY_GET: {
876 		struct audit_tty_status s;
877 		struct task_struct *tsk;
878 
879 		read_lock(&tasklist_lock);
880 		tsk = find_task_by_vpid(pid);
881 		if (!tsk)
882 			err = -ESRCH;
883 		else {
884 			spin_lock_irq(&tsk->sighand->siglock);
885 			s.enabled = tsk->signal->audit_tty != 0;
886 			spin_unlock_irq(&tsk->sighand->siglock);
887 		}
888 		read_unlock(&tasklist_lock);
889 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
890 				 &s, sizeof(s));
891 		break;
892 	}
893 	case AUDIT_TTY_SET: {
894 		struct audit_tty_status *s;
895 		struct task_struct *tsk;
896 
897 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
898 			return -EINVAL;
899 		s = data;
900 		if (s->enabled != 0 && s->enabled != 1)
901 			return -EINVAL;
902 		read_lock(&tasklist_lock);
903 		tsk = find_task_by_vpid(pid);
904 		if (!tsk)
905 			err = -ESRCH;
906 		else {
907 			spin_lock_irq(&tsk->sighand->siglock);
908 			tsk->signal->audit_tty = s->enabled != 0;
909 			spin_unlock_irq(&tsk->sighand->siglock);
910 		}
911 		read_unlock(&tasklist_lock);
912 		break;
913 	}
914 	default:
915 		err = -EINVAL;
916 		break;
917 	}
918 
919 	return err < 0 ? err : 0;
920 }
921 
922 /*
923  * Get message from skb (based on rtnetlink_rcv_skb).  Each message is
924  * processed by audit_receive_msg.  Malformed skbs with wrong length are
925  * discarded silently.
926  */
927 static void audit_receive_skb(struct sk_buff *skb)
928 {
929 	int		err;
930 	struct nlmsghdr	*nlh;
931 	u32		rlen;
932 
933 	while (skb->len >= NLMSG_SPACE(0)) {
934 		nlh = nlmsg_hdr(skb);
935 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
936 			return;
937 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
938 		if (rlen > skb->len)
939 			rlen = skb->len;
940 		if ((err = audit_receive_msg(skb, nlh))) {
941 			netlink_ack(skb, nlh, err);
942 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
943 			netlink_ack(skb, nlh, 0);
944 		skb_pull(skb, rlen);
945 	}
946 }
947 
948 /* Receive messages from netlink socket. */
949 static void audit_receive(struct sk_buff  *skb)
950 {
951 	mutex_lock(&audit_cmd_mutex);
952 	audit_receive_skb(skb);
953 	mutex_unlock(&audit_cmd_mutex);
954 }
955 
956 #ifdef CONFIG_AUDITSYSCALL
957 static const struct inotify_operations audit_inotify_ops = {
958 	.handle_event	= audit_handle_ievent,
959 	.destroy_watch	= audit_free_parent,
960 };
961 #endif
962 
963 /* Initialize audit support at boot time. */
964 static int __init audit_init(void)
965 {
966 	int i;
967 
968 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
969 	       audit_default ? "enabled" : "disabled");
970 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
971 					   audit_receive, NULL, THIS_MODULE);
972 	if (!audit_sock)
973 		audit_panic("cannot initialize netlink socket");
974 	else
975 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
976 
977 	skb_queue_head_init(&audit_skb_queue);
978 	skb_queue_head_init(&audit_skb_hold_queue);
979 	audit_initialized = 1;
980 	audit_enabled = audit_default;
981 	audit_ever_enabled |= !!audit_default;
982 
983 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
984 
985 #ifdef CONFIG_AUDITSYSCALL
986 	audit_ih = inotify_init(&audit_inotify_ops);
987 	if (IS_ERR(audit_ih))
988 		audit_panic("cannot initialize inotify handle");
989 #endif
990 
991 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
992 		INIT_LIST_HEAD(&audit_inode_hash[i]);
993 
994 	return 0;
995 }
996 __initcall(audit_init);
997 
998 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
999 static int __init audit_enable(char *str)
1000 {
1001 	audit_default = !!simple_strtol(str, NULL, 0);
1002 	printk(KERN_INFO "audit: %s%s\n",
1003 	       audit_default ? "enabled" : "disabled",
1004 	       audit_initialized ? "" : " (after initialization)");
1005 	if (audit_initialized) {
1006 		audit_enabled = audit_default;
