1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <linux/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/err.h> 51 #include <linux/kthread.h> 52 #include <linux/kernel.h> 53 #include <linux/syscalls.h> 54 55 #include <linux/audit.h> 56 57 #include <net/sock.h> 58 #include <net/netlink.h> 59 #include <linux/skbuff.h> 60 #ifdef CONFIG_SECURITY 61 #include <linux/security.h> 62 #endif 63 #include <linux/freezer.h> 64 #include <linux/tty.h> 65 #include <linux/pid_namespace.h> 66 67 #include "audit.h" 68 69 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 70 * (Initialization happens after skb_init is called.) */ 71 #define AUDIT_DISABLED -1 72 #define AUDIT_UNINITIALIZED 0 73 #define AUDIT_INITIALIZED 1 74 static int audit_initialized; 75 76 #define AUDIT_OFF 0 77 #define AUDIT_ON 1 78 #define AUDIT_LOCKED 2 79 int audit_enabled; 80 int audit_ever_enabled; 81 82 EXPORT_SYMBOL_GPL(audit_enabled); 83 84 /* Default state when kernel boots without any parameters. */ 85 static int audit_default; 86 87 /* If auditing cannot proceed, audit_failure selects what happens. */ 88 static int audit_failure = AUDIT_FAIL_PRINTK; 89 90 /* 91 * If audit records are to be written to the netlink socket, audit_pid 92 * contains the pid of the auditd process and audit_nlk_portid contains 93 * the portid to use to send netlink messages to that process. 94 */ 95 int audit_pid; 96 static int audit_nlk_portid; 97 98 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 99 * to that number per second. This prevents DoS attacks, but results in 100 * audit records being dropped. */ 101 static int audit_rate_limit; 102 103 /* Number of outstanding audit_buffers allowed. */ 104 static int audit_backlog_limit = 64; 105 static int audit_backlog_wait_time = 60 * HZ; 106 static int audit_backlog_wait_overflow = 0; 107 108 /* The identity of the user shutting down the audit system. */ 109 kuid_t audit_sig_uid = INVALID_UID; 110 pid_t audit_sig_pid = -1; 111 u32 audit_sig_sid = 0; 112 113 /* Records can be lost in several ways: 114 0) [suppressed in audit_alloc] 115 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 116 2) out of memory in audit_log_move [alloc_skb] 117 3) suppressed due to audit_rate_limit 118 4) suppressed due to audit_backlog_limit 119 */ 120 static atomic_t audit_lost = ATOMIC_INIT(0); 121 122 /* The netlink socket. */ 123 static struct sock *audit_sock; 124 125 /* Hash for inode-based rules */ 126 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 127 128 /* The audit_freelist is a list of pre-allocated audit buffers (if more 129 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 130 * being placed on the freelist). */ 131 static DEFINE_SPINLOCK(audit_freelist_lock); 132 static int audit_freelist_count; 133 static LIST_HEAD(audit_freelist); 134 135 static struct sk_buff_head audit_skb_queue; 136 /* queue of skbs to send to auditd when/if it comes back */ 137 static struct sk_buff_head audit_skb_hold_queue; 138 static struct task_struct *kauditd_task; 139 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 140 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 141 142 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 143 .mask = -1, 144 .features = 0, 145 .lock = 0,}; 146 147 static char *audit_feature_names[2] = { 148 "only_unset_loginuid", 149 "loginuid_immutable", 150 }; 151 152 153 /* Serialize requests from userspace. */ 154 DEFINE_MUTEX(audit_cmd_mutex); 155 156 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 157 * audit records. Since printk uses a 1024 byte buffer, this buffer 158 * should be at least that large. */ 159 #define AUDIT_BUFSIZ 1024 160 161 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 162 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 163 #define AUDIT_MAXFREE (2*NR_CPUS) 164 165 /* The audit_buffer is used when formatting an audit record. The caller 166 * locks briefly to get the record off the freelist or to allocate the 167 * buffer, and locks briefly to send the buffer to the netlink layer or 168 * to place it on a transmit queue. Multiple audit_buffers can be in 169 * use simultaneously. */ 170 struct audit_buffer { 171 struct list_head list; 172 struct sk_buff *skb; /* formatted skb ready to send */ 173 struct audit_context *ctx; /* NULL or associated context */ 174 gfp_t gfp_mask; 175 }; 176 177 struct audit_reply { 178 int pid; 179 struct sk_buff *skb; 180 }; 181 182 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 183 { 184 if (ab) { 185 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 186 nlh->nlmsg_pid = pid; 187 } 188 } 189 190 void audit_panic(const char *message) 191 { 192 switch (audit_failure) 193 { 194 case AUDIT_FAIL_SILENT: 195 break; 196 case AUDIT_FAIL_PRINTK: 197 if (printk_ratelimit()) 198 printk(KERN_ERR "audit: %s\n", message); 199 break; 200 case AUDIT_FAIL_PANIC: 201 /* test audit_pid since printk is always losey, why bother? */ 202 if (audit_pid) 203 panic("audit: %s\n", message); 204 break; 205 } 206 } 207 208 static inline int audit_rate_check(void) 209 { 210 static unsigned long last_check = 0; 211 static int messages = 0; 212 static DEFINE_SPINLOCK(lock); 213 unsigned long flags; 214 unsigned long now; 215 unsigned long elapsed; 216 int retval = 0; 217 218 if (!audit_rate_limit) return 1; 219 220 spin_lock_irqsave(&lock, flags); 221 if (++messages < audit_rate_limit) { 222 retval = 1; 223 } else { 224 now = jiffies; 225 elapsed = now - last_check; 226 if (elapsed > HZ) { 227 last_check = now; 228 messages = 0; 229 retval = 1; 230 } 231 } 232 spin_unlock_irqrestore(&lock, flags); 233 234 return retval; 235 } 236 237 /** 238 * audit_log_lost - conditionally log lost audit message event 239 * @message: the message stating reason for lost audit message 240 * 241 * Emit at least 1 message per second, even if audit_rate_check is 242 * throttling. 243 * Always increment the lost messages counter. 