1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/inotify.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized != 0. 65 * (Initialization happens after skb_init is called.) */ 66 static int audit_initialized; 67 68 #define AUDIT_OFF 0 69 #define AUDIT_ON 1 70 #define AUDIT_LOCKED 2 71 int audit_enabled; 72 int audit_ever_enabled; 73 74 /* Default state when kernel boots without any parameters. */ 75 static int audit_default; 76 77 /* If auditing cannot proceed, audit_failure selects what happens. */ 78 static int audit_failure = AUDIT_FAIL_PRINTK; 79 80 /* 81 * If audit records are to be written to the netlink socket, audit_pid 82 * contains the pid of the auditd process and audit_nlk_pid contains 83 * the pid to use to send netlink messages to that process. 84 */ 85 int audit_pid; 86 static int audit_nlk_pid; 87 88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 89 * to that number per second. This prevents DoS attacks, but results in 90 * audit records being dropped. */ 91 static int audit_rate_limit; 92 93 /* Number of outstanding audit_buffers allowed. */ 94 static int audit_backlog_limit = 64; 95 static int audit_backlog_wait_time = 60 * HZ; 96 static int audit_backlog_wait_overflow = 0; 97 98 /* The identity of the user shutting down the audit system. */ 99 uid_t audit_sig_uid = -1; 100 pid_t audit_sig_pid = -1; 101 u32 audit_sig_sid = 0; 102 103 /* Records can be lost in several ways: 104 0) [suppressed in audit_alloc] 105 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 106 2) out of memory in audit_log_move [alloc_skb] 107 3) suppressed due to audit_rate_limit 108 4) suppressed due to audit_backlog_limit 109 */ 110 static atomic_t audit_lost = ATOMIC_INIT(0); 111 112 /* The netlink socket. */ 113 static struct sock *audit_sock; 114 115 /* Inotify handle. */ 116 struct inotify_handle *audit_ih; 117 118 /* Hash for inode-based rules */ 119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 120 121 /* The audit_freelist is a list of pre-allocated audit buffers (if more 122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 123 * being placed on the freelist). */ 124 static DEFINE_SPINLOCK(audit_freelist_lock); 125 static int audit_freelist_count; 126 static LIST_HEAD(audit_freelist); 127 128 static struct sk_buff_head audit_skb_queue; 129 /* queue of skbs to send to auditd when/if it comes back */ 130 static struct sk_buff_head audit_skb_hold_queue; 131 static struct task_struct *kauditd_task; 132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 134 135 /* Serialize requests from userspace. */ 136 static DEFINE_MUTEX(audit_cmd_mutex); 137 138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 139 * audit records. Since printk uses a 1024 byte buffer, this buffer 140 * should be at least that large. */ 141 #define AUDIT_BUFSIZ 1024 142 143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 145 #define AUDIT_MAXFREE (2*NR_CPUS) 146 147 /* The audit_buffer is used when formatting an audit record. The caller 148 * locks briefly to get the record off the freelist or to allocate the 149 * buffer, and locks briefly to send the buffer to the netlink layer or 150 * to place it on a transmit queue. Multiple audit_buffers can be in 151 * use simultaneously. */ 152 struct audit_buffer { 153 struct list_head list; 154 struct sk_buff *skb; /* formatted skb ready to send */ 155 struct audit_context *ctx; /* NULL or associated context */ 156 gfp_t gfp_mask; 157 }; 158 159 struct audit_reply { 160 int pid; 161 struct sk_buff *skb; 162 }; 163 164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 165 { 166 if (ab) { 167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 168 nlh->nlmsg_pid = pid; 169 } 170 } 171 172 void audit_panic(const char *message) 173 { 174 switch (audit_failure) 175 { 176 case AUDIT_FAIL_SILENT: 177 break; 178 case AUDIT_FAIL_PRINTK: 179 if (printk_ratelimit()) 180 printk(KERN_ERR "audit: %s\n", message); 181 break; 182 case AUDIT_FAIL_PANIC: 183 /* test audit_pid since printk is always losey, why bother? */ 184 if (audit_pid) 185 panic("audit: %s\n", message); 186 break; 187 } 188 } 189 190 static inline int audit_rate_check(void) 191 { 192 static unsigned long last_check = 0; 193 static int messages = 0; 194 static DEFINE_SPINLOCK(lock); 195 unsigned long flags; 196 unsigned long now; 197 unsigned long elapsed; 198 int retval = 0; 199 200 if (!audit_rate_limit) return 1; 201 202 spin_lock_irqsave(&lock, flags); 203 if (++messages < audit_rate_limit) { 204 retval = 1; 205 } else { 206 now = jiffies; 207 elapsed = now - last_check; 208 if (elapsed > HZ) { 209 last_check = now; 210 messages = 0; 211 retval = 1; 212 } 213 } 214 spin_unlock_irqrestore(&lock, flags); 215 216 return retval; 217 } 218 219 /** 220 * audit_log_lost - conditionally log lost audit message event 221 * @message: the message stating reason for lost audit message 222 * 223 * Emit at least 1 message per second, even if audit_rate_check is 224 * throttling. 225 * Always increment the lost messages counter. 