1007 		audit_ever_enabled |= !!audit_default;
1008 	}
1009 	return 1;
1010 }
1011 
1012 __setup("audit=", audit_enable);
1013 
1014 static void audit_buffer_free(struct audit_buffer *ab)
1015 {
1016 	unsigned long flags;
1017 
1018 	if (!ab)
1019 		return;
1020 
1021 	if (ab->skb)
1022 		kfree_skb(ab->skb);
1023 
1024 	spin_lock_irqsave(&audit_freelist_lock, flags);
1025 	if (audit_freelist_count > AUDIT_MAXFREE)
1026 		kfree(ab);
1027 	else {
1028 		audit_freelist_count++;
1029 		list_add(&ab->list, &audit_freelist);
1030 	}
1031 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1032 }
1033 
1034 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1035 						gfp_t gfp_mask, int type)
1036 {
1037 	unsigned long flags;
1038 	struct audit_buffer *ab = NULL;
1039 	struct nlmsghdr *nlh;
1040 
1041 	spin_lock_irqsave(&audit_freelist_lock, flags);
1042 	if (!list_empty(&audit_freelist)) {
1043 		ab = list_entry(audit_freelist.next,
1044 				struct audit_buffer, list);
1045 		list_del(&ab->list);
1046 		--audit_freelist_count;
1047 	}
1048 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1049 
1050 	if (!ab) {
1051 		ab = kmalloc(sizeof(*ab), gfp_mask);
1052 		if (!ab)
1053 			goto err;
1054 	}
1055 
1056 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
1057 	if (!ab->skb)
1058 		goto err;
1059 
1060 	ab->ctx = ctx;
1061 	ab->gfp_mask = gfp_mask;
1062 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
1063 	nlh->nlmsg_type = type;
1064 	nlh->nlmsg_flags = 0;
1065 	nlh->nlmsg_pid = 0;
1066 	nlh->nlmsg_seq = 0;
1067 	return ab;
1068 err:
1069 	audit_buffer_free(ab);
1070 	return NULL;
1071 }
1072 
1073 /**
1074  * audit_serial - compute a serial number for the audit record
1075  *
1076  * Compute a serial number for the audit record.  Audit records are
1077  * written to user-space as soon as they are generated, so a complete
1078  * audit record may be written in several pieces.  The timestamp of the
1079  * record and this serial number are used by the user-space tools to
1080  * determine which pieces belong to the same audit record.  The
1081  * (timestamp,serial) tuple is unique for each syscall and is live from
1082  * syscall entry to syscall exit.
1083  *
1084  * NOTE: Another possibility is to store the formatted records off the
1085  * audit context (for those records that have a context), and emit them
1086  * all at syscall exit.  However, this could delay the reporting of
1087  * significant errors until syscall exit (or never, if the system
1088  * halts).
1089  */
1090 unsigned int audit_serial(void)
1091 {
1092 	static DEFINE_SPINLOCK(serial_lock);
1093 	static unsigned int serial = 0;
1094 
1095 	unsigned long flags;
1096 	unsigned int ret;
1097 
1098 	spin_lock_irqsave(&serial_lock, flags);
1099 	do {
1100 		ret = ++serial;
1101 	} while (unlikely(!ret));
1102 	spin_unlock_irqrestore(&serial_lock, flags);
1103 
1104 	return ret;
1105 }
1106 
1107 static inline void audit_get_stamp(struct audit_context *ctx,
1108 				   struct timespec *t, unsigned int *serial)
1109 {
1110 	if (ctx)
1111 		auditsc_get_stamp(ctx, t, serial);
1112 	else {
1113 		*t = CURRENT_TIME;
1114 		*serial = audit_serial();
1115 	}
1116 }
1117 
1118 /* Obtain an audit buffer.  This routine does locking to obtain the
1119  * audit buffer, but then no locking is required for calls to
1120  * audit_log_*format.  If the tsk is a task that is currently in a
1121  * syscall, then the syscall is marked as auditable and an audit record
1122  * will be written at syscall exit.  If there is no associated task, tsk
1123  * should be NULL. */
1124 
1125 /**
1126  * audit_log_start - obtain an audit buffer
1127  * @ctx: audit_context (may be NULL)
1128  * @gfp_mask: type of allocation
1129  * @type: audit message type
1130  *
1131  * Returns audit_buffer pointer on success or NULL on error.