244 */ 245 void audit_log_lost(const char *message) 246 { 247 static unsigned long last_msg = 0; 248 static DEFINE_SPINLOCK(lock); 249 unsigned long flags; 250 unsigned long now; 251 int print; 252 253 atomic_inc(&audit_lost); 254 255 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 256 257 if (!print) { 258 spin_lock_irqsave(&lock, flags); 259 now = jiffies; 260 if (now - last_msg > HZ) { 261 print = 1; 262 last_msg = now; 263 } 264 spin_unlock_irqrestore(&lock, flags); 265 } 266 267 if (print) { 268 if (printk_ratelimit()) 269 printk(KERN_WARNING 270 "audit: audit_lost=%d audit_rate_limit=%d " 271 "audit_backlog_limit=%d\n", 272 atomic_read(&audit_lost), 273 audit_rate_limit, 274 audit_backlog_limit); 275 audit_panic(message); 276 } 277 } 278 279 static int audit_log_config_change(char *function_name, int new, int old, 280 int allow_changes) 281 { 282 struct audit_buffer *ab; 283 int rc = 0; 284 285 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 286 if (unlikely(!ab)) 287 return rc; 288 audit_log_format(ab, "%s=%d old=%d", function_name, new, old); 289 audit_log_session_info(ab); 290 rc = audit_log_task_context(ab); 291 if (rc) 292 allow_changes = 0; /* Something weird, deny request */ 293 audit_log_format(ab, " res=%d", allow_changes); 294 audit_log_end(ab); 295 return rc; 296 } 297 298 static int audit_do_config_change(char *function_name, int *to_change, int new) 299 { 300 int allow_changes, rc = 0, old = *to_change; 301 302 /* check if we are locked */ 303 if (audit_enabled == AUDIT_LOCKED) 304 allow_changes = 0; 305 else 306 allow_changes = 1; 307 308 if (audit_enabled != AUDIT_OFF) { 309 rc = audit_log_config_change(function_name, new, old, allow_changes); 310 if (rc) 311 allow_changes = 0; 312 } 313 314 /* If we are allowed, make the change */ 315 if (allow_changes == 1) 316 *to_change = new; 317 /* Not allowed, update reason */ 318 else if (rc == 0) 319 rc = -EPERM; 320 return rc; 321 } 322 323 static int audit_set_rate_limit(int limit) 324 { 325 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 326 } 327 328 static int audit_set_backlog_limit(int limit) 329 { 330 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 331 } 332 333 static int audit_set_enabled(int state) 334 { 335 int rc; 336 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 337 return -EINVAL; 338 339 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 340 if (!rc) 341 audit_ever_enabled |= !!state; 342 343 return rc; 344 } 345 346 static int audit_set_failure(int state) 347 { 348 if (state != AUDIT_FAIL_SILENT 349 && state != AUDIT_FAIL_PRINTK 350 && state != AUDIT_FAIL_PANIC) 351 return -EINVAL; 352 353 return audit_do_config_change("audit_failure", &audit_failure, state); 354 } 355 356 /* 357 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 358 * already have been sent via prink/syslog and so if these messages are dropped 359 * it is not a huge concern since we already passed the audit_log_lost() 360 * notification and stuff. This is just nice to get audit messages during 361 * boot before auditd is running or messages generated while auditd is stopped. 362 * This only holds messages is audit_default is set, aka booting with audit=1 363 * or building your kernel that way. 364 */ 365 static void audit_hold_skb(struct sk_buff *skb) 366 { 367 if (audit_default && 368 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 369 skb_queue_tail(&audit_skb_hold_queue, skb); 370 else 371 kfree_skb(skb); 372 } 373 374 /* 375 * For one reason or another this nlh isn't getting delivered to the userspace 376 * audit daemon, just send it to printk. 377 */ 378 static void audit_printk_skb(struct sk_buff *skb) 379 { 380 struct nlmsghdr *nlh = nlmsg_hdr(skb); 381 char *data = nlmsg_data(nlh); 382 383 if (nlh->nlmsg_type != AUDIT_EOE) { 384 if (printk_ratelimit()) 385 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); 386 else 387 audit_log_lost("printk limit exceeded\n"); 388 } 389 390 audit_hold_skb(skb); 391 } 392 393 static void kauditd_send_skb(struct sk_buff *skb) 394 { 395 int err; 396 /* take a reference in case we can't send it and we want to hold it */ 397 skb_get(skb); 398 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 399 if (err < 0) { 400 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 401 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 402 audit_log_lost("auditd disappeared\n"); 403 audit_pid = 0; 404 /* we might get lucky and get this in the next auditd */ 405 audit_hold_skb(skb); 406 } else 407 /* drop the extra reference if sent ok */ 408 consume_skb(skb); 409 } 410 411 /* 412 * flush_hold_queue - empty the hold queue if auditd appears 413 * 414 * If auditd just started, drain the queue of messages already 415 * sent to syslog/printk. Remember loss here is ok. We already 416 * called audit_log_lost() if it didn't go out normally. so the 417 * race between the skb_dequeue and the next check for audit_pid 418 * doesn't matter. 419 * 420 * If you ever find kauditd to be too slow we can get a perf win 421 * by doing our own locking and keeping better track if there 422 * are messages in this queue. I don't see the need now, but 423 * in 5 years when I want to play with this again I'll see this 424 * note and still have no friggin idea what i'm thinking today. 425 */ 426 static void flush_hold_queue(void) 427 { 428 struct sk_buff *skb; 429 430 if (!audit_default || !audit_pid) 431 return; 432 433 skb = skb_dequeue(&audit_skb_hold_queue); 434 if (likely(!skb)) 435 return; 436 437 while (skb && audit_pid) { 438 kauditd_send_skb(skb); 439 skb = skb_dequeue(&audit_skb_hold_queue); 440 } 441 442 /* 443 * if auditd just disappeared but we 444 * dequeued an skb we need to drop ref 445 */ 446 if (skb) 447 consume_skb(skb); 448 } 449 450 static int kauditd_thread(void *dummy) 451 { 452 set_freezable(); 453 while (!kthread_should_stop()) { 454 struct sk_buff *skb; 455 DECLARE_WAITQUEUE(wait, current); 456 457 flush_hold_queue(); 458 459 skb = skb_dequeue(&audit_skb_queue); 460 wake_up(&audit_backlog_wait); 461 if (skb) { 462 if (audit_pid) 463 kauditd_send_skb(skb); 464 else 465 audit_printk_skb(skb); 466 continue; 467 } 468 set_current_state(TASK_INTERRUPTIBLE); 469 add_wait_queue(&kauditd_wait, &wait); 470 471 if (!skb_queue_len(&audit_skb_queue)) { 472 try_to_freeze(); 473 schedule(); 474 } 475 476 __set_current_state(TASK_RUNNING); 477 remove_wait_queue(&kauditd_wait, &wait); 478 } 479 return 0; 480 } 481 482 int audit_send_list(void *_dest) 483 { 484 struct audit_netlink_list *dest = _dest; 485 int pid = dest->pid; 486 struct sk_buff *skb; 487 488 /* wait for parent to finish and send an ACK */ 489 mutex_lock(&audit_cmd_mutex); 490 mutex_unlock(&audit_cmd_mutex); 491 492 while ((skb = __skb_dequeue(&dest->q)) != NULL) 493 netlink_unicast(audit_sock, skb, pid, 0); 494 495 kfree(dest); 496 497 return 0; 498 } 499 500 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 501 int multi, const