1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/init.h> 47 #include <asm/types.h> 48 #include <linux/atomic.h> 49 #include <linux/mm.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/err.h> 53 #include <linux/kthread.h> 54 #include <linux/kernel.h> 55 #include <linux/syscalls.h> 56 57 #include <linux/audit.h> 58 59 #include <net/sock.h> 60 #include <net/netlink.h> 61 #include <linux/skbuff.h> 62 #ifdef CONFIG_SECURITY 63 #include <linux/security.h> 64 #endif 65 #include <linux/freezer.h> 66 #include <linux/tty.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 static u32 audit_backlog_wait_overflow = 0; 112 113 /* The identity of the user shutting down the audit system. */ 114 kuid_t audit_sig_uid = INVALID_UID; 115 pid_t audit_sig_pid = -1; 116 u32 audit_sig_sid = 0; 117 118 /* Records can be lost in several ways: 119 0) [suppressed in audit_alloc] 120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 121 2) out of memory in audit_log_move [alloc_skb] 122 3) suppressed due to audit_rate_limit 123 4) suppressed due to audit_backlog_limit 124 */ 125 static atomic_t audit_lost = ATOMIC_INIT(0); 126 127 /* The netlink socket. */ 128 static struct sock *audit_sock; 129 int audit_net_id; 130 131 /* Hash for inode-based rules */ 132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 133 134 /* The audit_freelist is a list of pre-allocated audit buffers (if more 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 136 * being placed on the freelist). */ 137 static DEFINE_SPINLOCK(audit_freelist_lock); 138 static int audit_freelist_count; 139 static LIST_HEAD(audit_freelist); 140 141 static struct sk_buff_head audit_skb_queue; 142 /* queue of skbs to send to auditd when/if it comes back */ 143 static struct sk_buff_head audit_skb_hold_queue; 144 static struct task_struct *kauditd_task; 145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 147 148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 149 .mask = -1, 150 .features = 0, 151 .lock = 0,}; 152 153 static char *audit_feature_names[2] = { 154 "only_unset_loginuid", 155 "loginuid_immutable", 156 }; 157 158 159 /* Serialize requests from userspace. */ 160 DEFINE_MUTEX(audit_cmd_mutex); 161 162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 163 * audit records. Since printk uses a 1024 byte buffer, this buffer 164 * should be at least that large. */ 165 #define AUDIT_BUFSIZ 1024 166 167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 169 #define AUDIT_MAXFREE (2*NR_CPUS) 170 171 /* The audit_buffer is used when formatting an audit record. The caller 172 * locks briefly to get the record off the freelist or to allocate the 173 * buffer, and locks briefly to send the buffer to the netlink layer or 174 * to place it on a transmit queue. Multiple audit_buffers can be in 175 * use simultaneously. */ 176 struct audit_buffer { 177 struct list_head list; 178 struct sk_buff *skb; /* formatted skb ready to send */ 179 struct audit_context *ctx; /* NULL or associated context */ 180 gfp_t gfp_mask; 181 }; 182 183 struct audit_reply { 184 __u32 portid; 185 pid_t pid; 186 struct sk_buff *skb; 187 }; 188 189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 190 { 191 if (ab) { 192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 193 nlh->nlmsg_pid = portid; 194 } 195 } 196 197 void audit_panic(const char *message) 198 { 199 switch (audit_failure) { 200 case AUDIT_FAIL_SILENT: 201 break; 202 case AUDIT_FAIL_PRINTK: 203 if (printk_ratelimit()) 204 pr_err("%s\n", message); 205 break; 206 case AUDIT_FAIL_PANIC: 207 /* test audit_pid since printk is always losey, why bother? */ 208 if (audit_pid) 209 panic("audit: %s\n", message); 210 break; 211 } 212 } 213 214 static inline int audit_rate_check(void) 215 { 216 static unsigned long last_check = 0; 217 static int messages = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 unsigned long elapsed; 222 int retval = 0; 223 224 if (!audit_rate_limit) return 1; 225 226 spin_lock_irqsave(&lock, flags); 227 if (++messages < audit_rate_limit) { 228 retval = 1; 229 } else { 230 now = jiffies; 231 elapsed = now - last_check; 232 if (elapsed > HZ) { 233 last_check = now; 234 messages = 0; 235 retval = 1; 236 } 237 } 238 spin_unlock_irqrestore(&lock, flags); 239 240 return retval; 241 } 242 243 /** 244 * audit_log_lost - conditionally log lost audit message event 245 * @message: the message stating reason for lost audit message 246 * 247 * Emit at least 1 message per second, even if audit_rate_check is 248 * throttling. 249 * Always increment the lost messages counter. 250 */ 251 void audit_log_lost(const char *message) 252 { 253 static unsigned long last_msg = 0; 254 static DEFINE_SPINLOCK(lock); 255 unsigned long flags; 256 unsigned long now; 257 int print; 258 259 atomic_inc(&audit_lost); 260 261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 262 263 if (!print) { 264 spin_lock_irqsave(&lock, flags); 265 now = jiffies; 266 if (now - last_msg > HZ) { 267 print = 1; 268 last_msg = now; 269 } 270 spin_unlock_irqrestore(&lock, flags); 271 } 272 273 if (print) { 274 if (printk_ratelimit()) 275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 276 atomic_read(&audit_lost), 277 audit_rate_limit, 278 audit_backlog_limit); 279 audit_panic(message); 280 } 281 } 282 283 static int audit_log_config_change(char *function_name, u32 new, u32 old, 284 int allow_changes) 285 { 286 struct audit_buffer *ab; 287 int rc = 0; 288 289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 290 if (unlikely(!ab)) 291 return rc; 292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 293 audit_log_session_info(ab); 294 rc = audit_log_task_context(ab); 295 if (rc) 296 allow_changes = 0; /* Something weird, deny request */ 297 audit_log_format(ab, " res=%d", allow_changes); 298 audit_log_end(ab); 299 return rc; 300 } 301 302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 303 { 304 int allow_changes, rc = 0; 305 u32 old = *to_change; 306 307 /* check if we are locked */ 308 if (audit_enabled == AUDIT_LOCKED) 309 allow_changes = 0; 310 else 311 allow_changes = 1; 312 313 if (audit_enabled != AUDIT_OFF) { 314 rc = audit_log_config_change(function_name, new, old, allow_changes); 315 if (rc) 316 allow_changes = 0; 317 } 318 319 /* If we are allowed, make the change */ 320 if (allow_changes == 1) 321 *to_change = new; 322 /* Not allowed, update reason */ 323 else if (rc == 0) 324 rc = -EPERM; 325 return rc; 326 } 327 328 static int audit_set_rate_limit(u32 limit) 329 { 330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 331 } 332 333 static int audit_set_backlog_limit(u32 limit) 334 { 