1132  *
1133  * Obtain an audit buffer.  This routine does locking to obtain the
1134  * audit buffer, but then no locking is required for calls to
1135  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1136  * syscall, then the syscall is marked as auditable and an audit record
1137  * will be written at syscall exit.  If there is no associated task, then
1138  * task context (ctx) should be NULL.
1139  */
1140 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1141 				     int type)
1142 {
1143 	struct audit_buffer	*ab	= NULL;
1144 	struct timespec		t;
1145 	unsigned int		uninitialized_var(serial);
1146 	int reserve;
1147 	unsigned long timeout_start = jiffies;
1148 
1149 	if (!audit_initialized)
1150 		return NULL;
1151 
1152 	if (unlikely(audit_filter_type(type)))
1153 		return NULL;
1154 
1155 	if (gfp_mask & __GFP_WAIT)
1156 		reserve = 0;
1157 	else
1158 		reserve = 5; /* Allow atomic callers to go up to five
1159 				entries over the normal backlog limit */
1160 
1161 	while (audit_backlog_limit
1162 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1163 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1164 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1165 
1166 			/* Wait for auditd to drain the queue a little */
1167 			DECLARE_WAITQUEUE(wait, current);
1168 			set_current_state(TASK_INTERRUPTIBLE);
1169 			add_wait_queue(&audit_backlog_wait, &wait);
1170 
1171 			if (audit_backlog_limit &&
1172 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1173 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1174 
1175 			__set_current_state(TASK_RUNNING);
1176 			remove_wait_queue(&audit_backlog_wait, &wait);
1177 			continue;
1178 		}
1179 		if (audit_rate_check() && printk_ratelimit())
1180 			printk(KERN_WARNING
1181 			       "audit: audit_backlog=%d > "
1182 			       "audit_backlog_limit=%d\n",
1183 			       skb_queue_len(&audit_skb_queue),
1184 			       audit_backlog_limit);
1185 		audit_log_lost("backlog limit exceeded");
1186 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1187 		wake_up(&audit_backlog_wait);
1188 		return NULL;
1189 	}
1190 
1191 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1192 	if (!ab) {
1193 		audit_log_lost("out of memory in audit_log_start");
1194 		return NULL;
1195 	}
1196 
1197 	audit_get_stamp(ab->ctx, &t, &serial);
1198 
1199 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1200 			 t.tv_sec, t.tv_nsec/1000000, serial);
1201 	return ab;
1202 }
1203 
1204 /**
1205  * audit_expand - expand skb in the audit buffer
1206  * @ab: audit_buffer
1207  * @extra: space to add at tail of the skb
1208  *
1209  * Returns 0 (no space) on failed expansion, or available space if
1210  * successful.
1211  */
1212 static inline int audit_expand(struct audit_buffer *ab, int extra)
1213 {
1214 	struct sk_buff *skb = ab->skb;
1215 	int oldtail = skb_tailroom(skb);
1216 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1217 	int newtail = skb_tailroom(skb);
1218 
1219 	if (ret < 0) {
1220 		audit_log_lost("out of memory in audit_expand");
1221 		return 0;
1222 	}
1223 
1224 	skb->truesize += newtail - oldtail;
1225 	return newtail;
1226 }
1227 
1228 /*
1229  * Format an audit message into the audit buffer.  If there isn't enough
1230  * room in the audit buffer, more room will be allocated and vsnprint
1231  * will be called a second time.  Currently, we assume that a printk
1232  * can't format message larger than 1024 bytes, so we don't either.