void *payload, int size) 502 { 503 struct sk_buff *skb; 504 struct nlmsghdr *nlh; 505 void *data; 506 int flags = multi ? NLM_F_MULTI : 0; 507 int t = done ? NLMSG_DONE : type; 508 509 skb = nlmsg_new(size, GFP_KERNEL); 510 if (!skb) 511 return NULL; 512 513 nlh = nlmsg_put(skb, pid, seq, t, size, flags); 514 if (!nlh) 515 goto out_kfree_skb; 516 data = nlmsg_data(nlh); 517 memcpy(data, payload, size); 518 return skb; 519 520 out_kfree_skb: 521 kfree_skb(skb); 522 return NULL; 523 } 524 525 static int audit_send_reply_thread(void *arg) 526 { 527 struct audit_reply *reply = (struct audit_reply *)arg; 528 529 mutex_lock(&audit_cmd_mutex); 530 mutex_unlock(&audit_cmd_mutex); 531 532 /* Ignore failure. It'll only happen if the sender goes away, 533 because our timeout is set to infinite. */ 534 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 535 kfree(reply); 536 return 0; 537 } 538 /** 539 * audit_send_reply - send an audit reply message via netlink 540 * @pid: process id to send reply to 541 * @seq: sequence number 542 * @type: audit message type 543 * @done: done (last) flag 544 * @multi: multi-part message flag 545 * @payload: payload data 546 * @size: payload size 547 * 548 * Allocates an skb, builds the netlink message, and sends it to the pid. 549 * No failure notifications. 550 */ 551 static void audit_send_reply(int pid, int seq, int type, int done, int multi, 552 const void *payload, int size) 553 { 554 struct sk_buff *skb; 555 struct task_struct *tsk; 556 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 557 GFP_KERNEL); 558 559 if (!reply) 560 return; 561 562 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 563 if (!skb) 564 goto out; 565 566 reply->pid = pid; 567 reply->skb = skb; 568 569 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 570 if (!IS_ERR(tsk)) 571 return; 572 kfree_skb(skb); 573 out: 574 kfree(reply); 575 } 576 577 /* 578 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 579 * control messages. 580 */ 581 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 582 { 583 int err = 0; 584 585 /* Only support the initial namespaces for now. */ 586 if ((current_user_ns() != &init_user_ns) || 587 (task_active_pid_ns(current) != &init_pid_ns)) 588 return -EPERM; 589 590 switch (msg_type) { 591 case AUDIT_LIST: 592 case AUDIT_ADD: 593 case AUDIT_DEL: 594 return -EOPNOTSUPP; 595 case AUDIT_GET: 596 case AUDIT_SET: 597 case AUDIT_GET_FEATURE: 598 case AUDIT_SET_FEATURE: 599 case AUDIT_LIST_RULES: 600 case AUDIT_ADD_RULE: 601 case AUDIT_DEL_RULE: 602 case AUDIT_SIGNAL_INFO: 603 case AUDIT_TTY_GET: 604 case AUDIT_TTY_SET: 605 case AUDIT_TRIM: 606 case AUDIT_MAKE_EQUIV: 607 if (!capable(CAP_AUDIT_CONTROL)) 608 err = -EPERM; 609 break; 610 case AUDIT_USER: 611 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 612 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 613 if (!capable(CAP_AUDIT_WRITE)) 614 err = -EPERM; 615 break; 616 default: /* bad msg */ 617 err = -EINVAL; 618 } 619 620 return err; 621 } 622 623 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 624 { 625 int rc = 0; 626 uid_t uid = from_kuid(&init_user_ns, current_uid()); 627 628 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 629 *ab = NULL; 630 return rc; 631 } 632 633 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 634 if (unlikely(!*ab)) 635 return rc; 636 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid); 637 audit_log_session_info(*ab); 638 audit_log_task_context(*ab); 639 640 return rc; 641 } 642 643 int is_audit_feature_set(int i) 644 { 645 return af.features & AUDIT_FEATURE_TO_MASK(i); 646 } 647 648 649 static int audit_get_feature(struct sk_buff *skb) 650 { 651 u32 seq; 652 653 seq = nlmsg_hdr(skb)->nlmsg_seq; 654 655 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0, 656 &af, sizeof(af)); 657 658 return 0; 659 } 660 661 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 662 u32 old_lock, u32 new_lock, int res) 663 { 664 struct audit_buffer *ab; 665 666 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 667 audit_log_format(ab, "feature=%s new=%d old=%d old_lock=%d new_lock=%d res=%d", 668 audit_feature_names[which], !!old_feature, !!new_feature, 669 !!old_lock, !!new_lock, res); 670 audit_log_end(ab); 671 } 672 673 static int audit_set_feature(struct sk_buff *skb) 674 { 675 struct audit_features *uaf; 676 int i; 677 678 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0])); 679 uaf = nlmsg_data(nlmsg_hdr(skb)); 680 681 /* if there is ever a version 2 we should handle that here */ 682 683 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 684 u32 feature = AUDIT_FEATURE_TO_MASK(i); 685 u32 old_feature, new_feature, old_lock, new_lock; 686 687 /* if we are not changing this feature, move along */ 688 if (!(feature & uaf->mask)) 689 continue; 690 691 old_feature = af.features & feature; 692 new_feature = uaf->features & feature; 693 new_lock = (uaf->lock | af.lock) & feature; 694 old_lock = af.lock & feature; 695 696 /* are we changing a locked feature? */ 697 if ((af.lock & feature) && (new_feature != old_feature)) { 698 audit_log_feature_change(i, old_feature, new_feature, 699 old_lock, new_lock, 0); 700 return -EPERM; 701 } 702 } 703 /* nothing invalid, do the changes */ 704 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 705 u32 feature = AUDIT_FEATURE_TO_MASK(i); 706 u32 old_feature, new_feature, old_lock, new_lock; 707 708 /* if we are not changing this feature, move along */ 709 if (!