335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 336 } 337 338 static int audit_set_backlog_wait_time(u32 timeout) 339 { 340 return audit_do_config_change("audit_backlog_wait_time", 341 &audit_backlog_wait_time, timeout); 342 } 343 344 static int audit_set_enabled(u32 state) 345 { 346 int rc; 347 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 348 return -EINVAL; 349 350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 351 if (!rc) 352 audit_ever_enabled |= !!state; 353 354 return rc; 355 } 356 357 static int audit_set_failure(u32 state) 358 { 359 if (state != AUDIT_FAIL_SILENT 360 && state != AUDIT_FAIL_PRINTK 361 && state != AUDIT_FAIL_PANIC) 362 return -EINVAL; 363 364 return audit_do_config_change("audit_failure", &audit_failure, state); 365 } 366 367 /* 368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 369 * already have been sent via prink/syslog and so if these messages are dropped 370 * it is not a huge concern since we already passed the audit_log_lost() 371 * notification and stuff. This is just nice to get audit messages during 372 * boot before auditd is running or messages generated while auditd is stopped. 373 * This only holds messages is audit_default is set, aka booting with audit=1 374 * or building your kernel that way. 375 */ 376 static void audit_hold_skb(struct sk_buff *skb) 377 { 378 if (audit_default && 379 (!audit_backlog_limit || 380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 381 skb_queue_tail(&audit_skb_hold_queue, skb); 382 else 383 kfree_skb(skb); 384 } 385 386 /* 387 * For one reason or another this nlh isn't getting delivered to the userspace 388 * audit daemon, just send it to printk. 389 */ 390 static void audit_printk_skb(struct sk_buff *skb) 391 { 392 struct nlmsghdr *nlh = nlmsg_hdr(skb); 393 char *data = nlmsg_data(nlh); 394 395 if (nlh->nlmsg_type != AUDIT_EOE) { 396 if (printk_ratelimit()) 397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 398 else 399 audit_log_lost("printk limit exceeded\n"); 400 } 401 402 audit_hold_skb(skb); 403 } 404 405 static void kauditd_send_skb(struct sk_buff *skb) 406 { 407 int err; 408 /* take a reference in case we can't send it and we want to hold it */ 409 skb_get(skb); 410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 411 if (err < 0) { 412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 413 if (audit_pid) { 414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 415 audit_log_lost("auditd disappeared\n"); 416 audit_pid = 0; 417 audit_sock = NULL; 418 } 419 /* we might get lucky and get this in the next auditd */ 420 audit_hold_skb(skb); 421 } else 422 /* drop the extra reference if sent ok */ 423 consume_skb(skb); 424 } 425 426 /* 427 * flush_hold_queue - empty the hold queue if auditd appears 428 * 429 * If auditd just started, drain the queue of messages already 430 * sent to syslog/printk. Remember loss here is ok. We already 431 * called audit_log_lost() if it didn't go out normally. so the 432 * race between the skb_dequeue and the next check for audit_pid 433 * doesn't matter. 434 * 435 * If you ever find kauditd to be too slow we can get a perf win 436 * by doing our own locking and keeping better track if there 437 * are messages in this queue. I don't see the need now, but 438 * in 5 years when I want to play with this again I'll see this 439 * note and still have no friggin idea what i'm thinking today. 440 */ 441 static void flush_hold_queue(void) 442 { 443 struct sk_buff *skb; 444 445 if (!audit_default || !audit_pid) 446 return; 447 448 skb = skb_dequeue(&audit_skb_hold_queue); 449 if (likely(!skb)) 450 return; 451 452 while (skb && audit_pid) { 453 kauditd_send_skb(skb); 454 skb = skb_dequeue(&audit_skb_hold_queue); 455 } 456 457 /* 458 * if auditd just disappeared but we 459 * dequeued an skb we need to drop ref 460 */ 461 if (skb) 462 consume_skb(skb); 463 } 464 465 static int kauditd_thread(void *dummy) 466 { 467 set_freezable(); 468 while (!kthread_should_stop()) { 469 struct sk_buff *skb; 470 DECLARE_WAITQUEUE(wait, current); 471 472 flush_hold_queue(); 473 474 skb = skb_dequeue(&audit_skb_queue); 475 476 if (skb) { 477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 478 wake_up(&audit_backlog_wait); 479 if (audit_pid) 480 kauditd_send_skb(skb); 481 else 482 audit_printk_skb(skb); 483 continue; 484 } 485 set_current_state(TASK_INTERRUPTIBLE); 486 add_wait_queue(&kauditd_wait, &wait); 487 488 if (!skb_queue_len(&audit_skb_queue)) { 489 try_to_freeze(); 490 schedule(); 491 } 492 493 __set_current_state(TASK_RUNNING); 494 remove_wait_queue(&kauditd_wait, &wait); 495 } 496 return 0; 497 } 498 499 int audit_send_list(void *_dest) 500 { 501 struct audit_netlink_list *dest = _dest; 502 struct sk_buff *skb; 503 struct net *net = get_net_ns_by_pid(dest->pid); 504 struct audit_net *aunet = net_generic(net, audit_net_id); 505 506 /* wait for parent to finish and send an ACK */ 507 mutex_lock(&audit_cmd_mutex); 508 mutex_unlock(&audit_cmd_mutex); 509 510 while ((skb = __skb_dequeue(&dest->q)) != NULL) 511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 512 513 kfree(dest); 514 515 return 0; 516 } 517 518 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 519 int multi, const void *payload, int size) 520 { 521 struct sk_buff *skb; 522 struct nlmsghdr *nlh; 523 void *data; 524 int flags = multi ? NLM_F_MULTI : 0; 525 int t = done ? NLMSG_DONE : type; 526 527 skb = nlmsg_new(size, GFP_KERNEL); 528 if (!skb) 529 return NULL; 530 531 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 532 if (!nlh) 533 goto out_kfree_skb; 534 data = nlmsg_data(nlh); 535 memcpy(data, payload, size); 536 return skb; 537 538 out_kfree_skb: 539 kfree_skb(skb); 540 return NULL; 541 } 542 543 static int audit_send_reply_thread(void *arg) 544 { 545 struct audit_reply *reply = (struct audit_reply *)arg; 546 struct net *net = get_net_ns_by_pid(reply->pid); 547 struct audit_net *aunet = net_generic(net, audit_net_id); 548 549 mutex_lock(&audit_cmd_mutex); 550 mutex_unlock(&audit_cmd_mutex); 551 552 /* Ignore failure. It'll only happen if the sender goes away, 553 because our timeout is set to infinite. */ 554 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 555 kfree(reply); 556 return 0; 557 } 558 /** 559 * audit_send_reply - send an audit reply message via netlink 560 * @portid: netlink port to which to send reply 561 * @seq: sequence number 562 * @type: audit message type 563 * @done: done (last) flag 564 * @multi: multi-part message flag 565 * @payload: payload data 566 * @size: payload size 567 * 568 * Allocates an skb, builds the netlink message, and sends it to the port id. 569 * No failure notifications. 