226 */ 227 void audit_log_lost(const char *message) 228 { 229 static unsigned long last_msg = 0; 230 static DEFINE_SPINLOCK(lock); 231 unsigned long flags; 232 unsigned long now; 233 int print; 234 235 atomic_inc(&audit_lost); 236 237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 238 239 if (!print) { 240 spin_lock_irqsave(&lock, flags); 241 now = jiffies; 242 if (now - last_msg > HZ) { 243 print = 1; 244 last_msg = now; 245 } 246 spin_unlock_irqrestore(&lock, flags); 247 } 248 249 if (print) { 250 if (printk_ratelimit()) 251 printk(KERN_WARNING 252 "audit: audit_lost=%d audit_rate_limit=%d " 253 "audit_backlog_limit=%d\n", 254 atomic_read(&audit_lost), 255 audit_rate_limit, 256 audit_backlog_limit); 257 audit_panic(message); 258 } 259 } 260 261 static int audit_log_config_change(char *function_name, int new, int old, 262 uid_t loginuid, u32 sessionid, u32 sid, 263 int allow_changes) 264 { 265 struct audit_buffer *ab; 266 int rc = 0; 267 268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 270 old, loginuid, sessionid); 271 if (sid) { 272 char *ctx = NULL; 273 u32 len; 274 275 rc = security_secid_to_secctx(sid, &ctx, &len); 276 if (rc) { 277 audit_log_format(ab, " sid=%u", sid); 278 allow_changes = 0; /* Something weird, deny request */ 279 } else { 280 audit_log_format(ab, " subj=%s", ctx); 281 security_release_secctx(ctx, len); 282 } 283 } 284 audit_log_format(ab, " res=%d", allow_changes); 285 audit_log_end(ab); 286 return rc; 287 } 288 289 static int audit_do_config_change(char *function_name, int *to_change, 290 int new, uid_t loginuid, u32 sessionid, 291 u32 sid) 292 { 293 int allow_changes, rc = 0, old = *to_change; 294 295 /* check if we are locked */ 296 if (audit_enabled == AUDIT_LOCKED) 297 allow_changes = 0; 298 else 299 allow_changes = 1; 300 301 if (audit_enabled != AUDIT_OFF) { 302 rc = audit_log_config_change(function_name, new, old, loginuid, 303 sessionid, sid, allow_changes); 304 if (rc) 305 allow_changes = 0; 306 } 307 308 /* If we are allowed, make the change */ 309 if (allow_changes == 1) 310 *to_change = new; 311 /* Not allowed, update reason */ 312 else if (rc == 0) 313 rc = -EPERM; 314 return rc; 315 } 316 317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 318 u32 sid) 319 { 320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 321 limit, loginuid, sessionid, sid); 322 } 323 324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 325 u32 sid) 326 { 327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 328 limit, loginuid, sessionid, sid); 329 } 330 331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 332 { 333 int rc; 334 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 335 return -EINVAL; 336 337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 338 loginuid, sessionid, sid); 339 340 if (!rc) 341 audit_ever_enabled |= !!state; 342 343 return rc; 344 } 345 346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 347 { 348 if (state != AUDIT_FAIL_SILENT 349 && state != AUDIT_FAIL_PRINTK 350 && state != AUDIT_FAIL_PANIC) 351 return -EINVAL; 352 353 return audit_do_config_change("audit_failure", &audit_failure, state, 354 loginuid, sessionid, sid); 355 } 356 357 /* 358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 359 * already have been sent via prink/syslog and so if these messages are dropped 360 * it is not a huge concern since we already passed the audit_log_lost() 361 * notification and stuff. This is just nice to get audit messages during 362 * boot before auditd is running or messages generated while auditd is stopped. 363 * This only holds messages is audit_default is set, aka booting with audit=1 364 * or building your kernel that way. 365 */ 366 static void audit_hold_skb(struct sk_buff *skb) 367 { 368 if (audit_default && 369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 370 skb_queue_tail(&audit_skb_hold_queue, skb); 371 else 372 kfree_skb(skb); 373 } 374 375 static void kauditd_send_skb(struct sk_buff *skb) 376 { 377 int err; 378 /* take a reference in case we can't send it and we want to hold it */ 379 skb_get(skb); 380 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 381 if (err < 0) { 382 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 383 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 384 audit_log_lost("auditd dissapeared\n"); 385 audit_pid = 0; 386 /* we might get lucky and get this in the next auditd */ 387 audit_hold_skb(skb); 388 } else 389 /* drop the extra reference if sent ok */ 390 kfree_skb(skb); 391 } 392 393 static int kauditd_thread(void *dummy) 394 { 395 struct sk_buff *skb; 396 397 set_freezable(); 398 while (!kthread_should_stop()) { 399 /* 400 * if auditd just started drain the queue of messages already 401 * sent to syslog/printk. remember loss here is ok. we already 402 * called audit_log_lost() if it didn't go out normally. so the 403 * race between the skb_dequeue and the next check for audit_pid 404 * doesn't matter. 405 * 406 * if you ever find kauditd to be too slow we can get a perf win 407 * by doing our own locking and keeping better track if there 408 * are messages in this queue. I don't see the need now, but 409 * in 5 years when I want to play with this again I'll see this 410 * note and still have no friggin idea what i'm thinking today. 