xref: /openbmc/linux/kernel/audit.c (revision 8e9356c6)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/init.h>
47 #include <asm/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56 
57 #include <linux/audit.h>
58 
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_overflow = 0;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	pid_t pid;
186 	struct sk_buff *skb;
187 };
188 
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time, timeout);
342 }
343 
344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded\n");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	/* take a reference in case we can't send it and we want to hold it */
409 	skb_get(skb);
410 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 	if (err < 0) {
412 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 		if (audit_pid) {
414 			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 			audit_log_lost("auditd disappeared\n");
416 			audit_pid = 0;
417 			audit_sock = NULL;
418 		}
419 		/* we might get lucky and get this in the next auditd */
420 		audit_hold_skb(skb);
421 	} else
422 		/* drop the extra reference if sent ok */
423 		consume_skb(skb);
424 }
425 
426 /*
427  * flush_hold_queue - empty the hold queue if auditd appears
428  *
429  * If auditd just started, drain the queue of messages already
430  * sent to syslog/printk.  Remember loss here is ok.  We already
431  * called audit_log_lost() if it didn't go out normally.  so the
432  * race between the skb_dequeue and the next check for audit_pid
433  * doesn't matter.
434  *
435  * If you ever find kauditd to be too slow we can get a perf win
436  * by doing our own locking and keeping better track if there
437  * are messages in this queue.  I don't see the need now, but
438  * in 5 years when I want to play with this again I'll see this
439  * note and still have no friggin idea what i'm thinking today.
440  */
441 static void flush_hold_queue(void)
442 {
443 	struct sk_buff *skb;
444 
445 	if (!audit_default || !audit_pid)
446 		return;
447 
448 	skb = skb_dequeue(&audit_skb_hold_queue);
449 	if (likely(!skb))
450 		return;
451 
452 	while (skb && audit_pid) {
453 		kauditd_send_skb(skb);
454 		skb = skb_dequeue(&audit_skb_hold_queue);
455 	}
456 
457 	/*
458 	 * if auditd just disappeared but we
459 	 * dequeued an skb we need to drop ref
460 	 */
461 	if (skb)
462 		consume_skb(skb);
463 }
464 
465 static int kauditd_thread(void *dummy)
466 {
467 	set_freezable();
468 	while (!kthread_should_stop()) {
469 		struct sk_buff *skb;
470 		DECLARE_WAITQUEUE(wait, current);
471 
472 		flush_hold_queue();
473 
474 		skb = skb_dequeue(&audit_skb_queue);
475 
476 		if (skb) {
477 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 				wake_up(&audit_backlog_wait);
479 			if (audit_pid)
480 				kauditd_send_skb(skb);
481 			else
482 				audit_printk_skb(skb);
483 			continue;
484 		}
485 		set_current_state(TASK_INTERRUPTIBLE);
486 		add_wait_queue(&kauditd_wait, &wait);
487 
488 		if (!skb_queue_len(&audit_skb_queue)) {
489 			try_to_freeze();
490 			schedule();
491 		}
492 
493 		__set_current_state(TASK_RUNNING);
494 		remove_wait_queue(&kauditd_wait, &wait);
495 	}
496 	return 0;
497 }
498 
499 int audit_send_list(void *_dest)
500 {
501 	struct audit_netlink_list *dest = _dest;
502 	struct sk_buff *skb;
503 	struct net *net = get_net_ns_by_pid(dest->pid);
504 	struct audit_net *aunet = net_generic(net, audit_net_id);
505 
506 	/* wait for parent to finish and send an ACK */
507 	mutex_lock(&audit_cmd_mutex);
508 	mutex_unlock(&audit_cmd_mutex);
509 
510 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512 
513 	kfree(dest);
514 
515 	return 0;
516 }
517 
518 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
519 				 int multi, const void *payload, int size)
520 {
521 	struct sk_buff	*skb;
522 	struct nlmsghdr	*nlh;
523 	void		*data;
524 	int		flags = multi ? NLM_F_MULTI : 0;
525 	int		t     = done  ? NLMSG_DONE  : type;
526 
527 	skb = nlmsg_new(size, GFP_KERNEL);
528 	if (!skb)
529 		return NULL;
530 
531 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
532 	if (!nlh)
533 		goto out_kfree_skb;
534 	data = nlmsg_data(nlh);
535 	memcpy(data, payload, size);
536 	return skb;
537 
538 out_kfree_skb:
539 	kfree_skb(skb);
540 	return NULL;
541 }
542 
543 static int audit_send_reply_thread(void *arg)
544 {
545 	struct audit_reply *reply = (struct audit_reply *)arg;
546 	struct net *net = get_net_ns_by_pid(reply->pid);
547 	struct audit_net *aunet = net_generic(net, audit_net_id);
548 
549 	mutex_lock(&audit_cmd_mutex);
550 	mutex_unlock(&audit_cmd_mutex);
551 
552 	/* Ignore failure. It'll only happen if the sender goes away,
553 	   because our timeout is set to infinite. */
554 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
555 	kfree(reply);
556 	return 0;
557 }
558 /**
559  * audit_send_reply - send an audit reply message via netlink
560  * @portid: netlink port to which to send reply
561  * @seq: sequence number
562  * @type: audit message type
563  * @done: done (last) flag
564  * @multi: multi-part message flag
565  * @payload: payload data
566  * @size: payload size
567  *
568  * Allocates an skb, builds the netlink message, and sends it to the port id.
569  * No failure notifications.
570  */
571 static void audit_send_reply(__u32 portid, int seq, int type, int done,
572 			     int multi, const void *payload, int size)
573 {
574 	struct sk_buff *skb;
575 	struct task_struct *tsk;
576 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
577 					    GFP_KERNEL);
578 
579 	if (!reply)
580 		return;
581 
582 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
583 	if (!skb)
584 		goto out;
585 
586 	reply->portid = portid;
587 	reply->pid = task_pid_vnr(current);
588 	reply->skb = skb;
589 
590 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
591 	if (!IS_ERR(tsk))
592 		return;
593 	kfree_skb(skb);
594 out:
595 	kfree(reply);
596 }
597 
598 /*
599  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
600  * control messages.
