xref: /openbmc/linux/kernel/audit.c (revision 930beb5a)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
54 
55 #include <linux/audit.h>
56 
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <linux/freezer.h>
64 #include <linux/tty.h>
65 #include <linux/pid_namespace.h>
66 
67 #include "audit.h"
68 
69 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
70  * (Initialization happens after skb_init is called.) */
71 #define AUDIT_DISABLED		-1
72 #define AUDIT_UNINITIALIZED	0
73 #define AUDIT_INITIALIZED	1
74 static int	audit_initialized;
75 
76 #define AUDIT_OFF	0
77 #define AUDIT_ON	1
78 #define AUDIT_LOCKED	2
79 int		audit_enabled;
80 int		audit_ever_enabled;
81 
82 EXPORT_SYMBOL_GPL(audit_enabled);
83 
84 /* Default state when kernel boots without any parameters. */
85 static int	audit_default;
86 
87 /* If auditing cannot proceed, audit_failure selects what happens. */
88 static int	audit_failure = AUDIT_FAIL_PRINTK;
89 
90 /*
91  * If audit records are to be written to the netlink socket, audit_pid
92  * contains the pid of the auditd process and audit_nlk_portid contains
93  * the portid to use to send netlink messages to that process.
94  */
95 int		audit_pid;
96 static int	audit_nlk_portid;
97 
98 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
99  * to that number per second.  This prevents DoS attacks, but results in
100  * audit records being dropped. */
101 static int	audit_rate_limit;
102 
103 /* Number of outstanding audit_buffers allowed. */
104 static int	audit_backlog_limit = 64;
105 static int	audit_backlog_wait_time = 60 * HZ;
106 static int	audit_backlog_wait_overflow = 0;
107 
108 /* The identity of the user shutting down the audit system. */
109 kuid_t		audit_sig_uid = INVALID_UID;
110 pid_t		audit_sig_pid = -1;
111 u32		audit_sig_sid = 0;
112 
113 /* Records can be lost in several ways:
114    0) [suppressed in audit_alloc]
115    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
116    2) out of memory in audit_log_move [alloc_skb]
117    3) suppressed due to audit_rate_limit
118    4) suppressed due to audit_backlog_limit
119 */
120 static atomic_t    audit_lost = ATOMIC_INIT(0);
121 
122 /* The netlink socket. */
123 static struct sock *audit_sock;
124 
125 /* Hash for inode-based rules */
126 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
127 
128 /* The audit_freelist is a list of pre-allocated audit buffers (if more
129  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
130  * being placed on the freelist). */
131 static DEFINE_SPINLOCK(audit_freelist_lock);
132 static int	   audit_freelist_count;
133 static LIST_HEAD(audit_freelist);
134 
135 static struct sk_buff_head audit_skb_queue;
136 /* queue of skbs to send to auditd when/if it comes back */
137 static struct sk_buff_head audit_skb_hold_queue;
138 static struct task_struct *kauditd_task;
139 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
140 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
141 
142 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
143 				   .mask = -1,
144 				   .features = 0,
145 				   .lock = 0,};
146 
147 static char *audit_feature_names[2] = {
148 	"only_unset_loginuid",
149 	"loginuid_immutable",
150 };
151 
152 
153 /* Serialize requests from userspace. */
154 DEFINE_MUTEX(audit_cmd_mutex);
155 
156 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
157  * audit records.  Since printk uses a 1024 byte buffer, this buffer
158  * should be at least that large. */
159 #define AUDIT_BUFSIZ 1024
160 
161 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
162  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
163 #define AUDIT_MAXFREE  (2*NR_CPUS)
164 
165 /* The audit_buffer is used when formatting an audit record.  The caller
166  * locks briefly to get the record off the freelist or to allocate the
167  * buffer, and locks briefly to send the buffer to the netlink layer or
168  * to place it on a transmit queue.  Multiple audit_buffers can be in
169  * use simultaneously. */
170 struct audit_buffer {
171 	struct list_head     list;
172 	struct sk_buff       *skb;	/* formatted skb ready to send */
173 	struct audit_context *ctx;	/* NULL or associated context */
174 	gfp_t		     gfp_mask;
175 };
176 
177 struct audit_reply {
178 	int pid;
179 	struct sk_buff *skb;
180 };
181 
182 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
183 {
184 	if (ab) {
185 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
186 		nlh->nlmsg_pid = pid;
187 	}
188 }
189 
190 void audit_panic(const char *message)
191 {
192 	switch (audit_failure)
193 	{
194 	case AUDIT_FAIL_SILENT:
195 		break;
196 	case AUDIT_FAIL_PRINTK:
197 		if (printk_ratelimit())
198 			printk(KERN_ERR "audit: %s\n", message);
199 		break;
200 	case AUDIT_FAIL_PANIC:
201 		/* test audit_pid since printk is always losey, why bother? */
202 		if (audit_pid)
203 			panic("audit: %s\n", message);
204 		break;
205 	}
206 }
207 
208 static inline int audit_rate_check(void)
209 {
210 	static unsigned long	last_check = 0;
211 	static int		messages   = 0;
212 	static DEFINE_SPINLOCK(lock);
213 	unsigned long		flags;
214 	unsigned long		now;
215 	unsigned long		elapsed;
216 	int			retval	   = 0;
217 
218 	if (!audit_rate_limit) return 1;
219 
220 	spin_lock_irqsave(&lock, flags);
221 	if (++messages < audit_rate_limit) {
222 		retval = 1;
223 	} else {
224 		now     = jiffies;
225 		elapsed = now - last_check;
226 		if (elapsed > HZ) {
227 			last_check = now;
228 			messages   = 0;
229 			retval     = 1;
230 		}
231 	}
232 	spin_unlock_irqrestore(&lock, flags);
233 
234 	return retval;
235 }
236 
237 /**
238  * audit_log_lost - conditionally log lost audit message event
239  * @message: the message stating reason for lost audit message
240  *
241  * Emit at least 1 message per second, even if audit_rate_check is
242  * throttling.
243  * Always increment the lost messages counter.