570 */ 571 static void audit_send_reply(__u32 portid, int seq, int type, int done, 572 int multi, const void *payload, int size) 573 { 574 struct sk_buff *skb; 575 struct task_struct *tsk; 576 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 577 GFP_KERNEL); 578 579 if (!reply) 580 return; 581 582 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 583 if (!skb) 584 goto out; 585 586 reply->portid = portid; 587 reply->pid = task_pid_vnr(current); 588 reply->skb = skb; 589 590 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 591 if (!IS_ERR(tsk)) 592 return; 593 kfree_skb(skb); 594 out: 595 kfree(reply); 596 } 597 598 /* 599 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 600 * control messages. 601 */ 602 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 603 { 604 int err = 0; 605 606 /* Only support the initial namespaces for now. */ 607 if ((current_user_ns() != &init_user_ns) || 608 (task_active_pid_ns(current) != &init_pid_ns)) 609 return -EPERM; 610 611 switch (msg_type) { 612 case AUDIT_LIST: 613 case AUDIT_ADD: 614 case AUDIT_DEL: 615 return -EOPNOTSUPP; 616 case AUDIT_GET: 617 case AUDIT_SET: 618 case AUDIT_GET_FEATURE: 619 case AUDIT_SET_FEATURE: 620 case AUDIT_LIST_RULES: 621 case AUDIT_ADD_RULE: 622 case AUDIT_DEL_RULE: 623 case AUDIT_SIGNAL_INFO: 624 case AUDIT_TTY_GET: 625 case AUDIT_TTY_SET: 626 case AUDIT_TRIM: 627 case AUDIT_MAKE_EQUIV: 628 if (!capable(CAP_AUDIT_CONTROL)) 629 err = -EPERM; 630 break; 631 case AUDIT_USER: 632 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 633 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 634 if (!capable(CAP_AUDIT_WRITE)) 635 err = -EPERM; 636 break; 637 default: /* bad msg */ 638 err = -EINVAL; 639 } 640 641 return err; 642 } 643 644 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 645 { 646 int rc = 0; 647 uid_t uid = from_kuid(&init_user_ns, current_uid()); 648 649 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 650 *ab = NULL; 651 return rc; 652 } 653 654 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 655 if (unlikely(!*ab)) 656 return rc; 657 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid); 658 audit_log_session_info(*ab); 659 audit_log_task_context(*ab); 660 661 return rc; 662 } 663 664 int is_audit_feature_set(int i) 665 { 666 return af.features & AUDIT_FEATURE_TO_MASK(i); 667 } 668 669 670 static int audit_get_feature(struct sk_buff *skb) 671 { 672 u32 seq; 673 674 seq = nlmsg_hdr(skb)->nlmsg_seq; 675 676 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0, 677 &af, sizeof(af)); 678 679 return 0; 680 } 681 682 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 683 u32 old_lock, u32 new_lock, int res) 684 { 685 struct audit_buffer *ab; 686 687 if (audit_enabled == AUDIT_OFF) 688 return; 689 690 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 691 audit_log_task_info(ab, current); 692 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 693 audit_feature_names[which], !!old_feature, !!new_feature, 694 !!old_lock, !!new_lock, res); 695 audit_log_end(ab); 696 } 697 698 static int audit_set_feature(struct sk_buff *skb) 699 { 700 struct audit_features *uaf; 701 int i; 702 703 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0])); 704 uaf = nlmsg_data(nlmsg_hdr(skb)); 705 706 /* if there is ever a version 2 we should handle that here */ 707 708 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 709 u32 feature = AUDIT_FEATURE_TO_MASK(i); 710 u32 old_feature, new_feature, old_lock, new_lock; 711 712 /* if we are not changing this feature, move along */ 713 if (!(feature & uaf->mask)) 714 continue; 715 716 old_feature = af.features & feature; 717 new_feature = uaf->features & feature; 718 new_lock = (uaf->lock | af.lock) & feature; 719 old_lock = af.lock & feature; 720 721 /* are we changing a locked feature? */ 722 if (old_lock && (new_feature != old_feature)) { 723 audit_log_feature_change(i, old_feature, new_feature, 724 old_lock, new_lock, 0); 725 return -EPERM; 726 } 727 } 728 /* nothing invalid, do the changes */ 729 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 730 u32 feature = AUDIT_FEATURE_TO_MASK(i); 731 u32 old_feature, new_feature, old_lock, new_lock; 732 733 /* if we are not changing this feature, move along */ 734 if (!(feature & uaf->mask)) 735 continue; 736 737 old_feature = af.features & feature; 738 new_feature = uaf->features & feature; 739 old_lock = af.lock & feature; 740 new_lock = (uaf->lock | af.lock) & feature; 741 742 if (new_feature != old_feature) 743 audit_log_feature_change(i, old_feature, new_feature, 744 old_lock, new_lock, 1); 745 746 if (new_feature) 747 af.features |= feature; 748 else 749 af.features &= ~feature; 750 af.lock |= new_lock; 751 } 752 753 return 0; 754 } 755 756 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 757 { 758 u32 seq; 759 void *data; 760 int err; 761 struct audit_buffer *ab; 762 u16 msg_type = nlh->nlmsg_type; 763 struct audit_sig_info *sig_data; 764 char *ctx = NULL; 765 u32 len; 766 767 err = audit_netlink_ok(skb, msg_type); 768 if (err) 769 return err; 770 771 /* As soon as there's any sign of userspace auditd, 772 * start kauditd to talk to it */ 773 if (!kauditd_task) { 774 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 775 if (IS_ERR(kauditd_task)) { 776 err = PTR_ERR(kauditd_task); 777 kauditd_task = NULL; 778 return err; 779 } 780 } 781 seq = nlh->nlmsg_seq; 782 data = nlmsg_data(nlh); 783 784 switch (msg_type) { 785 case AUDIT_GET: { 786 struct audit_status s; 787 memset(&s, 0, sizeof(s)); 788 s.enabled = audit_enabled; 789 s.failure = audit_failure; 790 s.pid = audit_pid; 791 s.rate_limit = audit_rate_limit; 792 s.backlog_limit = audit_backlog_limit; 793 s.lost = atomic_read(&audit_lost); 794 s.backlog = skb_queue_len(&audit_skb_queue); 795 s.version = AUDIT_VERSION_LATEST; 796 s.backlog_wait_time = audit_backlog_wait_time; 797 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0, 798 &s, sizeof(s)); 799 break; 800 } 801 case AUDIT_SET: { 802 struct audit_status s; 803 memset(&s, 0, sizeof(s)); 804 /* guard against past and future API changes */ 805 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 806 if (s.mask & AUDIT_STATUS_ENABLED) { 807 err = audit_set_enabled(s.enabled); 808 if (err < 0) 809 return err; 810 } 811 if (s.mask & AUDIT_STATUS_FAILURE) { 812 err = audit_set_failure(s.failure); 813 if (err < 0) 814 return err; 815 } 816 if (s.mask & AUDIT_STATUS_PID) { 817 int new_pid = s.pid; 818 819 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 820 return -EACCES; 821 if (audit_enabled != AUDIT_OFF) 