1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 112 /* The identity of the user shutting down the audit system. */ 113 kuid_t audit_sig_uid = INVALID_UID; 114 pid_t audit_sig_pid = -1; 115 u32 audit_sig_sid = 0; 116 117 /* Records can be lost in several ways: 118 0) [suppressed in audit_alloc] 119 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 120 2) out of memory in audit_log_move [alloc_skb] 121 3) suppressed due to audit_rate_limit 122 4) suppressed due to audit_backlog_limit 123 */ 124 static atomic_t audit_lost = ATOMIC_INIT(0); 125 126 /* The netlink socket. */ 127 static struct sock *audit_sock; 128 static unsigned int audit_net_id; 129 130 /* Hash for inode-based rules */ 131 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 132 133 /* The audit_freelist is a list of pre-allocated audit buffers (if more 134 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 135 * being placed on the freelist). */ 136 static DEFINE_SPINLOCK(audit_freelist_lock); 137 static int audit_freelist_count; 138 static LIST_HEAD(audit_freelist); 139 140 /* queue msgs to send via kauditd_task */ 141 static struct sk_buff_head audit_queue; 142 /* queue msgs due to temporary unicast send problems */ 143 static struct sk_buff_head audit_retry_queue; 144 /* queue msgs waiting for new auditd connection */ 145 static struct sk_buff_head audit_hold_queue; 146 147 /* queue servicing thread */ 148 static struct task_struct *kauditd_task; 149 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 150 151 /* waitqueue for callers who are blocked on the audit backlog */ 152 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 153 154 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 155 .mask = -1, 156 .features = 0, 157 .lock = 0,}; 158 159 static char *audit_feature_names[2] = { 160 "only_unset_loginuid", 161 "loginuid_immutable", 162 }; 163 164 165 /* Serialize requests from userspace. */ 166 DEFINE_MUTEX(audit_cmd_mutex); 167 168 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 169 * audit records. Since printk uses a 1024 byte buffer, this buffer 170 * should be at least that large. */ 171 #define AUDIT_BUFSIZ 1024 172 173 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 174 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 175 #define AUDIT_MAXFREE (2*NR_CPUS) 176 177 /* The audit_buffer is used when formatting an audit record. The caller 178 * locks briefly to get the record off the freelist or to allocate the 179 * buffer, and locks briefly to send the buffer to the netlink layer or 180 * to place it on a transmit queue. Multiple audit_buffers can be in 181 * use simultaneously. */ 182 struct audit_buffer { 183 struct list_head list; 184 struct sk_buff *skb; /* formatted skb ready to send */ 185 struct audit_context *ctx; /* NULL or associated context */ 186 gfp_t gfp_mask; 187 }; 188 189 struct audit_reply { 190 __u32 portid; 191 struct net *net; 192 struct sk_buff *skb; 193 }; 194 195 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 196 { 197 if (ab) { 198 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 199 nlh->nlmsg_pid = portid; 200 } 201 } 202 203 void audit_panic(const char *message) 204 { 205 switch (audit_failure) { 206 case AUDIT_FAIL_SILENT: 207 break; 208 case AUDIT_FAIL_PRINTK: 209 if (printk_ratelimit()) 210 pr_err("%s\n", message); 211 break; 212 case AUDIT_FAIL_PANIC: 213 /* test audit_pid since printk is always losey, why bother? */ 214 if (audit_pid) 215 panic("audit: %s\n", message); 216 break; 217 } 218 } 219 220 static inline int audit_rate_check(void) 221 { 222 static unsigned long last_check = 0; 223 static int messages = 0; 224 static DEFINE_SPINLOCK(lock); 225 unsigned long flags; 226 unsigned long now; 227 unsigned long elapsed; 228 int retval = 0; 229 230 if (!audit_rate_limit) return 1; 231 232 spin_lock_irqsave(&lock, flags); 233 if (++messages < audit_rate_limit) { 234 retval = 1; 235 } else { 236 now = jiffies; 237 elapsed = now - last_check; 238 if (elapsed > HZ) { 239 last_check = now; 240 messages = 0; 241 retval = 1; 242 } 243 } 244 spin_unlock_irqrestore(&lock, flags); 245 246 return retval; 247 } 248 249 /** 250 * audit_log_lost - conditionally log lost audit message event 251 * @message: the message stating reason for lost audit message 252 * 253 * Emit at least 1 message per second, even if audit_rate_check is 254 * throttling. 255 * Always increment the lost messages counter. 256 */ 257 void audit_log_lost(const char *message) 258 { 259 static unsigned long last_msg = 0; 260 static DEFINE_SPINLOCK(lock); 261 unsigned long flags; 262 unsigned long now; 263 int print; 264 265 atomic_inc(&audit_lost); 266 267 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 268 269 if (!print) { 270 spin_lock_irqsave(&lock, flags); 271 now = jiffies; 272 if (now - last_msg > HZ) { 273 print = 1; 274 last_msg = now; 275 } 276 spin_unlock_irqrestore(&lock, flags); 277 } 278 279 if (print) { 280 if (printk_ratelimit()) 281 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 282 atomic_read(&audit_lost), 283 audit_rate_limit, 284 audit_backlog_limit); 285 audit_panic(message); 286 } 287 } 288 289 static int audit_log_config_change(char *function_name, u32 new, u32 old, 290 int allow_changes) 291 { 292 struct audit_buffer *ab; 293 int rc = 0; 294 295 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 296 if (unlikely(!ab)) 297 return rc; 298 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 299 audit_log_session_info(ab); 300 rc = audit_log_task_context(ab); 301 if (rc) 302 allow_changes = 0; /* Something weird, deny request */ 303 audit_log_format(ab, " res=%d", allow_changes); 304 audit_log_end(ab); 305 return rc; 306 } 307 308 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 309 { 310 int allow_changes, rc = 0; 311 u32 old = *to_change; 312 313 /* check if we are locked */ 314 if (audit_enabled == AUDIT_LOCKED) 315 allow_changes = 0; 316 else 317 allow_changes = 1; 318 319 if (audit_enabled != AUDIT_OFF) { 320 rc = audit_log_config_change(function_name, new, old, allow_changes); 321 if (rc) 322 allow_changes = 0; 323 } 324 325 /* If we are allowed, make the change */ 326 if (allow_changes == 1) 327 *to_change = new; 328 /* Not allowed, update reason */ 329 else if (rc == 0) 330 rc = -EPERM; 331 return rc; 332 } 333 334 static int audit_set_rate_limit(u32 limit) 335 { 336 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 337 } 338 339 static int audit_set_backlog_limit(u32 limit) 340 { 341 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 342 } 343 344 static int audit_set_backlog_wait_time(u32 timeout) 345 { 346 return audit_do_config_change("audit_backlog_wait_time", 347 &audit_backlog_wait_time, timeout); 348 } 349 350 static int audit_set_enabled(u32 state) 351 { 352 int rc; 353 if (state > AUDIT_LOCKED) 354 return -EINVAL; 355 356 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 357 if (!rc) 358 audit_ever_enabled |= !!state; 359 360 return rc; 361 } 362 363 static int audit_set_failure(u32 state) 364 { 365 if (state != AUDIT_FAIL_SILENT 366 && state != AUDIT_FAIL_PRINTK 367 && state != AUDIT_FAIL_PANIC) 368 return -EINVAL; 369 370 return audit_do_config_change("audit_failure", &audit_failure, state); 371 } 372 373 /* 374 * For one reason or another this nlh isn't getting delivered to the userspace 375 * audit daemon, just send it to printk. 