244 */
245 void audit_log_lost(const char *message)
246 {
247 	static unsigned long	last_msg = 0;
248 	static DEFINE_SPINLOCK(lock);
249 	unsigned long		flags;
250 	unsigned long		now;
251 	int			print;
252 
253 	atomic_inc(&audit_lost);
254 
255 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
256 
257 	if (!print) {
258 		spin_lock_irqsave(&lock, flags);
259 		now = jiffies;
260 		if (now - last_msg > HZ) {
261 			print = 1;
262 			last_msg = now;
263 		}
264 		spin_unlock_irqrestore(&lock, flags);
265 	}
266 
267 	if (print) {
268 		if (printk_ratelimit())
269 			printk(KERN_WARNING
270 				"audit: audit_lost=%d audit_rate_limit=%d "
271 				"audit_backlog_limit=%d\n",
272 				atomic_read(&audit_lost),
273 				audit_rate_limit,
274 				audit_backlog_limit);
275 		audit_panic(message);
276 	}
277 }
278 
279 static int audit_log_config_change(char *function_name, int new, int old,
280 				   int allow_changes)
281 {
282 	struct audit_buffer *ab;
283 	int rc = 0;
284 
285 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
286 	if (unlikely(!ab))
287 		return rc;
288 	audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
289 	audit_log_session_info(ab);
290 	rc = audit_log_task_context(ab);
291 	if (rc)
292 		allow_changes = 0; /* Something weird, deny request */
293 	audit_log_format(ab, " res=%d", allow_changes);
294 	audit_log_end(ab);
295 	return rc;
296 }
297 
298 static int audit_do_config_change(char *function_name, int *to_change, int new)
299 {
300 	int allow_changes, rc = 0, old = *to_change;
301 
302 	/* check if we are locked */
303 	if (audit_enabled == AUDIT_LOCKED)
304 		allow_changes = 0;
305 	else
306 		allow_changes = 1;
307 
308 	if (audit_enabled != AUDIT_OFF) {
309 		rc = audit_log_config_change(function_name, new, old, allow_changes);
310 		if (rc)
311 			allow_changes = 0;
312 	}
313 
314 	/* If we are allowed, make the change */
315 	if (allow_changes == 1)
316 		*to_change = new;
317 	/* Not allowed, update reason */
318 	else if (rc == 0)
319 		rc = -EPERM;
320 	return rc;
321 }
322 
323 static int audit_set_rate_limit(int limit)
324 {
325 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
326 }
327 
328 static int audit_set_backlog_limit(int limit)
329 {
330 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
331 }
332 
333 static int audit_set_enabled(int state)
334 {
335 	int rc;
336 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
337 		return -EINVAL;
338 
339 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
340 	if (!rc)
341 		audit_ever_enabled |= !!state;
342 
343 	return rc;
344 }
345 
346 static int audit_set_failure(int state)
347 {
348 	if (state != AUDIT_FAIL_SILENT
349 	    && state != AUDIT_FAIL_PRINTK
350 	    && state != AUDIT_FAIL_PANIC)
351 		return -EINVAL;
352 
353 	return audit_do_config_change("audit_failure", &audit_failure, state);
354 }
355 
356 /*
357  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
358  * already have been sent via prink/syslog and so if these messages are dropped
359  * it is not a huge concern since we already passed the audit_log_lost()
360  * notification and stuff.  This is just nice to get audit messages during
361  * boot before auditd is running or messages generated while auditd is stopped.
362  * This only holds messages is audit_default is set, aka booting with audit=1
363  * or building your kernel that way.
364  */
365 static void audit_hold_skb(struct sk_buff *skb)
366 {
367 	if (audit_default &&
368 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
369 		skb_queue_tail(&audit_skb_hold_queue, skb);
370 	else
371 		kfree_skb(skb);
372 }
373 
374 /*
375  * For one reason or another this nlh isn't getting delivered to the userspace
376  * audit daemon, just send it to printk.
377  */
378 static void audit_printk_skb(struct sk_buff *skb)
379 {
380 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
381 	char *data = nlmsg_data(nlh);
382 
383 	if (nlh->nlmsg_type != AUDIT_EOE) {
384 		if (printk_ratelimit())
385 			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
386 		else
387 			audit_log_lost("printk limit exceeded\n");
388 	}
389 
390 	audit_hold_skb(skb);
391 }
392 
393 static void kauditd_send_skb(struct sk_buff *skb)
394 {
395 	int err;
396 	/* take a reference in case we can't send it and we want to hold it */
397 	skb_get(skb);
398 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
399 	if (err < 0) {
400 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
401 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
402 		audit_log_lost("auditd disappeared\n");
403 		audit_pid = 0;
404 		/* we might get lucky and get this in the next auditd */
405 		audit_hold_skb(skb);
406 	} else
407 		/* drop the extra reference if sent ok */
408 		consume_skb(skb);
409 }
410 
411 /*
412  * flush_hold_queue - empty the hold queue if auditd appears
413  *
414  * If auditd just started, drain the queue of messages already
415  * sent to syslog/printk.  Remember loss here is ok.  We already
416  * called audit_log_lost() if it didn't go out normally.  so the
417  * race between the skb_dequeue and the next check for audit_pid
418  * doesn't matter.
419  *
420  * If you ever find kauditd to be too slow we can get a perf win
421  * by doing our own locking and keeping better track if there
422  * are messages in this queue.  I don't see the need now, but
423  * in 5 years when I want to play with this again I'll see this
424  * note and still have no friggin idea what i'm thinking today.
425  */
426 static void flush_hold_queue(void)
427 {
428 	struct sk_buff *skb;
429 
430 	if (!audit_default || !audit_pid)
431 		return;
432 
433 	skb = skb_dequeue(&audit_skb_hold_queue);
434 	if (likely(!skb))
435 		return;
436 
437 	while (skb && audit_pid) {
438 		kauditd_send_skb(skb);
439 		skb = skb_dequeue(&audit_skb_hold_queue);
440 	}
441 
442 	/*
443 	 * if auditd just disappeared but we
444 	 * dequeued an skb we need to drop ref
445 	 */
446 	if (skb)
447 		consume_skb(skb);
448 }
449 
450 static int kauditd_thread(void *dummy)
451 {
452 	set_freezable();
453 	while (!kthread_should_stop()) {
454 		struct sk_buff *skb;
455 		DECLARE_WAITQUEUE(wait, current);
456 
457 		flush_hold_queue();
458 
459 		skb = skb_dequeue(&audit_skb_queue);
460 		wake_up(&audit_backlog_wait);
461 		if (skb) {
462 			if (audit_pid)
463 				kauditd_send_skb(skb);
464 			else
465 				audit_printk_skb(skb);
466 			continue;
467 		}
468 		set_current_state(TASK_INTERRUPTIBLE);
469 		add_wait_queue(&kauditd_wait, &wait);
470 
471 		if (!skb_queue_len(&audit_skb_queue)) {
472 			try_to_freeze();
473 			schedule();
474 		}
475 
476 		__set_current_state(TASK_RUNNING);
477 		remove_wait_queue(&kauditd_wait, &wait);
478 	}
479 	return 0;
480 }
481 
482 int audit_send_list(void *_dest)
483 {
484 	struct audit_netlink_list *dest = _dest;
485 	int pid = dest->pid;
486 	struct sk_buff *skb;
487 
488 	/* wait for parent to finish and send an ACK */
489 	mutex_lock(&audit_cmd_mutex);
490 	mutex_unlock(&audit_cmd_mutex);
491 
492 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
493 		netlink_unicast(audit_sock, skb, pid, 0);
494 
495 	kfree(dest);
496 
497 	return 0;
498 }
499 
500 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
501 				 int multi, const void *payload, int size)
502 {
503 	struct sk_buff	*skb;
504 	struct nlmsghdr	*nlh;
505 	void		*data;
506 	int		flags = multi ? NLM_F_MULTI : 0;
507 	int		t     = done  ? NLMSG_DONE  : type;
508 
509 	skb = nlmsg_new(size, GFP_KERNEL);
510 	if (!skb)
511 		return NULL;
512 
513 	nlh	= nlmsg_put(skb, pid, seq, t, size, flags);
514 	if (!nlh)
515 		goto out_kfree_skb;
516 	data = nlmsg_data(nlh);
517 	memcpy(data, payload, size);
518 	return skb;
519 
520 out_kfree_skb:
521 	kfree_skb(skb);
522 	return NULL;
523 }
524 
525 static int audit_send_reply_thread(void *arg)
526 {
527 	struct audit_reply *reply = (struct audit_reply *)arg;
528 
529 	mutex_lock(&audit_cmd_mutex);
530 	mutex_unlock(&audit_cmd_mutex);
531 
532 	/* Ignore failure. It'll only happen if the sender goes away,
533 	   because our timeout is set to infinite. */
534 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
535 	kfree(reply);
536 	return 0;
537 }
538 /**
539  * audit_send_reply - send an audit reply message via netlink
540  * @pid: process id to send reply to
541  * @seq: sequence number
542  * @type: audit message type
543  * @done: done (last) flag
544  * @multi: multi-part message flag
545  * @payload: payload data
546  * @size: payload size
547  *
548  * Allocates an skb, builds the netlink message, and sends it to the pid.