822 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 823 audit_pid = new_pid; 824 audit_nlk_portid = NETLINK_CB(skb).portid; 825 audit_sock = skb->sk; 826 } 827 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 828 err = audit_set_rate_limit(s.rate_limit); 829 if (err < 0) 830 return err; 831 } 832 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 833 err = audit_set_backlog_limit(s.backlog_limit); 834 if (err < 0) 835 return err; 836 } 837 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 838 if (sizeof(s) > (size_t)nlh->nlmsg_len) 839 return -EINVAL; 840 if (s.backlog_wait_time < 0 || 841 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 842 return -EINVAL; 843 err = audit_set_backlog_wait_time(s.backlog_wait_time); 844 if (err < 0) 845 return err; 846 } 847 break; 848 } 849 case AUDIT_GET_FEATURE: 850 err = audit_get_feature(skb); 851 if (err) 852 return err; 853 break; 854 case AUDIT_SET_FEATURE: 855 err = audit_set_feature(skb); 856 if (err) 857 return err; 858 break; 859 case AUDIT_USER: 860 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 861 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 862 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 863 return 0; 864 865 err = audit_filter_user(msg_type); 866 if (err == 1) { /* match or error */ 867 err = 0; 868 if (msg_type == AUDIT_USER_TTY) { 869 err = tty_audit_push_current(); 870 if (err) 871 break; 872 } 873 mutex_unlock(&audit_cmd_mutex); 874 audit_log_common_recv_msg(&ab, msg_type); 875 if (msg_type != AUDIT_USER_TTY) 876 audit_log_format(ab, " msg='%.*s'", 877 AUDIT_MESSAGE_TEXT_MAX, 878 (char *)data); 879 else { 880 int size; 881 882 audit_log_format(ab, " data="); 883 size = nlmsg_len(nlh); 884 if (size > 0 && 885 ((unsigned char *)data)[size - 1] == '\0') 886 size--; 887 audit_log_n_untrustedstring(ab, data, size); 888 } 889 audit_set_portid(ab, NETLINK_CB(skb).portid); 890 audit_log_end(ab); 891 mutex_lock(&audit_cmd_mutex); 892 } 893 break; 894 case AUDIT_ADD_RULE: 895 case AUDIT_DEL_RULE: 896 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 897 return -EINVAL; 898 if (audit_enabled == AUDIT_LOCKED) { 899 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 900 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 901 audit_log_end(ab); 902 return -EPERM; 903 } 904 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 905 seq, data, nlmsg_len(nlh)); 906 break; 907 case AUDIT_LIST_RULES: 908 err = audit_list_rules_send(NETLINK_CB(skb).portid, seq); 909 break; 910 case AUDIT_TRIM: 911 audit_trim_trees(); 912 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 913 audit_log_format(ab, " op=trim res=1"); 914 audit_log_end(ab); 915 break; 916 case AUDIT_MAKE_EQUIV: { 917 void *bufp = data; 918 u32 sizes[2]; 919 size_t msglen = nlmsg_len(nlh); 920 char *old, *new; 921 922 err = -EINVAL; 923 if (msglen < 2 * sizeof(u32)) 924 break; 925 memcpy(sizes, bufp, 2 * sizeof(u32)); 926 bufp += 2 * sizeof(u32); 927 msglen -= 2 * sizeof(u32); 928 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 929 if (IS_ERR(old)) { 930 err = PTR_ERR(old); 931 break; 932 } 933 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 934 if (IS_ERR(new)) { 935 err = PTR_ERR(new); 936 kfree(old); 937 break; 938 } 939 /* OK, here comes... */ 940 err = audit_tag_tree(old, new); 941 942 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 943 944 audit_log_format(ab, " op=make_equiv old="); 945 audit_log_untrustedstring(ab, old); 946 audit_log_format(ab, " new="); 947 audit_log_untrustedstring(ab, new); 948 audit_log_format(ab, " res=%d", !err); 949 audit_log_end(ab); 950 kfree(old); 951 kfree(new); 952 break; 953 } 954 case AUDIT_SIGNAL_INFO: 955 len = 0; 956 if (audit_sig_sid) { 957 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 958 if (err) 959 return err; 960 } 961 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 962 if (!sig_data) { 963 if (audit_sig_sid) 964 security_release_secctx(ctx, len); 965 return -ENOMEM; 966 } 967 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 968 sig_data->pid = audit_sig_pid; 969 if (audit_sig_sid) { 970 memcpy(sig_data->ctx, ctx, len); 971 security_release_secctx(ctx, len); 972 } 973 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO, 974 0, 0, sig_data, sizeof(*sig_data) + len); 975 kfree(sig_data); 976 break; 977 case AUDIT_TTY_GET: { 978 struct audit_tty_status s; 979 struct task_struct *tsk = current; 980 981 spin_lock(&tsk->sighand->siglock); 982 s.enabled = tsk->signal->audit_tty; 983 s.log_passwd = tsk->signal->audit_tty_log_passwd; 984 spin_unlock(&tsk->sighand->siglock); 985 986 audit_send_reply(NETLINK_CB(skb).portid, seq, 987 AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 988 break; 989 } 990 case AUDIT_TTY_SET: { 991 struct audit_tty_status s, old; 992 struct task_struct *tsk = current; 993 struct audit_buffer *ab; 994 995 memset(&s, 0, sizeof(s)); 996 /* guard against past and future API changes */ 997 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 998 /* check if new data is valid */ 999 if ((s.enabled != 0 && s.enabled != 1) || 1000 (s.log_passwd != 0 && s.log_passwd != 1)) 1001 err = -EINVAL; 1002 1003 spin_lock(&tsk->sighand->siglock); 1004 old.enabled = tsk->signal->audit_tty; 1005 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1006 if (!err) { 1007 tsk->signal->audit_tty = s.enabled; 1008 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1009 } 1010 spin_unlock(&tsk->sighand->siglock); 1011 1012 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1013 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1014 " old-log_passwd=%d new-log_passwd=%d res=%d", 1015 old.enabled, s.enabled, old.log_passwd, 1016 s.log_passwd, !err); 1017 audit_log_end(ab); 1018 break; 1019 } 1020 default: 1021 err = -EINVAL; 1022 break; 1023 } 1024 1025 return err < 0 ? err : 0; 1026 } 1027 1028 /* 1029 * Get message from skb. Each message is processed by audit_receive_msg. 1030 * Malformed skbs with wrong length are discarded silently. 