411 */ 412 if (audit_default && audit_pid) { 413 skb = skb_dequeue(&audit_skb_hold_queue); 414 if (unlikely(skb)) { 415 while (skb && audit_pid) { 416 kauditd_send_skb(skb); 417 skb = skb_dequeue(&audit_skb_hold_queue); 418 } 419 } 420 } 421 422 skb = skb_dequeue(&audit_skb_queue); 423 wake_up(&audit_backlog_wait); 424 if (skb) { 425 if (audit_pid) 426 kauditd_send_skb(skb); 427 else { 428 if (printk_ratelimit()) 429 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 430 else 431 audit_log_lost("printk limit exceeded\n"); 432 433 audit_hold_skb(skb); 434 } 435 } else { 436 DECLARE_WAITQUEUE(wait, current); 437 set_current_state(TASK_INTERRUPTIBLE); 438 add_wait_queue(&kauditd_wait, &wait); 439 440 if (!skb_queue_len(&audit_skb_queue)) { 441 try_to_freeze(); 442 schedule(); 443 } 444 445 __set_current_state(TASK_RUNNING); 446 remove_wait_queue(&kauditd_wait, &wait); 447 } 448 } 449 return 0; 450 } 451 452 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 453 { 454 struct task_struct *tsk; 455 int err; 456 457 read_lock(&tasklist_lock); 458 tsk = find_task_by_vpid(pid); 459 err = -ESRCH; 460 if (!tsk) 461 goto out; 462 err = 0; 463 464 spin_lock_irq(&tsk->sighand->siglock); 465 if (!tsk->signal->audit_tty) 466 err = -EPERM; 467 spin_unlock_irq(&tsk->sighand->siglock); 468 if (err) 469 goto out; 470 471 tty_audit_push_task(tsk, loginuid, sessionid); 472 out: 473 read_unlock(&tasklist_lock); 474 return err; 475 } 476 477 int audit_send_list(void *_dest) 478 { 479 struct audit_netlink_list *dest = _dest; 480 int pid = dest->pid; 481 struct sk_buff *skb; 482 483 /* wait for parent to finish and send an ACK */ 484 mutex_lock(&audit_cmd_mutex); 485 mutex_unlock(&audit_cmd_mutex); 486 487 while ((skb = __skb_dequeue(&dest->q)) != NULL) 488 netlink_unicast(audit_sock, skb, pid, 0); 489 490 kfree(dest); 491 492 return 0; 493 } 494 495 #ifdef CONFIG_AUDIT_TREE 496 static int prune_tree_thread(void *unused) 497 { 498 mutex_lock(&audit_cmd_mutex); 499 audit_prune_trees(); 500 mutex_unlock(&audit_cmd_mutex); 501 return 0; 502 } 503 504 void audit_schedule_prune(void) 505 { 506 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 507 } 508 #endif 509 510 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 511 int multi, void *payload, int size) 512 { 513 struct sk_buff *skb; 514 struct nlmsghdr *nlh; 515 int len = NLMSG_SPACE(size); 516 void *data; 517 int flags = multi ? NLM_F_MULTI : 0; 518 int t = done ? NLMSG_DONE : type; 519 520 skb = alloc_skb(len, GFP_KERNEL); 521 if (!skb) 522 return NULL; 523 524 nlh = NLMSG_PUT(skb, pid, seq, t, size); 525 nlh->nlmsg_flags = flags; 526 data = NLMSG_DATA(nlh); 527 memcpy(data, payload, size); 528 return skb; 529 530 nlmsg_failure: /* Used by NLMSG_PUT */ 531 if (skb) 532 kfree_skb(skb); 533 return NULL; 534 } 535 536 static int audit_send_reply_thread(void *arg) 537 { 538 struct audit_reply *reply = (struct audit_reply *)arg; 539 540 mutex_lock(&audit_cmd_mutex); 541 mutex_unlock(&audit_cmd_mutex); 542 543 /* Ignore failure. It'll only happen if the sender goes away, 544 because our timeout is set to infinite. */ 545 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 546 kfree(reply); 547 return 0; 548 } 549 /** 550 * audit_send_reply - send an audit reply message via netlink 551 * @pid: process id to send reply to 552 * @seq: sequence number 553 * @type: audit message type 554 * @done: done (last) flag 555 * @multi: multi-part message flag 556 * @payload: payload data 557 * @size: payload size 558 * 559 * Allocates an skb, builds the netlink message, and sends it to the pid. 560 * No failure notifications. 561 */ 562 void audit_send_reply(int pid, int seq, int type, int done, int multi, 563 void *payload, int size) 564 { 565 struct sk_buff *skb; 566 struct task_struct *tsk; 567 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 568 GFP_KERNEL); 569 570 if (!reply) 571 return; 572 573 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 574 if (!skb) 575 goto out; 576 577 reply->pid = pid; 578 reply->skb = skb; 579 580 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 581 if (!IS_ERR(tsk)) 582 return; 583 kfree_skb(skb); 584 out: 585 kfree(reply); 586 } 587 588 /* 589 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 590 * control messages. 591 */ 592 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 593 { 594 int err = 0; 595 596 switch (msg_type) { 597 case AUDIT_GET: 598 case AUDIT_LIST: 599 case AUDIT_LIST_RULES: 600 case AUDIT_SET: 601 case AUDIT_ADD: 602 case AUDIT_ADD_RULE: 603 case AUDIT_DEL: 604 case AUDIT_DEL_RULE: 605 case AUDIT_SIGNAL_INFO: 606 case AUDIT_TTY_GET: 607 case AUDIT_TTY_SET: 608 case AUDIT_TRIM: 609 case AUDIT_MAKE_EQUIV: 610 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 611 err = -EPERM; 612 break; 613 case AUDIT_USER: 614 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 615 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 616 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 617 err = -EPERM; 618 break; 619 default: /* bad msg */ 620 err = -EINVAL; 621 } 622 623 