549  * No failure notifications.
550  */
551 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
552 			     const void *payload, int size)
553 {
554 	struct sk_buff *skb;
555 	struct task_struct *tsk;
556 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
557 					    GFP_KERNEL);
558 
559 	if (!reply)
560 		return;
561 
562 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
563 	if (!skb)
564 		goto out;
565 
566 	reply->pid = pid;
567 	reply->skb = skb;
568 
569 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
570 	if (!IS_ERR(tsk))
571 		return;
572 	kfree_skb(skb);
573 out:
574 	kfree(reply);
575 }
576 
577 /*
578  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
579  * control messages.
580  */
581 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
582 {
583 	int err = 0;
584 
585 	/* Only support the initial namespaces for now. */
586 	if ((current_user_ns() != &init_user_ns) ||
587 	    (task_active_pid_ns(current) != &init_pid_ns))
588 		return -EPERM;
589 
590 	switch (msg_type) {
591 	case AUDIT_LIST:
592 	case AUDIT_ADD:
593 	case AUDIT_DEL:
594 		return -EOPNOTSUPP;
595 	case AUDIT_GET:
596 	case AUDIT_SET:
597 	case AUDIT_GET_FEATURE:
598 	case AUDIT_SET_FEATURE:
599 	case AUDIT_LIST_RULES:
600 	case AUDIT_ADD_RULE:
601 	case AUDIT_DEL_RULE:
602 	case AUDIT_SIGNAL_INFO:
603 	case AUDIT_TTY_GET:
604 	case AUDIT_TTY_SET:
605 	case AUDIT_TRIM:
606 	case AUDIT_MAKE_EQUIV:
607 		if (!capable(CAP_AUDIT_CONTROL))
608 			err = -EPERM;
609 		break;
610 	case AUDIT_USER:
611 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
612 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
613 		if (!capable(CAP_AUDIT_WRITE))
614 			err = -EPERM;
615 		break;
616 	default:  /* bad msg */
617 		err = -EINVAL;
618 	}
619 
620 	return err;
621 }
622 
623 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
624 {
625 	int rc = 0;
626 	uid_t uid = from_kuid(&init_user_ns, current_uid());
627 
628 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
629 		*ab = NULL;
630 		return rc;
631 	}
632 
633 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
634 	if (unlikely(!*ab))
635 		return rc;
636 	audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
637 	audit_log_session_info(*ab);
638 	audit_log_task_context(*ab);
639 
640 	return rc;
641 }
642 
643 int is_audit_feature_set(int i)
644 {
645 	return af.features & AUDIT_FEATURE_TO_MASK(i);
646 }
647 
648 
649 static int audit_get_feature(struct sk_buff *skb)
650 {
651 	u32 seq;
652 
653 	seq = nlmsg_hdr(skb)->nlmsg_seq;
654 
655 	audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
656 			 &af, sizeof(af));
657 
658 	return 0;
659 }
660 
661 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
662 				     u32 old_lock, u32 new_lock, int res)
663 {
664 	struct audit_buffer *ab;
665 
666 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
667 	audit_log_format(ab, "feature=%s new=%d old=%d old_lock=%d new_lock=%d res=%d",
668 			 audit_feature_names[which], !!old_feature, !!new_feature,
669 			 !!old_lock, !!new_lock, res);
670 	audit_log_end(ab);
671 }
672 
673 static int audit_set_feature(struct sk_buff *skb)
674 {
675 	struct audit_features *uaf;
676 	int i;
677 
678 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
679 	uaf = nlmsg_data(nlmsg_hdr(skb));
680 
681 	/* if there is ever a version 2 we should handle that here */
682 
683 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
684 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
685 		u32 old_feature, new_feature, old_lock, new_lock;
686 
687 		/* if we are not changing this feature, move along */
688 		if (!(feature & uaf->mask))
689 			continue;
690 
691 		old_feature = af.features & feature;
692 		new_feature = uaf->features & feature;
693 		new_lock = (uaf->lock | af.lock) & feature;
694 		old_lock = af.lock & feature;
695 
696 		/* are we changing a locked feature? */
697 		if ((af.lock & feature) && (new_feature != old_feature)) {
698 			audit_log_feature_change(i, old_feature, new_feature,
699 						 old_lock, new_lock, 0);
700 			return -EPERM;
701 		}
702 	}
703 	/* nothing invalid, do the changes */
704 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
705 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
706 		u32 old_feature, new_feature, old_lock, new_lock;
707 
708 		/* if we are not changing this feature, move along */
709 		if (!(feature & uaf->mask))
710 			continue;
711 
712 		old_feature = af.features & feature;
713 		new_feature = uaf->features & feature;
714 		old_lock = af.lock & feature;
715 		new_lock = (uaf->lock | af.lock) & feature;
716 
717 		if (new_feature != old_feature)
718 			audit_log_feature_change(i, old_feature, new_feature,
719 						 old_lock, new_lock, 1);
720 
721 		if (new_feature)
722 			af.features |= feature;
723 		else
724 			af.features &= ~feature;
725 		af.lock |= new_lock;
726 	}
727 
728 	return 0;
729 }
730 
731 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
732 {
733 	u32			seq;
734 	void			*data;
735 	struct audit_status	*status_get, status_set;
736 	int			err;
737 	struct audit_buffer	*ab;
738 	u16			msg_type = nlh->nlmsg_type;
739 	struct audit_sig_info   *sig_data;
740 	char			*ctx = NULL;
741 	u32			len;
742 
743 	err = audit_netlink_ok(skb, msg_type);
744 	if (err)
745 		return err;
746 
747 	/* As soon as there's any sign of userspace auditd,
748 	 * start kauditd to talk to it */
749 	if (!kauditd_task) {
750 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
751 		if (IS_ERR(kauditd_task)) {
752 			err = PTR_ERR(kauditd_task);
753 			kauditd_task = NULL;
754 			return err;
755 		}
756 	}
757 	seq  = nlh->nlmsg_seq;
758 	data = nlmsg_data(nlh);
759 
760 	switch (msg_type) {
761 	case AUDIT_GET:
762 		memset(&status_set, 0, sizeof(status_set));
763 		status_set.enabled	 = audit_enabled;
764 		status_set.failure	 = audit_failure;
765 		status_set.pid		 = audit_pid;
766 		status_set.rate_limit	 = audit_rate_limit;
767 		status_set.backlog_limit = audit_backlog_limit;
768 		status_set.lost		 = atomic_read(&audit_lost);
769 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