601  */
602 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
603 {
604 	int err = 0;
605 
606 	/* Only support the initial namespaces for now. */
607 	if ((current_user_ns() != &init_user_ns) ||
608 	    (task_active_pid_ns(current) != &init_pid_ns))
609 		return -EPERM;
610 
611 	switch (msg_type) {
612 	case AUDIT_LIST:
613 	case AUDIT_ADD:
614 	case AUDIT_DEL:
615 		return -EOPNOTSUPP;
616 	case AUDIT_GET:
617 	case AUDIT_SET:
618 	case AUDIT_GET_FEATURE:
619 	case AUDIT_SET_FEATURE:
620 	case AUDIT_LIST_RULES:
621 	case AUDIT_ADD_RULE:
622 	case AUDIT_DEL_RULE:
623 	case AUDIT_SIGNAL_INFO:
624 	case AUDIT_TTY_GET:
625 	case AUDIT_TTY_SET:
626 	case AUDIT_TRIM:
627 	case AUDIT_MAKE_EQUIV:
628 		if (!capable(CAP_AUDIT_CONTROL))
629 			err = -EPERM;
630 		break;
631 	case AUDIT_USER:
632 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
633 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
634 		if (!capable(CAP_AUDIT_WRITE))
635 			err = -EPERM;
636 		break;
637 	default:  /* bad msg */
638 		err = -EINVAL;
639 	}
640 
641 	return err;
642 }
643 
644 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
645 {
646 	int rc = 0;
647 	uid_t uid = from_kuid(&init_user_ns, current_uid());
648 
649 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
650 		*ab = NULL;
651 		return rc;
652 	}
653 
654 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
655 	if (unlikely(!*ab))
656 		return rc;
657 	audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
658 	audit_log_session_info(*ab);
659 	audit_log_task_context(*ab);
660 
661 	return rc;
662 }
663 
664 int is_audit_feature_set(int i)
665 {
666 	return af.features & AUDIT_FEATURE_TO_MASK(i);
667 }
668 
669 
670 static int audit_get_feature(struct sk_buff *skb)
671 {
672 	u32 seq;
673 
674 	seq = nlmsg_hdr(skb)->nlmsg_seq;
675 
676 	audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
677 			 &af, sizeof(af));
678 
679 	return 0;
680 }
681 
682 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
683 				     u32 old_lock, u32 new_lock, int res)
684 {
685 	struct audit_buffer *ab;
686 
687 	if (audit_enabled == AUDIT_OFF)
688 		return;
689 
690 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
691 	audit_log_task_info(ab, current);
692 	audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
693 			 audit_feature_names[which], !!old_feature, !!new_feature,
694 			 !!old_lock, !!new_lock, res);
695 	audit_log_end(ab);
696 }
697 
698 static int audit_set_feature(struct sk_buff *skb)
699 {
700 	struct audit_features *uaf;
701 	int i;
702 
703 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
704 	uaf = nlmsg_data(nlmsg_hdr(skb));
705 
706 	/* if there is ever a version 2 we should handle that here */
707 
708 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
709 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
710 		u32 old_feature, new_feature, old_lock, new_lock;
711 
712 		/* if we are not changing this feature, move along */
713 		if (!(feature & uaf->mask))
714 			continue;
715 
716 		old_feature = af.features & feature;
717 		new_feature = uaf->features & feature;
718 		new_lock = (uaf->lock | af.lock) & feature;
719 		old_lock = af.lock & feature;
720 
721 		/* are we changing a locked feature? */
722 		if (old_lock && (new_feature != old_feature)) {
723 			audit_log_feature_change(i, old_feature, new_feature,
724 						 old_lock, new_lock, 0);
725 			return -EPERM;
726 		}
727 	}
728 	/* nothing invalid, do the changes */
729 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
730 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
731 		u32 old_feature, new_feature, old_lock, new_lock;
732 
733 		/* if we are not changing this feature, move along */
734 		if (!(feature & uaf->mask))
735 			continue;
736 
737 		old_feature = af.features & feature;
738 		new_feature = uaf->features & feature;
739 		old_lock = af.lock & feature;
740 		new_lock = (uaf->lock | af.lock) & feature;
741 
742 		if (new_feature != old_feature)
743 			audit_log_feature_change(i, old_feature, new_feature,
744 						 old_lock, new_lock, 1);
745 
746 		if (new_feature)
747 			af.features |= feature;
748 		else
749 			af.features &= ~feature;
750 		af.lock |= new_lock;
751 	}
752 
753 	return 0;
754 }
755 
756 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
757 {
758 	u32			seq;
759 	void			*data;
760 	int			err;
761 	struct audit_buffer	*ab;
762 	u16			msg_type = nlh->nlmsg_type;
763 	struct audit_sig_info   *sig_data;
764 	char			*ctx = NULL;
765 	u32			len;
766 
767 	err = audit_netlink_ok(skb, msg_type);
768 	if (err)
769 		return err;
770 
771 	/* As soon as there's any sign of userspace auditd,
772 	 * start kauditd to talk to it */
773 	if (!kauditd_task) {
774 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
775 		if (IS_ERR(kauditd_task)) {
776 			err = PTR_ERR(kauditd_task);
777 			kauditd_task = NULL;
778 			return err;
779 		}
780 	}
781 	seq  = nlh->nlmsg_seq;
782 	data = nlmsg_data(nlh);
783 
784 	switch (msg_type) {
785 	case AUDIT_GET: {
786 		struct audit_status	s;
787 		memset(&s, 0, sizeof(s));
788 		s.enabled		= audit_enabled;
789 		s.failure		= audit_failure;
790 		s.pid			= audit_pid;
791 		s.rate_limit		= audit_rate_limit;
792 		s.backlog_limit		= audit_backlog_limit;
793 		s.lost			= atomic_read(&audit_lost);
794 		s.backlog		= skb_queue_len(&audit_skb_queue);
795 		s.version		= AUDIT_VERSION_LATEST;
796 		s.backlog_wait_time	= audit_backlog_wait_time;
797 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
798 				 &s, sizeof(s));
799 		break;
800 	}
801 	case AUDIT_SET: {
802 		struct audit_status	s;
803 		memset(&s, 0, sizeof(s));
804 		/* guard against past and future API changes */
805 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
806 		if (s.mask & AUDIT_STATUS_ENABLED) {
807 			err = audit_set_enabled(s.enabled);
808 			if (err < 0)
809 				return err;
810 		}
811 		if (s.mask & AUDIT_STATUS_FAILURE) {
812 			err = audit_set_failure(s.failure);
813 			if (err < 0)
814 				return err;
815 		}
816 		if (s.mask & AUDIT_STATUS_PID) {
817 			int new_pid = s.pid;
818 
819 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
820 				return -EACCES;
821 			if (audit_enabled != AUDIT_OFF)
822 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
823 			audit_pid = new_pid;