376 */ 377 static void kauditd_printk_skb(struct sk_buff *skb) 378 { 379 struct nlmsghdr *nlh = nlmsg_hdr(skb); 380 char *data = nlmsg_data(nlh); 381 382 if (nlh->nlmsg_type != AUDIT_EOE) { 383 if (printk_ratelimit()) 384 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 385 else 386 audit_log_lost("printk limit exceeded"); 387 } 388 } 389 390 /** 391 * kauditd_hold_skb - Queue an audit record, waiting for auditd 392 * @skb: audit record 393 * 394 * Description: 395 * Queue the audit record, waiting for an instance of auditd. When this 396 * function is called we haven't given up yet on sending the record, but things 397 * are not looking good. The first thing we want to do is try to write the 398 * record via printk and then see if we want to try and hold on to the record 399 * and queue it, if we have room. If we want to hold on to the record, but we 400 * don't have room, record a record lost message. 401 */ 402 static void kauditd_hold_skb(struct sk_buff *skb) 403 { 404 /* at this point it is uncertain if we will ever send this to auditd so 405 * try to send the message via printk before we go any further */ 406 kauditd_printk_skb(skb); 407 408 /* can we just silently drop the message? */ 409 if (!audit_default) { 410 kfree_skb(skb); 411 return; 412 } 413 414 /* if we have room, queue the message */ 415 if (!audit_backlog_limit || 416 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 417 skb_queue_tail(&audit_hold_queue, skb); 418 return; 419 } 420 421 /* we have no other options - drop the message */ 422 audit_log_lost("kauditd hold queue overflow"); 423 kfree_skb(skb); 424 } 425 426 /** 427 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 428 * @skb: audit record 429 * 430 * Description: 431 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 432 * but for some reason we are having problems sending it audit records so 433 * queue the given record and attempt to resend. 434 */ 435 static void kauditd_retry_skb(struct sk_buff *skb) 436 { 437 /* NOTE: because records should only live in the retry queue for a 438 * short period of time, before either being sent or moved to the hold 439 * queue, we don't currently enforce a limit on this queue */ 440 skb_queue_tail(&audit_retry_queue, skb); 441 } 442 443 /** 444 * auditd_reset - Disconnect the auditd connection 445 * 446 * Description: 447 * Break the auditd/kauditd connection and move all the records in the retry 448 * queue into the hold queue in case auditd reconnects. The audit_cmd_mutex 449 * must be held when calling this function. 450 */ 451 static void auditd_reset(void) 452 { 453 struct sk_buff *skb; 454 455 /* break the connection */ 456 if (audit_sock) { 457 sock_put(audit_sock); 458 audit_sock = NULL; 459 } 460 audit_pid = 0; 461 audit_nlk_portid = 0; 462 463 /* flush all of the retry queue to the hold queue */ 464 while ((skb = skb_dequeue(&audit_retry_queue))) 465 kauditd_hold_skb(skb); 466 } 467 468 /** 469 * kauditd_send_unicast_skb - Send a record via unicast to auditd 470 * @skb: audit record 471 */ 472 static int kauditd_send_unicast_skb(struct sk_buff *skb) 473 { 474 int rc; 475 476 /* if we know nothing is connected, don't even try the netlink call */ 477 if (!audit_pid) 478 return -ECONNREFUSED; 479 480 /* get an extra skb reference in case we fail to send */ 481 skb_get(skb); 482 rc = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 483 if (rc >= 0) { 484 consume_skb(skb); 485 rc = 0; 486 } 487 488 return rc; 489 } 490 491 /* 492 * kauditd_send_multicast_skb - Send a record to any multicast listeners 493 * @skb: audit record 494 * 495 * Description: 496 * This function doesn't consume an skb as might be expected since it has to 497 * copy it anyways. 498 */ 499 static void kauditd_send_multicast_skb(struct sk_buff *skb) 500 { 501 struct sk_buff *copy; 502 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 503 struct sock *sock = aunet->nlsk; 504 struct nlmsghdr *nlh; 505 506 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 507 return; 508 509 /* 510 * The seemingly wasteful skb_copy() rather than bumping the refcount 511 * using skb_get() is necessary because non-standard mods are made to 512 * the skb by the original kaudit unicast socket send routine. The 513 * existing auditd daemon assumes this breakage. Fixing this would 514 * require co-ordinating a change in the established protocol between 515 * the kaudit kernel subsystem and the auditd userspace code. There is 516 * no reason for new multicast clients to continue with this 517 * non-compliance. 518 */ 519 copy = skb_copy(skb, GFP_KERNEL); 520 if (!copy) 521 return; 522 nlh = nlmsg_hdr(copy); 523 nlh->nlmsg_len = skb->len; 524 525 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 526 } 527 528 /** 529 * kauditd_wake_condition - Return true when it is time to wake kauditd_thread 530 * 531 * Description: 532 * This function is for use by the wait_event_freezable() call in 533 * kauditd_thread(). 534 */ 535 static int kauditd_wake_condition(void) 536 { 537 static int pid_last = 0; 538 int rc; 539 int pid = audit_pid; 540 541 /* wake on new messages or a change in the connected auditd */ 542 rc = skb_queue_len(&audit_queue) || (pid && pid != pid_last); 543 if (rc) 544 pid_last = pid; 545 546 return rc; 547 } 548 549 static int kauditd_thread(void *dummy) 550 { 551 int rc; 552 int auditd = 0; 553 int reschedule = 0; 554 struct sk_buff *skb; 555 struct nlmsghdr *nlh; 556 557 #define UNICAST_RETRIES 5 558 #define AUDITD_BAD(x,y) \ 559 ((x) == -ECONNREFUSED || (x) == -EPERM || ++(y) >= UNICAST_RETRIES) 560 561 /* NOTE: we do invalidate the auditd connection flag on any sending 562 * errors, but we only "restore" the connection flag at specific places 563 * in the loop in order to help ensure proper ordering of audit 564 * records */ 565 566 set_freezable(); 567 while (!kthread_should_stop()) { 568 /* NOTE: possible area for future improvement is to look at 569 * the hold and retry queues, since only this thread 570 * has access to these queues we might be able to do 571 * our own queuing and skip some/all of the locking */ 572 573 /* NOTE: it might be a fun experiment to split the hold and 574 * retry queue handling to another thread, but the 575 * synchronization issues and other overhead might kill 576 * any performance gains */ 577 578 /* attempt to flush the hold queue */ 579 while (auditd && (skb = skb_dequeue(&audit_hold_queue))) { 580 rc = kauditd_send_unicast_skb(skb); 581 if (rc) { 582 /* requeue to the same spot */ 583 skb_queue_head(&audit_hold_queue, skb); 584 585 auditd = 0; 586 if (AUDITD_BAD(rc, reschedule)) { 587 mutex_lock(&audit_cmd_mutex); 588 auditd_reset(); 589 mutex_unlock(&audit_cmd_mutex); 590 reschedule = 0; 591 } 592 } else 593 /* we were able to send successfully */ 594 reschedule = 0; 595 } 596 597 /* attempt to flush the retry queue */ 598 while (auditd && (skb = skb_dequeue(&audit_retry_queue))) { 599 rc = kauditd_send_unicast_skb(skb); 600 if (rc) { 601 auditd = 0; 602 if (AUDITD_BAD(rc, reschedule)) { 603 kauditd_hold_skb(skb); 604 mutex_lock(&audit_cmd_mutex); 605 auditd_reset(); 606 mutex_unlock(&audit_cmd_mutex); 607 reschedule = 0; 608 } else 609 /* temporary problem (we hope), queue 610 * to the same spot and retry */ 611 skb_queue_head(&audit_retry_queue, skb); 612 } else 613 /* we were able to send successfully */ 614 reschedule = 0; 615 } 616 617 /* standard queue processing, try to be as quick as possible */ 618 quick_loop: 619 skb = skb_dequeue(&audit_queue); 620 if (skb) { 621 /* setup the netlink header, see the comments in 622 * kauditd_send_multicast_skb() for length quirks */ 623 nlh = nlmsg_hdr(skb); 624 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 625 626 /* attempt