return err; 624 } 625 626 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 627 u32 pid, u32 uid, uid_t auid, u32 ses, 628 u32 sid) 629 { 630 int rc = 0; 631 char *ctx = NULL; 632 u32 len; 633 634 if (!audit_enabled) { 635 *ab = NULL; 636 return rc; 637 } 638 639 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 640 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 641 pid, uid, auid, ses); 642 if (sid) { 643 rc = security_secid_to_secctx(sid, &ctx, &len); 644 if (rc) 645 audit_log_format(*ab, " ssid=%u", sid); 646 else { 647 audit_log_format(*ab, " subj=%s", ctx); 648 security_release_secctx(ctx, len); 649 } 650 } 651 652 return rc; 653 } 654 655 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 656 { 657 u32 uid, pid, seq, sid; 658 void *data; 659 struct audit_status *status_get, status_set; 660 int err; 661 struct audit_buffer *ab; 662 u16 msg_type = nlh->nlmsg_type; 663 uid_t loginuid; /* loginuid of sender */ 664 u32 sessionid; 665 struct audit_sig_info *sig_data; 666 char *ctx = NULL; 667 u32 len; 668 669 err = audit_netlink_ok(skb, msg_type); 670 if (err) 671 return err; 672 673 /* As soon as there's any sign of userspace auditd, 674 * start kauditd to talk to it */ 675 if (!kauditd_task) 676 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 677 if (IS_ERR(kauditd_task)) { 678 err = PTR_ERR(kauditd_task); 679 kauditd_task = NULL; 680 return err; 681 } 682 683 pid = NETLINK_CREDS(skb)->pid; 684 uid = NETLINK_CREDS(skb)->uid; 685 loginuid = NETLINK_CB(skb).loginuid; 686 sessionid = NETLINK_CB(skb).sessionid; 687 sid = NETLINK_CB(skb).sid; 688 seq = nlh->nlmsg_seq; 689 data = NLMSG_DATA(nlh); 690 691 switch (msg_type) { 692 case AUDIT_GET: 693 status_set.enabled = audit_enabled; 694 status_set.failure = audit_failure; 695 status_set.pid = audit_pid; 696 status_set.rate_limit = audit_rate_limit; 697 status_set.backlog_limit = audit_backlog_limit; 698 status_set.lost = atomic_read(&audit_lost); 699 status_set.backlog = skb_queue_len(&audit_skb_queue); 700 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 701 &status_set, sizeof(status_set)); 702 break; 703 case AUDIT_SET: 704 if (nlh->nlmsg_len < sizeof(struct audit_status)) 705 return -EINVAL; 706 status_get = (struct audit_status *)data; 707 if (status_get->mask & AUDIT_STATUS_ENABLED) { 708 err = audit_set_enabled(status_get->enabled, 709 loginuid, sessionid, sid); 710 if (err < 0) 711 return err; 712 } 713 if (status_get->mask & AUDIT_STATUS_FAILURE) { 714 err = audit_set_failure(status_get->failure, 715 loginuid, sessionid, sid); 716 if (err < 0) 717 return err; 718 } 719 if (status_get->mask & AUDIT_STATUS_PID) { 720 int new_pid = status_get->pid; 721 722 if (audit_enabled != AUDIT_OFF) 723 audit_log_config_change("audit_pid", new_pid, 724 audit_pid, loginuid, 725 sessionid, sid, 1); 726 727 audit_pid = new_pid; 728 audit_nlk_pid = NETLINK_CB(skb).pid; 729 } 730 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 731 err = audit_set_rate_limit(status_get->rate_limit, 732 loginuid, sessionid, sid); 733 if (err < 0) 734 return err; 735 } 736 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 737 err = audit_set_backlog_limit(status_get->backlog_limit, 738 loginuid, sessionid, sid); 739 break; 740 case AUDIT_USER: 741 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 742 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 743 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 744 return 0; 745 746 err = audit_filter_user(&NETLINK_CB(skb)); 747 if (err == 1) { 748 err = 0; 749 if (msg_type == AUDIT_USER_TTY) { 750 err = audit_prepare_user_tty(pid, loginuid, 751 sessionid); 752 if (err) 753 break; 754 } 755 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 756 loginuid, sessionid, sid); 757 758 if (msg_type != AUDIT_USER_TTY) 759 audit_log_format(ab, " msg='%.1024s'", 760 (char *)data); 761 else { 762 int size; 763 764 audit_log_format(ab, " msg="); 765 size = nlmsg_len(nlh); 766 audit_log_n_untrustedstring(ab, data, size); 767 } 768 audit_set_pid(ab, pid); 769 audit_log_end(ab); 770 } 771 break; 772 case AUDIT_ADD: 773 case AUDIT_DEL: 774 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 775 return -EINVAL; 776 if (audit_enabled == AUDIT_LOCKED) { 777 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 778 uid, loginuid, sessionid, sid); 779 780 audit_log_format(ab, " audit_enabled=%d res=0", 781 audit_enabled); 782 audit_log_end(ab); 783 return -EPERM; 784 } 785 /* fallthrough */ 786 case AUDIT_LIST: 787 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 788 uid, seq, data, nlmsg_len(nlh), 789 loginuid, sessionid, sid); 790 break; 791 case AUDIT_ADD_RULE: 792 case AUDIT_DEL_RULE: 793 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 794 return -EINVAL; 795 if (audit_enabled == AUDIT_LOCKED) { 796 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 797 uid, loginuid, sessionid, sid); 798 799 audit_log_format(ab, " audit_enabled=%d res=0", 800 audit_enabled); 801 audit_log_end(ab); 802 return -EPERM; 803 } 804 /* fallthrough */ 805 case AUDIT_LIST_RULES: 806 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 