824 			audit_nlk_portid = NETLINK_CB(skb).portid;
825 			audit_sock = skb->sk;
826 		}
827 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
828 			err = audit_set_rate_limit(s.rate_limit);
829 			if (err < 0)
830 				return err;
831 		}
832 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
833 			err = audit_set_backlog_limit(s.backlog_limit);
834 			if (err < 0)
835 				return err;
836 		}
837 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
838 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
839 				return -EINVAL;
840 			if (s.backlog_wait_time < 0 ||
841 			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
842 				return -EINVAL;
843 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
844 			if (err < 0)
845 				return err;
846 		}
847 		break;
848 	}
849 	case AUDIT_GET_FEATURE:
850 		err = audit_get_feature(skb);
851 		if (err)
852 			return err;
853 		break;
854 	case AUDIT_SET_FEATURE:
855 		err = audit_set_feature(skb);
856 		if (err)
857 			return err;
858 		break;
859 	case AUDIT_USER:
860 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
861 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
862 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
863 			return 0;
864 
865 		err = audit_filter_user(msg_type);
866 		if (err == 1) { /* match or error */
867 			err = 0;
868 			if (msg_type == AUDIT_USER_TTY) {
869 				err = tty_audit_push_current();
870 				if (err)
871 					break;
872 			}
873 			mutex_unlock(&audit_cmd_mutex);
874 			audit_log_common_recv_msg(&ab, msg_type);
875 			if (msg_type != AUDIT_USER_TTY)
876 				audit_log_format(ab, " msg='%.*s'",
877 						 AUDIT_MESSAGE_TEXT_MAX,
878 						 (char *)data);
879 			else {
880 				int size;
881 
882 				audit_log_format(ab, " data=");
883 				size = nlmsg_len(nlh);
884 				if (size > 0 &&
885 				    ((unsigned char *)data)[size - 1] == '\0')
886 					size--;
887 				audit_log_n_untrustedstring(ab, data, size);
888 			}
889 			audit_set_portid(ab, NETLINK_CB(skb).portid);
890 			audit_log_end(ab);
891 			mutex_lock(&audit_cmd_mutex);
892 		}
893 		break;
894 	case AUDIT_ADD_RULE:
895 	case AUDIT_DEL_RULE:
896 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
897 			return -EINVAL;
898 		if (audit_enabled == AUDIT_LOCKED) {
899 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
900 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
901 			audit_log_end(ab);
902 			return -EPERM;
903 		}
904 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
905 					   seq, data, nlmsg_len(nlh));
906 		break;
907 	case AUDIT_LIST_RULES:
908 		err = audit_list_rules_send(NETLINK_CB(skb).portid, seq);
909 		break;
910 	case AUDIT_TRIM:
911 		audit_trim_trees();
912 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
913 		audit_log_format(ab, " op=trim res=1");
914 		audit_log_end(ab);
915 		break;
916 	case AUDIT_MAKE_EQUIV: {
917 		void *bufp = data;
918 		u32 sizes[2];
919 		size_t msglen = nlmsg_len(nlh);
920 		char *old, *new;
921 
922 		err = -EINVAL;
923 		if (msglen < 2 * sizeof(u32))
924 			break;
925 		memcpy(sizes, bufp, 2 * sizeof(u32));
926 		bufp += 2 * sizeof(u32);
927 		msglen -= 2 * sizeof(u32);
928 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
929 		if (IS_ERR(old)) {
930 			err = PTR_ERR(old);
931 			break;
932 		}
933 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
934 		if (IS_ERR(new)) {
935 			err = PTR_ERR(new);
936 			kfree(old);
937 			break;
938 		}
939 		/* OK, here comes... */
940 		err = audit_tag_tree(old, new);
941 
942 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
943 
944 		audit_log_format(ab, " op=make_equiv old=");
945 		audit_log_untrustedstring(ab, old);
946 		audit_log_format(ab, " new=");
947 		audit_log_untrustedstring(ab, new);
948 		audit_log_format(ab, " res=%d", !err);
949 		audit_log_end(ab);
950 		kfree(old);
951 		kfree(new);
952 		break;
953 	}
954 	case AUDIT_SIGNAL_INFO:
955 		len = 0;
956 		if (audit_sig_sid) {
957 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
958 			if (err)
959 				return err;
960 		}
961 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
962 		if (!sig_data) {
963 			if (audit_sig_sid)
964 				security_release_secctx(ctx, len);
965 			return -ENOMEM;
966 		}
967 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
968 		sig_data->pid = audit_sig_pid;
969 		if (audit_sig_sid) {
970 			memcpy(sig_data->ctx, ctx, len);
971 			security_release_secctx(ctx, len);
972 		}
973 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
974 				0, 0, sig_data, sizeof(*sig_data) + len);
975 		kfree(sig_data);
976 		break;
977 	case AUDIT_TTY_GET: {
978 		struct audit_tty_status s;
979 		struct task_struct *tsk = current;
980 
981 		spin_lock(&tsk->sighand->siglock);
982 		s.enabled = tsk->signal->audit_tty;
983 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
984 		spin_unlock(&tsk->sighand->siglock);
985 
986 		audit_send_reply(NETLINK_CB(skb).portid, seq,
987 				 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
988 		break;
989 	}
990 	case AUDIT_TTY_SET: {
991 		struct audit_tty_status s, old;
992 		struct task_struct *tsk = current;
993 		struct audit_buffer	*ab;
994 
995 		memset(&s, 0, sizeof(s));
996 		/* guard against past and future API changes */
997 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
998 		/* check if new data is valid */
999 		if ((s.enabled != 0 && s.enabled != 1) ||
1000 		    (s.log_passwd != 0 && s.log_passwd != 1))
1001 			err = -EINVAL;
1002 
1003 		spin_lock(&tsk->sighand->siglock);
1004 		old.enabled = tsk->signal->audit_tty;
1005 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1006 		if (!err) {
1007 			tsk->signal->audit_tty = s.enabled;
1008 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1009 		}
1010 		spin_unlock(&tsk->sighand->siglock);
1011 
1012 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1013 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1014 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1015 				 old.enabled, s.enabled, old.log_passwd,
1016 				 s.log_passwd, !err);
1017 		audit_log_end(ab);
1018 		break;
1019 	}
1020 	default:
1021 		err = -EINVAL;
1022 		break;
1023 	}
1024 
1025 	return err < 0 ? err : 0;
1026 }
1027 
1028 /*
1029  * Get message from skb.  Each message is processed by audit_receive_msg.