to send to any multicast listeners */ 627 kauditd_send_multicast_skb(skb); 628 629 /* attempt to send to auditd, queue on failure */ 630 if (auditd) { 631 rc = kauditd_send_unicast_skb(skb); 632 if (rc) { 633 auditd = 0; 634 if (AUDITD_BAD(rc, reschedule)) { 635 mutex_lock(&audit_cmd_mutex); 636 auditd_reset(); 637 mutex_unlock(&audit_cmd_mutex); 638 reschedule = 0; 639 } 640 641 /* move to the retry queue */ 642 kauditd_retry_skb(skb); 643 } else 644 /* everything is working so go fast! */ 645 goto quick_loop; 646 } else if (reschedule) 647 /* we are currently having problems, move to 648 * the retry queue */ 649 kauditd_retry_skb(skb); 650 else 651 /* dump the message via printk and hold it */ 652 kauditd_hold_skb(skb); 653 } else { 654 /* we have flushed the backlog so wake everyone */ 655 wake_up(&audit_backlog_wait); 656 657 /* if everything is okay with auditd (if present), go 658 * to sleep until there is something new in the queue 659 * or we have a change in the connected auditd; 660 * otherwise simply reschedule to give things a chance 661 * to recover */ 662 if (reschedule) { 663 set_current_state(TASK_INTERRUPTIBLE); 664 schedule(); 665 } else 666 wait_event_freezable(kauditd_wait, 667 kauditd_wake_condition()); 668 669 /* update the auditd connection status */ 670 auditd = (audit_pid ? 1 : 0); 671 } 672 } 673 674 return 0; 675 } 676 677 int audit_send_list(void *_dest) 678 { 679 struct audit_netlink_list *dest = _dest; 680 struct sk_buff *skb; 681 struct net *net = dest->net; 682 struct audit_net *aunet = net_generic(net, audit_net_id); 683 684 /* wait for parent to finish and send an ACK */ 685 mutex_lock(&audit_cmd_mutex); 686 mutex_unlock(&audit_cmd_mutex); 687 688 while ((skb = __skb_dequeue(&dest->q)) != NULL) 689 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 690 691 put_net(net); 692 kfree(dest); 693 694 return 0; 695 } 696 697 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 698 int multi, const void *payload, int size) 699 { 700 struct sk_buff *skb; 701 struct nlmsghdr *nlh; 702 void *data; 703 int flags = multi ? NLM_F_MULTI : 0; 704 int t = done ? NLMSG_DONE : type; 705 706 skb = nlmsg_new(size, GFP_KERNEL); 707 if (!skb) 708 return NULL; 709 710 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 711 if (!nlh) 712 goto out_kfree_skb; 713 data = nlmsg_data(nlh); 714 memcpy(data, payload, size); 715 return skb; 716 717 out_kfree_skb: 718 kfree_skb(skb); 719 return NULL; 720 } 721 722 static int audit_send_reply_thread(void *arg) 723 { 724 struct audit_reply *reply = (struct audit_reply *)arg; 725 struct net *net = reply->net; 726 struct audit_net *aunet = net_generic(net, audit_net_id); 727 728 mutex_lock(&audit_cmd_mutex); 729 mutex_unlock(&audit_cmd_mutex); 730 731 /* Ignore failure. It'll only happen if the sender goes away, 732 because our timeout is set to infinite. */ 733 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 734 put_net(net); 735 kfree(reply); 736 return 0; 737 } 738 739 /** 740 * audit_send_reply - send an audit reply message via netlink 741 * @request_skb: skb of request we are replying to (used to target the reply) 742 * @seq: sequence number 743 * @type: audit message type 744 * @done: done (last) flag 745 * @multi: multi-part message flag 746 * @payload: payload data 747 * @size: payload size 748 * 749 * Allocates an skb, builds the netlink message, and sends it to the port id. 750 * No failure notifications. 751 */ 752 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 753 int multi, const void *payload, int size) 754 { 755 u32 portid = NETLINK_CB(request_skb).portid; 756 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 757 struct sk_buff *skb; 758 struct task_struct *tsk; 759 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 760 GFP_KERNEL); 761 762 if (!reply) 763 return; 764 765 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 766 if (!skb) 767 goto out; 768 769 reply->net = get_net(net); 770 reply->portid = portid; 771 reply->skb = skb; 772 773 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 774 if (!IS_ERR(tsk)) 775 return; 776 kfree_skb(skb); 777 out: 778 kfree(reply); 779 } 780 781 /* 782 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 783 * control messages. 784 */ 785 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 786 { 787 int err = 0; 788 789 /* Only support initial user namespace for now. */ 790 /* 791 * We return ECONNREFUSED because it tricks userspace into thinking 792 * that audit was not configured into the kernel. Lots of users 793 * configure their PAM stack (because that's what the distro does) 794 * to reject login if unable to send messages to audit. If we return 795 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 796 * configured in and will let login proceed. If we return EPERM 797 * userspace will reject all logins. This should be removed when we 798 * support non init namespaces!! 799 */ 800 if (current_user_ns() != &init_user_ns) 801 return -ECONNREFUSED; 802 803 switch (msg_type) { 804 case AUDIT_LIST: 805 case AUDIT_ADD: 806 case AUDIT_DEL: 807 return -EOPNOTSUPP; 808 case AUDIT_GET: 809 case AUDIT_SET: 810 case AUDIT_GET_FEATURE: 811 case AUDIT_SET_FEATURE: 812 case AUDIT_LIST_RULES: 813 case AUDIT_ADD_RULE: 814 case AUDIT_DEL_RULE: 815 case AUDIT_SIGNAL_INFO: 816 case AUDIT_TTY_GET: 817 case AUDIT_TTY_SET: 818 case AUDIT_TRIM: 819 case AUDIT_MAKE_EQUIV: 820 /* Only support auditd and auditctl in initial pid namespace 821 * for now. */ 822 if (task_active_pid_ns(current) != &init_pid_ns) 823 return -EPERM; 824 825 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 826 err = -EPERM; 827 break; 828 case AUDIT_USER: 829 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 830 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 831 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 832 err = -EPERM; 833 break; 834 default: /* bad msg */ 835 err = -EINVAL; 836 } 837 838 return err; 839 } 840 841 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 842 { 843 uid_t uid = from_kuid(&init_user_ns, current_uid()); 844 pid_t pid = task_tgid_nr(current); 845 846 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 847 *ab = NULL; 848 return; 849 } 850 851 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 852 if (unlikely(!*ab)) 853 return; 854 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 855 audit_log_session_info(*ab); 856 audit_log_task_context(*ab); 857 } 858 859 int is_audit_feature_set(int i) 860 { 861 return af.features & AUDIT_FEATURE_TO_MASK(i); 862 } 863 864 865 static int audit_get_feature(struct sk_buff *skb) 866 { 867 u32 seq; 868 869 seq = nlmsg_hdr(skb)->nlmsg_seq; 870 871 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 872 873 return 0; 874 } 875 876 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 877 u32 old_lock, u32 new_lock, int res) 878 { 879 struct audit_buffer *ab; 880 881 if (audit_enabled == AUDIT_OFF) 882 return; 883 884 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 885 audit_log_task_info(ab, current); 886 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 887 audit_feature_names[which], !!old_feature, !!new_feature, 888 !!old_lock, !!new_lock, res); 889 audit_log_end(ab); 890 } 891 892 static int audit_set_feature(struct sk_buff *skb) 893 { 894 struct audit_features *uaf; 895 int i; 896 897 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 898 uaf = nlmsg_data(nlmsg_hdr(skb)); 899 900 /* if there is ever a version 2 we should handle that here */ 901 902 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 903 u32 feature = AUDIT_FEATURE_TO_MASK(i); 904 u32 old_feature, new_feature, old_lock, new_lock; 905 906 /* if we are not changing this feature, move along */ 907 if (!