770 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
771 				 &status_set, sizeof(status_set));
772 		break;
773 	case AUDIT_SET:
774 		if (nlmsg_len(nlh) < sizeof(struct audit_status))
775 			return -EINVAL;
776 		status_get   = (struct audit_status *)data;
777 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
778 			err = audit_set_enabled(status_get->enabled);
779 			if (err < 0)
780 				return err;
781 		}
782 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
783 			err = audit_set_failure(status_get->failure);
784 			if (err < 0)
785 				return err;
786 		}
787 		if (status_get->mask & AUDIT_STATUS_PID) {
788 			int new_pid = status_get->pid;
789 
790 			if (audit_enabled != AUDIT_OFF)
791 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
792 			audit_pid = new_pid;
793 			audit_nlk_portid = NETLINK_CB(skb).portid;
794 		}
795 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
796 			err = audit_set_rate_limit(status_get->rate_limit);
797 			if (err < 0)
798 				return err;
799 		}
800 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
801 			err = audit_set_backlog_limit(status_get->backlog_limit);
802 		break;
803 	case AUDIT_GET_FEATURE:
804 		err = audit_get_feature(skb);
805 		if (err)
806 			return err;
807 		break;
808 	case AUDIT_SET_FEATURE:
809 		err = audit_set_feature(skb);
810 		if (err)
811 			return err;
812 		break;
813 	case AUDIT_USER:
814 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
815 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
816 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
817 			return 0;
818 
819 		err = audit_filter_user(msg_type);
820 		if (err == 1) {
821 			err = 0;
822 			if (msg_type == AUDIT_USER_TTY) {
823 				err = tty_audit_push_current();
824 				if (err)
825 					break;
826 			}
827 			audit_log_common_recv_msg(&ab, msg_type);
828 			if (msg_type != AUDIT_USER_TTY)
829 				audit_log_format(ab, " msg='%.*s'",
830 						 AUDIT_MESSAGE_TEXT_MAX,
831 						 (char *)data);
832 			else {
833 				int size;
834 
835 				audit_log_format(ab, " data=");
836 				size = nlmsg_len(nlh);
837 				if (size > 0 &&
838 				    ((unsigned char *)data)[size - 1] == '\0')
839 					size--;
840 				audit_log_n_untrustedstring(ab, data, size);
841 			}
842 			audit_set_pid(ab, NETLINK_CB(skb).portid);
843 			audit_log_end(ab);
844 		}
845 		break;
846 	case AUDIT_ADD_RULE:
847 	case AUDIT_DEL_RULE:
848 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
849 			return -EINVAL;
850 		if (audit_enabled == AUDIT_LOCKED) {
851 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
852 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
853 			audit_log_end(ab);
854 			return -EPERM;
855 		}
856 		/* fallthrough */
857 	case AUDIT_LIST_RULES:
858 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
859 					   seq, data, nlmsg_len(nlh));
860 		break;
861 	case AUDIT_TRIM:
862 		audit_trim_trees();
863 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
864 		audit_log_format(ab, " op=trim res=1");
865 		audit_log_end(ab);
866 		break;
867 	case AUDIT_MAKE_EQUIV: {
868 		void *bufp = data;
869 		u32 sizes[2];
870 		size_t msglen = nlmsg_len(nlh);
871 		char *old, *new;
872 
873 		err = -EINVAL;
874 		if (msglen < 2 * sizeof(u32))
875 			break;
876 		memcpy(sizes, bufp, 2 * sizeof(u32));
877 		bufp += 2 * sizeof(u32);
878 		msglen -= 2 * sizeof(u32);
879 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
880 		if (IS_ERR(old)) {
881 			err = PTR_ERR(old);
882 			break;
883 		}
884 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
885 		if (IS_ERR(new)) {
886 			err = PTR_ERR(new);
887 			kfree(old);
888 			break;
889 		}
890 		/* OK, here comes... */
891 		err = audit_tag_tree(old, new);
892 
893 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
894 
895 		audit_log_format(ab, " op=make_equiv old=");
896 		audit_log_untrustedstring(ab, old);
897 		audit_log_format(ab, " new=");
898 		audit_log_untrustedstring(ab, new);
899 		audit_log_format(ab, " res=%d", !err);
900 		audit_log_end(ab);
901 		kfree(old);
902 		kfree(new);
903 		break;
904 	}
905 	case AUDIT_SIGNAL_INFO:
906 		len = 0;
907 		if (audit_sig_sid) {
908 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
909 			if (err)
910 				return err;
911 		}
912 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
913 		if (!sig_data) {
914 			if (audit_sig_sid)
915 				security_release_secctx(ctx, len);
916 			return -ENOMEM;
917 		}
918 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
919 		sig_data->pid = audit_sig_pid;
920 		if (audit_sig_sid) {
921 			memcpy(sig_data->ctx, ctx, len);
922 			security_release_secctx(ctx, len);
923 		}
924 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
925 				0, 0, sig_data, sizeof(*sig_data) + len);
926 		kfree(sig_data);
927 		break;
928 	case AUDIT_TTY_GET: {
929 		struct audit_tty_status s;
930 		struct task_struct *tsk = current;
931 
932 		spin_lock(&tsk->sighand->siglock);
933 		s.enabled = tsk->signal->audit_tty;
934 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
935 		spin_unlock(&tsk->sighand->siglock);
936 
937 		audit_send_reply(NETLINK_CB(skb).portid, seq,
938 				 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
939 		break;
940 	}
941 	case AUDIT_TTY_SET: {
942 		struct audit_tty_status s;
943 		struct task_struct *tsk = current;
944 
945 		memset(&s, 0, sizeof(s));
946 		/* guard against past and future API changes */
947 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
948 		if ((s.enabled != 0 && s.enabled != 1) ||
949 		    (s.log_passwd != 0 && s.log_passwd != 1))
950 			return -EINVAL;
951 
952 		spin_lock(&tsk->sighand->siglock);
953 		tsk->signal->audit_tty = s.enabled;
954 		tsk->signal->audit_tty_log_passwd = s.log_passwd;
955 		spin_unlock(&tsk->sighand->siglock);
956 		break;
957 	}
958 	default:
959 		err = -EINVAL;
960 		break;
961 	}
962 
963 	return err < 0 ? err : 0;
964 }
965 
966 /*
967  * Get message from skb.  Each message is processed by audit_receive_msg.
968  * Malformed skbs with wrong length are discarded silently.