1030  * Malformed skbs with wrong length are discarded silently.
1031  */
1032 static void audit_receive_skb(struct sk_buff *skb)
1033 {
1034 	struct nlmsghdr *nlh;
1035 	/*
1036 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1037 	 * if the nlmsg_len was not aligned
1038 	 */
1039 	int len;
1040 	int err;
1041 
1042 	nlh = nlmsg_hdr(skb);
1043 	len = skb->len;
1044 
1045 	while (nlmsg_ok(nlh, len)) {
1046 		err = audit_receive_msg(skb, nlh);
1047 		/* if err or if this message says it wants a response */
1048 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1049 			netlink_ack(skb, nlh, err);
1050 
1051 		nlh = nlmsg_next(nlh, &len);
1052 	}
1053 }
1054 
1055 /* Receive messages from netlink socket. */
1056 static void audit_receive(struct sk_buff  *skb)
1057 {
1058 	mutex_lock(&audit_cmd_mutex);
1059 	audit_receive_skb(skb);
1060 	mutex_unlock(&audit_cmd_mutex);
1061 }
1062 
1063 static int __net_init audit_net_init(struct net *net)
1064 {
1065 	struct netlink_kernel_cfg cfg = {
1066 		.input	= audit_receive,
1067 	};
1068 
1069 	struct audit_net *aunet = net_generic(net, audit_net_id);
1070 
1071 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1072 	if (aunet->nlsk == NULL) {
1073 		audit_panic("cannot initialize netlink socket in namespace");
1074 		return -ENOMEM;
1075 	}
1076 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1077 	return 0;
1078 }
1079 
1080 static void __net_exit audit_net_exit(struct net *net)
1081 {
1082 	struct audit_net *aunet = net_generic(net, audit_net_id);
1083 	struct sock *sock = aunet->nlsk;
1084 	if (sock == audit_sock) {
1085 		audit_pid = 0;
1086 		audit_sock = NULL;
1087 	}
1088 
1089 	rcu_assign_pointer(aunet->nlsk, NULL);
1090 	synchronize_net();
1091 	netlink_kernel_release(sock);
1092 }
1093 
1094 static struct pernet_operations audit_net_ops __net_initdata = {
1095 	.init = audit_net_init,
1096 	.exit = audit_net_exit,
1097 	.id = &audit_net_id,
1098 	.size = sizeof(struct audit_net),
1099 };
1100 
1101 /* Initialize audit support at boot time. */
1102 static int __init audit_init(void)
1103 {
1104 	int i;
1105 
1106 	if (audit_initialized == AUDIT_DISABLED)
1107 		return 0;
1108 
1109 	pr_info("initializing netlink subsys (%s)\n",
1110 		audit_default ? "enabled" : "disabled");
1111 	register_pernet_subsys(&audit_net_ops);
1112 
1113 	skb_queue_head_init(&audit_skb_queue);
1114 	skb_queue_head_init(&audit_skb_hold_queue);
1115 	audit_initialized = AUDIT_INITIALIZED;
1116 	audit_enabled = audit_default;
1117 	audit_ever_enabled |= !!audit_default;
1118 
1119 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1120 
1121 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1122 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1123 
1124 	return 0;
1125 }
1126 __initcall(audit_init);
1127 
1128 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1129 static int __init audit_enable(char *str)
1130 {
1131 	audit_default = !!simple_strtol(str, NULL, 0);
1132 	if (!audit_default)
1133 		audit_initialized = AUDIT_DISABLED;
1134 
1135 	pr_info("%s\n", audit_default ?
1136 		"enabled (after initialization)" : "disabled (until reboot)");
1137 
1138 	return 1;
1139 }
1140 __setup("audit=", audit_enable);
1141 
1142 /* Process kernel command-line parameter at boot time.
1143  * audit_backlog_limit=<n> */
1144 static int __init audit_backlog_limit_set(char *str)
1145 {
1146 	u32 audit_backlog_limit_arg;
1147 
1148 	pr_info("audit_backlog_limit: ");
1149 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1150 		pr_cont("using default of %u, unable to parse %s\n",
1151 			audit_backlog_limit, str);
1152 		return 1;
1153 	}
1154 
1155 	audit_backlog_limit = audit_backlog_limit_arg;
1156 	pr_cont("%d\n", audit_backlog_limit);
1157 
1158 	return 1;
1159 }
1160 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1161 
1162 static void audit_buffer_free(struct audit_buffer *ab)
1163 {
1164 	unsigned long flags;
1165 
1166 	if (!ab)
1167 		return;
1168 
1169 	if (ab->skb)
1170 		kfree_skb(ab->skb);
1171 
1172 	spin_lock_irqsave(&audit_freelist_lock, flags);
1173 	if (audit_freelist_count > AUDIT_MAXFREE)
1174 		kfree(ab);
1175 	else {
1176 		audit_freelist_count++;
1177 		list_add(&ab->list, &audit_freelist);
1178 	}
1179 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1180 }
1181 
1182 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1183 						gfp_t gfp_mask, int type)
1184 {
1185 	unsigned long flags;
1186 	struct audit_buffer *ab = NULL;
1187 	struct nlmsghdr *nlh;
1188 
1189 	spin_lock_irqsave(&audit_freelist_lock, flags);
1190 	if (!list_empty(&audit_freelist)) {
1191 		ab = list_entry(audit_freelist.next,
1192 				struct audit_buffer, list);
1193 		list_del(&ab->list);
1194 		--audit_freelist_count;
1195 	}
1196 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1197 
1198 	if (!ab) {
1199 		ab = kmalloc(sizeof(*ab), gfp_mask);
1200 		if (!ab)
1201 			goto err;
1202 	}
1203 
1204 	ab->ctx = ctx;
1205 	ab->gfp_mask = gfp_mask;
1206 
1207 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1208 	if (!ab->skb)
1209 		goto err;
1210 
1211 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1212 	if (!nlh)
1213 		goto out_kfree_skb;
1214 
1215 	return ab;
1216 
1217 out_kfree_skb:
1218 	kfree_skb(ab->skb);
1219 	ab->skb = NULL;
1220 err:
1221 	audit_buffer_free(ab);
1222 	return NULL;
1223 }
1224 
1225 /**
1226  * audit_serial - compute a serial number for the audit record
1227  *
1228  * Compute a serial number for the audit record.  Audit records are
1229  * written to user-space as soon as they are generated, so a complete
1230  * audit record may be written in several pieces.  The timestamp of the
1231  * record and this serial number are used by the user-space tools to
1232  * determine which pieces belong to the same audit record.  The
1233  * (timestamp,serial) tuple is unique for each syscall and is live from
1234  * syscall entry to syscall exit.
