xref: /openbmc/linux/kernel/audit.c (revision 8730046c)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 
112 /* The identity of the user shutting down the audit system. */
113 kuid_t		audit_sig_uid = INVALID_UID;
114 pid_t		audit_sig_pid = -1;
115 u32		audit_sig_sid = 0;
116 
117 /* Records can be lost in several ways:
118    0) [suppressed in audit_alloc]
119    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
120    2) out of memory in audit_log_move [alloc_skb]
121    3) suppressed due to audit_rate_limit
122    4) suppressed due to audit_backlog_limit
123 */
124 static atomic_t    audit_lost = ATOMIC_INIT(0);
125 
126 /* The netlink socket. */
127 static struct sock *audit_sock;
128 static unsigned int audit_net_id;
129 
130 /* Hash for inode-based rules */
131 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
132 
133 /* The audit_freelist is a list of pre-allocated audit buffers (if more
134  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
135  * being placed on the freelist). */
136 static DEFINE_SPINLOCK(audit_freelist_lock);
137 static int	   audit_freelist_count;
138 static LIST_HEAD(audit_freelist);
139 
140 /* queue msgs to send via kauditd_task */
141 static struct sk_buff_head audit_queue;
142 /* queue msgs due to temporary unicast send problems */
143 static struct sk_buff_head audit_retry_queue;
144 /* queue msgs waiting for new auditd connection */
145 static struct sk_buff_head audit_hold_queue;
146 
147 /* queue servicing thread */
148 static struct task_struct *kauditd_task;
149 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
150 
151 /* waitqueue for callers who are blocked on the audit backlog */
152 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
153 
154 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
155 				   .mask = -1,
156 				   .features = 0,
157 				   .lock = 0,};
158 
159 static char *audit_feature_names[2] = {
160 	"only_unset_loginuid",
161 	"loginuid_immutable",
162 };
163 
164 
165 /* Serialize requests from userspace. */
166 DEFINE_MUTEX(audit_cmd_mutex);
167 
168 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
169  * audit records.  Since printk uses a 1024 byte buffer, this buffer
170  * should be at least that large. */
171 #define AUDIT_BUFSIZ 1024
172 
173 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
174  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
175 #define AUDIT_MAXFREE  (2*NR_CPUS)
176 
177 /* The audit_buffer is used when formatting an audit record.  The caller
178  * locks briefly to get the record off the freelist or to allocate the
179  * buffer, and locks briefly to send the buffer to the netlink layer or
180  * to place it on a transmit queue.  Multiple audit_buffers can be in
181  * use simultaneously. */
182 struct audit_buffer {
183 	struct list_head     list;
184 	struct sk_buff       *skb;	/* formatted skb ready to send */
185 	struct audit_context *ctx;	/* NULL or associated context */
186 	gfp_t		     gfp_mask;
187 };
188 
189 struct audit_reply {
190 	__u32 portid;
191 	struct net *net;
192 	struct sk_buff *skb;
193 };
194 
195 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
196 {
197 	if (ab) {
198 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
199 		nlh->nlmsg_pid = portid;
200 	}
201 }
202 
203 void audit_panic(const char *message)
204 {
205 	switch (audit_failure) {
206 	case AUDIT_FAIL_SILENT:
207 		break;
208 	case AUDIT_FAIL_PRINTK:
209 		if (printk_ratelimit())
210 			pr_err("%s\n", message);
211 		break;
212 	case AUDIT_FAIL_PANIC:
213 		/* test audit_pid since printk is always losey, why bother? */
214 		if (audit_pid)
215 			panic("audit: %s\n", message);
216 		break;
217 	}
218 }
219 
220 static inline int audit_rate_check(void)
221 {
222 	static unsigned long	last_check = 0;
223 	static int		messages   = 0;
224 	static DEFINE_SPINLOCK(lock);
225 	unsigned long		flags;
226 	unsigned long		now;
227 	unsigned long		elapsed;
228 	int			retval	   = 0;
229 
230 	if (!audit_rate_limit) return 1;
231 
232 	spin_lock_irqsave(&lock, flags);
233 	if (++messages < audit_rate_limit) {
234 		retval = 1;
235 	} else {
236 		now     = jiffies;
237 		elapsed = now - last_check;
238 		if (elapsed > HZ) {
239 			last_check = now;
240 			messages   = 0;
241 			retval     = 1;
242 		}
243 	}
244 	spin_unlock_irqrestore(&lock, flags);
245 
246 	return retval;
247 }
248 
249 /**
250  * audit_log_lost - conditionally log lost audit message event
251  * @message: the message stating reason for lost audit message
252  *
253  * Emit at least 1 message per second, even if audit_rate_check is
254  * throttling.