969  */
970 static void audit_receive_skb(struct sk_buff *skb)
971 {
972 	struct nlmsghdr *nlh;
973 	/*
974 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
975 	 * if the nlmsg_len was not aligned
976 	 */
977 	int len;
978 	int err;
979 
980 	nlh = nlmsg_hdr(skb);
981 	len = skb->len;
982 
983 	while (nlmsg_ok(nlh, len)) {
984 		err = audit_receive_msg(skb, nlh);
985 		/* if err or if this message says it wants a response */
986 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
987 			netlink_ack(skb, nlh, err);
988 
989 		nlh = nlmsg_next(nlh, &len);
990 	}
991 }
992 
993 /* Receive messages from netlink socket. */
994 static void audit_receive(struct sk_buff  *skb)
995 {
996 	mutex_lock(&audit_cmd_mutex);
997 	audit_receive_skb(skb);
998 	mutex_unlock(&audit_cmd_mutex);
999 }
1000 
1001 /* Initialize audit support at boot time. */
1002 static int __init audit_init(void)
1003 {
1004 	int i;
1005 	struct netlink_kernel_cfg cfg = {
1006 		.input	= audit_receive,
1007 	};
1008 
1009 	if (audit_initialized == AUDIT_DISABLED)
1010 		return 0;
1011 
1012 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
1013 	       audit_default ? "enabled" : "disabled");
1014 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg);
1015 	if (!audit_sock)
1016 		audit_panic("cannot initialize netlink socket");
1017 	else
1018 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1019 
1020 	skb_queue_head_init(&audit_skb_queue);
1021 	skb_queue_head_init(&audit_skb_hold_queue);
1022 	audit_initialized = AUDIT_INITIALIZED;
1023 	audit_enabled = audit_default;
1024 	audit_ever_enabled |= !!audit_default;
1025 
1026 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1027 
1028 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1029 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1030 
1031 	return 0;
1032 }
1033 __initcall(audit_init);
1034 
1035 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1036 static int __init audit_enable(char *str)
1037 {
1038 	audit_default = !!simple_strtol(str, NULL, 0);
1039 	if (!audit_default)
1040 		audit_initialized = AUDIT_DISABLED;
1041 
1042 	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1043 
1044 	if (audit_initialized == AUDIT_INITIALIZED) {
1045 		audit_enabled = audit_default;
1046 		audit_ever_enabled |= !!audit_default;
1047 	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
1048 		printk(" (after initialization)");
1049 	} else {
1050 		printk(" (until reboot)");
1051 	}
1052 	printk("\n");
1053 
1054 	return 1;
1055 }
1056 
1057 __setup("audit=", audit_enable);
1058 
1059 static void audit_buffer_free(struct audit_buffer *ab)
1060 {
1061 	unsigned long flags;
1062 
1063 	if (!ab)
1064 		return;
1065 
1066 	if (ab->skb)
1067 		kfree_skb(ab->skb);
1068 
1069 	spin_lock_irqsave(&audit_freelist_lock, flags);
1070 	if (audit_freelist_count > AUDIT_MAXFREE)
1071 		kfree(ab);
1072 	else {
1073 		audit_freelist_count++;
1074 		list_add(&ab->list, &audit_freelist);
1075 	}
1076 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1077 }
1078 
1079 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1080 						gfp_t gfp_mask, int type)
1081 {
1082 	unsigned long flags;
1083 	struct audit_buffer *ab = NULL;
1084 	struct nlmsghdr *nlh;
1085 
1086 	spin_lock_irqsave(&audit_freelist_lock, flags);
1087 	if (!list_empty(&audit_freelist)) {
1088 		ab = list_entry(audit_freelist.next,
1089 				struct audit_buffer, list);
1090 		list_del(&ab->list);
1091 		--audit_freelist_count;
1092 	}
1093 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1094 
1095 	if (!ab) {
1096 		ab = kmalloc(sizeof(*ab), gfp_mask);
1097 		if (!ab)
1098 			goto err;
1099 	}
1100 
1101 	ab->ctx = ctx;
1102 	ab->gfp_mask = gfp_mask;
1103 
1104 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1105 	if (!ab->skb)
1106 		goto err;
1107 
1108 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1109 	if (!nlh)
1110 		goto out_kfree_skb;
1111 
1112 	return ab;
1113 
1114 out_kfree_skb:
1115 	kfree_skb(ab->skb);
1116 	ab->skb = NULL;
1117 err:
1118 	audit_buffer_free(ab);
1119 	return NULL;
1120 }
1121 
1122 /**
1123  * audit_serial - compute a serial number for the audit record
1124  *
1125  * Compute a serial number for the audit record.  Audit records are
1126  * written to user-space as soon as they are generated, so a complete
1127  * audit record may be written in several pieces.  The timestamp of the
1128  * record and this serial number are used by the user-space tools to
1129  * determine which pieces belong to the same audit record.  The
1130  * (timestamp,serial) tuple is unique for each syscall and is live from
1131  * syscall entry to syscall exit.
1132  *
1133  * NOTE: Another possibility is to store the formatted records off the
1134  * audit context (for those records that have a context), and emit them
1135  * all at syscall exit.  However, this could delay the reporting of
1136  * significant errors until syscall exit (or never, if the system
1137  * halts).
1138  */
1139 unsigned int audit_serial(void)
1140 {
1141 	static DEFINE_SPINLOCK(serial_lock);
1142 	static unsigned int serial = 0;
1143 
1144 	unsigned long flags;
1145 	unsigned int ret;
1146 
1147 	spin_lock_irqsave(&serial_lock, flags);
1148 	do {
1149 		ret = ++serial;
1150 	} while (unlikely(!ret));
1151 	spin_unlock_irqrestore(&serial_lock, flags);
1152 
1153 	return ret;
1154 }
1155 
1156 static inline void audit_get_stamp(struct audit_context *ctx,
1157 				   struct timespec *t, unsigned int *serial)
1158 {
1159 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1160 		*t = CURRENT_TIME;
1161 		*serial = audit_serial();
1162 	}
1163 }
1164 
1165 /*
1166  * Wait for auditd to drain the queue a little
1167  */
1168 static void wait_for_auditd(unsigned long sleep_time)
1169 {
1170 	DECLARE_WAITQUEUE(wait, current);
1171 	set_current_state(TASK_UNINTERRUPTIBLE);
1172 	add_wait_queue(&audit_backlog_wait, &wait);
1173 
1174 	if (audit_backlog_limit &&
1175 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1176 		schedule_timeout(sleep_time);
1177 
1178 	__set_current_state(TASK_RUNNING);
1179 	remove_wait_queue(&audit_backlog_wait, &wait);
1180 }
1181 
1182 /**
1183  * audit_log_start - obtain an audit buffer
1184  * @ctx: audit_context (may be NULL)
1185  * @gfp_mask: type of allocation
1186  * @type: audit message type
1187  *
1188  * Returns audit_buffer pointer on success or NULL on error.
1189  *
1190  * Obtain an audit buffer.  This routine does locking to obtain the
1191  * audit buffer, but then no locking is required for calls to
1192  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1193  * syscall, then the syscall is marked as auditable and an audit record
1194  * will be written at syscall exit.  If there is no associated task, then
1195  * task context (ctx) should be NULL.