(feature & uaf->mask)) 710 continue; 711 712 old_feature = af.features & feature; 713 new_feature = uaf->features & feature; 714 old_lock = af.lock & feature; 715 new_lock = (uaf->lock | af.lock) & feature; 716 717 if (new_feature != old_feature) 718 audit_log_feature_change(i, old_feature, new_feature, 719 old_lock, new_lock, 1); 720 721 if (new_feature) 722 af.features |= feature; 723 else 724 af.features &= ~feature; 725 af.lock |= new_lock; 726 } 727 728 return 0; 729 } 730 731 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 732 { 733 u32 seq; 734 void *data; 735 struct audit_status *status_get, status_set; 736 int err; 737 struct audit_buffer *ab; 738 u16 msg_type = nlh->nlmsg_type; 739 struct audit_sig_info *sig_data; 740 char *ctx = NULL; 741 u32 len; 742 743 err = audit_netlink_ok(skb, msg_type); 744 if (err) 745 return err; 746 747 /* As soon as there's any sign of userspace auditd, 748 * start kauditd to talk to it */ 749 if (!kauditd_task) { 750 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 751 if (IS_ERR(kauditd_task)) { 752 err = PTR_ERR(kauditd_task); 753 kauditd_task = NULL; 754 return err; 755 } 756 } 757 seq = nlh->nlmsg_seq; 758 data = nlmsg_data(nlh); 759 760 switch (msg_type) { 761 case AUDIT_GET: 762 memset(&status_set, 0, sizeof(status_set)); 763 status_set.enabled = audit_enabled; 764 status_set.failure = audit_failure; 765 status_set.pid = audit_pid; 766 status_set.rate_limit = audit_rate_limit; 767 status_set.backlog_limit = audit_backlog_limit; 768 status_set.lost = atomic_read(&audit_lost); 769 status_set.backlog = skb_queue_len(&audit_skb_queue); 770 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0, 771 &status_set, sizeof(status_set)); 772 break; 773 case AUDIT_SET: 774 if (nlmsg_len(nlh) < sizeof(struct audit_status)) 775 return -EINVAL; 776 status_get = (struct audit_status *)data; 777 if (status_get->mask & AUDIT_STATUS_ENABLED) { 778 err = audit_set_enabled(status_get->enabled); 779 if (err < 0) 780 return err; 781 } 782 if (status_get->mask & AUDIT_STATUS_FAILURE) { 783 err = audit_set_failure(status_get->failure); 784 if (err < 0) 785 return err; 786 } 787 if (status_get->mask & AUDIT_STATUS_PID) { 788 int new_pid = status_get->pid; 789 790 if (audit_enabled != AUDIT_OFF) 791 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 792 audit_pid = new_pid; 793 audit_nlk_portid = NETLINK_CB(skb).portid; 794 } 795 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 796 err = audit_set_rate_limit(status_get->rate_limit); 797 if (err < 0) 798 return err; 799 } 800 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 801 err = audit_set_backlog_limit(status_get->backlog_limit); 802 break; 803 case AUDIT_GET_FEATURE: 804 err = audit_get_feature(skb); 805 if (err) 806 return err; 807 break; 808 case AUDIT_SET_FEATURE: 809 err = audit_set_feature(skb); 810 if (err) 811 return err; 812 break; 813 case AUDIT_USER: 814 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 815 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 816 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 817 return 0; 818 819 err = audit_filter_user(msg_type); 820 if (err == 1) { 821 err = 0; 822 if (msg_type == AUDIT_USER_TTY) { 823 err = tty_audit_push_current(); 824 if (err) 825 break; 826 } 827 audit_log_common_recv_msg(&ab, msg_type); 828 if (msg_type != AUDIT_USER_TTY) 829 audit_log_format(ab, " msg='%.*s'", 830 AUDIT_MESSAGE_TEXT_MAX, 831 (char *)data); 832 else { 833 int size; 834 835 audit_log_format(ab, " data="); 836 size = nlmsg_len(nlh); 837 if (size > 0 && 838 ((unsigned char *)data)[size - 1] == '\0') 839 size--; 840 audit_log_n_untrustedstring(ab, data, size); 841 } 842 audit_set_pid(ab, NETLINK_CB(skb).portid); 843 audit_log_end(ab); 844 } 845 break; 846 case AUDIT_ADD_RULE: 847 case AUDIT_DEL_RULE: 848 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 849 return -EINVAL; 850 if (audit_enabled == AUDIT_LOCKED) { 851 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 852 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 853 audit_log_end(ab); 854 return -EPERM; 855 } 856 /* fallthrough */ 857 case AUDIT_LIST_RULES: 858 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid, 859 seq, data, nlmsg_len(nlh)); 860 break; 861 case AUDIT_TRIM: 862 audit_trim_trees(); 863 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 864 audit_log_format(ab, " op=trim res=1"); 865 audit_log_end(ab); 866 break; 867 case AUDIT_MAKE_EQUIV: { 868 void *bufp = data; 869 u32 sizes[2]; 870 size_t msglen = nlmsg_len(nlh); 871 char *old, *new; 872 873 err = -EINVAL; 874 if (msglen < 2 * sizeof(u32)) 875 break; 876 memcpy(sizes, bufp, 2 * sizeof(u32)); 877 bufp += 2 * sizeof(u32); 878 msglen -= 2 * sizeof(u32); 879 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 880 if (IS_ERR(old)) { 881 err = PTR_ERR(old); 882 break; 883 } 884 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 885 if (IS_ERR(new)) { 886 err = PTR_ERR(new); 887 kfree(old); 888 break; 889 } 890 /* OK, here comes... */ 891 err = audit_tag_tree(old, new); 892 893 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 894 895 audit_log_format(ab, " op=make_equiv old="); 896 audit_log_untrustedstring(ab, old); 897 audit_log_format(ab, " new="); 898 audit_log_untrustedstring(ab, new); 899 audit_log_format(ab, " res=%d", !err); 900 audit_log_end(ab); 901 kfree(old); 902 kfree(new); 903 break; 904 } 905 case AUDIT_SIGNAL_INFO: 906 len = 0; 907 if (audit_sig_sid) { 908 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 909 if (err) 910 return err; 911 } 912 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 913 if (!sig_data) { 914 if (audit_sig_sid) 915 security_release_secctx(ctx, len); 916 return -ENOMEM; 917 } 918 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 919 sig_data->pid = audit_sig_pid; 920 if (audit_sig_sid) { 921 memcpy(sig_data->ctx, ctx, len); 922 security_release_secctx(ctx, len); 923 } 924 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO, 925 0, 0, sig_data, sizeof(*sig_data) + len); 926 kfree(sig_data); 927 break; 928 case AUDIT_TTY_GET: { 929 struct audit_tty_status s; 930 struct task_struct *tsk = current; 931 932 spin_lock(&tsk->sighand->siglock); 933 s.enabled = tsk->signal->audit_tty; 934 s.log_passwd = tsk->signal->audit_tty_log_passwd; 935 spin_unlock(&tsk->sighand->siglock); 936 937 audit_send_reply(NETLINK_CB(skb).portid, seq, 938 AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 939 break; 940 } 941 case AUDIT_TTY_SET: { 942 struct audit_tty_status s; 943 struct task_struct *tsk = current; 944 945 memset(&s, 0, sizeof(s)); 946 /* guard against past and future API changes */ 947 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 948 if ((s.enabled != 0 && s.enabled != 1) || 949 (s.log_passwd != 0 && s.log_passwd != 1)) 950 return -EINVAL; 951 952 spin_lock(&tsk->sighand->siglock); 953 tsk->signal->audit_tty = s.enabled; 954 tsk->signal->audit_tty_log_passwd = s.log_passwd; 955 spin_unlock(&tsk->sighand->siglock); 956 break; 957 } 958 default: 959 err = -EINVAL; 960 break; 961 } 962 963 return err < 0 ? err : 0; 964 } 965 966 /* 967 * Get message from skb. Each message is processed by audit_receive_msg. 968 * Malformed skbs with wrong length are discarded silently. 