255  * Always increment the lost messages counter.
256 */
257 void audit_log_lost(const char *message)
258 {
259 	static unsigned long	last_msg = 0;
260 	static DEFINE_SPINLOCK(lock);
261 	unsigned long		flags;
262 	unsigned long		now;
263 	int			print;
264 
265 	atomic_inc(&audit_lost);
266 
267 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
268 
269 	if (!print) {
270 		spin_lock_irqsave(&lock, flags);
271 		now = jiffies;
272 		if (now - last_msg > HZ) {
273 			print = 1;
274 			last_msg = now;
275 		}
276 		spin_unlock_irqrestore(&lock, flags);
277 	}
278 
279 	if (print) {
280 		if (printk_ratelimit())
281 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
282 				atomic_read(&audit_lost),
283 				audit_rate_limit,
284 				audit_backlog_limit);
285 		audit_panic(message);
286 	}
287 }
288 
289 static int audit_log_config_change(char *function_name, u32 new, u32 old,
290 				   int allow_changes)
291 {
292 	struct audit_buffer *ab;
293 	int rc = 0;
294 
295 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
296 	if (unlikely(!ab))
297 		return rc;
298 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
299 	audit_log_session_info(ab);
300 	rc = audit_log_task_context(ab);
301 	if (rc)
302 		allow_changes = 0; /* Something weird, deny request */
303 	audit_log_format(ab, " res=%d", allow_changes);
304 	audit_log_end(ab);
305 	return rc;
306 }
307 
308 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
309 {
310 	int allow_changes, rc = 0;
311 	u32 old = *to_change;
312 
313 	/* check if we are locked */
314 	if (audit_enabled == AUDIT_LOCKED)
315 		allow_changes = 0;
316 	else
317 		allow_changes = 1;
318 
319 	if (audit_enabled != AUDIT_OFF) {
320 		rc = audit_log_config_change(function_name, new, old, allow_changes);
321 		if (rc)
322 			allow_changes = 0;
323 	}
324 
325 	/* If we are allowed, make the change */
326 	if (allow_changes == 1)
327 		*to_change = new;
328 	/* Not allowed, update reason */
329 	else if (rc == 0)
330 		rc = -EPERM;
331 	return rc;
332 }
333 
334 static int audit_set_rate_limit(u32 limit)
335 {
336 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
337 }
338 
339 static int audit_set_backlog_limit(u32 limit)
340 {
341 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
342 }
343 
344 static int audit_set_backlog_wait_time(u32 timeout)
345 {
346 	return audit_do_config_change("audit_backlog_wait_time",
347 				      &audit_backlog_wait_time, timeout);
348 }
349 
350 static int audit_set_enabled(u32 state)
351 {
352 	int rc;
353 	if (state > AUDIT_LOCKED)
354 		return -EINVAL;
355 
356 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
357 	if (!rc)
358 		audit_ever_enabled |= !!state;
359 
360 	return rc;
361 }
362 
363 static int audit_set_failure(u32 state)
364 {
365 	if (state != AUDIT_FAIL_SILENT
366 	    && state != AUDIT_FAIL_PRINTK
367 	    && state != AUDIT_FAIL_PANIC)
368 		return -EINVAL;
369 
370 	return audit_do_config_change("audit_failure", &audit_failure, state);
371 }
372 
373 /*
374  * For one reason or another this nlh isn't getting delivered to the userspace
375  * audit daemon, just send it to printk.