1196  */
1197 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1198 				     int type)
1199 {
1200 	struct audit_buffer	*ab	= NULL;
1201 	struct timespec		t;
1202 	unsigned int		uninitialized_var(serial);
1203 	int reserve;
1204 	unsigned long timeout_start = jiffies;
1205 
1206 	if (audit_initialized != AUDIT_INITIALIZED)
1207 		return NULL;
1208 
1209 	if (unlikely(audit_filter_type(type)))
1210 		return NULL;
1211 
1212 	if (gfp_mask & __GFP_WAIT)
1213 		reserve = 0;
1214 	else
1215 		reserve = 5; /* Allow atomic callers to go up to five
1216 				entries over the normal backlog limit */
1217 
1218 	while (audit_backlog_limit
1219 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1220 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1221 			unsigned long sleep_time;
1222 
1223 			sleep_time = timeout_start + audit_backlog_wait_time -
1224 					jiffies;
1225 			if ((long)sleep_time > 0) {
1226 				wait_for_auditd(sleep_time);
1227 				continue;
1228 			}
1229 		}
1230 		if (audit_rate_check() && printk_ratelimit())
1231 			printk(KERN_WARNING
1232 			       "audit: audit_backlog=%d > "
1233 			       "audit_backlog_limit=%d\n",
1234 			       skb_queue_len(&audit_skb_queue),
1235 			       audit_backlog_limit);
1236 		audit_log_lost("backlog limit exceeded");
1237 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1238 		wake_up(&audit_backlog_wait);
1239 		return NULL;
1240 	}
1241 
1242 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1243 	if (!ab) {
1244 		audit_log_lost("out of memory in audit_log_start");
1245 		return NULL;
1246 	}
1247 
1248 	audit_get_stamp(ab->ctx, &t, &serial);
1249 
1250 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1251 			 t.tv_sec, t.tv_nsec/1000000, serial);
1252 	return ab;
1253 }
1254 
1255 /**
1256  * audit_expand - expand skb in the audit buffer
1257  * @ab: audit_buffer
1258  * @extra: space to add at tail of the skb
1259  *
1260  * Returns 0 (no space) on failed expansion, or available space if
1261  * successful.
1262  */
1263 static inline int audit_expand(struct audit_buffer *ab, int extra)
1264 {
1265 	struct sk_buff *skb = ab->skb;
1266 	int oldtail = skb_tailroom(skb);
1267 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1268 	int newtail = skb_tailroom(skb);
1269 
1270 	if (ret < 0) {
1271 		audit_log_lost("out of memory in audit_expand");
1272 		return 0;
1273 	}
1274 
1275 	skb->truesize += newtail - oldtail;
1276 	return newtail;
1277 }
1278 
1279 /*
1280  * Format an audit message into the audit buffer.  If there isn't enough
1281  * room in the audit buffer, more room will be allocated and vsnprint
1282  * will be called a second time.  Currently, we assume that a printk
1283  * can't format message larger than 1024 bytes, so we don't either.
1284  */
1285 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1286 			      va_list args)
1287 {
1288 	int len, avail;
1289 	struct sk_buff *skb;
1290 	va_list args2;
1291 
1292 	if (!ab)
1293 		return;
1294 
1295 	BUG_ON(!ab->skb);
1296 	skb = ab->skb;
1297 	avail = skb_tailroom(skb);
1298 	if (avail == 0) {
1299 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1300 		if (!avail)
1301 			goto out;
1302 	}
1303 	va_copy(args2, args);
1304 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1305 	if (len >= avail) {
1306 		/* The printk buffer is 1024 bytes long, so if we get
1307 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1308 		 * log everything that printk could have logged. */
1309 		avail = audit_expand(ab,
1310 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1311 		if (!avail)
1312 			goto out_va_end;
1313 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1314 	}
1315 	if (len > 0)
1316 		skb_put(skb, len);
1317 out_va_end:
1318 	va_end(args2);
1319 out:
1320 	return;
1321 }
1322 
1323 /**
1324  * audit_log_format - format a message into the audit buffer.
1325  * @ab: audit_buffer
1326  * @fmt: format string
1327  * @...: optional parameters matching @fmt string
1328  *
1329  * All the work is done in audit_log_vformat.
1330  */
1331 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1332 {
1333 	va_list args;
1334 
1335 	if (!ab)
1336 		return;
1337 	va_start(args, fmt);
1338 	audit_log_vformat(ab, fmt, args);
1339 	va_end(args);
1340 }
1341 
1342 /**
1343  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1344  * @ab: the audit_buffer
1345  * @buf: buffer to convert to hex
1346  * @len: length of @buf to be converted
1347  *
1348  * No return value; failure to expand is silently ignored.
1349  *
1350  * This function will take the passed buf and convert it into a string of
1351  * ascii hex digits. The new string is placed onto the skb.
1352  */
1353 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1354 		size_t len)
1355 {
1356 	int i, avail, new_len;
1357 	unsigned char *ptr;
1358 	struct sk_buff *skb;
1359 	static const unsigned char *hex = "0123456789ABCDEF";
1360 
1361 	if (!ab)
1362 		return;
1363 
1364 	BUG_ON(!ab->skb);
1365 	skb = ab->skb;
1366 	avail = skb_tailroom(skb);
1367 	new_len = len<<1;
1368 	if (new_len >= avail) {
1369 		/* Round the buffer request up to the next multiple */
1370 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1371 		avail = audit_expand(ab, new_len);
1372 		if (!avail)
1373 			return;
1374 	}
1375 
1376 	ptr = skb_tail_pointer(skb);
1377 	for (i=0; i<len; i++) {
1378 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1379 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1380 	}
1381 	*ptr = 0;
1382 	skb_put(skb, len << 1); /* new string is twice the old string */
1383 }
1384 
1385 /*
1386  * Format a string of no more than slen characters into the audit buffer,
1387  * enclosed in quote marks.
1388  */
1389 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1390 			size_t slen)
1391 {
1392 	int avail, new_len;
1393 	unsigned char *ptr;
1394 	struct sk_buff *skb;
1395 
1396 	if (!ab)
1397 		return;
1398 
1399 	BUG_ON(!ab->skb);
1400 	skb = ab->skb;
1401 	avail = skb_tailroom(skb);
1402 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1403 	if (new_len > avail) {
1404 		avail = audit_expand(ab, new_len);
1405 		if (!avail)
1406 			return;
1407 	}
1408 	ptr = skb_tail_pointer(skb);
1409 	*ptr++ = '"';
1410 	memcpy(ptr, string, slen);
1411 	ptr += slen;
1412 	*ptr++ = '"';
1413 	*ptr = 0;
1414 	skb_put(skb, slen + 2);	/* don't include null terminator */
1415 }
1416 
1417 /**
1418  * audit_string_contains_control - does a string need to be logged in hex
1419  * @string: string to be checked
1420  * @len: max length of the string to check
1421  */
1422 int audit_string_contains_control(const char *string, size_t len)
1423 {
1424 	const unsigned char *p;
1425 	for (p = string; p < (const unsigned char *)string + len; p++) {
1426 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1427 			return 1;
1428 	}
1429 	return 0;
1430 }
1431 
1432 /**
1433  * audit_log_n_untrustedstring - log a string that may contain random characters
1434  * @ab: audit_buffer
1435  * @len: length of string (not including trailing null)
1436  * @string: string to be logged
1437  *
1438  * This code will escape a string that is passed to it if the string
1439  * contains a control character, unprintable character, double quote mark,
1440  * or a space. Unescaped strings will start and end with a double quote mark.