969 */ 970 static void audit_receive_skb(struct sk_buff *skb) 971 { 972 struct nlmsghdr *nlh; 973 /* 974 * len MUST be signed for nlmsg_next to be able to dec it below 0 975 * if the nlmsg_len was not aligned 976 */ 977 int len; 978 int err; 979 980 nlh = nlmsg_hdr(skb); 981 len = skb->len; 982 983 while (nlmsg_ok(nlh, len)) { 984 err = audit_receive_msg(skb, nlh); 985 /* if err or if this message says it wants a response */ 986 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 987 netlink_ack(skb, nlh, err); 988 989 nlh = nlmsg_next(nlh, &len); 990 } 991 } 992 993 /* Receive messages from netlink socket. */ 994 static void audit_receive(struct sk_buff *skb) 995 { 996 mutex_lock(&audit_cmd_mutex); 997 audit_receive_skb(skb); 998 mutex_unlock(&audit_cmd_mutex); 999 } 1000 1001 /* Initialize audit support at boot time. */ 1002 static int __init audit_init(void) 1003 { 1004 int i; 1005 struct netlink_kernel_cfg cfg = { 1006 .input = audit_receive, 1007 }; 1008 1009 if (audit_initialized == AUDIT_DISABLED) 1010 return 0; 1011 1012 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 1013 audit_default ? "enabled" : "disabled"); 1014 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg); 1015 if (!audit_sock) 1016 audit_panic("cannot initialize netlink socket"); 1017 else 1018 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1019 1020 skb_queue_head_init(&audit_skb_queue); 1021 skb_queue_head_init(&audit_skb_hold_queue); 1022 audit_initialized = AUDIT_INITIALIZED; 1023 audit_enabled = audit_default; 1024 audit_ever_enabled |= !!audit_default; 1025 1026 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1027 1028 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1029 INIT_LIST_HEAD(&audit_inode_hash[i]); 1030 1031 return 0; 1032 } 1033 __initcall(audit_init); 1034 1035 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1036 static int __init audit_enable(char *str) 1037 { 1038 audit_default = !!simple_strtol(str, NULL, 0); 1039 if (!audit_default) 1040 audit_initialized = AUDIT_DISABLED; 1041 1042 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); 1043 1044 if (audit_initialized == AUDIT_INITIALIZED) { 1045 audit_enabled = audit_default; 1046 audit_ever_enabled |= !!audit_default; 1047 } else if (audit_initialized == AUDIT_UNINITIALIZED) { 1048 printk(" (after initialization)"); 1049 } else { 1050 printk(" (until reboot)"); 1051 } 1052 printk("\n"); 1053 1054 return 1; 1055 } 1056 1057 __setup("audit=", audit_enable); 1058 1059 static void audit_buffer_free(struct audit_buffer *ab) 1060 { 1061 unsigned long flags; 1062 1063 if (!ab) 1064 return; 1065 1066 if (ab->skb) 1067 kfree_skb(ab->skb); 1068 1069 spin_lock_irqsave(&audit_freelist_lock, flags); 1070 if (audit_freelist_count > AUDIT_MAXFREE) 1071 kfree(ab); 1072 else { 1073 audit_freelist_count++; 1074 list_add(&ab->list, &audit_freelist); 1075 } 1076 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1077 } 1078 1079 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1080 gfp_t gfp_mask, int type) 1081 { 1082 unsigned long flags; 1083 struct audit_buffer *ab = NULL; 1084 struct nlmsghdr *nlh; 1085 1086 spin_lock_irqsave(&audit_freelist_lock, flags); 1087 if (!list_empty(&audit_freelist)) { 1088 ab = list_entry(audit_freelist.next, 1089 struct audit_buffer, list); 1090 list_del(&ab->list); 1091 --audit_freelist_count; 1092 } 1093 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1094 1095 if (!ab) { 1096 ab = kmalloc(sizeof(*ab), gfp_mask); 1097 if (!ab) 1098 goto err; 1099 } 1100 1101 ab->ctx = ctx; 1102 ab->gfp_mask = gfp_mask; 1103 1104 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1105 if (!ab->skb) 1106 goto err; 1107 1108 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1109 if (!nlh) 1110 goto out_kfree_skb; 1111 1112 return ab; 1113 1114 out_kfree_skb: 1115 kfree_skb(ab->skb); 1116 ab->skb = NULL; 1117 err: 1118 audit_buffer_free(ab); 1119 return NULL; 1120 } 1121 1122 /** 1123 * audit_serial - compute a serial number for the audit record 1124 * 1125 * Compute a serial number for the audit record. Audit records are 1126 * written to user-space as soon as they are generated, so a complete 1127 * audit record may be written in several pieces. The timestamp of the 1128 * record and this serial number are used by the user-space tools to 1129 * determine which pieces belong to the same audit record. The 1130 * (timestamp,serial) tuple is unique for each syscall and is live from 1131 * syscall entry to syscall exit. 1132 * 1133 * NOTE: Another possibility is to store the formatted records off the 1134 * audit context (for those records that have a context), and emit them 1135 * all at syscall exit. However, this could delay the reporting of 1136 * significant errors until syscall exit (or never, if the system 1137 * halts). 1138 */ 1139 unsigned int audit_serial(void) 1140 { 1141 static DEFINE_SPINLOCK(serial_lock); 1142 static unsigned int serial = 0; 1143 1144 unsigned long flags; 1145 unsigned int ret; 1146 1147 spin_lock_irqsave(&serial_lock, flags); 1148 do { 1149 ret = ++serial; 1150 } while (unlikely(!ret)); 1151 spin_unlock_irqrestore(&serial_lock, flags); 1152 1153 return ret; 1154 } 1155 1156 static inline void audit_get_stamp(struct audit_context *ctx, 1157 struct timespec *t, unsigned int *serial) 1158 { 1159 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1160 *t = CURRENT_TIME; 1161 *serial = audit_serial(); 1162 } 1163 } 1164 1165 /* 1166 * Wait for auditd to drain the queue a little 1167 */ 1168 static void wait_for_auditd(unsigned long sleep_time) 1169 { 1170 DECLARE_WAITQUEUE(wait, current); 1171 set_current_state(TASK_UNINTERRUPTIBLE); 1172 add_wait_queue(&audit_backlog_wait, &wait); 1173 1174 if (audit_backlog_limit && 1175 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1176 schedule_timeout(sleep_time); 1177 1178 __set_current_state(TASK_RUNNING); 1179 remove_wait_queue(&audit_backlog_wait, &wait); 1180 } 1181 1182 /** 1183 * audit_log_start - obtain an audit buffer 1184 * @ctx: audit_context (may be NULL) 1185 * @gfp_mask: type of allocation 1186 * @type: audit message type 1187 * 1188 * Returns audit_buffer pointer on success or NULL on error. 