1031 */ 1032 static void audit_receive_skb(struct sk_buff *skb) 1033 { 1034 struct nlmsghdr *nlh; 1035 /* 1036 * len MUST be signed for nlmsg_next to be able to dec it below 0 1037 * if the nlmsg_len was not aligned 1038 */ 1039 int len; 1040 int err; 1041 1042 nlh = nlmsg_hdr(skb); 1043 len = skb->len; 1044 1045 while (nlmsg_ok(nlh, len)) { 1046 err = audit_receive_msg(skb, nlh); 1047 /* if err or if this message says it wants a response */ 1048 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1049 netlink_ack(skb, nlh, err); 1050 1051 nlh = nlmsg_next(nlh, &len); 1052 } 1053 } 1054 1055 /* Receive messages from netlink socket. */ 1056 static void audit_receive(struct sk_buff *skb) 1057 { 1058 mutex_lock(&audit_cmd_mutex); 1059 audit_receive_skb(skb); 1060 mutex_unlock(&audit_cmd_mutex); 1061 } 1062 1063 static int __net_init audit_net_init(struct net *net) 1064 { 1065 struct netlink_kernel_cfg cfg = { 1066 .input = audit_receive, 1067 }; 1068 1069 struct audit_net *aunet = net_generic(net, audit_net_id); 1070 1071 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1072 if (aunet->nlsk == NULL) { 1073 audit_panic("cannot initialize netlink socket in namespace"); 1074 return -ENOMEM; 1075 } 1076 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1077 return 0; 1078 } 1079 1080 static void __net_exit audit_net_exit(struct net *net) 1081 { 1082 struct audit_net *aunet = net_generic(net, audit_net_id); 1083 struct sock *sock = aunet->nlsk; 1084 if (sock == audit_sock) { 1085 audit_pid = 0; 1086 audit_sock = NULL; 1087 } 1088 1089 rcu_assign_pointer(aunet->nlsk, NULL); 1090 synchronize_net(); 1091 netlink_kernel_release(sock); 1092 } 1093 1094 static struct pernet_operations audit_net_ops __net_initdata = { 1095 .init = audit_net_init, 1096 .exit = audit_net_exit, 1097 .id = &audit_net_id, 1098 .size = sizeof(struct audit_net), 1099 }; 1100 1101 /* Initialize audit support at boot time. */ 1102 static int __init audit_init(void) 1103 { 1104 int i; 1105 1106 if (audit_initialized == AUDIT_DISABLED) 1107 return 0; 1108 1109 pr_info("initializing netlink subsys (%s)\n", 1110 audit_default ? "enabled" : "disabled"); 1111 register_pernet_subsys(&audit_net_ops); 1112 1113 skb_queue_head_init(&audit_skb_queue); 1114 skb_queue_head_init(&audit_skb_hold_queue); 1115 audit_initialized = AUDIT_INITIALIZED; 1116 audit_enabled = audit_default; 1117 audit_ever_enabled |= !!audit_default; 1118 1119 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1120 1121 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1122 INIT_LIST_HEAD(&audit_inode_hash[i]); 1123 1124 return 0; 1125 } 1126 __initcall(audit_init); 1127 1128 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1129 static int __init audit_enable(char *str) 1130 { 1131 audit_default = !!simple_strtol(str, NULL, 0); 1132 if (!audit_default) 1133 audit_initialized = AUDIT_DISABLED; 1134 1135 pr_info("%s\n", audit_default ? 1136 "enabled (after initialization)" : "disabled (until reboot)"); 1137 1138 return 1; 1139 } 1140 __setup("audit=", audit_enable); 1141 1142 /* Process kernel command-line parameter at boot time. 1143 * audit_backlog_limit=<n> */ 1144 static int __init audit_backlog_limit_set(char *str) 1145 { 1146 u32 audit_backlog_limit_arg; 1147 1148 pr_info("audit_backlog_limit: "); 1149 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1150 pr_cont("using default of %u, unable to parse %s\n", 1151 audit_backlog_limit, str); 1152 return 1; 1153 } 1154 1155 audit_backlog_limit = audit_backlog_limit_arg; 1156 pr_cont("%d\n", audit_backlog_limit); 1157 1158 return 1; 1159 } 1160 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1161 1162 static void audit_buffer_free(struct audit_buffer *ab) 1163 { 1164 unsigned long flags; 1165 1166 if (!ab) 1167 return; 1168 1169 if (ab->skb) 1170 kfree_skb(ab->skb); 1171 1172 spin_lock_irqsave(&audit_freelist_lock, flags); 1173 if (audit_freelist_count > AUDIT_MAXFREE) 1174 kfree(ab); 1175 else { 1176 audit_freelist_count++; 1177 list_add(&ab->list, &audit_freelist); 1178 } 1179 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1180 } 1181 1182 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1183 gfp_t gfp_mask, int type) 1184 { 1185 unsigned long flags; 1186 struct audit_buffer *ab = NULL; 1187 struct nlmsghdr *nlh; 1188 1189 spin_lock_irqsave(&audit_freelist_lock, flags); 1190 if (!list_empty(&audit_freelist)) { 1191 ab = list_entry(audit_freelist.next, 1192 struct audit_buffer, list); 1193 list_del(&ab->list); 1194 --audit_freelist_count; 1195 } 1196 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1197 1198 if (!ab) { 1199 ab = kmalloc(sizeof(*ab), gfp_mask); 1200 if (!ab) 1201 goto err; 1202 } 1203 1204 ab->ctx = ctx; 1205 ab->gfp_mask = gfp_mask; 1206 1207 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1208 if (!ab->skb) 1209 goto err; 1210 1211 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1212 if (!nlh) 1213 goto out_kfree_skb; 1214 1215 return ab; 1216 1217 out_kfree_skb: 1218 kfree_skb(ab->skb); 1219 ab->skb = NULL; 1220 err: 1221 audit_buffer_free(ab); 1222 return NULL; 1223 } 1224 1225 /** 1226 * audit_serial - compute a serial number for the audit record 1227 * 1228 * Compute a serial number for the audit record. Audit records are 1229 * written to user-space as soon as they are generated, so a complete 1230 * audit record may be written in several pieces. The timestamp of the 1231 * record and this serial number are used by the user-space tools to 1232 * determine which pieces belong to the same audit record. The 1233 * (timestamp,serial) tuple is unique for each syscall and is live from 1234 * syscall entry to syscall exit. 1235 * 1236 * NOTE: Another possibility is to store the formatted records off the 1237 * audit context (for those records that have a context), and emit them 1238 * all at syscall exit. However, this could delay the reporting of 1239 * significant errors until syscall exit (or never, if the system 1240 * halts). 1241 */ 1242 unsigned int audit_serial(void) 1243 { 1244 static DEFINE_SPINLOCK(serial_lock); 1245 static unsigned int serial = 0; 1246 1247 unsigned long flags; 1248 unsigned int ret; 1249 1250 spin_lock_irqsave(&serial_lock, flags); 1251 do { 1252 ret = ++serial; 1253 } while (unlikely(!ret)); 1254 spin_unlock_irqrestore(&serial_lock, flags); 1255 1256 return ret; 1257 } 1258 1259 static inline void audit_get_stamp(struct audit_context *ctx, 1260 struct timespec *t, unsigned int *serial) 1261 { 1262 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1263 *t = CURRENT_TIME; 1264 *serial = audit_serial(); 1265 } 1266 } 1267 1268 /* 1269 * Wait for auditd to drain the queue a little 1270 */ 1271 static long wait_for_auditd(long sleep_time) 1272 { 1273 DECLARE_WAITQUEUE(wait, current); 1274 set_current_state(TASK_UNINTERRUPTIBLE); 1275 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1276 1277 if (audit_backlog_limit && 1278 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1279 sleep_time = schedule_timeout(sleep_time); 1280 1281 __set_current_state(TASK_RUNNING); 1282 remove_wait_queue(&audit_backlog_wait, &wait); 1283 1284 return sleep_time; 1285 } 1286 1287 /** 1288 * audit_log_start - obtain an audit buffer 1289 * @ctx: audit_context (may be NULL) 1290 * @gfp_mask: type of allocation 1291 * @type: audit message type 1292 * 1293 * Returns audit_buffer pointer on success or NULL on error. 