376  */
377 static void kauditd_printk_skb(struct sk_buff *skb)
378 {
379 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
380 	char *data = nlmsg_data(nlh);
381 
382 	if (nlh->nlmsg_type != AUDIT_EOE) {
383 		if (printk_ratelimit())
384 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
385 		else
386 			audit_log_lost("printk limit exceeded");
387 	}
388 }
389 
390 /**
391  * kauditd_hold_skb - Queue an audit record, waiting for auditd
392  * @skb: audit record
393  *
394  * Description:
395  * Queue the audit record, waiting for an instance of auditd.  When this
396  * function is called we haven't given up yet on sending the record, but things
397  * are not looking good.  The first thing we want to do is try to write the
398  * record via printk and then see if we want to try and hold on to the record
399  * and queue it, if we have room.  If we want to hold on to the record, but we
400  * don't have room, record a record lost message.
401  */
402 static void kauditd_hold_skb(struct sk_buff *skb)
403 {
404 	/* at this point it is uncertain if we will ever send this to auditd so
405 	 * try to send the message via printk before we go any further */
406 	kauditd_printk_skb(skb);
407 
408 	/* can we just silently drop the message? */
409 	if (!audit_default) {
410 		kfree_skb(skb);
411 		return;
412 	}
413 
414 	/* if we have room, queue the message */
415 	if (!audit_backlog_limit ||
416 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
417 		skb_queue_tail(&audit_hold_queue, skb);
418 		return;
419 	}
420 
421 	/* we have no other options - drop the message */
422 	audit_log_lost("kauditd hold queue overflow");
423 	kfree_skb(skb);
424 }
425 
426 /**
427  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
428  * @skb: audit record
429  *
430  * Description:
431  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
432  * but for some reason we are having problems sending it audit records so
433  * queue the given record and attempt to resend.
434  */
435 static void kauditd_retry_skb(struct sk_buff *skb)
436 {
437 	/* NOTE: because records should only live in the retry queue for a
438 	 * short period of time, before either being sent or moved to the hold
439 	 * queue, we don't currently enforce a limit on this queue */
440 	skb_queue_tail(&audit_retry_queue, skb);
441 }
442 
443 /**
444  * auditd_reset - Disconnect the auditd connection
445  *
446  * Description:
447  * Break the auditd/kauditd connection and move all the records in the retry
448  * queue into the hold queue in case auditd reconnects.  The audit_cmd_mutex
449  * must be held when calling this function.
450  */
451 static void auditd_reset(void)
452 {
453 	struct sk_buff *skb;
454 
455 	/* break the connection */
456 	if (audit_sock) {
457 		sock_put(audit_sock);
458 		audit_sock = NULL;
459 	}
460 	audit_pid = 0;
461 	audit_nlk_portid = 0;
462 
463 	/* flush all of the retry queue to the hold queue */
464 	while ((skb = skb_dequeue(&audit_retry_queue)))
465 		kauditd_hold_skb(skb);
466 }
467 
468 /**
469  * kauditd_send_unicast_skb - Send a record via unicast to auditd
470  * @skb: audit record
471  */
472 static int kauditd_send_unicast_skb(struct sk_buff *skb)
473 {
474 	int rc;
475 
476 	/* if we know nothing is connected, don't even try the netlink call */
477 	if (!audit_pid)
478 		return -ECONNREFUSED;
479 
480 	/* get an extra skb reference in case we fail to send */
481 	skb_get(skb);
482 	rc = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
483 	if (rc >= 0) {
484 		consume_skb(skb);
485 		rc = 0;
486 	}
487 
488 	return rc;
489 }
490 
491 /*
492  * kauditd_send_multicast_skb - Send a record to any multicast listeners
493  * @skb: audit record
494  *
495  * Description:
496  * This function doesn't consume an skb as might be expected since it has to
497  * copy it anyways.