807 uid, seq, data, nlmsg_len(nlh), 808 loginuid, sessionid, sid); 809 break; 810 case AUDIT_TRIM: 811 audit_trim_trees(); 812 813 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 814 uid, loginuid, sessionid, sid); 815 816 audit_log_format(ab, " op=trim res=1"); 817 audit_log_end(ab); 818 break; 819 case AUDIT_MAKE_EQUIV: { 820 void *bufp = data; 821 u32 sizes[2]; 822 size_t msglen = nlmsg_len(nlh); 823 char *old, *new; 824 825 err = -EINVAL; 826 if (msglen < 2 * sizeof(u32)) 827 break; 828 memcpy(sizes, bufp, 2 * sizeof(u32)); 829 bufp += 2 * sizeof(u32); 830 msglen -= 2 * sizeof(u32); 831 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 832 if (IS_ERR(old)) { 833 err = PTR_ERR(old); 834 break; 835 } 836 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 837 if (IS_ERR(new)) { 838 err = PTR_ERR(new); 839 kfree(old); 840 break; 841 } 842 /* OK, here comes... */ 843 err = audit_tag_tree(old, new); 844 845 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 846 uid, loginuid, sessionid, sid); 847 848 audit_log_format(ab, " op=make_equiv old="); 849 audit_log_untrustedstring(ab, old); 850 audit_log_format(ab, " new="); 851 audit_log_untrustedstring(ab, new); 852 audit_log_format(ab, " res=%d", !err); 853 audit_log_end(ab); 854 kfree(old); 855 kfree(new); 856 break; 857 } 858 case AUDIT_SIGNAL_INFO: 859 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 860 if (err) 861 return err; 862 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 863 if (!sig_data) { 864 security_release_secctx(ctx, len); 865 return -ENOMEM; 866 } 867 sig_data->uid = audit_sig_uid; 868 sig_data->pid = audit_sig_pid; 869 memcpy(sig_data->ctx, ctx, len); 870 security_release_secctx(ctx, len); 871 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 872 0, 0, sig_data, sizeof(*sig_data) + len); 873 kfree(sig_data); 874 break; 875 case AUDIT_TTY_GET: { 876 struct audit_tty_status s; 877 struct task_struct *tsk; 878 879 read_lock(&tasklist_lock); 880 tsk = find_task_by_vpid(pid); 881 if (!tsk) 882 err = -ESRCH; 883 else { 884 spin_lock_irq(&tsk->sighand->siglock); 885 s.enabled = tsk->signal->audit_tty != 0; 886 spin_unlock_irq(&tsk->sighand->siglock); 887 } 888 read_unlock(&tasklist_lock); 889 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 890 &s, sizeof(s)); 891 break; 892 } 893 case AUDIT_TTY_SET: { 894 struct audit_tty_status *s; 895 struct task_struct *tsk; 896 897 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 898 return -EINVAL; 899 s = data; 900 if (s->enabled != 0 && s->enabled != 1) 901 return -EINVAL; 902 read_lock(&tasklist_lock); 903 tsk = find_task_by_vpid(pid); 904 if (!tsk) 905 err = -ESRCH; 906 else { 907 spin_lock_irq(&tsk->sighand->siglock); 908 tsk->signal->audit_tty = s->enabled != 0; 909 spin_unlock_irq(&tsk->sighand->siglock); 910 } 911 read_unlock(&tasklist_lock); 912 break; 913 } 914 default: 915 err = -EINVAL; 916 break; 917 } 918 919 return err < 0 ? err : 0; 920 } 921 922 /* 923 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 924 * processed by audit_receive_msg. Malformed skbs with wrong length are 925 * discarded silently. 926 */ 927 static void audit_receive_skb(struct sk_buff *skb) 928 { 929 int err; 930 struct nlmsghdr *nlh; 931 u32 rlen; 932 933 while (skb->len >= NLMSG_SPACE(0)) { 934 nlh = nlmsg_hdr(skb); 935 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 936 return; 937 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 938 if (rlen > skb->len) 939 rlen = skb->len; 940 if ((err = audit_receive_msg(skb, nlh))) { 941 netlink_ack(skb, nlh, err); 942 } else if (nlh->nlmsg_flags & NLM_F_ACK) 943 netlink_ack(skb, nlh, 0); 944 skb_pull(skb, rlen); 945 } 946 } 947 948 /* Receive messages from netlink socket. */ 949 static void audit_receive(struct sk_buff *skb) 950 { 951 mutex_lock(&audit_cmd_mutex); 952 audit_receive_skb(skb); 953 mutex_unlock(&audit_cmd_mutex); 954 } 955 956 #ifdef CONFIG_AUDITSYSCALL 957 static const struct inotify_operations audit_inotify_ops = { 958 .handle_event = audit_handle_ievent, 959 .destroy_watch = audit_free_parent, 960 }; 961 #endif 962 963 /* Initialize audit support at boot time. */ 964 static int __init audit_init(void) 965 { 966 int i; 967 968 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 969 audit_default ? "enabled" : "disabled"); 970 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 971 audit_receive, NULL, THIS_MODULE); 972 if (!audit_sock) 973 audit_panic("cannot initialize netlink socket"); 974 else 975 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 976 977 skb_queue_head_init(&audit_skb_queue); 978 skb_queue_head_init(&audit_skb_hold_queue); 979 audit_initialized = 1; 980 audit_enabled = audit_default; 981 audit_ever_enabled |= !!audit_default; 982 983 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 984 985 #ifdef CONFIG_AUDITSYSCALL 986 audit_ih = inotify_init(&audit_inotify_ops); 987 if (IS_ERR(audit_ih)) 988 audit_panic("cannot initialize inotify handle"); 989 #endif 990 991 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 992 INIT_LIST_HEAD(&audit_inode_hash[i]); 993 994 return 0; 995 } 996 __initcall(audit_init); 997 998 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 999 static int __init audit_enable(char *str) 1000 { 1001 audit_default = !!simple_strtol(str, NULL, 0); 1002 printk(KERN_INFO "audit: %s%s\n", 1003 audit_default ? "enabled" : "disabled", 1004 audit_initialized ? "" : " (after initialization)"); 1005 if (audit_initialized) { 1006 audit_enabled = audit_default; 1007 audit_ever_enabled |= !!audit_default; 1008 } 1009 return 1; 1010 } 1011 1012 __setup("audit=", audit_enable); 1013 1014 static void audit_buffer_free(struct audit_buffer *ab) 1015 { 1016 unsigned long flags; 1017 1018 if (!ab) 1019 return; 1020 1021 if (ab->skb) 1022 kfree_skb(ab->skb); 1023 1024 spin_lock_irqsave(&audit_freelist_lock, flags); 1025 if (audit_freelist_count > AUDIT_MAXFREE) 1026 kfree(ab); 1027 else { 1028 audit_freelist_count++; 1029 list_add(&ab->list, &audit_freelist); 1030 } 1031 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1032 } 1033 1034 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1035 gfp_t gfp_mask, int type) 1036 { 1037 unsigned long flags; 1038 struct audit_buffer *ab = NULL; 1039 struct nlmsghdr *nlh; 1040 1041 spin_lock_irqsave(&audit_freelist_lock, flags); 1042 if (!list_empty(&audit_freelist)) { 1043 ab = list_entry(audit_freelist.next, 1044 struct audit_buffer, list); 1045 list_del(&ab->list); 1046 --audit_freelist_count; 1047 } 1048 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1049 1050 if (!ab) { 1051 ab = kmalloc(sizeof(*ab), gfp_mask); 1052 if (!ab) 1053 goto err; 1054 } 1055 1056 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 1057 if (!ab->skb) 1058 goto err; 1059 1060 ab->ctx = ctx; 1061 ab->gfp_mask = gfp_mask; 1062 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 1063 nlh->nlmsg_type = type; 1064 nlh->nlmsg_flags = 0; 1065 nlh->nlmsg_pid = 0; 1066 nlh->nlmsg_seq = 0; 1067 return ab; 1068 err: 1069 audit_buffer_free(ab); 1070 return NULL; 1071 } 1072 1073 /** 1074 * audit_serial - compute a serial number for the audit record 1075 * 1076 * Compute a serial number for the audit record. Audit records are 1077 * written to user-space as soon as they are generated, so a complete 1078 * audit record may be written in several pieces. The timestamp of the 1079 * record and this serial number are used by the user-space tools to 1080 * determine which pieces belong to the same audit record. The 1081 * (timestamp,serial) tuple is unique for each syscall and is live from 1082 * syscall entry to syscall exit. 1083 * 1084 * NOTE: Another possibility is to store the formatted records off the 1085 * audit context (for those records that have a context), and emit them 1086 * all at syscall exit. However, this could delay the reporting of 1087 * significant errors until syscall exit (or never, if the system 1088 * halts). 1089 */ 1090 unsigned int audit_serial(void) 1091 { 1092 static DEFINE_SPINLOCK(serial_lock); 1093 static unsigned int serial = 0; 1094 1095 unsigned long flags; 1096 unsigned int ret; 1097 1098 spin_lock_irqsave(&serial_lock, flags); 1099 do { 1100 ret = ++serial; 1101 } while (unlikely(!ret)); 1102 spin_unlock_irqrestore(&serial_lock, flags); 1103 1104 return ret; 1105 } 1106 1107 static inline void audit_get_stamp(struct audit_context *ctx, 1108 struct timespec *t, unsigned int *serial) 1109 { 1110 if (ctx) 1111 auditsc_get_stamp(ctx, t, serial); 1112 else { 1113 *t = CURRENT_TIME; 1114 *serial = audit_serial(); 1115 } 1116 } 1117 1118 /* Obtain an audit buffer. This routine does locking to obtain the 1119 * audit buffer, but then no locking is required for calls to 1120 * audit_log_*format. If the tsk is a task that is currently in a 1121 * syscall, then the syscall is marked as auditable and an audit record 1122 * will be written at syscall exit. If there is no associated task, tsk 1123 * should be NULL. */ 1124 1125 /** 1126 * audit_log_start - obtain an audit buffer 1127 * @ctx: audit_context (may be NULL) 1128 * @gfp_mask: type of allocation 1129 * @type: audit message type 1130 * 1131 * Returns audit_buffer pointer on success or NULL on error. 1132 * 1133 * Obtain an audit buffer. This routine does locking to obtain the 1134 * audit buffer, but then no locking is required for calls to 1135 * audit_log_*format. If the task (ctx) is a task that is currently in a 1136 * syscall, then the syscall is marked as auditable and an audit record 1137 * will be written at syscall exit. If there is no associated task, then 1138 * task context (ctx) should be NULL. 1139 */ 1140 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1141 int type) 1142 { 1143 struct audit_buffer *ab = NULL; 1144 struct timespec t; 1145 unsigned int uninitialized_var(serial); 1146 int reserve; 1147 unsigned long timeout_start = jiffies; 1148 1149 if (!audit_initialized) 1150 return NULL; 1151 1152 if (unlikely(audit_filter_type(type))) 1153 return NULL; 1154 1155 if (gfp_mask & __GFP_WAIT) 1156 reserve = 0; 1157 else 1158 reserve = 5; /* Allow atomic callers to go up to five 1159 entries over the normal backlog limit */ 1160 1161 while (audit_backlog_limit 1162 