1189 * 1190 * Obtain an audit buffer. This routine does locking to obtain the 1191 * audit buffer, but then no locking is required for calls to 1192 * audit_log_*format. If the task (ctx) is a task that is currently in a 1193 * syscall, then the syscall is marked as auditable and an audit record 1194 * will be written at syscall exit. If there is no associated task, then 1195 * task context (ctx) should be NULL. 1196 */ 1197 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1198 int type) 1199 { 1200 struct audit_buffer *ab = NULL; 1201 struct timespec t; 1202 unsigned int uninitialized_var(serial); 1203 int reserve; 1204 unsigned long timeout_start = jiffies; 1205 1206 if (audit_initialized != AUDIT_INITIALIZED) 1207 return NULL; 1208 1209 if (unlikely(audit_filter_type(type))) 1210 return NULL; 1211 1212 if (gfp_mask & __GFP_WAIT) 1213 reserve = 0; 1214 else 1215 reserve = 5; /* Allow atomic callers to go up to five 1216 entries over the normal backlog limit */ 1217 1218 while (audit_backlog_limit 1219 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1220 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1221 unsigned long sleep_time; 1222 1223 sleep_time = timeout_start + audit_backlog_wait_time - 1224 jiffies; 1225 if ((long)sleep_time > 0) { 1226 wait_for_auditd(sleep_time); 1227 continue; 1228 } 1229 } 1230 if (audit_rate_check() && printk_ratelimit()) 1231 printk(KERN_WARNING 1232 "audit: audit_backlog=%d > " 1233 "audit_backlog_limit=%d\n", 1234 skb_queue_len(&audit_skb_queue), 1235 audit_backlog_limit); 1236 audit_log_lost("backlog limit exceeded"); 1237 audit_backlog_wait_time = audit_backlog_wait_overflow; 1238 wake_up(&audit_backlog_wait); 1239 return NULL; 1240 } 1241 1242 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1243 if (!ab) { 1244 audit_log_lost("out of memory in audit_log_start"); 1245 return NULL; 1246 } 1247 1248 audit_get_stamp(ab->ctx, &t, &serial); 1249 1250 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1251 t.tv_sec, t.tv_nsec/1000000, serial); 1252 return ab; 1253 } 1254 1255 /** 1256 * audit_expand - expand skb in the audit buffer 1257 * @ab: audit_buffer 1258 * @extra: space to add at tail of the skb 1259 * 1260 * Returns 0 (no space) on failed expansion, or available space if 1261 * successful. 1262 */ 1263 static inline int audit_expand(struct audit_buffer *ab, int extra) 1264 { 1265 struct sk_buff *skb = ab->skb; 1266 int oldtail = skb_tailroom(skb); 1267 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1268 int newtail = skb_tailroom(skb); 1269 1270 if (ret < 0) { 1271 audit_log_lost("out of memory in audit_expand"); 1272 return 0; 1273 } 1274 1275 skb->truesize += newtail - oldtail; 1276 return newtail; 1277 } 1278 1279 /* 1280 * Format an audit message into the audit buffer. If there isn't enough 1281 * room in the audit buffer, more room will be allocated and vsnprint 1282 * will be called a second time. Currently, we assume that a printk 1283 * can't format message larger than 1024 bytes, so we don't either. 1284 */ 1285 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1286 va_list args) 1287 { 1288 int len, avail; 1289 struct sk_buff *skb; 1290 va_list args2; 1291 1292 if (!ab) 1293 return; 1294 1295 BUG_ON(!ab->skb); 1296 skb = ab->skb; 1297 avail = skb_tailroom(skb); 1298 if (avail == 0) { 1299 avail = audit_expand(ab, AUDIT_BUFSIZ); 1300 if (!avail) 1301 goto out; 1302 } 1303 va_copy(args2, args); 1304 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1305 if (len >= avail) { 1306 /* The printk buffer is 1024 bytes long, so if we get 1307 * here and AUDIT_BUFSIZ is at least 1024, then we can 1308 * log everything that printk could have logged. */ 1309 avail = audit_expand(ab, 1310 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1311 if (!avail) 1312 goto out_va_end; 1313 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1314 } 1315 if (len > 0) 1316 skb_put(skb, len); 1317 out_va_end: 1318 va_end(args2); 1319 out: 1320 return; 1321 } 1322 1323 /** 1324 * audit_log_format - format a message into the audit buffer. 1325 * @ab: audit_buffer 1326 * @fmt: format string 1327 * @...: optional parameters matching @fmt string 1328 * 1329 * All the work is done in audit_log_vformat. 1330 */ 1331 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1332 { 1333 va_list args; 1334 1335 if (!ab) 1336 return; 1337 va_start(args, fmt); 1338 audit_log_vformat(ab, fmt, args); 1339 va_end(args); 1340 } 1341 1342 /** 1343 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1344 * @ab: the audit_buffer 1345 * @buf: buffer to convert to hex 1346 * @len: length of @buf to be converted 1347 * 1348 * No return value; failure to expand is silently ignored. 1349 * 1350 * This function will take the passed buf and convert it into a string of 1351 * ascii hex digits. The new string is placed onto the skb. 1352 */ 1353 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1354 size_t len) 1355 { 1356 int i, avail, new_len; 1357 unsigned char *ptr; 1358 struct sk_buff *skb; 1359 static const unsigned char *hex = "0123456789ABCDEF"; 1360 1361 if (!ab) 1362 return; 1363 1364 BUG_ON(!ab->skb); 1365 skb = ab->skb; 1366 avail = skb_tailroom(skb); 1367 new_len = len<<1; 1368 if (new_len >= avail) { 1369 /* Round the buffer request up to the next multiple */ 1370 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1371 avail = audit_expand(ab, new_len); 1372 if (!avail) 1373 return; 1374 } 1375 1376 ptr = skb_tail_pointer(skb); 1377 for (i=0; i<len; i++) { 1378 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1379 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1380 } 1381 *ptr = 0; 1382 skb_put(skb, len << 1); /* new string is twice the old string */ 1383 } 1384 1385 /* 1386 * Format a string of no more than slen characters into the audit buffer, 1387 * enclosed in quote marks. 1388 */ 1389 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1390 size_t slen) 1391 { 1392 int avail, new_len; 1393 unsigned char *ptr; 1394 struct sk_buff *skb; 1395 1396 if (!ab) 1397 return; 1398 1399 BUG_ON(!ab->skb); 1400 skb = ab->skb; 1401 avail = skb_tailroom(skb); 1402 new_len = slen + 3; /* enclosing quotes + null terminator */ 1403 if (new_len > avail) { 1404 avail = audit_expand(ab, new_len); 1405 if (!avail) 1406 return; 1407 } 1408 ptr = skb_tail_pointer(skb); 1409 *ptr++ = '"'; 1410 memcpy(ptr, string, slen); 1411 ptr += slen; 1412 *ptr++ = '"'; 1413 *ptr = 0; 1414 skb_put(skb, slen + 2); /* don't include null terminator */ 1415 } 1416 1417 /** 1418 * audit_string_contains_control - does a string need to be logged in hex 1419 * @string: string to be checked 1420 * @len: max length of the string to check 1421 */ 1422 int audit_string_contains_control(const char *string, size_t len) 1423 { 1424 const unsigned char *p; 1425 for (p = string; p < (const unsigned char *)string + len; p++) { 1426 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1427 return 1; 1428 } 1429 return 0; 1430 } 1431 1432 /** 1433 * audit_log_n_untrustedstring - log a string that may contain random characters 1434 * @ab: audit_buffer 1435 * @len: length of string (not including trailing null) 1436 * @string: string to be logged 1437 * 1438 * This code will escape a string that is passed to it if the string 1439 * contains a control character, unprintable character, double quote mark, 1440 * or a space. Unescaped strings will start and end with a double quote mark. 1441 * Strings that are escaped are printed in hex (2 digits per char). 