498  */
499 static void kauditd_send_multicast_skb(struct sk_buff *skb)
500 {
501 	struct sk_buff *copy;
502 	struct audit_net *aunet = net_generic(&init_net, audit_net_id);
503 	struct sock *sock = aunet->nlsk;
504 	struct nlmsghdr *nlh;
505 
506 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
507 		return;
508 
509 	/*
510 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
511 	 * using skb_get() is necessary because non-standard mods are made to
512 	 * the skb by the original kaudit unicast socket send routine.  The
513 	 * existing auditd daemon assumes this breakage.  Fixing this would
514 	 * require co-ordinating a change in the established protocol between
515 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
516 	 * no reason for new multicast clients to continue with this
517 	 * non-compliance.
518 	 */
519 	copy = skb_copy(skb, GFP_KERNEL);
520 	if (!copy)
521 		return;
522 	nlh = nlmsg_hdr(copy);
523 	nlh->nlmsg_len = skb->len;
524 
525 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
526 }
527 
528 /**
529  * kauditd_wake_condition - Return true when it is time to wake kauditd_thread
530  *
531  * Description:
532  * This function is for use by the wait_event_freezable() call in
533  * kauditd_thread().
534  */
535 static int kauditd_wake_condition(void)
536 {
537 	static int pid_last = 0;
538 	int rc;
539 	int pid = audit_pid;
540 
541 	/* wake on new messages or a change in the connected auditd */
542 	rc = skb_queue_len(&audit_queue) || (pid && pid != pid_last);
543 	if (rc)
544 		pid_last = pid;
545 
546 	return rc;
547 }
548 
549 static int kauditd_thread(void *dummy)
550 {
551 	int rc;
552 	int auditd = 0;
553 	int reschedule = 0;
554 	struct sk_buff *skb;
555 	struct nlmsghdr *nlh;
556 
557 #define UNICAST_RETRIES 5
558 #define AUDITD_BAD(x,y) \
559 	((x) == -ECONNREFUSED || (x) == -EPERM || ++(y) >= UNICAST_RETRIES)
560 
561 	/* NOTE: we do invalidate the auditd connection flag on any sending
562 	 * errors, but we only "restore" the connection flag at specific places
563 	 * in the loop in order to help ensure proper ordering of audit
564 	 * records */
565 
566 	set_freezable();
567 	while (!kthread_should_stop()) {
568 		/* NOTE: possible area for future improvement is to look at
569 		 *       the hold and retry queues, since only this thread
570 		 *       has access to these queues we might be able to do
571 		 *       our own queuing and skip some/all of the locking */
572 
573 		/* NOTE: it might be a fun experiment to split the hold and
574 		 *       retry queue handling to another thread, but the
575 		 *       synchronization issues and other overhead might kill
576 		 *       any performance gains */
577 
578 		/* attempt to flush the hold queue */
579 		while (auditd && (skb = skb_dequeue(&audit_hold_queue))) {
580 			rc = kauditd_send_unicast_skb(skb);
581 			if (rc) {
582 				/* requeue to the same spot */
583 				skb_queue_head(&audit_hold_queue, skb);
584 
585 				auditd = 0;
586 				if (AUDITD_BAD(rc, reschedule)) {
587 					mutex_lock(&audit_cmd_mutex);
588 					auditd_reset();
589 					mutex_unlock(&audit_cmd_mutex);
590 					reschedule = 0;
591 				}
592 			} else
593 				/* we were able to send successfully */
594 				reschedule = 0;
595 		}
596 
597 		/* attempt to flush the retry queue */
598 		while (auditd && (skb = skb_dequeue(&audit_retry_queue))) {
599 			rc = kauditd_send_unicast_skb(skb);
600 			if (rc) {
601 				auditd = 0;
602 				if (AUDITD_BAD(rc, reschedule)) {
603 					kauditd_hold_skb(skb);
604 					mutex_lock(&audit_cmd_mutex);
605 					auditd_reset();
606 					mutex_unlock(&audit_cmd_mutex);