1235  *
1236  * NOTE: Another possibility is to store the formatted records off the
1237  * audit context (for those records that have a context), and emit them
1238  * all at syscall exit.  However, this could delay the reporting of
1239  * significant errors until syscall exit (or never, if the system
1240  * halts).
1241  */
1242 unsigned int audit_serial(void)
1243 {
1244 	static DEFINE_SPINLOCK(serial_lock);
1245 	static unsigned int serial = 0;
1246 
1247 	unsigned long flags;
1248 	unsigned int ret;
1249 
1250 	spin_lock_irqsave(&serial_lock, flags);
1251 	do {
1252 		ret = ++serial;
1253 	} while (unlikely(!ret));
1254 	spin_unlock_irqrestore(&serial_lock, flags);
1255 
1256 	return ret;
1257 }
1258 
1259 static inline void audit_get_stamp(struct audit_context *ctx,
1260 				   struct timespec *t, unsigned int *serial)
1261 {
1262 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1263 		*t = CURRENT_TIME;
1264 		*serial = audit_serial();
1265 	}
1266 }
1267 
1268 /*
1269  * Wait for auditd to drain the queue a little
1270  */
1271 static long wait_for_auditd(long sleep_time)
1272 {
1273 	DECLARE_WAITQUEUE(wait, current);
1274 	set_current_state(TASK_UNINTERRUPTIBLE);
1275 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1276 
1277 	if (audit_backlog_limit &&
1278 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1279 		sleep_time = schedule_timeout(sleep_time);
1280 
1281 	__set_current_state(TASK_RUNNING);
1282 	remove_wait_queue(&audit_backlog_wait, &wait);
1283 
1284 	return sleep_time;
1285 }
1286 
1287 /**
1288  * audit_log_start - obtain an audit buffer
1289  * @ctx: audit_context (may be NULL)
1290  * @gfp_mask: type of allocation
1291  * @type: audit message type
1292  *
1293  * Returns audit_buffer pointer on success or NULL on error.
1294  *
1295  * Obtain an audit buffer.  This routine does locking to obtain the
1296  * audit buffer, but then no locking is required for calls to
1297  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1298  * syscall, then the syscall is marked as auditable and an audit record
1299  * will be written at syscall exit.  If there is no associated task, then
1300  * task context (ctx) should be NULL.
1301  */
1302 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1303 				     int type)
1304 {
1305 	struct audit_buffer	*ab	= NULL;
1306 	struct timespec		t;
1307 	unsigned int		uninitialized_var(serial);
1308 	int reserve = 5; /* Allow atomic callers to go up to five
1309 			    entries over the normal backlog limit */
1310 	unsigned long timeout_start = jiffies;
1311 
1312 	if (audit_initialized != AUDIT_INITIALIZED)
1313 		return NULL;
1314 
1315 	if (unlikely(audit_filter_type(type)))
1316 		return NULL;
1317 
1318 	if (gfp_mask & __GFP_WAIT) {
1319 		if (audit_pid && audit_pid == current->pid)
1320 			gfp_mask &= ~__GFP_WAIT;
1321 		else
1322 			reserve = 0;
1323 	}
1324 
1325 	while (audit_backlog_limit
1326 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1327 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1328 			long sleep_time;
1329 
1330 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1331 			if (sleep_time > 0) {
1332 				sleep_time = wait_for_auditd(sleep_time);
1333 				if (sleep_time > 0)
1334 					continue;
1335 			}
1336 		}
1337 		if (audit_rate_check() && printk_ratelimit())
1338 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1339 				skb_queue_len(&audit_skb_queue),
1340 				audit_backlog_limit);
1341 		audit_log_lost("backlog limit exceeded");
1342 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1343 		wake_up(&audit_backlog_wait);
1344 		return NULL;
1345 	}
1346 
1347 	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1348 
1349 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1350 	if (!ab) {
1351 		audit_log_lost("out of memory in audit_log_start");
1352 		return NULL;
1353 	}
1354 
1355 	audit_get_stamp(ab->ctx, &t, &serial);
1356 
1357 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1358 			 t.tv_sec, t.tv_nsec/1000000, serial);
1359 	return ab;
1360 }
1361 
1362 /**
1363  * audit_expand - expand skb in the audit buffer
1364  * @ab: audit_buffer
1365  * @extra: space to add at tail of the skb
1366  *
1367  * Returns 0 (no space) on failed expansion, or available space if
1368  * successful.
1369  */
1370 static inline int audit_expand(struct audit_buffer *ab, int extra)
1371 {
1372 	struct sk_buff *skb = ab->skb;
1373 	int oldtail = skb_tailroom(skb);
1374 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1375 	int newtail = skb_tailroom(skb);
1376 
1377 	if (ret < 0) {
1378 		audit_log_lost("out of memory in audit_expand");
1379 		return 0;
1380 	}
1381 
1382 	skb->truesize += newtail - oldtail;
1383 	return newtail;
1384 }
1385 
1386 /*
1387  * Format an audit message into the audit buffer.  If there isn't enough
1388  * room in the audit buffer, more room will be allocated and vsnprint
1389  * will be called a second time.  Currently, we assume that a printk
1390  * can't format message larger than 1024 bytes, so we don't either.