1441  * Strings that are escaped are printed in hex (2 digits per char).
1442  *
1443  * The caller specifies the number of characters in the string to log, which may
1444  * or may not be the entire string.
1445  */
1446 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1447 				 size_t len)
1448 {
1449 	if (audit_string_contains_control(string, len))
1450 		audit_log_n_hex(ab, string, len);
1451 	else
1452 		audit_log_n_string(ab, string, len);
1453 }
1454 
1455 /**
1456  * audit_log_untrustedstring - log a string that may contain random characters
1457  * @ab: audit_buffer
1458  * @string: string to be logged
1459  *
1460  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1461  * determine string length.
1462  */
1463 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1464 {
1465 	audit_log_n_untrustedstring(ab, string, strlen(string));
1466 }
1467 
1468 /* This is a helper-function to print the escaped d_path */
1469 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1470 		      const struct path *path)
1471 {
1472 	char *p, *pathname;
1473 
1474 	if (prefix)
1475 		audit_log_format(ab, "%s", prefix);
1476 
1477 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1478 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1479 	if (!pathname) {
1480 		audit_log_string(ab, "<no_memory>");
1481 		return;
1482 	}
1483 	p = d_path(path, pathname, PATH_MAX+11);
1484 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1485 		/* FIXME: can we save some information here? */
1486 		audit_log_string(ab, "<too_long>");
1487 	} else
1488 		audit_log_untrustedstring(ab, p);
1489 	kfree(pathname);
1490 }
1491 
1492 void audit_log_session_info(struct audit_buffer *ab)
1493 {
1494 	u32 sessionid = audit_get_sessionid(current);
1495 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1496 
1497 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1498 }
1499 
1500 void audit_log_key(struct audit_buffer *ab, char *key)
1501 {
1502 	audit_log_format(ab, " key=");
1503 	if (key)
1504 		audit_log_untrustedstring(ab, key);
1505 	else
1506 		audit_log_format(ab, "(null)");
1507 }
1508 
1509 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1510 {
1511 	int i;
1512 
1513 	audit_log_format(ab, " %s=", prefix);
1514 	CAP_FOR_EACH_U32(i) {
1515 		audit_log_format(ab, "%08x",
1516 				 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1517 	}
1518 }
1519 
1520 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1521 {
1522 	kernel_cap_t *perm = &name->fcap.permitted;
1523 	kernel_cap_t *inh = &name->fcap.inheritable;
1524 	int log = 0;
1525 
1526 	if (!cap_isclear(*perm)) {
1527 		audit_log_cap(ab, "cap_fp", perm);
1528 		log = 1;
1529 	}
1530 	if (!cap_isclear(*inh)) {
1531 		audit_log_cap(ab, "cap_fi", inh);
1532 		log = 1;
1533 	}
1534 
1535 	if (log)
1536 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1537 				 name->fcap.fE, name->fcap_ver);
1538 }
1539 
1540 static inline int audit_copy_fcaps(struct audit_names *name,
1541 				   const struct dentry *dentry)
1542 {
1543 	struct cpu_vfs_cap_data caps;
1544 	int rc;
1545 
1546 	if (!dentry)
1547 		return 0;
1548 
1549 	rc = get_vfs_caps_from_disk(dentry, &caps);
1550 	if (rc)
1551 		return rc;
1552 
1553 	name->fcap.permitted = caps.permitted;
1554 	name->fcap.inheritable = caps.inheritable;
1555 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1556 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1557 				VFS_CAP_REVISION_SHIFT;
1558 
1559 	return 0;
1560 }
1561 
1562 /* Copy inode data into an audit_names. */
1563 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1564 		      const struct inode *inode)
1565 {
1566 	name->ino   = inode->i_ino;
1567 	name->dev   = inode->i_sb->s_dev;
1568 	name->mode  = inode->i_mode;
1569 	name->uid   = inode->i_uid;
1570 	name->gid   = inode->i_gid;
1571 	name->rdev  = inode->i_rdev;
1572 	security_inode_getsecid(inode, &name->osid);
1573 	audit_copy_fcaps(name, dentry);
1574 }
1575 
1576 /**
1577  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1578  * @context: audit_context for the task
1579  * @n: audit_names structure with reportable details
1580  * @path: optional path to report instead of audit_names->name
1581  * @record_num: record number to report when handling a list of names
1582  * @call_panic: optional pointer to int that will be updated if secid fails
1583  */
1584 void audit_log_name(struct audit_context *context, struct audit_names *n,
1585 		    struct path *path, int record_num, int *call_panic)
1586 {
1587 	struct audit_buffer *ab;
1588 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1589 	if (!ab)
1590 		return;
1591 
1592 	audit_log_format(ab, "item=%d", record_num);
1593 
1594 	if (path)
1595 		audit_log_d_path(ab, " name=", path);
1596 	else if (n->name) {
1597 		switch (n->name_len) {
1598 		case AUDIT_NAME_FULL:
1599 			/* log the full path */
1600 			audit_log_format(ab, " name=");
1601 			audit_log_untrustedstring(ab, n->name->name);
1602 			break;
1603 		case 0:
1604 			/* name was specified as a relative path and the
1605 			 * directory component is the cwd */
1606 			audit_log_d_path(ab, " name=", &context->pwd);
1607 			break;
1608 		default:
1609 			/* log the name's directory component */
1610 			audit_log_format(ab, " name=");
1611 			audit_log_n_untrustedstring(ab, n->name->name,
1612 						    n->name_len);
1613 		}
1614 	} else
1615 		audit_log_format(ab, " name=(null)");
1616 
1617 	if (n->ino != (unsigned long)-1) {
1618 		audit_log_format(ab, " inode=%lu"
1619 				 " dev=%02x:%02x mode=%#ho"
1620 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1621 				 n->ino,
1622 				 MAJOR(n->dev),
1623 				 MINOR(n->dev),
1624 				 n->mode,
1625 				 from_kuid(&init_user_ns, n->uid),
1626 				 from_kgid(&init_user_ns, n->gid),
1627 				 MAJOR(n->rdev),
1628 				 MINOR(n->rdev));
1629 	}
1630 	if (n->osid != 0) {
1631 		char *ctx = NULL;
1632 		u32 len;
1633 		if (security_secid_to_secctx(
1634 			n->osid, &ctx, &len)) {
1635 			audit_log_format(ab, " osid=%u", n->osid);
1636 			if (call_panic)
1637 				*call_panic = 2;
1638 		} else {
1639 			audit_log_format(ab, " obj=%s", ctx);
1640 			security_release_secctx(ctx, len);
1641 		}
1642 	}
1643 
1644 	/* log the audit_names record type */
1645 	audit_log_format(ab, " nametype=");
1646 	switch(n->type) {
1647 	case AUDIT_TYPE_NORMAL:
1648 		audit_log_format(ab, "NORMAL");
1649 		break;