(feature & uaf->mask)) 908 continue; 909 910 old_feature = af.features & feature; 911 new_feature = uaf->features & feature; 912 new_lock = (uaf->lock | af.lock) & feature; 913 old_lock = af.lock & feature; 914 915 /* are we changing a locked feature? */ 916 if (old_lock && (new_feature != old_feature)) { 917 audit_log_feature_change(i, old_feature, new_feature, 918 old_lock, new_lock, 0); 919 return -EPERM; 920 } 921 } 922 /* nothing invalid, do the changes */ 923 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 924 u32 feature = AUDIT_FEATURE_TO_MASK(i); 925 u32 old_feature, new_feature, old_lock, new_lock; 926 927 /* if we are not changing this feature, move along */ 928 if (!(feature & uaf->mask)) 929 continue; 930 931 old_feature = af.features & feature; 932 new_feature = uaf->features & feature; 933 old_lock = af.lock & feature; 934 new_lock = (uaf->lock | af.lock) & feature; 935 936 if (new_feature != old_feature) 937 audit_log_feature_change(i, old_feature, new_feature, 938 old_lock, new_lock, 1); 939 940 if (new_feature) 941 af.features |= feature; 942 else 943 af.features &= ~feature; 944 af.lock |= new_lock; 945 } 946 947 return 0; 948 } 949 950 static int audit_replace(pid_t pid) 951 { 952 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, 953 &pid, sizeof(pid)); 954 955 if (!skb) 956 return -ENOMEM; 957 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 958 } 959 960 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 961 { 962 u32 seq; 963 void *data; 964 int err; 965 struct audit_buffer *ab; 966 u16 msg_type = nlh->nlmsg_type; 967 struct audit_sig_info *sig_data; 968 char *ctx = NULL; 969 u32 len; 970 971 err = audit_netlink_ok(skb, msg_type); 972 if (err) 973 return err; 974 975 seq = nlh->nlmsg_seq; 976 data = nlmsg_data(nlh); 977 978 switch (msg_type) { 979 case AUDIT_GET: { 980 struct audit_status s; 981 memset(&s, 0, sizeof(s)); 982 s.enabled = audit_enabled; 983 s.failure = audit_failure; 984 s.pid = audit_pid; 985 s.rate_limit = audit_rate_limit; 986 s.backlog_limit = audit_backlog_limit; 987 s.lost = atomic_read(&audit_lost); 988 s.backlog = skb_queue_len(&audit_queue); 989 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 990 s.backlog_wait_time = audit_backlog_wait_time; 991 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 992 break; 993 } 994 case AUDIT_SET: { 995 struct audit_status s; 996 memset(&s, 0, sizeof(s)); 997 /* guard against past and future API changes */ 998 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 999 if (s.mask & AUDIT_STATUS_ENABLED) { 1000 err = audit_set_enabled(s.enabled); 1001 if (err < 0) 1002 return err; 1003 } 1004 if (s.mask & AUDIT_STATUS_FAILURE) { 1005 err = audit_set_failure(s.failure); 1006 if (err < 0) 1007 return err; 1008 } 1009 if (s.mask & AUDIT_STATUS_PID) { 1010 /* NOTE: we are using task_tgid_vnr() below because 1011 * the s.pid value is relative to the namespace 1012 * of the caller; at present this doesn't matter 1013 * much since you can really only run auditd 1014 * from the initial pid namespace, but something 1015 * to keep in mind if this changes */ 1016 int new_pid = s.pid; 1017 pid_t requesting_pid = task_tgid_vnr(current); 1018 1019 if ((!new_pid) && (requesting_pid != audit_pid)) { 1020 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 1021 return -EACCES; 1022 } 1023 if (audit_pid && new_pid && 1024 audit_replace(requesting_pid) != -ECONNREFUSED) { 1025 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 1026 return -EEXIST; 1027 } 1028 if (audit_enabled != AUDIT_OFF) 1029 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 1030 if (new_pid) { 1031 if (audit_sock) 1032 sock_put(audit_sock); 1033 audit_pid = new_pid; 1034 audit_nlk_portid = NETLINK_CB(skb).portid; 1035 sock_hold(skb->sk); 1036 audit_sock = skb->sk; 1037 } else { 1038 auditd_reset(); 1039 } 1040 wake_up_interruptible(&kauditd_wait); 1041 } 1042 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1043 err = audit_set_rate_limit(s.rate_limit); 1044 if (err < 0) 1045 return err; 1046 } 1047 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1048 err = audit_set_backlog_limit(s.backlog_limit); 1049 if (err < 0) 1050 return err; 1051 } 1052 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1053 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1054 return -EINVAL; 1055 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1056 return -EINVAL; 1057 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1058 if (err < 0) 1059 return err; 1060 } 1061 break; 1062 } 1063 case AUDIT_GET_FEATURE: 1064 err = audit_get_feature(skb); 1065 if (err) 1066 return err; 1067 break; 1068 case AUDIT_SET_FEATURE: 1069 err = audit_set_feature(skb); 1070 if (err) 1071 return err; 1072 break; 1073 case AUDIT_USER: 1074 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1075 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1076 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1077 return 0; 1078 1079 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1080 if (err == 1) { /* match or error */ 1081 err = 0; 1082 if (msg_type == AUDIT_USER_TTY) { 1083 err = tty_audit_push(); 1084 if (err) 1085 break; 1086 } 1087 mutex_unlock(&audit_cmd_mutex); 1088 audit_log_common_recv_msg(&ab, msg_type); 1089 if (msg_type != AUDIT_USER_TTY) 1090 audit_log_format(ab, " msg='%.*s'", 1091 AUDIT_MESSAGE_TEXT_MAX, 1092 (char *)data); 1093 else { 1094 int size; 1095 1096 audit_log_format(ab, " data="); 1097 size = nlmsg_len(nlh); 1098 if (size > 0 && 1099 ((unsigned char *)data)[size - 1] == '\0') 1100 size--; 1101 audit_log_n_untrustedstring(ab, data, size); 1102 } 1103 audit_set_portid(ab, NETLINK_CB(skb).portid); 1104 audit_log_end(ab); 1105 mutex_lock(&audit_cmd_mutex); 1106 } 1107 break; 1108 case AUDIT_ADD_RULE: 1109 case AUDIT_DEL_RULE: 1110 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1111 return -EINVAL; 1112 if (audit_enabled == AUDIT_LOCKED) { 1113 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1114 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1115 audit_log_end(ab); 1116 return -EPERM; 1117 } 1118 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 1119 seq, data, nlmsg_len(nlh)); 1120 break; 1121 case AUDIT_LIST_RULES: 1122 err = audit_list_rules_send(skb, seq); 1123 break; 1124 case AUDIT_TRIM: 1125 audit_trim_trees(); 1126 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1127 audit_log_format(ab, " op=trim res=1"); 1128 audit_log_end(ab); 1129 break; 1130 case AUDIT_MAKE_EQUIV: { 1131 void *bufp = data; 1132 u32 sizes[2]; 1133 size_t msglen = nlmsg_len(nlh); 1134 char *old, *new; 1135 1136 err = -EINVAL; 1137 if (msglen < 2 * sizeof(u32)) 1138 break; 1139 memcpy(sizes, bufp, 2 * sizeof(u32)); 1140 bufp += 2 * sizeof(u32); 1141 msglen -= 2 * sizeof(u32); 1142 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1143 if (IS_ERR(old)) { 1144 err = PTR_ERR(old); 1145 break; 1146 } 1147 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1148 if (IS_ERR(new)) { 1149 err = PTR_ERR(new); 1150 kfree(old); 1151 break; 1152 } 1153 /* OK, here comes... */ 1154 err = audit_tag_tree(old, new); 1155 1156 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1157 1158 audit_log_format(ab, " op=make_equiv old="); 1159 audit_log_untrustedstring(ab, old); 1160 audit_log_format(ab, " new="); 1161 audit_log_untrustedstring(ab, new); 1162 