1391  */
1392 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1393 			      va_list args)
1394 {
1395 	int len, avail;
1396 	struct sk_buff *skb;
1397 	va_list args2;
1398 
1399 	if (!ab)
1400 		return;
1401 
1402 	BUG_ON(!ab->skb);
1403 	skb = ab->skb;
1404 	avail = skb_tailroom(skb);
1405 	if (avail == 0) {
1406 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1407 		if (!avail)
1408 			goto out;
1409 	}
1410 	va_copy(args2, args);
1411 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1412 	if (len >= avail) {
1413 		/* The printk buffer is 1024 bytes long, so if we get
1414 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1415 		 * log everything that printk could have logged. */
1416 		avail = audit_expand(ab,
1417 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1418 		if (!avail)
1419 			goto out_va_end;
1420 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1421 	}
1422 	if (len > 0)
1423 		skb_put(skb, len);
1424 out_va_end:
1425 	va_end(args2);
1426 out:
1427 	return;
1428 }
1429 
1430 /**
1431  * audit_log_format - format a message into the audit buffer.
1432  * @ab: audit_buffer
1433  * @fmt: format string
1434  * @...: optional parameters matching @fmt string
1435  *
1436  * All the work is done in audit_log_vformat.
1437  */
1438 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1439 {
1440 	va_list args;
1441 
1442 	if (!ab)
1443 		return;
1444 	va_start(args, fmt);
1445 	audit_log_vformat(ab, fmt, args);
1446 	va_end(args);
1447 }
1448 
1449 /**
1450  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1451  * @ab: the audit_buffer
1452  * @buf: buffer to convert to hex
1453  * @len: length of @buf to be converted
1454  *
1455  * No return value; failure to expand is silently ignored.
1456  *
1457  * This function will take the passed buf and convert it into a string of
1458  * ascii hex digits. The new string is placed onto the skb.
1459  */
1460 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1461 		size_t len)
1462 {
1463 	int i, avail, new_len;
1464 	unsigned char *ptr;
1465 	struct sk_buff *skb;
1466 
1467 	if (!ab)
1468 		return;
1469 
1470 	BUG_ON(!ab->skb);
1471 	skb = ab->skb;
1472 	avail = skb_tailroom(skb);
1473 	new_len = len<<1;
1474 	if (new_len >= avail) {
1475 		/* Round the buffer request up to the next multiple */
1476 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1477 		avail = audit_expand(ab, new_len);
1478 		if (!avail)
1479 			return;
1480 	}
1481 
1482 	ptr = skb_tail_pointer(skb);
1483 	for (i = 0; i < len; i++)
1484 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1485 	*ptr = 0;
1486 	skb_put(skb, len << 1); /* new string is twice the old string */
1487 }
1488 
1489 /*
1490  * Format a string of no more than slen characters into the audit buffer,
1491  * enclosed in quote marks.
1492  */
1493 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1494 			size_t slen)
1495 {
1496 	int avail, new_len;
1497 	unsigned char *ptr;
1498 	struct sk_buff *skb;
1499 
1500 	if (!ab)
1501 		return;
1502 
1503 	BUG_ON(!ab->skb);
1504 	skb = ab->skb;
1505 	avail = skb_tailroom(skb);
1506 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1507 	if (new_len > avail) {
1508 		avail = audit_expand(ab, new_len);
1509 		if (!avail)
1510 			return;
1511 	}
1512 	ptr = skb_tail_pointer(skb);
1513 	*ptr++ = '"';
1514 	memcpy(ptr, string, slen);
1515 	ptr += slen;
1516 	*ptr++ = '"';
1517 	*ptr = 0;
1518 	skb_put(skb, slen + 2);	/* don't include null terminator */
1519 }
1520 
1521 /**
1522  * audit_string_contains_control - does a string need to be logged in hex
1523  * @string: string to be checked
1524  * @len: max length of the string to check
1525  */
1526 int audit_string_contains_control(const char *string, size_t len)
1527 {
1528 	const unsigned char *p;
1529 	for (p = string; p < (const unsigned char *)string + len; p++) {
1530 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1531 			return 1;
1532 	}
1533 	return 0;
1534 }
1535 
1536 /**
1537  * audit_log_n_untrustedstring - log a string that may contain random characters
1538  * @ab: audit_buffer
1539  * @len: length of string (not including trailing null)
1540  * @string: string to be logged
1541  *
1542  * This code will escape a string that is passed to it if the string
1543  * contains a control character, unprintable character, double quote mark,
1544  * or a space. Unescaped strings will start and end with a double quote mark.
1545  * Strings that are escaped are printed in hex (2 digits per char).
1546  *
1547  * The caller specifies the number of characters in the string to log, which may
1548  * or may not be the entire string.
1549  */
1550 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1551 				 size_t len)
1552 {
1553 	if (audit_string_contains_control(string, len))
1554 		audit_log_n_hex(ab, string, len);
1555 	else
1556 		audit_log_n_string(ab, string, len);
1557 }
1558 
1559 /**
1560  * audit_log_untrustedstring - log a string that may contain random characters
1561  * @ab: audit_buffer
1562  * @string: string to be logged
1563  *
1564  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1565  * determine string length.