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1163 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1164 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1165 1166 /* Wait for auditd to drain the queue a little */ 1167 DECLARE_WAITQUEUE(wait, current); 1168 set_current_state(TASK_INTERRUPTIBLE); 1169 add_wait_queue(&audit_backlog_wait, &wait); 1170 1171 if (audit_backlog_limit && 1172 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1173 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1174 1175 __set_current_state(TASK_RUNNING); 1176 remove_wait_queue(&audit_backlog_wait, &wait); 1177 continue; 1178 } 1179 if (audit_rate_check() && printk_ratelimit()) 1180 printk(KERN_WARNING 1181 "audit: audit_backlog=%d > " 1182 "audit_backlog_limit=%d\n", 1183 skb_queue_len(&audit_skb_queue), 1184 audit_backlog_limit); 1185 audit_log_lost("backlog limit exceeded"); 1186 audit_backlog_wait_time = audit_backlog_wait_overflow; 1187 wake_up(&audit_backlog_wait); 1188 return NULL; 1189 } 1190 1191 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1192 if (!ab) { 1193 audit_log_lost("out of memory in audit_log_start"); 1194 return NULL; 1195 } 1196 1197 audit_get_stamp(ab->ctx, &t, &serial); 1198 1199 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1200 t.tv_sec, t.tv_nsec/1000000, serial); 1201 return ab; 1202 } 1203 1204 /** 1205 * audit_expand - expand skb in the audit buffer 1206 * @ab: audit_buffer 1207 * @extra: space to add at tail of the skb 1208 * 1209 * Returns 0 (no space) on failed expansion, or available space if 1210 * successful. 1211 */ 1212 static inline int audit_expand(struct audit_buffer *ab, int extra) 1213 { 1214 struct sk_buff *skb = ab->skb; 1215 int oldtail = skb_tailroom(skb); 1216 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1217 int newtail = skb_tailroom(skb); 1218 1219 if (ret < 0) { 1220 audit_log_lost("out of memory in audit_expand"); 1221 return 0; 1222 } 1223 1224 skb->truesize += newtail - oldtail; 1225 return newtail; 1226 } 1227 1228 /* 1229 * Format an audit message into the audit buffer. If there isn't enough 1230 * room in the audit buffer, more room will be allocated and vsnprint 1231 * will be called a second time. Currently, we assume that a printk 1232 * can't format message larger than 1024 bytes, so we don't either. 1233 */ 1234 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1235 va_list args) 1236 { 1237 int len, avail; 1238 struct sk_buff *skb; 1239 va_list args2; 1240 1241 if (!ab) 1242 return; 1243 1244 BUG_ON(!ab->skb); 1245 skb = ab->skb; 1246 avail = skb_tailroom(skb); 1247 if (avail == 0) { 1248 avail = audit_expand(ab, AUDIT_BUFSIZ); 1249 if (!avail) 1250 goto out; 1251 } 1252 va_copy(args2, args); 1253 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1254 if (len >= avail) { 1255 /* The printk buffer is 1024 bytes long, so if we get 1256 * here and AUDIT_BUFSIZ is at least 1024, then we can 1257 * log everything that printk could have logged. */ 1258 avail = audit_expand(ab, 1259 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1260 if (!avail) 1261 goto out; 1262 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1263 } 1264 va_end(args2); 1265 if (len > 0) 1266 skb_put(skb, len); 1267 out: 1268 return; 1269 } 1270 1271 /** 1272 * audit_log_format - format a message into the audit buffer. 1273 * @ab: audit_buffer 1274 * @fmt: format string 1275 * @...: optional parameters matching @fmt string 1276 * 1277 * All the work is done in audit_log_vformat. 1278 */ 1279 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1280 { 1281 va_list args; 1282 1283 if (!ab) 1284 return; 1285 va_start(args, fmt); 1286 audit_log_vformat(ab, fmt, args); 1287 va_end(args); 1288 } 1289 1290 /** 1291 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1292 * @ab: the audit_buffer 1293 * @buf: buffer to convert to hex 1294 * @len: length of @buf to be converted 1295 * 1296 * No return value; failure to expand is silently ignored. 1297 * 1298 * This function will take the passed buf and convert it into a string of 1299 * ascii hex digits. The new string is placed onto the skb. 1300 */ 1301 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1302 size_t len) 1303 { 1304 int i, avail, new_len; 1305 unsigned char *ptr; 1306 struct sk_buff *skb; 1307 static const unsigned char *hex = "0123456789ABCDEF"; 1308 1309 if (!ab) 1310 return; 1311 1312 BUG_ON(!ab->skb); 1313 skb = ab->skb; 1314 avail = skb_tailroom(skb); 1315 new_len = len<<1; 1316 if (new_len >= avail) { 1317 /* Round the buffer request up to the next multiple */ 1318 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1319 avail = audit_expand(ab, new_len); 1320 if (!avail) 1321 return; 1322 } 1323 1324 ptr = skb_tail_pointer(skb); 1325 for (i=0; i<len; i++) { 1326 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1327 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1328 } 1329 *ptr = 0; 1330 skb_put(skb, len << 1); /* new string is twice the old string */ 1331 } 1332 1333 /* 1334 * Format a string of no more than slen characters into the audit buffer, 1335 * enclosed in quote marks. 