607 					reschedule = 0;
608 				} else
609 					/* temporary problem (we hope), queue
610 					 * to the same spot and retry */
611 					skb_queue_head(&audit_retry_queue, skb);
612 			} else
613 				/* we were able to send successfully */
614 				reschedule = 0;
615 		}
616 
617 		/* standard queue processing, try to be as quick as possible */
618 quick_loop:
619 		skb = skb_dequeue(&audit_queue);
620 		if (skb) {
621 			/* setup the netlink header, see the comments in
622 			 * kauditd_send_multicast_skb() for length quirks */
623 			nlh = nlmsg_hdr(skb);
624 			nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
625 
626 			/* attempt to send to any multicast listeners */
627 			kauditd_send_multicast_skb(skb);
628 
629 			/* attempt to send to auditd, queue on failure */
630 			if (auditd) {
631 				rc = kauditd_send_unicast_skb(skb);
632 				if (rc) {
633 					auditd = 0;
634 					if (AUDITD_BAD(rc, reschedule)) {
635 						mutex_lock(&audit_cmd_mutex);
636 						auditd_reset();
637 						mutex_unlock(&audit_cmd_mutex);
638 						reschedule = 0;
639 					}
640 
641 					/* move to the retry queue */
642 					kauditd_retry_skb(skb);
643 				} else
644 					/* everything is working so go fast! */
645 					goto quick_loop;
646 			} else if (reschedule)
647 				/* we are currently having problems, move to
648 				 * the retry queue */
649 				kauditd_retry_skb(skb);
650 			else
651 				/* dump the message via printk and hold it */
652 				kauditd_hold_skb(skb);
653 		} else {
654 			/* we have flushed the backlog so wake everyone */
655 			wake_up(&audit_backlog_wait);
656 
657 			/* if everything is okay with auditd (if present), go
658 			 * to sleep until there is something new in the queue
659 			 * or we have a change in the connected auditd;
660 			 * otherwise simply reschedule to give things a chance
661 			 * to recover */
662 			if (reschedule) {
663 				set_current_state(TASK_INTERRUPTIBLE);
664 				schedule();
665 			} else
666 				wait_event_freezable(kauditd_wait,
667 						     kauditd_wake_condition());
668 
669 			/* update the auditd connection status */
670 			auditd = (audit_pid ? 1 : 0);
671 		}
672 	}
673 
674 	return 0;
675 }
676 
677 int audit_send_list(void *_dest)
678 {
679 	struct audit_netlink_list *dest = _dest;
680 	struct sk_buff *skb;
681 	struct net *net = dest->net;
682 	struct audit_net *aunet = net_generic(net, audit_net_id);
683 
684 	/* wait for parent to finish and send an ACK */
685 	mutex_lock(&audit_cmd_mutex);
686 	mutex_unlock(&audit_cmd_mutex);
687 
688 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
689 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
690 
691 	put_net(net);
692 	kfree(dest);
693 
694 	return 0;
695 }
696 
697 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
698 				 int multi, const void *payload, int size)
699 {
700 	struct sk_buff	*skb;
701 	struct nlmsghdr	*nlh;
702 	void		*data;
703 	int		flags = multi ? NLM_F_MULTI : 0;
704 	int		t     = done  ? NLMSG_DONE  : type;
705 
706 	skb = nlmsg_new(size, GFP_KERNEL);
707 	if (!skb)
708 		return NULL;
709 
710 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
711 	if (!nlh)
712 		goto out_kfree_skb;
713 	data = nlmsg_data(nlh);
714 	memcpy(data, payload, size);
715 	return skb;
716 
717 out_kfree_skb:
718 	kfree_skb(skb);
719 	return NULL;
720 }
721 
722 static int audit_send_reply_thread(void *arg)
723 {
724 	struct audit_reply *reply = (struct audit_reply *)arg;
725 	struct net *net = reply->net;
726 	struct audit_net *aunet = net_generic(net, audit_net_id);
727 
728 	mutex_lock(&audit_cmd_mutex);