1294 * 1295 * Obtain an audit buffer. This routine does locking to obtain the 1296 * audit buffer, but then no locking is required for calls to 1297 * audit_log_*format. If the task (ctx) is a task that is currently in a 1298 * syscall, then the syscall is marked as auditable and an audit record 1299 * will be written at syscall exit. If there is no associated task, then 1300 * task context (ctx) should be NULL. 1301 */ 1302 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1303 int type) 1304 { 1305 struct audit_buffer *ab = NULL; 1306 struct timespec t; 1307 unsigned int uninitialized_var(serial); 1308 int reserve = 5; /* Allow atomic callers to go up to five 1309 entries over the normal backlog limit */ 1310 unsigned long timeout_start = jiffies; 1311 1312 if (audit_initialized != AUDIT_INITIALIZED) 1313 return NULL; 1314 1315 if (unlikely(audit_filter_type(type))) 1316 return NULL; 1317 1318 if (gfp_mask & __GFP_WAIT) { 1319 if (audit_pid && audit_pid == current->pid) 1320 gfp_mask &= ~__GFP_WAIT; 1321 else 1322 reserve = 0; 1323 } 1324 1325 while (audit_backlog_limit 1326 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1327 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1328 long sleep_time; 1329 1330 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1331 if (sleep_time > 0) { 1332 sleep_time = wait_for_auditd(sleep_time); 1333 if (sleep_time > 0) 1334 continue; 1335 } 1336 } 1337 if (audit_rate_check() && printk_ratelimit()) 1338 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1339 skb_queue_len(&audit_skb_queue), 1340 audit_backlog_limit); 1341 audit_log_lost("backlog limit exceeded"); 1342 audit_backlog_wait_time = audit_backlog_wait_overflow; 1343 wake_up(&audit_backlog_wait); 1344 return NULL; 1345 } 1346 1347 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 1348 1349 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1350 if (!ab) { 1351 audit_log_lost("out of memory in audit_log_start"); 1352 return NULL; 1353 } 1354 1355 audit_get_stamp(ab->ctx, &t, &serial); 1356 1357 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1358 t.tv_sec, t.tv_nsec/1000000, serial); 1359 return ab; 1360 } 1361 1362 /** 1363 * audit_expand - expand skb in the audit buffer 1364 * @ab: audit_buffer 1365 * @extra: space to add at tail of the skb 1366 * 1367 * Returns 0 (no space) on failed expansion, or available space if 1368 * successful. 1369 */ 1370 static inline int audit_expand(struct audit_buffer *ab, int extra) 1371 { 1372 struct sk_buff *skb = ab->skb; 1373 int oldtail = skb_tailroom(skb); 1374 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1375 int newtail = skb_tailroom(skb); 1376 1377 if (ret < 0) { 1378 audit_log_lost("out of memory in audit_expand"); 1379 return 0; 1380 } 1381 1382 skb->truesize += newtail - oldtail; 1383 return newtail; 1384 } 1385 1386 /* 1387 * Format an audit message into the audit buffer. If there isn't enough 1388 * room in the audit buffer, more room will be allocated and vsnprint 1389 * will be called a second time. Currently, we assume that a printk 1390 * can't format message larger than 1024 bytes, so we don't either. 1391 */ 1392 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1393 va_list args) 1394 { 1395 int len, avail; 1396 struct sk_buff *skb; 1397 va_list args2; 1398 1399 if (!ab) 1400 return; 1401 1402 BUG_ON(!ab->skb); 1403 skb = ab->skb; 1404 avail = skb_tailroom(skb); 1405 if (avail == 0) { 1406 avail = audit_expand(ab, AUDIT_BUFSIZ); 1407 if (!avail) 1408 goto out; 1409 } 1410 va_copy(args2, args); 1411 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1412 if (len >= avail) { 1413 /* The printk buffer is 1024 bytes long, so if we get 1414 * here and AUDIT_BUFSIZ is at least 1024, then we can 1415 * log everything that printk could have logged. */ 1416 avail = audit_expand(ab, 1417 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1418 if (!avail) 1419 goto out_va_end; 1420 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1421 } 1422 if (len > 0) 1423 skb_put(skb, len); 1424 out_va_end: 1425 va_end(args2); 1426 out: 1427 return; 1428 } 1429 1430 /** 1431 * audit_log_format - format a message into the audit buffer. 1432 * @ab: audit_buffer 1433 * @fmt: format string 1434 * @...: optional parameters matching @fmt string 1435 * 1436 * All the work is done in audit_log_vformat. 1437 */ 1438 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1439 { 1440 va_list args; 1441 1442 if (!ab) 1443 return; 1444 va_start(args, fmt); 1445 audit_log_vformat(ab, fmt, args); 1446 va_end(args); 1447 } 1448 1449 /** 1450 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1451 * @ab: the audit_buffer 1452 * @buf: buffer to convert to hex 1453 * @len: length of @buf to be converted 1454 * 1455 * No return value; failure to expand is silently ignored. 1456 * 1457 * This function will take the passed buf and convert it into a string of 1458 * ascii hex digits. The new string is placed onto the skb. 1459 */ 1460 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1461 size_t len) 1462 { 1463 int i, avail, new_len; 1464 unsigned char *ptr; 1465 struct sk_buff *skb; 1466 1467 if (!ab) 1468 return; 1469 1470 BUG_ON(!ab->skb); 1471 skb = ab->skb; 1472 avail = skb_tailroom(skb); 1473 new_len = len<<1; 1474 if (new_len >= avail) { 1475 /* Round the buffer request up to the next multiple */ 1476 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1477 avail = audit_expand(ab, new_len); 1478 if (!avail) 1479 return; 1480 } 1481 1482 ptr = skb_tail_pointer(skb); 1483 for (i = 0; i < len; i++) 1484 ptr = hex_byte_pack_upper(ptr, buf[i]); 1485 *ptr = 0; 1486 skb_put(skb, len << 1); /* new string is twice the old string */ 1487 } 1488 1489 /* 1490 * Format a string of no more than slen characters into the audit buffer, 1491 * enclosed in quote marks. 