1336 */ 1337 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1338 size_t slen) 1339 { 1340 int avail, new_len; 1341 unsigned char *ptr; 1342 struct sk_buff *skb; 1343 1344 if (!ab) 1345 return; 1346 1347 BUG_ON(!ab->skb); 1348 skb = ab->skb; 1349 avail = skb_tailroom(skb); 1350 new_len = slen + 3; /* enclosing quotes + null terminator */ 1351 if (new_len > avail) { 1352 avail = audit_expand(ab, new_len); 1353 if (!avail) 1354 return; 1355 } 1356 ptr = skb_tail_pointer(skb); 1357 *ptr++ = '"'; 1358 memcpy(ptr, string, slen); 1359 ptr += slen; 1360 *ptr++ = '"'; 1361 *ptr = 0; 1362 skb_put(skb, slen + 2); /* don't include null terminator */ 1363 } 1364 1365 /** 1366 * audit_string_contains_control - does a string need to be logged in hex 1367 * @string: string to be checked 1368 * @len: max length of the string to check 1369 */ 1370 int audit_string_contains_control(const char *string, size_t len) 1371 { 1372 const unsigned char *p; 1373 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1374 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1375 return 1; 1376 } 1377 return 0; 1378 } 1379 1380 /** 1381 * audit_log_n_untrustedstring - log a string that may contain random characters 1382 * @ab: audit_buffer 1383 * @len: length of string (not including trailing null) 1384 * @string: string to be logged 1385 * 1386 * This code will escape a string that is passed to it if the string 1387 * contains a control character, unprintable character, double quote mark, 1388 * or a space. Unescaped strings will start and end with a double quote mark. 1389 * Strings that are escaped are printed in hex (2 digits per char). 1390 * 1391 * The caller specifies the number of characters in the string to log, which may 1392 * or may not be the entire string. 1393 */ 1394 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1395 size_t len) 1396 { 1397 if (audit_string_contains_control(string, len)) 1398 audit_log_n_hex(ab, string, len); 1399 else 1400 audit_log_n_string(ab, string, len); 1401 } 1402 1403 /** 1404 * audit_log_untrustedstring - log a string that may contain random characters 1405 * @ab: audit_buffer 1406 * @string: string to be logged 1407 * 1408 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1409 * determine string length. 1410 */ 1411 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1412 { 1413 audit_log_n_untrustedstring(ab, string, strlen(string)); 1414 } 1415 1416 /* This is a helper-function to print the escaped d_path */ 1417 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1418 struct path *path) 1419 { 1420 char *p, *pathname; 1421 1422 if (prefix) 1423 audit_log_format(ab, " %s", prefix); 1424 1425 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1426 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1427 if (!pathname) { 1428 audit_log_format(ab, "<no memory>"); 1429 return; 1430 } 1431 p = d_path(path, pathname, PATH_MAX+11); 1432 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1433 /* FIXME: can we save some information here? */ 1434 audit_log_format(ab, "<too long>"); 1435 } else 1436 audit_log_untrustedstring(ab, p); 1437 kfree(pathname); 1438 } 1439 1440 /** 1441 * audit_log_end - end one audit record 1442 * @ab: the audit_buffer 1443 * 1444 * The netlink_* functions cannot be called inside an irq context, so 1445 * the audit buffer is placed on a queue and a tasklet is scheduled to 1446 * remove them from the queue outside the irq context. May be called in 1447 * any context. 1448 */ 1449 void audit_log_end(struct audit_buffer *ab) 1450 { 1451 if (!ab) 1452 return; 1453 if (!audit_rate_check()) { 1454 audit_log_lost("rate limit exceeded"); 1455 } else { 1456 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1457 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1458 1459 if (audit_pid) { 1460 skb_queue_tail(&audit_skb_queue, ab->skb); 1461 wake_up_interruptible(&kauditd_wait); 1462 } else { 1463 if (nlh->nlmsg_type != AUDIT_EOE) { 1464 if (printk_ratelimit()) { 1465 printk(KERN_NOTICE "type=%d %s\n", 1466 nlh->nlmsg_type, 1467 ab->skb->data + NLMSG_SPACE(0)); 1468 } else 1469 audit_log_lost("printk limit exceeded\n"); 1470 } 1471 audit_hold_skb(ab->skb); 1472 } 1473 ab->skb = NULL; 1474 } 1475 audit_buffer_free(ab); 1476 } 1477 1478 /** 1479 * audit_log - Log an audit record 1480 * @ctx: audit context 1481 * @gfp_mask: type of allocation 1482 * @type: audit message type 1483 * @fmt: format string to use 1484 * @...: variable parameters matching the format string 1485 * 1486 * This is a convenience function that calls audit_log_start, 1487 * audit_log_vformat, and audit_log_end. It may be called 1488 * in any context. 1489 */ 1490 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1491 const char *fmt, ...) 1492 { 1493 struct audit_buffer *ab; 1494 va_list args; 1495 1496 ab = audit_log_start(ctx, gfp_mask, type); 1497 if (ab) { 1498 va_start(args, fmt); 1499 audit_log_vformat(ab, fmt, args); 1500 va_end(args); 1501 audit_log_end(ab); 1502 } 1503 } 1504 1505 EXPORT_SYMBOL(audit_log_start); 1506 EXPORT_SYMBOL(audit_log_end); 1507 EXPORT_SYMBOL(audit_log_format); 1508 EXPORT_SYMBOL(audit_log); 1509