audit_log_format(ab, " res=%d", !err); 1163 audit_log_end(ab); 1164 kfree(old); 1165 kfree(new); 1166 break; 1167 } 1168 case AUDIT_SIGNAL_INFO: 1169 len = 0; 1170 if (audit_sig_sid) { 1171 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1172 if (err) 1173 return err; 1174 } 1175 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1176 if (!sig_data) { 1177 if (audit_sig_sid) 1178 security_release_secctx(ctx, len); 1179 return -ENOMEM; 1180 } 1181 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1182 sig_data->pid = audit_sig_pid; 1183 if (audit_sig_sid) { 1184 memcpy(sig_data->ctx, ctx, len); 1185 security_release_secctx(ctx, len); 1186 } 1187 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1188 sig_data, sizeof(*sig_data) + len); 1189 kfree(sig_data); 1190 break; 1191 case AUDIT_TTY_GET: { 1192 struct audit_tty_status s; 1193 unsigned int t; 1194 1195 t = READ_ONCE(current->signal->audit_tty); 1196 s.enabled = t & AUDIT_TTY_ENABLE; 1197 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1198 1199 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1200 break; 1201 } 1202 case AUDIT_TTY_SET: { 1203 struct audit_tty_status s, old; 1204 struct audit_buffer *ab; 1205 unsigned int t; 1206 1207 memset(&s, 0, sizeof(s)); 1208 /* guard against past and future API changes */ 1209 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1210 /* check if new data is valid */ 1211 if ((s.enabled != 0 && s.enabled != 1) || 1212 (s.log_passwd != 0 && s.log_passwd != 1)) 1213 err = -EINVAL; 1214 1215 if (err) 1216 t = READ_ONCE(current->signal->audit_tty); 1217 else { 1218 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1219 t = xchg(¤t->signal->audit_tty, t); 1220 } 1221 old.enabled = t & AUDIT_TTY_ENABLE; 1222 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1223 1224 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1225 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1226 " old-log_passwd=%d new-log_passwd=%d res=%d", 1227 old.enabled, s.enabled, old.log_passwd, 1228 s.log_passwd, !err); 1229 audit_log_end(ab); 1230 break; 1231 } 1232 default: 1233 err = -EINVAL; 1234 break; 1235 } 1236 1237 return err < 0 ? err : 0; 1238 } 1239 1240 /* 1241 * Get message from skb. Each message is processed by audit_receive_msg. 1242 * Malformed skbs with wrong length are discarded silently. 1243 */ 1244 static void audit_receive_skb(struct sk_buff *skb) 1245 { 1246 struct nlmsghdr *nlh; 1247 /* 1248 * len MUST be signed for nlmsg_next to be able to dec it below 0 1249 * if the nlmsg_len was not aligned 1250 */ 1251 int len; 1252 int err; 1253 1254 nlh = nlmsg_hdr(skb); 1255 len = skb->len; 1256 1257 while (nlmsg_ok(nlh, len)) { 1258 err = audit_receive_msg(skb, nlh); 1259 /* if err or if this message says it wants a response */ 1260 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1261 netlink_ack(skb, nlh, err); 1262 1263 nlh = nlmsg_next(nlh, &len); 1264 } 1265 } 1266 1267 /* Receive messages from netlink socket. */ 1268 static void audit_receive(struct sk_buff *skb) 1269 { 1270 mutex_lock(&audit_cmd_mutex); 1271 audit_receive_skb(skb); 1272 mutex_unlock(&audit_cmd_mutex); 1273 } 1274 1275 /* Run custom bind function on netlink socket group connect or bind requests. */ 1276 static int audit_bind(struct net *net, int group) 1277 { 1278 if (!capable(CAP_AUDIT_READ)) 1279 return -EPERM; 1280 1281 return 0; 1282 } 1283 1284 static int __net_init audit_net_init(struct net *net) 1285 { 1286 struct netlink_kernel_cfg cfg = { 1287 .input = audit_receive, 1288 .bind = audit_bind, 1289 .flags = NL_CFG_F_NONROOT_RECV, 1290 .groups = AUDIT_NLGRP_MAX, 1291 }; 1292 1293 struct audit_net *aunet = net_generic(net, audit_net_id); 1294 1295 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1296 if (aunet->nlsk == NULL) { 1297 audit_panic("cannot initialize netlink socket in namespace"); 1298 return -ENOMEM; 1299 } 1300 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1301 return 0; 1302 } 1303 1304 static void __net_exit audit_net_exit(struct net *net) 1305 { 1306 struct audit_net *aunet = net_generic(net, audit_net_id); 1307 struct sock *sock = aunet->nlsk; 1308 mutex_lock(&audit_cmd_mutex); 1309 if (sock == audit_sock) 1310 auditd_reset(); 1311 mutex_unlock(&audit_cmd_mutex); 1312 1313 netlink_kernel_release(sock); 1314 aunet->nlsk = NULL; 1315 } 1316 1317 static struct pernet_operations audit_net_ops __net_initdata = { 1318 .init = audit_net_init, 1319 .exit = audit_net_exit, 1320 .id = &audit_net_id, 1321 .size = sizeof(struct audit_net), 1322 }; 1323 1324 /* Initialize audit support at boot time. */ 1325 static int __init audit_init(void) 1326 { 1327 int i; 1328 1329 if (audit_initialized == AUDIT_DISABLED) 1330 return 0; 1331 1332 pr_info("initializing netlink subsys (%s)\n", 1333 audit_default ? "enabled" : "disabled"); 1334 register_pernet_subsys(&audit_net_ops); 1335 1336 skb_queue_head_init(&audit_queue); 1337 skb_queue_head_init(&audit_retry_queue); 1338 skb_queue_head_init(&audit_hold_queue); 1339 audit_initialized = AUDIT_INITIALIZED; 1340 audit_enabled = audit_default; 1341 audit_ever_enabled |= !!audit_default; 1342 1343 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1344 INIT_LIST_HEAD(&audit_inode_hash[i]); 1345 1346 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1347 if (IS_ERR(kauditd_task)) { 1348 int err = PTR_ERR(kauditd_task); 1349 panic("audit: failed to start the kauditd thread (%d)\n", err); 1350 } 1351 1352 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1353 1354 return 0; 1355 } 1356 __initcall(audit_init); 1357 1358 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1359 static int __init audit_enable(char *str) 1360 { 1361 audit_default = !!simple_strtol(str, NULL, 0); 1362 if (!audit_default) 1363 audit_initialized = AUDIT_DISABLED; 1364 1365 pr_info("%s\n", audit_default ? 1366 "enabled (after initialization)" : "disabled (until reboot)"); 1367 1368 return 1; 1369 } 1370 __setup("audit=", audit_enable); 1371 1372 /* Process kernel command-line parameter at boot time. 1373 * audit_backlog_limit=<n> */ 1374 static int __init audit_backlog_limit_set(char *str) 1375 { 1376 u32 audit_backlog_limit_arg; 1377 1378 pr_info("audit_backlog_limit: "); 1379 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1380 pr_cont("using default of %u, unable to parse %s\n", 1381 audit_backlog_limit, str); 1382 return 1; 1383 } 1384 1385 audit_backlog_limit = audit_backlog_limit_arg; 1386 pr_cont("%d\n", audit_backlog_limit); 1387 1388 return 1; 1389 } 1390 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1391 1392 static void audit_buffer_free(struct audit_buffer *ab) 1393 { 1394 unsigned long flags; 1395 1396 if (!ab) 1397 return; 1398 1399 kfree_skb(ab->skb); 1400 spin_lock_irqsave(&audit_freelist_lock, flags); 1401 if (audit_freelist_count > AUDIT_MAXFREE) 1402 kfree(ab); 1403 else { 1404 audit_freelist_count++; 1405 list_add(&ab->list, &audit_freelist); 1406 } 1407 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1408 } 1409 1410 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1411 gfp_t gfp_mask, int type) 1412 { 1413 unsigned long flags; 1414 struct audit_buffer *ab = NULL; 1415 struct nlmsghdr *nlh; 1416 1417 spin_lock_irqsave(&audit_freelist_lock, flags); 1418 if (!list_empty(&audit_freelist)) { 1419 ab = list_entry(audit_freelist.next, 1420 struct audit_buffer, list); 1421 list_del(&ab->list); 1422 --audit_freelist_count; 1423 } 1424 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1425 1426 if (!ab) { 1427 ab = kmalloc(sizeof(*ab), gfp_mask); 