729 	mutex_unlock(&audit_cmd_mutex);
730 
731 	/* Ignore failure. It'll only happen if the sender goes away,
732 	   because our timeout is set to infinite. */
733 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
734 	put_net(net);
735 	kfree(reply);
736 	return 0;
737 }
738 
739 /**
740  * audit_send_reply - send an audit reply message via netlink
741  * @request_skb: skb of request we are replying to (used to target the reply)
742  * @seq: sequence number
743  * @type: audit message type
744  * @done: done (last) flag
745  * @multi: multi-part message flag
746  * @payload: payload data
747  * @size: payload size
748  *
749  * Allocates an skb, builds the netlink message, and sends it to the port id.
750  * No failure notifications.
751  */
752 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
753 			     int multi, const void *payload, int size)
754 {
755 	u32 portid = NETLINK_CB(request_skb).portid;
756 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
757 	struct sk_buff *skb;
758 	struct task_struct *tsk;
759 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
760 					    GFP_KERNEL);
761 
762 	if (!reply)
763 		return;
764 
765 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
766 	if (!skb)
767 		goto out;
768 
769 	reply->net = get_net(net);
770 	reply->portid = portid;
771 	reply->skb = skb;
772 
773 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
774 	if (!IS_ERR(tsk))
775 		return;
776 	kfree_skb(skb);
777 out:
778 	kfree(reply);
779 }
780 
781 /*
782  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
783  * control messages.
784  */
785 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
786 {
787 	int err = 0;
788 
789 	/* Only support initial user namespace for now. */
790 	/*
791 	 * We return ECONNREFUSED because it tricks userspace into thinking
792 	 * that audit was not configured into the kernel.  Lots of users
793 	 * configure their PAM stack (because that's what the distro does)
794 	 * to reject login if unable to send messages to audit.  If we return
795 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
796 	 * configured in and will let login proceed.  If we return EPERM
797 	 * userspace will reject all logins.  This should be removed when we
798 	 * support non init namespaces!!
799 	 */
800 	if (current_user_ns() != &init_user_ns)
801 		return -ECONNREFUSED;
802 
803 	switch (msg_type) {
804 	case AUDIT_LIST:
805 	case AUDIT_ADD:
806 	case AUDIT_DEL:
807 		return -EOPNOTSUPP;
808 	case AUDIT_GET:
809 	case AUDIT_SET:
810 	case AUDIT_GET_FEATURE:
811 	case AUDIT_SET_FEATURE:
812 	case AUDIT_LIST_RULES:
813 	case AUDIT_ADD_RULE:
814 	case AUDIT_DEL_RULE:
815 	case AUDIT_SIGNAL_INFO:
816 	case AUDIT_TTY_GET:
817 	case AUDIT_TTY_SET:
818 	case AUDIT_TRIM:
819 	case AUDIT_MAKE_EQUIV:
820 		/* Only support auditd and auditctl in initial pid namespace
821 		 * for now. */
822 		if (task_active_pid_ns(current) != &init_pid_ns)
823 			return -EPERM;
824 
825 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
826 			err = -EPERM;
827 		break;
828 	case AUDIT_USER:
829 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
830 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
831 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
832 			err = -EPERM;
833 		break;
834 	default:  /* bad msg */
835 		err = -EINVAL;
836 	}
837 
838 	return err;
839 }
840 
841 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
842 {
843 	uid_t uid = from_kuid(&init_user_ns, current_uid());
844 	pid_t pid = task_tgid_nr(current);
845 
846 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
847 		*ab = NULL;