1492 */ 1493 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1494 size_t slen) 1495 { 1496 int avail, new_len; 1497 unsigned char *ptr; 1498 struct sk_buff *skb; 1499 1500 if (!ab) 1501 return; 1502 1503 BUG_ON(!ab->skb); 1504 skb = ab->skb; 1505 avail = skb_tailroom(skb); 1506 new_len = slen + 3; /* enclosing quotes + null terminator */ 1507 if (new_len > avail) { 1508 avail = audit_expand(ab, new_len); 1509 if (!avail) 1510 return; 1511 } 1512 ptr = skb_tail_pointer(skb); 1513 *ptr++ = '"'; 1514 memcpy(ptr, string, slen); 1515 ptr += slen; 1516 *ptr++ = '"'; 1517 *ptr = 0; 1518 skb_put(skb, slen + 2); /* don't include null terminator */ 1519 } 1520 1521 /** 1522 * audit_string_contains_control - does a string need to be logged in hex 1523 * @string: string to be checked 1524 * @len: max length of the string to check 1525 */ 1526 int audit_string_contains_control(const char *string, size_t len) 1527 { 1528 const unsigned char *p; 1529 for (p = string; p < (const unsigned char *)string + len; p++) { 1530 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1531 return 1; 1532 } 1533 return 0; 1534 } 1535 1536 /** 1537 * audit_log_n_untrustedstring - log a string that may contain random characters 1538 * @ab: audit_buffer 1539 * @len: length of string (not including trailing null) 1540 * @string: string to be logged 1541 * 1542 * This code will escape a string that is passed to it if the string 1543 * contains a control character, unprintable character, double quote mark, 1544 * or a space. Unescaped strings will start and end with a double quote mark. 1545 * Strings that are escaped are printed in hex (2 digits per char). 1546 * 1547 * The caller specifies the number of characters in the string to log, which may 1548 * or may not be the entire string. 1549 */ 1550 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1551 size_t len) 1552 { 1553 if (audit_string_contains_control(string, len)) 1554 audit_log_n_hex(ab, string, len); 1555 else 1556 audit_log_n_string(ab, string, len); 1557 } 1558 1559 /** 1560 * audit_log_untrustedstring - log a string that may contain random characters 1561 * @ab: audit_buffer 1562 * @string: string to be logged 1563 * 1564 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1565 * determine string length. 1566 */ 1567 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1568 { 1569 audit_log_n_untrustedstring(ab, string, strlen(string)); 1570 } 1571 1572 /* This is a helper-function to print the escaped d_path */ 1573 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1574 const struct path *path) 1575 { 1576 char *p, *pathname; 1577 1578 if (prefix) 1579 audit_log_format(ab, "%s", prefix); 1580 1581 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1582 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1583 if (!pathname) { 1584 audit_log_string(ab, "<no_memory>"); 1585 return; 1586 } 1587 p = d_path(path, pathname, PATH_MAX+11); 1588 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1589 /* FIXME: can we save some information here? */ 1590 audit_log_string(ab, "<too_long>"); 1591 } else 1592 audit_log_untrustedstring(ab, p); 1593 kfree(pathname); 1594 } 1595 1596 void audit_log_session_info(struct audit_buffer *ab) 1597 { 1598 unsigned int sessionid = audit_get_sessionid(current); 1599 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1600 1601 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1602 } 1603 1604 void audit_log_key(struct audit_buffer *ab, char *key) 1605 { 1606 audit_log_format(ab, " key="); 1607 if (key) 1608 audit_log_untrustedstring(ab, key); 1609 else 1610 audit_log_format(ab, "(null)"); 1611 } 1612 1613 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1614 { 1615 int i; 1616 1617 audit_log_format(ab, " %s=", prefix); 1618 CAP_FOR_EACH_U32(i) { 1619 audit_log_format(ab, "%08x", 1620 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1621 } 1622 } 1623 1624 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1625 { 1626 kernel_cap_t *perm = &name->fcap.permitted; 1627 kernel_cap_t *inh = &name->fcap.inheritable; 1628 int log = 0; 1629 1630 if (!cap_isclear(*perm)) { 1631 audit_log_cap(ab, "cap_fp", perm); 1632 log = 1; 1633 } 1634 if (!cap_isclear(*inh)) { 1635 audit_log_cap(ab, "cap_fi", inh); 1636 log = 1; 1637 } 1638 1639 if (log) 1640 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1641 name->fcap.fE, name->fcap_ver); 1642 } 1643 1644 static inline int audit_copy_fcaps(struct audit_names *name, 1645 const struct dentry *dentry) 1646 { 1647 struct cpu_vfs_cap_data caps; 1648 int rc; 1649 1650 if (!dentry) 1651 return 0; 1652 1653 rc = get_vfs_caps_from_disk(dentry, &caps); 1654 if (rc) 1655 return rc; 1656 1657 name->fcap.permitted = caps.permitted; 1658 name->fcap.inheritable = caps.inheritable; 1659 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1660 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1661 VFS_CAP_REVISION_SHIFT; 1662 1663 return 0; 1664 } 1665 1666 /* Copy inode data into an audit_names. */ 1667 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1668 const struct inode *inode) 1669 { 1670 name->ino = inode->i_ino; 1671 name->dev = inode->i_sb->s_dev; 1672 name->mode = inode->i_mode; 1673 name->uid = inode->i_uid; 1674 name->gid = inode->i_gid; 1675 name->rdev = inode->i_rdev; 1676 security_inode_getsecid(inode, &name->osid); 1677 audit_copy_fcaps(name, dentry); 1678 } 1679 1680 /** 1681 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1682 * @context: audit_context for the task 1683 * @n: audit_names structure with reportable details 1684 * @path: optional path to report instead of audit_names->name 1685 * @record_num: record number to report when handling a list of names 1686 * @call_panic: optional pointer to int that will be updated if secid fails 1687 */ 1688 void audit_log_name(struct audit_context *context, struct audit_names *n, 1689 struct path *path, int record_num, int *call_panic) 1690 { 1691 struct audit_buffer *ab; 1692 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1693 if (!ab) 1694 return; 1695 1696 audit_log_format(ab, "item=%d", record_num); 1697 1698 if (path) 1699 audit_log_d_path(ab, " name=", path); 1700 else if (n->name) { 1701 switch (n->name_len) { 1702 case AUDIT_NAME_FULL: 1703 /* log the full path */ 1704 audit_log_format(ab, " name="); 1705 audit_log_untrustedstring(ab, n->name->name); 1706 break; 1707 case 0: 1708 /* name was specified as a relative path and the 1709 * directory component is the cwd */ 1710 audit_log_d_path(ab, " name=", &context->pwd); 1711 break; 1712 default: 1713 /* log the name's directory component */ 1714 audit_log_format(ab, " name="); 1715 audit_log_n_untrustedstring(ab, n->name->name, 1716 n->name_len); 1717 } 1718 } else 1719 audit_log_format(ab, " name=(null)"); 1720 1721 if (n->ino != (unsigned long)-1) { 1722 audit_log_format(ab, " inode=%lu" 1723 " dev=%02x:%02x mode=%#ho" 1724 " ouid=%u ogid=%u rdev=%02x:%02x", 1725 n->ino, 1726 MAJOR(n->dev), 1727 MINOR(n->dev), 1728 n->mode, 1729 from_kuid(&init_user_ns, n->uid), 1730 from_kgid(&init_user_ns, n->gid), 1731 MAJOR(n->rdev), 1732 MINOR(n->rdev)); 1733 } 1734 if (n->osid != 0) { 1735 char *ctx = NULL; 1736 u32 len; 1737 if (security_secid_to_secctx( 1738 n->osid, &ctx, &len)) { 1739 audit_log_format(ab, " osid=%u", n->osid); 1740 if (call_panic) 1741 *call_panic = 2; 1742 } else { 1743 audit_log_format(ab, " obj=%s", ctx); 1744 security_release_secctx(ctx, len); 1745 } 1746 } 1747 1748 /* log the audit_names record type */ 1749 audit_log_format(ab, " nametype="); 1750 switch(n->type) { 1751 case AUDIT_TYPE_NORMAL: 1752 audit_log_format(ab, "NORMAL"); 1753 break; 1754 case AUDIT_TYPE_PARENT: 1755 audit_log_format(ab, "PARENT"); 1756 break; 1757 case AUDIT_TYPE_CHILD_DELETE: 1758 audit_log_format(ab, "DELETE"); 1759 break; 1760 case AUDIT_TYPE_CHILD_CREATE: 1761 audit_log_format(ab, "CREATE"); 1762 break; 1763 default: 1764 audit_log_format(ab, "UNKNOWN"); 1765 break; 1766 } 1767 1768 audit_log_fcaps(ab, n); 1769 audit_log_end(ab); 1770 } 1771 1772 int audit_log_task_context(struct audit_buffer *ab) 1773 { 1774 char *ctx = NULL; 1775 unsigned len; 1776 int error; 1777 u32 sid; 1778 1779 security_task_getsecid(current, &sid); 1780 if (!sid) 1781 return 0; 1782 1783 error = security_secid_to_secctx(sid, &ctx, &len); 1784 if (error) { 1785 if (error != -EINVAL) 1786 goto error_path; 1787 return 0; 1788 } 1789 1790 audit_log_format(ab, " subj=%s", ctx); 1791 security_release_secctx(ctx, len); 1792 return 0; 1793 1794 error_path: 1795 audit_panic("error in audit_log_task_context"); 1796 return error; 1797 } 1798 EXPORT_SYMBOL(audit_log_task_context); 1799 1800 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1801 { 1802 const struct cred *cred; 1803 char name[sizeof(tsk->comm)]; 1804 struct mm_struct *mm = tsk->mm; 1805 char *tty; 1806 1807 if (!ab) 1808 return; 1809 1810 /* tsk == current */ 1811 cred = current_cred(); 1812 1813 spin_lock_irq(&tsk->sighand->siglock); 1814 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1815 tty = tsk->signal->tty->name; 1816 else 1817 tty = "(none)"; 1818 spin_unlock_irq(&tsk->sighand->siglock); 1819 1820 audit_log_format(ab, 1821 " ppid=%ld pid=%d auid=%u uid=%u gid=%u" 1822 " euid=%u suid=%u fsuid=%u" 1823 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1824 sys_getppid(), 1825 tsk->pid, 1826 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1827 from_kuid(&init_user_ns, cred->uid), 1828 from_kgid(&init_user_ns, cred->gid), 1829 from_kuid(&init_user_ns, cred->euid), 1830 from_kuid(&init_user_ns, cred->suid), 1831 from_kuid(&init_user_ns, cred->fsuid), 1832 from_kgid(&init_user_ns, cred->egid), 1833 from_kgid(&init_user_ns, cred->sgid), 1834 from_kgid(&init_user_ns, cred->fsgid), 1835 tty, audit_get_sessionid(tsk)); 1836 1837 get_task_comm(name, tsk); 1838 audit_log_format(ab, " comm="); 1839 audit_log_untrustedstring(ab, name); 1840 1841 if (mm) { 1842 down_read(&mm->mmap_sem); 1843 if (mm->exe_file) 1844 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1845 up_read(&mm->mmap_sem); 1846 } else 1847 audit_log_format(ab, " exe=(null)"); 1848 audit_log_task_context(ab); 1849 } 1850 EXPORT_SYMBOL(audit_log_task_info); 1851 1852 /** 1853 * audit_log_link_denied - report a link restriction denial 1854 * @operation: specific link opreation 1855 * @link: the path that triggered the restriction 1856 */ 1857 void audit_log_link_denied(const char *operation, struct path *link) 1858 { 1859 struct audit_buffer *ab; 1860 struct audit_names *name; 1861 1862 name = kzalloc(sizeof(*name), GFP_NOFS); 1863 if (!name) 1864 return; 1865 1866 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1867 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1868 AUDIT_ANOM_LINK); 1869 if (!ab) 1870 goto out; 1871 audit_log_format(ab, "op=%s", operation); 1872 audit_log_task_info(ab, current); 1873 audit_log_format(ab, " res=0"); 1874 audit_log_end(ab); 1875 1876 /* Generate AUDIT_PATH record with object. */ 1877 name->type = AUDIT_TYPE_NORMAL; 1878 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1879 audit_log_name(current->audit_context, name, link, 0, NULL); 1880 out: 1881 kfree(name); 1882 } 1883 1884 /** 1885 * audit_log_end - end one audit record 1886 * @ab: the audit_buffer 1887 * 1888 * The netlink_* functions cannot be called inside an irq context, so 1889 * the audit buffer is placed on a queue and a tasklet is scheduled to 1890 * remove them from the queue outside the irq context. May be called in 1891 * any context. 1892 */ 1893 void audit_log_end(struct audit_buffer *ab) 1894 { 1895 if (!ab) 1896 return; 1897 if (!audit_rate_check()) { 1898 audit_log_lost("rate limit exceeded"); 1899 } else { 1900 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1901 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN; 1902 1903 if (audit_pid) { 1904 skb_queue_tail(&audit_skb_queue, ab->skb); 1905 wake_up_interruptible(&kauditd_wait); 1906 } else { 1907 audit_printk_skb(ab->skb); 1908 } 1909 ab->skb = NULL; 1910 } 1911 audit_buffer_free(ab); 1912 } 1913 1914 /** 1915 * audit_log - Log an audit record 1916 * @ctx: audit context 1917 * @gfp_mask: type of allocation 1918 * @type: audit message type 1919 * @fmt: format string to use 1920 * @...: variable parameters matching the format string 1921 * 1922 * This is a convenience function that calls audit_log_start, 1923 * audit_log_vformat, and audit_log_end. It may be called 1924 * in any context. 1925 */ 1926 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1927 const char *fmt, ...) 1928 { 1929 struct audit_buffer *ab; 1930 va_list args; 1931 1932 ab = audit_log_start(ctx, gfp_mask, type); 1933 if (ab) { 1934 va_start(args, fmt); 1935 audit_log_vformat(ab, fmt, args); 1936 va_end(args); 1937 audit_log_end(ab); 1938 } 1939 } 1940 1941 #ifdef CONFIG_SECURITY 1942 /** 1943 * audit_log_secctx - Converts and logs SELinux context 1944 * @ab: audit_buffer 1945 * @secid: security number 1946 * 1947 * This is a helper function that calls security_secid_to_secctx to convert 1948 * secid to secctx and then adds the (converted) SELinux context to the audit 1949 * log by calling audit_log_format, thus also preventing leak of internal secid 1950 * to userspace. If secid cannot be converted audit_panic is called. 1951 */ 1952 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 1953 { 1954 u32 len; 1955 char *secctx; 1956 1957 if (security_secid_to_secctx(secid, &secctx, &len)) { 1958 audit_panic("Cannot convert secid to context"); 1959 } else { 1960 audit_log_format(ab, " obj=%s", secctx); 1961 security_release_secctx(secctx, len); 1962 } 1963 } 1964 EXPORT_SYMBOL(audit_log_secctx); 1965 #endif 1966 1967 EXPORT_SYMBOL(audit_log_start); 1968 EXPORT_SYMBOL(audit_log_end); 1969 EXPORT_SYMBOL(audit_log_format); 1970 EXPORT_SYMBOL(audit_log); 1971