1233  */
1234 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1235 			      va_list args)
1236 {
1237 	int len, avail;
1238 	struct sk_buff *skb;
1239 	va_list args2;
1240 
1241 	if (!ab)
1242 		return;
1243 
1244 	BUG_ON(!ab->skb);
1245 	skb = ab->skb;
1246 	avail = skb_tailroom(skb);
1247 	if (avail == 0) {
1248 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1249 		if (!avail)
1250 			goto out;
1251 	}
1252 	va_copy(args2, args);
1253 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1254 	if (len >= avail) {
1255 		/* The printk buffer is 1024 bytes long, so if we get
1256 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1257 		 * log everything that printk could have logged. */
1258 		avail = audit_expand(ab,
1259 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1260 		if (!avail)
1261 			goto out;
1262 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1263 	}
1264 	va_end(args2);
1265 	if (len > 0)
1266 		skb_put(skb, len);
1267 out:
1268 	return;
1269 }
1270 
1271 /**
1272  * audit_log_format - format a message into the audit buffer.
1273  * @ab: audit_buffer
1274  * @fmt: format string
1275  * @...: optional parameters matching @fmt string
1276  *
1277  * All the work is done in audit_log_vformat.
1278  */
1279 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1280 {
1281 	va_list args;
1282 
1283 	if (!ab)
1284 		return;
1285 	va_start(args, fmt);
1286 	audit_log_vformat(ab, fmt, args);
1287 	va_end(args);
1288 }
1289 
1290 /**
1291  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1292  * @ab: the audit_buffer
1293  * @buf: buffer to convert to hex
1294  * @len: length of @buf to be converted
1295  *
1296  * No return value; failure to expand is silently ignored.
1297  *
1298  * This function will take the passed buf and convert it into a string of
1299  * ascii hex digits. The new string is placed onto the skb.
1300  */
1301 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1302 		size_t len)
1303 {
1304 	int i, avail, new_len;
1305 	unsigned char *ptr;
1306 	struct sk_buff *skb;
1307 	static const unsigned char *hex = "0123456789ABCDEF";
1308 
1309 	if (!ab)
1310 		return;
1311 
1312 	BUG_ON(!ab->skb);
1313 	skb = ab->skb;
1314 	avail = skb_tailroom(skb);
1315 	new_len = len<<1;
1316 	if (new_len >= avail) {
1317 		/* Round the buffer request up to the next multiple */
1318 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1319 		avail = audit_expand(ab, new_len);
1320 		if (!avail)
1321 			return;
1322 	}
1323 
1324 	ptr = skb_tail_pointer(skb);
1325 	for (i=0; i<len; i++) {
1326 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1327 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1328 	}
1329 	*ptr = 0;
1330 	skb_put(skb, len << 1); /* new string is twice the old string */
1331 }
1332 
1333 /*
1334  * Format a string of no more than slen characters into the audit buffer,
1335  * enclosed in quote marks.
1336  */
1337 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1338 			size_t slen)
1339 {
1340 	int avail, new_len;
1341 	unsigned char *ptr;
1342 	struct sk_buff *skb;
1343 
1344 	if (!ab)
1345 		return;
1346 
1347 	BUG_ON(!ab->skb);
1348 	skb = ab->skb;
1349 	avail = skb_tailroom(skb);
1350 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1351 	if (new_len > avail) {
1352 		avail = audit_expand(ab, new_len);
1353 		if (!avail)
1354 			return;
1355 	}
1356 	ptr = skb_tail_pointer(skb);
1357 	*ptr++ = '"';
1358 	memcpy(ptr, string, slen);
1359 	ptr += slen;
1360 	*ptr++ = '"';
1361 	*ptr = 0;
1362 	skb_put(skb, slen + 2);	/* don't include null terminator */
1363 }
1364 
1365 /**
1366  * audit_string_contains_control - does a string need to be logged in hex
1367  * @string: string to be checked
1368  * @len: max length of the string to check
1369  */
1370 int audit_string_contains_control(const char *string, size_t len)
1371 {
1372 	const unsigned char *p;
1373 	for (p = string; p < (const unsigned char *)string + len && *p; p++) {
1374 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1375 			return 1;
1376 	}
1377 	return 0;
1378 }
1379 
1380 /**
1381  * audit_log_n_untrustedstring - log a string that may contain random characters
1382  * @ab: audit_buffer
1383  * @len: length of string (not including trailing null)
1384  * @string: string to be logged
1385  *
1386  * This code will escape a string that is passed to it if the string
1387  * contains a control character, unprintable character, double quote mark,
1388  * or a space. Unescaped strings will start and end with a double quote mark.