1566  */
1567 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1568 {
1569 	audit_log_n_untrustedstring(ab, string, strlen(string));
1570 }
1571 
1572 /* This is a helper-function to print the escaped d_path */
1573 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1574 		      const struct path *path)
1575 {
1576 	char *p, *pathname;
1577 
1578 	if (prefix)
1579 		audit_log_format(ab, "%s", prefix);
1580 
1581 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1582 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1583 	if (!pathname) {
1584 		audit_log_string(ab, "<no_memory>");
1585 		return;
1586 	}
1587 	p = d_path(path, pathname, PATH_MAX+11);
1588 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1589 		/* FIXME: can we save some information here? */
1590 		audit_log_string(ab, "<too_long>");
1591 	} else
1592 		audit_log_untrustedstring(ab, p);
1593 	kfree(pathname);
1594 }
1595 
1596 void audit_log_session_info(struct audit_buffer *ab)
1597 {
1598 	unsigned int sessionid = audit_get_sessionid(current);
1599 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1600 
1601 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1602 }
1603 
1604 void audit_log_key(struct audit_buffer *ab, char *key)
1605 {
1606 	audit_log_format(ab, " key=");
1607 	if (key)
1608 		audit_log_untrustedstring(ab, key);
1609 	else
1610 		audit_log_format(ab, "(null)");
1611 }
1612 
1613 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1614 {
1615 	int i;
1616 
1617 	audit_log_format(ab, " %s=", prefix);
1618 	CAP_FOR_EACH_U32(i) {
1619 		audit_log_format(ab, "%08x",
1620 				 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1621 	}
1622 }
1623 
1624 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1625 {
1626 	kernel_cap_t *perm = &name->fcap.permitted;
1627 	kernel_cap_t *inh = &name->fcap.inheritable;
1628 	int log = 0;
1629 
1630 	if (!cap_isclear(*perm)) {
1631 		audit_log_cap(ab, "cap_fp", perm);
1632 		log = 1;
1633 	}
1634 	if (!cap_isclear(*inh)) {
1635 		audit_log_cap(ab, "cap_fi", inh);
1636 		log = 1;
1637 	}
1638 
1639 	if (log)
1640 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1641 				 name->fcap.fE, name->fcap_ver);
1642 }
1643 
1644 static inline int audit_copy_fcaps(struct audit_names *name,
1645 				   const struct dentry *dentry)
1646 {
1647 	struct cpu_vfs_cap_data caps;
1648 	int rc;
1649 
1650 	if (!dentry)
1651 		return 0;
1652 
1653 	rc = get_vfs_caps_from_disk(dentry, &caps);
1654 	if (rc)
1655 		return rc;
1656 
1657 	name->fcap.permitted = caps.permitted;
1658 	name->fcap.inheritable = caps.inheritable;
1659 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1660 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1661 				VFS_CAP_REVISION_SHIFT;
1662 
1663 	return 0;
1664 }
1665 
1666 /* Copy inode data into an audit_names. */
1667 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1668 		      const struct inode *inode)
1669 {
1670 	name->ino   = inode->i_ino;
1671 	name->dev   = inode->i_sb->s_dev;
1672 	name->mode  = inode->i_mode;
1673 	name->uid   = inode->i_uid;
1674 	name->gid   = inode->i_gid;
1675 	name->rdev  = inode->i_rdev;
1676 	security_inode_getsecid(inode, &name->osid);
1677 	audit_copy_fcaps(name, dentry);
1678 }
1679 
1680 /**
1681  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1682  * @context: audit_context for the task
1683  * @n: audit_names structure with reportable details
1684  * @path: optional path to report instead of audit_names->name
1685  * @record_num: record number to report when handling a list of names
1686  * @call_panic: optional pointer to int that will be updated if secid fails
1687  */
1688 void audit_log_name(struct audit_context *context, struct audit_names *n,
1689 		    struct path *path, int record_num, int *call_panic)
1690 {
1691 	struct audit_buffer *ab;
1692 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1693 	if (!ab)
1694 		return;
1695 
1696 	audit_log_format(ab, "item=%d", record_num);
1697 
1698 	if (path)
1699 		audit_log_d_path(ab, " name=", path);
1700 	else if (n->name) {
1701 		switch (n->name_len) {
1702 		case AUDIT_NAME_FULL:
1703 			/* log the full path */
1704 			audit_log_format(ab, " name=");
1705 			audit_log_untrustedstring(ab, n->name->name);
1706 			break;
1707 		case 0:
1708 			/* name was specified as a relative path and the
1709 			 * directory component is the cwd */
1710 			audit_log_d_path(ab, " name=", &context->pwd);
1711 			break;
1712 		default:
1713 			/* log the name's directory component */
1714 			audit_log_format(ab, " name=");
1715 			audit_log_n_untrustedstring(ab, n->name->name,
1716 						    n->name_len);
1717 		}
1718 	} else
1719 		audit_log_format(ab, " name=(null)");
1720 
1721 	if (n->ino != (unsigned long)-1) {
1722 		audit_log_format(ab, " inode=%lu"
1723 				 " dev=%02x:%02x mode=%#ho"
1724 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1725 				 n->ino,
1726 				 MAJOR(n->dev),
1727 				 MINOR(n->dev),
1728 				 n->mode,
1729 				 from_kuid(&init_user_ns, n->uid),
1730 				 from_kgid(&init_user_ns, n->gid),
1731 				 MAJOR(n->rdev),
1732 				 MINOR(n->rdev));
1733 	}
1734 	if (n->osid != 0) {
1735 		char *ctx = NULL;
1736 		u32 len;
1737 		if (security_secid_to_secctx(
1738 			n->osid, &ctx, &len)) {
1739 			audit_log_format(ab, " osid=%u", n->osid);
1740 			if (call_panic)
1741 				*call_panic = 2;
1742 		} else {
1743 			audit_log_format(ab, " obj=%s", ctx);
1744 			security_release_secctx(ctx, len);
1745 		}
1746 	}
1747 
1748 	/* log the audit_names record type */
1749 	audit_log_format(ab, " nametype=");
1750 	switch(n->type) {
1751 	case AUDIT_TYPE_NORMAL:
1752 		audit_log_format(ab, "NORMAL");
1753 		break;
1754 	case AUDIT_TYPE_PARENT:
1755 		audit_log_format(ab, "PARENT");
1756 		break;
1757 	case AUDIT_TYPE_CHILD_DELETE:
1758 		audit_log_format(ab, "DELETE");
1759 		break;
1760 	case AUDIT_TYPE_CHILD_CREATE:
1761 		audit_log_format(ab, "CREATE");
1762 		break;
1763 	default:
1764 		audit_log_format(ab, "UNKNOWN");
1765 		break;
1766 	}
1767 
1768 	audit_log_fcaps(ab, n);