1428 if (!ab) 1429 goto err; 1430 } 1431 1432 ab->ctx = ctx; 1433 ab->gfp_mask = gfp_mask; 1434 1435 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1436 if (!ab->skb) 1437 goto err; 1438 1439 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1440 if (!nlh) 1441 goto out_kfree_skb; 1442 1443 return ab; 1444 1445 out_kfree_skb: 1446 kfree_skb(ab->skb); 1447 ab->skb = NULL; 1448 err: 1449 audit_buffer_free(ab); 1450 return NULL; 1451 } 1452 1453 /** 1454 * audit_serial - compute a serial number for the audit record 1455 * 1456 * Compute a serial number for the audit record. Audit records are 1457 * written to user-space as soon as they are generated, so a complete 1458 * audit record may be written in several pieces. The timestamp of the 1459 * record and this serial number are used by the user-space tools to 1460 * determine which pieces belong to the same audit record. The 1461 * (timestamp,serial) tuple is unique for each syscall and is live from 1462 * syscall entry to syscall exit. 1463 * 1464 * NOTE: Another possibility is to store the formatted records off the 1465 * audit context (for those records that have a context), and emit them 1466 * all at syscall exit. However, this could delay the reporting of 1467 * significant errors until syscall exit (or never, if the system 1468 * halts). 1469 */ 1470 unsigned int audit_serial(void) 1471 { 1472 static atomic_t serial = ATOMIC_INIT(0); 1473 1474 return atomic_add_return(1, &serial); 1475 } 1476 1477 static inline void audit_get_stamp(struct audit_context *ctx, 1478 struct timespec *t, unsigned int *serial) 1479 { 1480 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1481 *t = CURRENT_TIME; 1482 *serial = audit_serial(); 1483 } 1484 } 1485 1486 /** 1487 * audit_log_start - obtain an audit buffer 1488 * @ctx: audit_context (may be NULL) 1489 * @gfp_mask: type of allocation 1490 * @type: audit message type 1491 * 1492 * Returns audit_buffer pointer on success or NULL on error. 1493 * 1494 * Obtain an audit buffer. This routine does locking to obtain the 1495 * audit buffer, but then no locking is required for calls to 1496 * audit_log_*format. If the task (ctx) is a task that is currently in a 1497 * syscall, then the syscall is marked as auditable and an audit record 1498 * will be written at syscall exit. If there is no associated task, then 1499 * task context (ctx) should be NULL. 1500 */ 1501 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1502 int type) 1503 { 1504 struct audit_buffer *ab; 1505 struct timespec t; 1506 unsigned int uninitialized_var(serial); 1507 1508 if (audit_initialized != AUDIT_INITIALIZED) 1509 return NULL; 1510 1511 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1512 return NULL; 1513 1514 /* don't ever fail/sleep on these two conditions: 1515 * 1. auditd generated record - since we need auditd to drain the 1516 * queue; also, when we are checking for auditd, compare PIDs using 1517 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1518 * using a PID anchored in the caller's namespace 1519 * 2. audit command message - record types 1000 through 1099 inclusive 1520 * are command messages/records used to manage the kernel subsystem 1521 * and the audit userspace, blocking on these messages could cause 1522 * problems under load so don't do it (note: not all of these 1523 * command types are valid as record types, but it is quicker to 1524 * just check two ints than a series of ints in a if/switch stmt) */ 1525 if (!((audit_pid && audit_pid == task_tgid_vnr(current)) || 1526 (type >= 1000 && type <= 1099))) { 1527 long sleep_time = audit_backlog_wait_time; 1528 1529 while (audit_backlog_limit && 1530 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1531 /* wake kauditd to try and flush the queue */ 1532 wake_up_interruptible(&kauditd_wait); 1533 1534 /* sleep if we are allowed and we haven't exhausted our 1535 * backlog wait limit */ 1536 if ((gfp_mask & __GFP_DIRECT_RECLAIM) && 1537 (sleep_time > 0)) { 1538 DECLARE_WAITQUEUE(wait, current); 1539 1540 add_wait_queue_exclusive(&audit_backlog_wait, 1541 &wait); 1542 set_current_state(TASK_UNINTERRUPTIBLE); 1543 sleep_time = schedule_timeout(sleep_time); 1544 remove_wait_queue(&audit_backlog_wait, &wait); 1545 } else { 1546 if (audit_rate_check() && printk_ratelimit()) 1547 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1548 skb_queue_len(&audit_queue), 1549 audit_backlog_limit); 1550 audit_log_lost("backlog limit exceeded"); 1551 return NULL; 1552 } 1553 } 1554 } 1555 1556 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1557 if (!ab) { 1558 audit_log_lost("out of memory in audit_log_start"); 1559 return NULL; 1560 } 1561 1562 audit_get_stamp(ab->ctx, &t, &serial); 1563 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1564 t.tv_sec, t.tv_nsec/1000000, serial); 1565 1566 return ab; 1567 } 1568 1569 /** 1570 * audit_expand - expand skb in the audit buffer 1571 * @ab: audit_buffer 1572 * @extra: space to add at tail of the skb 1573 * 1574 * Returns 0 (no space) on failed expansion, or available space if 1575 * successful. 1576 */ 1577 static inline int audit_expand(struct audit_buffer *ab, int extra) 1578 { 1579 struct sk_buff *skb = ab->skb; 1580 int oldtail = skb_tailroom(skb); 1581 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1582 int newtail = skb_tailroom(skb); 1583 1584 if (ret < 0) { 1585 audit_log_lost("out of memory in audit_expand"); 1586 return 0; 1587 } 1588 1589 skb->truesize += newtail - oldtail; 1590 return newtail; 1591 } 1592 1593 /* 1594 * Format an audit message into the audit buffer. If there isn't enough 1595 * room in the audit buffer, more room will be allocated and vsnprint 1596 * will be called a second time. Currently, we assume that a printk 1597 * can't format message larger than 1024 bytes, so we don't either. 1598 */ 1599 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1600 va_list args) 1601 { 1602 int len, avail; 1603 struct sk_buff *skb; 1604 va_list args2; 1605 1606 if (!ab) 1607 return; 1608 1609 BUG_ON(!ab->skb); 1610 skb = ab->skb; 1611 avail = skb_tailroom(skb); 1612 if (avail == 0) { 1613 avail = audit_expand(ab, AUDIT_BUFSIZ); 1614 if (!avail) 1615 goto out; 1616 } 1617 va_copy(args2, args); 1618 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1619 if (len >= avail) { 1620 /* The printk buffer is 1024 bytes long, so if we get 1621 * here and AUDIT_BUFSIZ is at least 1024, then we can 1622 * log everything that printk could have logged. */ 1623 avail = audit_expand(ab, 1624 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1625 if (!avail) 1626 goto out_va_end; 1627 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1628 } 1629 if (len > 0) 1630 skb_put(skb, len); 1631 out_va_end: 1632 va_end(args2); 1633 out: 1634 return; 1635 } 1636 1637 /** 1638 * audit_log_format - format a message into the audit buffer. 1639 * @ab: audit_buffer 1640 * @fmt: format string 1641 * @...: optional parameters matching @fmt string 1642 * 1643 * All the work is done in audit_log_vformat. 1644 */ 1645 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1646 { 1647 va_list args; 1648 1649 if (!ab) 1650 return; 1651 va_start(args, fmt); 1652 audit_log_vformat(ab, fmt, args); 1653 va_end(args); 1654 } 1655 1656 /** 1657 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1658 * @ab: the audit_buffer 1659 * @buf: buffer to convert to hex 1660 * @len: length of @buf to be converted 1661 * 1662 * No return value; failure to expand is silently ignored. 