1389  * Strings that are escaped are printed in hex (2 digits per char).
1390  *
1391  * The caller specifies the number of characters in the string to log, which may
1392  * or may not be the entire string.
1393  */
1394 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1395 				 size_t len)
1396 {
1397 	if (audit_string_contains_control(string, len))
1398 		audit_log_n_hex(ab, string, len);
1399 	else
1400 		audit_log_n_string(ab, string, len);
1401 }
1402 
1403 /**
1404  * audit_log_untrustedstring - log a string that may contain random characters
1405  * @ab: audit_buffer
1406  * @string: string to be logged
1407  *
1408  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1409  * determine string length.
1410  */
1411 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1412 {
1413 	audit_log_n_untrustedstring(ab, string, strlen(string));
1414 }
1415 
1416 /* This is a helper-function to print the escaped d_path */
1417 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1418 		      struct path *path)
1419 {
1420 	char *p, *pathname;
1421 
1422 	if (prefix)
1423 		audit_log_format(ab, " %s", prefix);
1424 
1425 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1426 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1427 	if (!pathname) {
1428 		audit_log_format(ab, "<no memory>");
1429 		return;
1430 	}
1431 	p = d_path(path, pathname, PATH_MAX+11);
1432 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1433 		/* FIXME: can we save some information here? */
1434 		audit_log_format(ab, "<too long>");
1435 	} else
1436 		audit_log_untrustedstring(ab, p);
1437 	kfree(pathname);
1438 }
1439 
1440 /**
1441  * audit_log_end - end one audit record
1442  * @ab: the audit_buffer
1443  *
1444  * The netlink_* functions cannot be called inside an irq context, so
1445  * the audit buffer is placed on a queue and a tasklet is scheduled to
1446  * remove them from the queue outside the irq context.  May be called in
1447  * any context.
1448  */
1449 void audit_log_end(struct audit_buffer *ab)
1450 {
1451 	if (!ab)
1452 		return;
1453 	if (!audit_rate_check()) {
1454 		audit_log_lost("rate limit exceeded");
1455 	} else {
1456 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1457 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1458 
1459 		if (audit_pid) {
1460 			skb_queue_tail(&audit_skb_queue, ab->skb);
1461 			wake_up_interruptible(&kauditd_wait);
1462 		} else {
1463 			if (nlh->nlmsg_type != AUDIT_EOE) {
1464 				if (printk_ratelimit()) {
1465 					printk(KERN_NOTICE "type=%d %s\n",
1466 						nlh->nlmsg_type,
1467 						ab->skb->data + NLMSG_SPACE(0));
1468 				} else
1469 					audit_log_lost("printk limit exceeded\n");
1470 			}
1471 			audit_hold_skb(ab->skb);
1472 		}
1473 		ab->skb = NULL;
1474 	}
1475 	audit_buffer_free(ab);
1476 }
1477 
1478 /**
1479  * audit_log - Log an audit record
1480  * @ctx: audit context
1481  * @gfp_mask: type of allocation
1482  * @type: audit message type
1483  * @fmt: format string to use
1484  * @...: variable parameters matching the format string
1485  *
1486  * This is a convenience function that calls audit_log_start,
1487  * audit_log_vformat, and audit_log_end.  It may be called
1488  * in any context.
1489  */
1490 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1491 	       const char *fmt, ...)
1492 {
1493 	struct audit_buffer *ab;
1494 	va_list args;
1495 
1496 	ab = audit_log_start(ctx, gfp_mask, type);
1497 	if (ab) {
1498 		va_start(args, fmt);
1499 		audit_log_vformat(ab, fmt, args);
1500 		va_end(args);
1501 		audit_log_end(ab);
1502 	}
1503 }
1504 
1505 EXPORT_SYMBOL(audit_log_start);
1506 EXPORT_SYMBOL(audit_log_end);
1507 EXPORT_SYMBOL(audit_log_format);
1508 EXPORT_SYMBOL(audit_log);
1509