1650 	case AUDIT_TYPE_PARENT:
1651 		audit_log_format(ab, "PARENT");
1652 		break;
1653 	case AUDIT_TYPE_CHILD_DELETE:
1654 		audit_log_format(ab, "DELETE");
1655 		break;
1656 	case AUDIT_TYPE_CHILD_CREATE:
1657 		audit_log_format(ab, "CREATE");
1658 		break;
1659 	default:
1660 		audit_log_format(ab, "UNKNOWN");
1661 		break;
1662 	}
1663 
1664 	audit_log_fcaps(ab, n);
1665 	audit_log_end(ab);
1666 }
1667 
1668 int audit_log_task_context(struct audit_buffer *ab)
1669 {
1670 	char *ctx = NULL;
1671 	unsigned len;
1672 	int error;
1673 	u32 sid;
1674 
1675 	security_task_getsecid(current, &sid);
1676 	if (!sid)
1677 		return 0;
1678 
1679 	error = security_secid_to_secctx(sid, &ctx, &len);
1680 	if (error) {
1681 		if (error != -EINVAL)
1682 			goto error_path;
1683 		return 0;
1684 	}
1685 
1686 	audit_log_format(ab, " subj=%s", ctx);
1687 	security_release_secctx(ctx, len);
1688 	return 0;
1689 
1690 error_path:
1691 	audit_panic("error in audit_log_task_context");
1692 	return error;
1693 }
1694 EXPORT_SYMBOL(audit_log_task_context);
1695 
1696 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1697 {
1698 	const struct cred *cred;
1699 	char name[sizeof(tsk->comm)];
1700 	struct mm_struct *mm = tsk->mm;
1701 	char *tty;
1702 
1703 	if (!ab)
1704 		return;
1705 
1706 	/* tsk == current */
1707 	cred = current_cred();
1708 
1709 	spin_lock_irq(&tsk->sighand->siglock);
1710 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1711 		tty = tsk->signal->tty->name;
1712 	else
1713 		tty = "(none)";
1714 	spin_unlock_irq(&tsk->sighand->siglock);
1715 
1716 	audit_log_format(ab,
1717 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1718 			 " euid=%u suid=%u fsuid=%u"
1719 			 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1720 			 sys_getppid(),
1721 			 tsk->pid,
1722 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1723 			 from_kuid(&init_user_ns, cred->uid),
1724 			 from_kgid(&init_user_ns, cred->gid),
1725 			 from_kuid(&init_user_ns, cred->euid),
1726 			 from_kuid(&init_user_ns, cred->suid),
1727 			 from_kuid(&init_user_ns, cred->fsuid),
1728 			 from_kgid(&init_user_ns, cred->egid),
1729 			 from_kgid(&init_user_ns, cred->sgid),
1730 			 from_kgid(&init_user_ns, cred->fsgid),
1731 			 audit_get_sessionid(tsk), tty);
1732 
1733 	get_task_comm(name, tsk);
1734 	audit_log_format(ab, " comm=");
1735 	audit_log_untrustedstring(ab, name);
1736 
1737 	if (mm) {
1738 		down_read(&mm->mmap_sem);
1739 		if (mm->exe_file)
1740 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1741 		up_read(&mm->mmap_sem);
1742 	}
1743 	audit_log_task_context(ab);
1744 }
1745 EXPORT_SYMBOL(audit_log_task_info);
1746 
1747 /**
1748  * audit_log_link_denied - report a link restriction denial
1749  * @operation: specific link opreation
1750  * @link: the path that triggered the restriction
1751  */
1752 void audit_log_link_denied(const char *operation, struct path *link)
1753 {
1754 	struct audit_buffer *ab;
1755 	struct audit_names *name;
1756 
1757 	name = kzalloc(sizeof(*name), GFP_NOFS);
1758 	if (!name)
1759 		return;
1760 
1761 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1762 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1763 			     AUDIT_ANOM_LINK);
1764 	if (!ab)
1765 		goto out;
1766 	audit_log_format(ab, "op=%s", operation);
1767 	audit_log_task_info(ab, current);
1768 	audit_log_format(ab, " res=0");
1769 	audit_log_end(ab);
1770 
1771 	/* Generate AUDIT_PATH record with object. */
1772 	name->type = AUDIT_TYPE_NORMAL;
1773 	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1774 	audit_log_name(current->audit_context, name, link, 0, NULL);
1775 out:
1776 	kfree(name);
1777 }
1778 
1779 /**
1780  * audit_log_end - end one audit record
1781  * @ab: the audit_buffer
1782  *
1783  * The netlink_* functions cannot be called inside an irq context, so
1784  * the audit buffer is placed on a queue and a tasklet is scheduled to
1785  * remove them from the queue outside the irq context.  May be called in
1786  * any context.
1787  */
1788 void audit_log_end(struct audit_buffer *ab)
1789 {
1790 	if (!ab)
1791 		return;
1792 	if (!audit_rate_check()) {
1793 		audit_log_lost("rate limit exceeded");
1794 	} else {
1795 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1796 		nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1797 
1798 		if (audit_pid) {
1799 			skb_queue_tail(&audit_skb_queue, ab->skb);
1800 			wake_up_interruptible(&kauditd_wait);
1801 		} else {
1802 			audit_printk_skb(ab->skb);
1803 		}
1804 		ab->skb = NULL;
1805 	}
1806 	audit_buffer_free(ab);
1807 }
1808 
1809 /**
1810  * audit_log - Log an audit record
1811  * @ctx: audit context
1812  * @gfp_mask: type of allocation
1813  * @type: audit message type
1814  * @fmt: format string to use
1815  * @...: variable parameters matching the format string
1816  *
1817  * This is a convenience function that calls audit_log_start,
1818  * audit_log_vformat, and audit_log_end.  It may be called
1819  * in any context.
1820  */
1821 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1822 	       const char *fmt, ...)
1823 {
1824 	struct audit_buffer *ab;
1825 	va_list args;
1826 
1827 	ab = audit_log_start(ctx, gfp_mask, type);
1828 	if (ab) {
1829 		va_start(args, fmt);
1830 		audit_log_vformat(ab, fmt, args);
1831 		va_end(args);
1832 		audit_log_end(ab);
1833 	}
1834 }
1835 
1836 #ifdef CONFIG_SECURITY
1837 /**
1838  * audit_log_secctx - Converts and logs SELinux context
1839  * @ab: audit_buffer
1840  * @secid: security number
1841  *
1842  * This is a helper function that calls security_secid_to_secctx to convert
1843  * secid to secctx and then adds the (converted) SELinux context to the audit
1844  * log by calling audit_log_format, thus also preventing leak of internal secid
1845  * to userspace. If secid cannot be converted audit_panic is called.
1846  */
1847 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1848 {
1849 	u32 len;
1850 	char *secctx;
1851 
1852 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1853 		audit_panic("Cannot convert secid to context");
1854 	} else {
1855 		audit_log_format(ab, " obj=%s", secctx);
1856 		security_release_secctx(secctx, len);
1857 	}
1858 }
1859 EXPORT_SYMBOL(audit_log_secctx);
1860 #endif
1861 
1862 EXPORT_SYMBOL(audit_log_start);
1863 EXPORT_SYMBOL(audit_log_end);
1864 EXPORT_SYMBOL(audit_log_format);
1865 EXPORT_SYMBOL(audit_log);
1866