1663 * 1664 * This function will take the passed buf and convert it into a string of 1665 * ascii hex digits. The new string is placed onto the skb. 1666 */ 1667 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1668 size_t len) 1669 { 1670 int i, avail, new_len; 1671 unsigned char *ptr; 1672 struct sk_buff *skb; 1673 1674 if (!ab) 1675 return; 1676 1677 BUG_ON(!ab->skb); 1678 skb = ab->skb; 1679 avail = skb_tailroom(skb); 1680 new_len = len<<1; 1681 if (new_len >= avail) { 1682 /* Round the buffer request up to the next multiple */ 1683 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1684 avail = audit_expand(ab, new_len); 1685 if (!avail) 1686 return; 1687 } 1688 1689 ptr = skb_tail_pointer(skb); 1690 for (i = 0; i < len; i++) 1691 ptr = hex_byte_pack_upper(ptr, buf[i]); 1692 *ptr = 0; 1693 skb_put(skb, len << 1); /* new string is twice the old string */ 1694 } 1695 1696 /* 1697 * Format a string of no more than slen characters into the audit buffer, 1698 * enclosed in quote marks. 1699 */ 1700 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1701 size_t slen) 1702 { 1703 int avail, new_len; 1704 unsigned char *ptr; 1705 struct sk_buff *skb; 1706 1707 if (!ab) 1708 return; 1709 1710 BUG_ON(!ab->skb); 1711 skb = ab->skb; 1712 avail = skb_tailroom(skb); 1713 new_len = slen + 3; /* enclosing quotes + null terminator */ 1714 if (new_len > avail) { 1715 avail = audit_expand(ab, new_len); 1716 if (!avail) 1717 return; 1718 } 1719 ptr = skb_tail_pointer(skb); 1720 *ptr++ = '"'; 1721 memcpy(ptr, string, slen); 1722 ptr += slen; 1723 *ptr++ = '"'; 1724 *ptr = 0; 1725 skb_put(skb, slen + 2); /* don't include null terminator */ 1726 } 1727 1728 /** 1729 * audit_string_contains_control - does a string need to be logged in hex 1730 * @string: string to be checked 1731 * @len: max length of the string to check 1732 */ 1733 bool audit_string_contains_control(const char *string, size_t len) 1734 { 1735 const unsigned char *p; 1736 for (p = string; p < (const unsigned char *)string + len; p++) { 1737 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1738 return true; 1739 } 1740 return false; 1741 } 1742 1743 /** 1744 * audit_log_n_untrustedstring - log a string that may contain random characters 1745 * @ab: audit_buffer 1746 * @len: length of string (not including trailing null) 1747 * @string: string to be logged 1748 * 1749 * This code will escape a string that is passed to it if the string 1750 * contains a control character, unprintable character, double quote mark, 1751 * or a space. Unescaped strings will start and end with a double quote mark. 1752 * Strings that are escaped are printed in hex (2 digits per char). 1753 * 1754 * The caller specifies the number of characters in the string to log, which may 1755 * or may not be the entire string. 1756 */ 1757 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1758 size_t len) 1759 { 1760 if (audit_string_contains_control(string, len)) 1761 audit_log_n_hex(ab, string, len); 1762 else 1763 audit_log_n_string(ab, string, len); 1764 } 1765 1766 /** 1767 * audit_log_untrustedstring - log a string that may contain random characters 1768 * @ab: audit_buffer 1769 * @string: string to be logged 1770 * 1771 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1772 * determine string length. 1773 */ 1774 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1775 { 1776 audit_log_n_untrustedstring(ab, string, strlen(string)); 1777 } 1778 1779 /* This is a helper-function to print the escaped d_path */ 1780 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1781 const struct path *path) 1782 { 1783 char *p, *pathname; 1784 1785 if (prefix) 1786 audit_log_format(ab, "%s", prefix); 1787 1788 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1789 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1790 if (!pathname) { 1791 audit_log_string(ab, "<no_memory>"); 1792 return; 1793 } 1794 p = d_path(path, pathname, PATH_MAX+11); 1795 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1796 /* FIXME: can we save some information here? */ 1797 audit_log_string(ab, "<too_long>"); 1798 } else 1799 audit_log_untrustedstring(ab, p); 1800 kfree(pathname); 1801 } 1802 1803 void audit_log_session_info(struct audit_buffer *ab) 1804 { 1805 unsigned int sessionid = audit_get_sessionid(current); 1806 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1807 1808 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1809 } 1810 1811 void audit_log_key(struct audit_buffer *ab, char *key) 1812 { 1813 audit_log_format(ab, " key="); 1814 if (key) 1815 audit_log_untrustedstring(ab, key); 1816 else 1817 audit_log_format(ab, "(null)"); 1818 } 1819 1820 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1821 { 1822 int i; 1823 1824 audit_log_format(ab, " %s=", prefix); 1825 CAP_FOR_EACH_U32(i) { 1826 audit_log_format(ab, "%08x", 1827 cap->cap[CAP_LAST_U32 - i]); 1828 } 1829 } 1830 1831 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1832 { 1833 kernel_cap_t *perm = &name->fcap.permitted; 1834 kernel_cap_t *inh = &name->fcap.inheritable; 1835 int log = 0; 1836 1837 if (!cap_isclear(*perm)) { 1838 audit_log_cap(ab, "cap_fp", perm); 1839 log = 1; 1840 } 1841 if (!cap_isclear(*inh)) { 1842 audit_log_cap(ab, "cap_fi", inh); 1843 log = 1; 1844 } 1845 1846 if (log) 1847 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1848 name->fcap.fE, name->fcap_ver); 1849 } 1850 1851 static inline int audit_copy_fcaps(struct audit_names *name, 1852 const struct dentry *dentry) 1853 { 1854 struct cpu_vfs_cap_data caps; 1855 int rc; 1856 1857 if (!dentry) 1858 return 0; 1859 1860 rc = get_vfs_caps_from_disk(dentry, &caps); 1861 if (rc) 1862 return rc; 1863 1864 name->fcap.permitted = caps.permitted; 1865 name->fcap.inheritable = caps.inheritable; 1866 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1867 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1868 VFS_CAP_REVISION_SHIFT; 1869 1870 return 0; 1871 } 1872 1873 /* Copy inode data into an audit_names. */ 1874 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1875 struct inode *inode) 1876 { 1877 name->ino = inode->i_ino; 1878 name->dev = inode->i_sb->s_dev; 1879 name->mode = inode->i_mode; 1880 name->uid = inode->i_uid; 1881 name->gid = inode->i_gid; 1882 name->rdev = inode->i_rdev; 1883 security_inode_getsecid(inode, &name->osid); 1884 audit_copy_fcaps(name, dentry); 1885 } 1886 1887 /** 1888 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1889 * @context: audit_context for the task 1890 * @n: audit_names structure with reportable details 1891 * @path: optional path to report instead of audit_names->name 1892 * @record_num: record number to report when handling a list of names 1893 * @call_panic: optional pointer to int that will be updated if secid fails 1894 */ 1895 void audit_log_name(struct audit_context *context, struct audit_names *n, 1896 const struct path *path, int record_num, int *call_panic) 1897 { 1898 struct audit_buffer *ab; 1899 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1900 if (!ab) 1901 return; 1902 1903 audit_log_format(ab, "item=%d", record_num); 1904 1905 if (path) 1906 audit_log_d_path(ab, " name=", path); 1907 else if (n->name) { 1908 switch (n->name_len) { 1909 case AUDIT_NAME_FULL: 1910 /* log the full path */ 1911 audit_log_format(ab, " name="); 1912 audit_log_untrustedstring(ab, n->name->name); 1913 break; 1914 case 0: 1915 /* name was specified as a relative path and the 1916 * directory component is the cwd */ 1917 audit_log_d_path(ab, " name=", &context->pwd); 1918 break; 1919 default: 1920 /* log the name's directory component */ 1921 audit_log_format(ab, " name="); 1922 audit_log_n_untrustedstring(ab, n->name->name, 1923 n->name_len); 1924 } 1925 } else 1926 audit_log_format(ab, " name=(null)"); 1927 1928 if (n->ino != AUDIT_INO_UNSET) 1929 audit_log_format(ab, " inode=%lu" 1930 " dev=%02x:%02x mode=%#ho" 1931 " ouid=%u ogid=%u rdev=%02x:%02x", 1932 n->ino, 1933 MAJOR(n->dev), 1934 MINOR(n->dev), 1935 n->mode, 1936 from_kuid(&init_user_ns, n->uid), 1937 from_kgid(&init_user_ns, n->gid), 1938 MAJOR(n->rdev), 1939 MINOR(n->rdev)); 1940 if (n->osid != 0) { 1941 char *ctx = NULL; 1942 u32 len; 1943 if (security_secid_to_secctx( 1944 n->osid, &ctx, &len)) { 1945 audit_log_format(ab, " osid=%u", n->osid); 1946 if (call_panic) 1947 *call_panic = 2; 1948 } else { 1949 audit_log_format(ab, " obj=%s", ctx); 1950 security_release_secctx(ctx, len); 1951 } 1952 } 1953 1954 /* log the audit_names record type */ 1955 audit_log_format(ab, " nametype="); 1956 switch(n->type) { 1957 case AUDIT_TYPE_NORMAL: 1958 audit_log_format(ab, "NORMAL"); 1959 break; 1960 case AUDIT_TYPE_PARENT: 1961 audit_log_format(ab, "PARENT"); 1962 break; 1963 case AUDIT_TYPE_CHILD_DELETE: 1964 audit_log_format(ab, "DELETE"); 1965 break; 1966 case AUDIT_TYPE_CHILD_CREATE: 1967 audit_log_format(ab, "CREATE"); 1968 break; 1969 default: 1970 audit_log_format(ab, "UNKNOWN"); 1971 break; 1972 } 1973 1974 audit_log_fcaps(ab, n); 1975 audit_log_end(ab); 1976 } 1977 1978 int audit_log_task_context(struct audit_buffer *ab) 1979 { 1980 char *ctx = NULL; 1981 unsigned len; 1982 int error; 1983 u32 sid; 1984 1985 security_task_getsecid(current, &sid); 1986 if (!sid) 1987 return 0; 1988 1989 error = security_secid_to_secctx(sid, &ctx, &len); 1990 if (error) { 1991 if (error != -EINVAL) 1992 goto error_path; 1993 return 0; 1994 } 1995 1996 audit_log_format(ab, " subj=%s", ctx); 1997 security_release_secctx(ctx, len); 1998 return 0; 1999 2000 error_path: 2001 audit_panic("error in audit_log_task_context"); 2002 return error; 2003 } 2004 EXPORT_SYMBOL(audit_log_task_context); 2005 2006 void audit_log_d_path_exe(struct audit_buffer *ab, 2007 struct mm_struct *mm) 2008 { 2009 struct file *exe_file; 2010 2011 if (!mm) 2012 goto out_null; 2013 2014 exe_file = get_mm_exe_file(mm); 2015 if (!exe_file) 2016 goto out_null; 2017 2018 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2019 fput(exe_file); 2020 return; 2021 out_null: 2022 audit_log_format(ab, " exe=(null)"); 2023 } 2024 2025 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2026 { 2027 struct tty_struct *tty = NULL; 2028 unsigned long flags; 2029 2030 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2031 if (tsk->signal) 2032 tty = tty_kref_get(tsk->signal->tty); 2033 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2034 return tty; 2035 } 2036 2037 void audit_put_tty(struct tty_struct *tty) 2038 { 2039 tty_kref_put(tty); 2040 } 2041 2042 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2043 { 2044 const struct cred *cred; 2045 char comm[sizeof(tsk->comm)]; 2046 struct tty_struct *tty; 2047 2048 if (!ab) 2049 return; 2050 2051 /* tsk == current */ 2052 cred = current_cred(); 2053 tty = audit_get_tty(tsk); 2054 audit_log_format(ab, 2055 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2056 " euid=%u suid=%u fsuid=%u" 2057 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2058 task_ppid_nr(tsk), 2059 task_tgid_nr(tsk), 2060 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2061 from_kuid(&init_user_ns, cred->uid), 2062 from_kgid(&init_user_ns, cred->gid), 2063 from_kuid(&init_user_ns, cred->euid), 2064 from_kuid(&init_user_ns, cred->suid), 2065 from_kuid(&init_user_ns, cred->fsuid), 2066 from_kgid(&init_user_ns, cred->egid), 2067 from_kgid(&init_user_ns, cred->sgid), 2068 from_kgid(&init_user_ns, cred->fsgid), 2069 tty ? tty_name(tty) : "(none)", 2070 audit_get_sessionid(tsk)); 2071 audit_put_tty(tty); 2072 audit_log_format(ab, " comm="); 2073 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2074 audit_log_d_path_exe(ab, tsk->mm); 2075 audit_log_task_context(ab); 2076 } 2077 EXPORT_SYMBOL(audit_log_task_info); 2078 2079 /** 2080 * audit_log_link_denied - report a link restriction denial 2081 * @operation: specific link operation 2082 * @link: the path that triggered the restriction 2083 */ 2084 void audit_log_link_denied(const char *operation, const struct path *link) 2085 { 2086 struct audit_buffer *ab; 2087 struct audit_names *name; 2088 2089 name = kzalloc(sizeof(*name), GFP_NOFS); 2090 if (!name) 2091 return; 2092 2093 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2094 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2095 AUDIT_ANOM_LINK); 2096 if (!ab) 2097 goto out; 2098 audit_log_format(ab, "op=%s", operation); 2099 audit_log_task_info(ab, current); 2100 audit_log_format(ab, " res=0"); 2101 audit_log_end(ab); 2102 2103 /* Generate AUDIT_PATH record with object. */ 2104 name->type = AUDIT_TYPE_NORMAL; 2105 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2106 audit_log_name(current->audit_context, name, link, 0, NULL); 2107 out: 2108 kfree(name); 2109 } 2110 2111 /** 2112 * audit_log_end - end one audit record 2113 * @ab: the audit_buffer 2114 * 2115 * We can not do a netlink send inside an irq context because it blocks (last 2116 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2117 * queue and a tasklet is scheduled to remove them from the queue outside the 2118 * irq context. May be called in any context. 2119 */ 2120 void audit_log_end(struct audit_buffer *ab) 2121 { 2122 if (!ab) 2123 return; 2124 if (!audit_rate_check()) { 2125 audit_log_lost("rate limit exceeded"); 2126 } else { 2127 skb_queue_tail(&audit_queue, ab->skb); 2128 wake_up_interruptible(&kauditd_wait); 2129 ab->skb = NULL; 2130 } 2131 audit_buffer_free(ab); 2132 } 2133 2134 /** 2135 * audit_log - Log an audit record 2136 * @ctx: audit context 2137 * @gfp_mask: type of allocation 2138 * @type: audit message type 2139 * @fmt: format string to use 2140 * @...: variable parameters matching the format string 2141 * 2142 * This is a convenience function that calls audit_log_start, 2143 * audit_log_vformat, and audit_log_end. It may be called 2144 * in any context. 2145 */ 2146 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2147 const char *fmt, ...) 2148 { 2149 struct audit_buffer *ab; 2150 va_list args; 2151 2152 ab = audit_log_start(ctx, gfp_mask, type); 2153 if (ab) { 2154 va_start(args, fmt); 2155 audit_log_vformat(ab, fmt, args); 2156 va_end(args); 2157 audit_log_end(ab); 2158 } 2159 } 2160 2161 #ifdef CONFIG_SECURITY 2162 /** 2163 * audit_log_secctx - Converts and logs SELinux context 2164 * @ab: audit_buffer 2165 * @secid: security number 2166 * 2167 * This is a helper function that calls security_secid_to_secctx to convert 2168 * secid to secctx and then adds the (converted) SELinux context to the audit 2169 * log by calling audit_log_format, thus also preventing leak of internal secid 2170 * to userspace. If secid cannot be converted audit_panic is called. 2171 */ 2172 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2173 { 2174 u32 len; 2175 char *secctx; 2176 2177 if (security_secid_to_secctx(secid, &secctx, &len)) { 2178 audit_panic("Cannot convert secid to context"); 2179 } else { 2180 audit_log_format(ab, " obj=%s", secctx); 2181 security_release_secctx(secctx, len); 2182 } 2183 } 2184 EXPORT_SYMBOL(audit_log_secctx); 2185 #endif 2186 2187 EXPORT_SYMBOL(audit_log_start); 2188 EXPORT_SYMBOL(audit_log_end); 2189 EXPORT_SYMBOL(audit_log_format); 2190 EXPORT_SYMBOL(audit_log); 2191