1442 * 1443 * The caller specifies the number of characters in the string to log, which may 1444 * or may not be the entire string. 1445 */ 1446 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1447 size_t len) 1448 { 1449 if (audit_string_contains_control(string, len)) 1450 audit_log_n_hex(ab, string, len); 1451 else 1452 audit_log_n_string(ab, string, len); 1453 } 1454 1455 /** 1456 * audit_log_untrustedstring - log a string that may contain random characters 1457 * @ab: audit_buffer 1458 * @string: string to be logged 1459 * 1460 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1461 * determine string length. 1462 */ 1463 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1464 { 1465 audit_log_n_untrustedstring(ab, string, strlen(string)); 1466 } 1467 1468 /* This is a helper-function to print the escaped d_path */ 1469 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1470 const struct path *path) 1471 { 1472 char *p, *pathname; 1473 1474 if (prefix) 1475 audit_log_format(ab, "%s", prefix); 1476 1477 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1478 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1479 if (!pathname) { 1480 audit_log_string(ab, "<no_memory>"); 1481 return; 1482 } 1483 p = d_path(path, pathname, PATH_MAX+11); 1484 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1485 /* FIXME: can we save some information here? */ 1486 audit_log_string(ab, "<too_long>"); 1487 } else 1488 audit_log_untrustedstring(ab, p); 1489 kfree(pathname); 1490 } 1491 1492 void audit_log_session_info(struct audit_buffer *ab) 1493 { 1494 u32 sessionid = audit_get_sessionid(current); 1495 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1496 1497 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1498 } 1499 1500 void audit_log_key(struct audit_buffer *ab, char *key) 1501 { 1502 audit_log_format(ab, " key="); 1503 if (key) 1504 audit_log_untrustedstring(ab, key); 1505 else 1506 audit_log_format(ab, "(null)"); 1507 } 1508 1509 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1510 { 1511 int i; 1512 1513 audit_log_format(ab, " %s=", prefix); 1514 CAP_FOR_EACH_U32(i) { 1515 audit_log_format(ab, "%08x", 1516 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1517 } 1518 } 1519 1520 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1521 { 1522 kernel_cap_t *perm = &name->fcap.permitted; 1523 kernel_cap_t *inh = &name->fcap.inheritable; 1524 int log = 0; 1525 1526 if (!cap_isclear(*perm)) { 1527 audit_log_cap(ab, "cap_fp", perm); 1528 log = 1; 1529 } 1530 if (!cap_isclear(*inh)) { 1531 audit_log_cap(ab, "cap_fi", inh); 1532 log = 1; 1533 } 1534 1535 if (log) 1536 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1537 name->fcap.fE, name->fcap_ver); 1538 } 1539 1540 static inline int audit_copy_fcaps(struct audit_names *name, 1541 const struct dentry *dentry) 1542 { 1543 struct cpu_vfs_cap_data caps; 1544 int rc; 1545 1546 if (!dentry) 1547 return 0; 1548 1549 rc = get_vfs_caps_from_disk(dentry, &caps); 1550 if (rc) 1551 return rc; 1552 1553 name->fcap.permitted = caps.permitted; 1554 name->fcap.inheritable = caps.inheritable; 1555 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1556 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1557 VFS_CAP_REVISION_SHIFT; 1558 1559 return 0; 1560 } 1561 1562 /* Copy inode data into an audit_names. */ 1563 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1564 const struct inode *inode) 1565 { 1566 name->ino = inode->i_ino; 1567 name->dev = inode->i_sb->s_dev; 1568 name->mode = inode->i_mode; 1569 name->uid = inode->i_uid; 1570 name->gid = inode->i_gid; 1571 name->rdev = inode->i_rdev; 1572 security_inode_getsecid(inode, &name->osid); 1573 audit_copy_fcaps(name, dentry); 1574 } 1575 1576 /** 1577 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1578 * @context: audit_context for the task 1579 * @n: audit_names structure with reportable details 1580 * @path: optional path to report instead of audit_names->name 1581 * @record_num: record number to report when handling a list of names 1582 * @call_panic: optional pointer to int that will be updated if secid fails 1583 */ 1584 void audit_log_name(struct audit_context *context, struct audit_names *n, 1585 struct path *path, int record_num, int *call_panic) 1586 { 1587 struct audit_buffer *ab; 1588 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1589 if (!ab) 1590 return; 1591 1592 audit_log_format(ab, "item=%d", record_num); 1593 1594 if (path) 1595 audit_log_d_path(ab, " name=", path); 1596 else if (n->name) { 1597 switch (n->name_len) { 1598 case AUDIT_NAME_FULL: 1599 /* log the full path */ 1600 audit_log_format(ab, " name="); 1601 audit_log_untrustedstring(ab, n->name->name); 1602 break; 1603 case 0: 1604 /* name was specified as a relative path and the 1605 * directory component is the cwd */ 1606 audit_log_d_path(ab, " name=", &context->pwd); 1607 break; 1608 default: 1609 /* log the name's directory component */ 1610 audit_log_format(ab, " name="); 1611 audit_log_n_untrustedstring(ab, n->name->name, 1612 n->name_len); 1613 } 1614 } else 1615 audit_log_format(ab, " name=(null)"); 1616 1617 if (n->ino != (unsigned long)-1) { 1618 audit_log_format(ab, " inode=%lu" 1619 " dev=%02x:%02x mode=%#ho" 1620 " ouid=%u ogid=%u rdev=%02x:%02x", 1621 n->ino, 1622 MAJOR(n->dev), 1623 MINOR(n->dev), 1624 n->mode, 1625 from_kuid(&init_user_ns, n->uid), 1626 from_kgid(&init_user_ns, n->gid), 1627 MAJOR(n->rdev), 1628 MINOR(n->rdev)); 1629 } 1630 if (n->osid != 0) { 1631 char *ctx = NULL; 1632 u32 len; 1633 if (security_secid_to_secctx( 1634 n->osid, &ctx, &len)) { 1635 audit_log_format(ab, " osid=%u", n->osid); 1636 if (call_panic) 1637 *call_panic = 2; 1638 } else { 1639 audit_log_format(ab, " obj=%s", ctx); 1640 security_release_secctx(ctx, len); 1641 } 1642 } 1643 1644 /* log the audit_names record type */ 1645 audit_log_format(ab, " nametype="); 1646 switch(n->type) { 1647 case AUDIT_TYPE_NORMAL: 1648 audit_log_format(ab, "NORMAL"); 1649 break; 1650 case AUDIT_TYPE_PARENT: 1651 audit_log_format(ab, "PARENT"); 1652 break; 1653 case AUDIT_TYPE_CHILD_DELETE: 1654 audit_log_format(ab, "DELETE"); 1655 break; 1656 case AUDIT_TYPE_CHILD_CREATE: 1657 audit_log_format(ab, "CREATE"); 1658 break; 1659 default: 1660 audit_log_format(ab, "UNKNOWN"); 1661 break; 1662 } 1663 1664 audit_log_fcaps(ab, n); 1665 audit_log_end(ab); 1666 } 1667 1668 int audit_log_task_context(struct audit_buffer *ab) 1669 { 1670 char *ctx = NULL; 1671 unsigned len; 1672 int error; 1673 u32 sid; 1674 1675 security_task_getsecid(current, &sid); 1676 if (!sid) 1677 return 0; 1678 1679 error = security_secid_to_secctx(sid, &ctx, &len); 1680 if (error) { 1681 if (error != -EINVAL) 1682 goto error_path; 1683 return 0; 1684 } 1685 1686 audit_log_format(ab, " subj=%s", ctx); 1687 security_release_secctx(ctx, len); 1688 return 0; 1689 1690 error_path: 1691 audit_panic("error in audit_log_task_context"); 1692 return error; 1693 } 1694 EXPORT_SYMBOL(audit_log_task_context); 1695 1696 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1697 { 1698 const struct cred *cred; 1699 char name[sizeof(tsk->comm)]; 1700 struct mm_struct *mm = tsk->mm; 1701 char *tty; 1702 1703 if (!ab) 1704 return; 1705 1706 /* tsk == current */ 1707 cred = current_cred(); 1708 1709 spin_lock_irq(&tsk->sighand->siglock); 1710 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1711 tty = tsk->signal->tty->name; 1712 else 1713 tty = "(none)"; 1714 spin_unlock_irq(&tsk->sighand->siglock); 1715 1716 audit_log_format(ab, 1717 " ppid=%ld pid=%d auid=%u uid=%u gid=%u" 1718 " euid=%u suid=%u fsuid=%u" 1719 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s", 1720 sys_getppid(), 1721 tsk->pid, 1722 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1723 from_kuid(&init_user_ns, cred->uid), 1724 from_kgid(&init_user_ns, cred->gid), 1725 from_kuid(&init_user_ns, cred->euid), 1726 from_kuid(&init_user_ns, cred->suid), 1727 from_kuid(&init_user_ns, cred->fsuid), 1728 from_kgid(&init_user_ns, cred->egid), 1729 from_kgid(&init_user_ns, cred->sgid), 1730 from_kgid(&init_user_ns, cred->fsgid), 1731 audit_get_sessionid(tsk), tty); 1732 1733 get_task_comm(name, tsk); 1734 audit_log_format(ab, " comm="); 1735 audit_log_untrustedstring(ab, name); 1736 1737 if (mm) { 1738 down_read(&mm->mmap_sem); 1739 if (mm->exe_file) 1740 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1741 up_read(&mm->mmap_sem); 1742 } 1743 audit_log_task_context(ab); 1744 } 1745 EXPORT_SYMBOL(audit_log_task_info); 1746 1747 /** 1748 * audit_log_link_denied - report a link restriction denial 1749 * @operation: specific link opreation 1750 * @link: the path that triggered the restriction 1751 */ 1752 void audit_log_link_denied(const char *operation, struct path *link) 1753 { 1754 struct audit_buffer *ab; 1755 struct audit_names *name; 1756 1757 name = kzalloc(sizeof(*name), GFP_NOFS); 1758 if (!name) 1759 return; 1760 1761 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1762 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1763 AUDIT_ANOM_LINK); 1764 if (!ab) 1765 goto out; 1766 audit_log_format(ab, "op=%s", operation); 1767 audit_log_task_info(ab, current); 1768 audit_log_format(ab, " res=0"); 1769 audit_log_end(ab); 1770 1771 /* Generate AUDIT_PATH record with object. */ 1772 name->type = AUDIT_TYPE_NORMAL; 1773 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1774 audit_log_name(current->audit_context, name, link, 0, NULL); 1775 out: 1776 kfree(name); 1777 } 1778 1779 /** 1780 * audit_log_end - end one audit record 1781 * @ab: the audit_buffer 1782 * 1783 * The netlink_* functions cannot be called inside an irq context, so 1784 * the audit buffer is placed on a queue and a tasklet is scheduled to 1785 * remove them from the queue outside the irq context. May be called in 1786 * any context. 1787 */ 1788 void audit_log_end(struct audit_buffer *ab) 1789 { 1790 if (!ab) 1791 return; 1792 if (!audit_rate_check()) { 1793 audit_log_lost("rate limit exceeded"); 1794 } else { 1795 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1796 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN; 1797 1798 if (audit_pid) { 1799 skb_queue_tail(&audit_skb_queue, ab->skb); 1800 wake_up_interruptible(&kauditd_wait); 1801 } else { 1802 audit_printk_skb(ab->skb); 1803 } 1804 ab->skb = NULL; 1805 } 1806 audit_buffer_free(ab); 1807 } 1808 1809 /** 1810 * audit_log - Log an audit record 1811 * @ctx: audit context 1812 * @gfp_mask: type of allocation 1813 * @type: audit message type 1814 * @fmt: format string to use 1815 * @...: variable parameters matching the format string 1816 * 1817 * This is a convenience function that calls audit_log_start, 1818 * audit_log_vformat, and audit_log_end. It may be called 1819 * in any context. 1820 */ 1821 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1822 const char *fmt, ...) 1823 { 1824 struct audit_buffer *ab; 1825 va_list args; 1826 1827 ab = audit_log_start(ctx, gfp_mask, type); 1828 if (ab) { 1829 va_start(args, fmt); 1830 audit_log_vformat(ab, fmt, args); 1831 va_end(args); 1832 audit_log_end(ab); 1833 } 1834 } 1835 1836 #ifdef CONFIG_SECURITY 1837 /** 1838 * audit_log_secctx - Converts and logs SELinux context 1839 * @ab: audit_buffer 1840 * @secid: security number 1841 * 1842 * This is a helper function that calls security_secid_to_secctx to convert 1843 * secid to secctx and then adds the (converted) SELinux context to the audit 1844 * log by calling audit_log_format, thus also preventing leak of internal secid 1845 * to userspace. If secid cannot be converted audit_panic is called. 1846 */ 1847 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 1848 { 1849 u32 len; 1850 char *secctx; 1851 1852 if (security_secid_to_secctx(secid, &secctx, &len)) { 1853 audit_panic("Cannot convert secid to context"); 1854 } else { 1855 audit_log_format(ab, " obj=%s", secctx); 1856 security_release_secctx(secctx, len); 1857 } 1858 } 1859 EXPORT_SYMBOL(audit_log_secctx); 1860 #endif 1861 1862 EXPORT_SYMBOL(audit_log_start); 1863 EXPORT_SYMBOL(audit_log_end); 1864 EXPORT_SYMBOL(audit_log_format); 1865 EXPORT_SYMBOL(audit_log); 1866