1769 	audit_log_end(ab);
1770 }
1771 
1772 int audit_log_task_context(struct audit_buffer *ab)
1773 {
1774 	char *ctx = NULL;
1775 	unsigned len;
1776 	int error;
1777 	u32 sid;
1778 
1779 	security_task_getsecid(current, &sid);
1780 	if (!sid)
1781 		return 0;
1782 
1783 	error = security_secid_to_secctx(sid, &ctx, &len);
1784 	if (error) {
1785 		if (error != -EINVAL)
1786 			goto error_path;
1787 		return 0;
1788 	}
1789 
1790 	audit_log_format(ab, " subj=%s", ctx);
1791 	security_release_secctx(ctx, len);
1792 	return 0;
1793 
1794 error_path:
1795 	audit_panic("error in audit_log_task_context");
1796 	return error;
1797 }
1798 EXPORT_SYMBOL(audit_log_task_context);
1799 
1800 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1801 {
1802 	const struct cred *cred;
1803 	char name[sizeof(tsk->comm)];
1804 	struct mm_struct *mm = tsk->mm;
1805 	char *tty;
1806 
1807 	if (!ab)
1808 		return;
1809 
1810 	/* tsk == current */
1811 	cred = current_cred();
1812 
1813 	spin_lock_irq(&tsk->sighand->siglock);
1814 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1815 		tty = tsk->signal->tty->name;
1816 	else
1817 		tty = "(none)";
1818 	spin_unlock_irq(&tsk->sighand->siglock);
1819 
1820 	audit_log_format(ab,
1821 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1822 			 " euid=%u suid=%u fsuid=%u"
1823 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1824 			 sys_getppid(),
1825 			 tsk->pid,
1826 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1827 			 from_kuid(&init_user_ns, cred->uid),
1828 			 from_kgid(&init_user_ns, cred->gid),
1829 			 from_kuid(&init_user_ns, cred->euid),
1830 			 from_kuid(&init_user_ns, cred->suid),
1831 			 from_kuid(&init_user_ns, cred->fsuid),
1832 			 from_kgid(&init_user_ns, cred->egid),
1833 			 from_kgid(&init_user_ns, cred->sgid),
1834 			 from_kgid(&init_user_ns, cred->fsgid),
1835 			 tty, audit_get_sessionid(tsk));
1836 
1837 	get_task_comm(name, tsk);
1838 	audit_log_format(ab, " comm=");
1839 	audit_log_untrustedstring(ab, name);
1840 
1841 	if (mm) {
1842 		down_read(&mm->mmap_sem);
1843 		if (mm->exe_file)
1844 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1845 		up_read(&mm->mmap_sem);
1846 	} else
1847 		audit_log_format(ab, " exe=(null)");
1848 	audit_log_task_context(ab);
1849 }
1850 EXPORT_SYMBOL(audit_log_task_info);
1851 
1852 /**
1853  * audit_log_link_denied - report a link restriction denial
1854  * @operation: specific link opreation
1855  * @link: the path that triggered the restriction
1856  */
1857 void audit_log_link_denied(const char *operation, struct path *link)
1858 {
1859 	struct audit_buffer *ab;
1860 	struct audit_names *name;
1861 
1862 	name = kzalloc(sizeof(*name), GFP_NOFS);
1863 	if (!name)
1864 		return;
1865 
1866 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1867 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1868 			     AUDIT_ANOM_LINK);
1869 	if (!ab)
1870 		goto out;
1871 	audit_log_format(ab, "op=%s", operation);
1872 	audit_log_task_info(ab, current);
1873 	audit_log_format(ab, " res=0");
1874 	audit_log_end(ab);
1875 
1876 	/* Generate AUDIT_PATH record with object. */
1877 	name->type = AUDIT_TYPE_NORMAL;
1878 	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1879 	audit_log_name(current->audit_context, name, link, 0, NULL);
1880 out:
1881 	kfree(name);
1882 }
1883 
1884 /**
1885  * audit_log_end - end one audit record
1886  * @ab: the audit_buffer
1887  *
1888  * The netlink_* functions cannot be called inside an irq context, so
1889  * the audit buffer is placed on a queue and a tasklet is scheduled to
1890  * remove them from the queue outside the irq context.  May be called in
1891  * any context.
1892  */
1893 void audit_log_end(struct audit_buffer *ab)
1894 {
1895 	if (!ab)
1896 		return;
1897 	if (!audit_rate_check()) {
1898 		audit_log_lost("rate limit exceeded");
1899 	} else {
1900 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1901 		nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1902 
1903 		if (audit_pid) {
1904 			skb_queue_tail(&audit_skb_queue, ab->skb);
1905 			wake_up_interruptible(&kauditd_wait);
1906 		} else {
1907 			audit_printk_skb(ab->skb);
1908 		}
1909 		ab->skb = NULL;
1910 	}
1911 	audit_buffer_free(ab);
1912 }
1913 
1914 /**
1915  * audit_log - Log an audit record
1916  * @ctx: audit context
1917  * @gfp_mask: type of allocation
1918  * @type: audit message type
1919  * @fmt: format string to use
1920  * @...: variable parameters matching the format string
1921  *
1922  * This is a convenience function that calls audit_log_start,
1923  * audit_log_vformat, and audit_log_end.  It may be called
1924  * in any context.
1925  */
1926 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1927 	       const char *fmt, ...)
1928 {
1929 	struct audit_buffer *ab;
1930 	va_list args;
1931 
1932 	ab = audit_log_start(ctx, gfp_mask, type);
1933 	if (ab) {
1934 		va_start(args, fmt);
1935 		audit_log_vformat(ab, fmt, args);
1936 		va_end(args);
1937 		audit_log_end(ab);
1938 	}
1939 }
1940 
1941 #ifdef CONFIG_SECURITY
1942 /**
1943  * audit_log_secctx - Converts and logs SELinux context
1944  * @ab: audit_buffer
1945  * @secid: security number
1946  *
1947  * This is a helper function that calls security_secid_to_secctx to convert
1948  * secid to secctx and then adds the (converted) SELinux context to the audit
1949  * log by calling audit_log_format, thus also preventing leak of internal secid
1950  * to userspace. If secid cannot be converted audit_panic is called.
1951  */
1952 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1953 {
1954 	u32 len;
1955 	char *secctx;
1956 
1957 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1958 		audit_panic("Cannot convert secid to context");
1959 	} else {
1960 		audit_log_format(ab, " obj=%s", secctx);
1961 		security_release_secctx(secctx, len);
1962 	}
1963 }
1964 EXPORT_SYMBOL(audit_log_secctx);
1965 #endif
1966 
1967 EXPORT_SYMBOL(audit_log_start);
1968 EXPORT_SYMBOL(audit_log_end);
1969 EXPORT_SYMBOL(audit_log_format);
1970 EXPORT_SYMBOL(audit_log);
1971