848 		return;
849 	}
850 
851 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
852 	if (unlikely(!*ab))
853 		return;
854 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
855 	audit_log_session_info(*ab);
856 	audit_log_task_context(*ab);
857 }
858 
859 int is_audit_feature_set(int i)
860 {
861 	return af.features & AUDIT_FEATURE_TO_MASK(i);
862 }
863 
864 
865 static int audit_get_feature(struct sk_buff *skb)
866 {
867 	u32 seq;
868 
869 	seq = nlmsg_hdr(skb)->nlmsg_seq;
870 
871 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
872 
873 	return 0;
874 }
875 
876 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
877 				     u32 old_lock, u32 new_lock, int res)
878 {
879 	struct audit_buffer *ab;
880 
881 	if (audit_enabled == AUDIT_OFF)
882 		return;
883 
884 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
885 	audit_log_task_info(ab, current);
886 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
887 			 audit_feature_names[which], !!old_feature, !!new_feature,
888 			 !!old_lock, !!new_lock, res);
889 	audit_log_end(ab);
890 }
891 
892 static int audit_set_feature(struct sk_buff *skb)
893 {
894 	struct audit_features *uaf;
895 	int i;
896 
897 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
898 	uaf = nlmsg_data(nlmsg_hdr(skb));
899 
900 	/* if there is ever a version 2 we should handle that here */
901 
902 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
903 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
904 		u32 old_feature, new_feature, old_lock, new_lock;
905 
906 		/* if we are not changing this feature, move along */
907 		if (!(feature & uaf->mask))
908 			continue;
909 
910 		old_feature = af.features & feature;
911 		new_feature = uaf->features & feature;
912 		new_lock = (uaf->lock | af.lock) & feature;
913 		old_lock = af.lock & feature;
914 
915 		/* are we changing a locked feature? */
916 		if (old_lock && (new_feature != old_feature)) {
917 			audit_log_feature_change(i, old_feature, new_feature,
918 						 old_lock, new_lock, 0);
919 			return -EPERM;
920 		}
921 	}
922 	/* nothing invalid, do the changes */
923 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
924 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
925 		u32 old_feature, new_feature, old_lock, new_lock;
926 
927 		/* if we are not changing this feature, move along */
928 		if (!(feature & uaf->mask))
929 			continue;
930 
931 		old_feature = af.features & feature;
932 		new_feature = uaf->features & feature;
933 		old_lock = af.lock & feature;
934 		new_lock = (uaf->lock | af.lock) & feature;
935 
936 		if (new_feature != old_feature)
937 			audit_log_feature_change(i, old_feature, new_feature,
938 						 old_lock, new_lock, 1);
939 
940 		if (new_feature)
941 			af.features |= feature;
942 		else
943 			af.features &= ~feature;
944 		af.lock |= new_lock;
945 	}
946 
947 	return 0;
948 }
949 
950 static int audit_replace(pid_t pid)
951 {
952 	struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
953 					       &pid, sizeof(pid));
954 
955 	if (!skb)
956 		return -ENOMEM;
957 	return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
958 }
959 
960 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
961 {
962 	u32			seq;
963 	void			*data;
964 	int			err;
965 	struct audit_buffer	*ab;
966 	u16			msg_type = nlh->nlmsg_type;
967 	struct audit_sig_info   *sig_data;
968 	char			*ctx = NULL;
969 	u32			len;
970 
971 	err = audit_netlink_ok(skb, msg_type);
972 	if (err)
973 		return err;
974 
975 	seq  = nlh->nlmsg_seq;
976 	data = nlmsg_data(nlh);
977 
978 	switch (msg_type) {
979 	case AUDIT_GET: {
980 		struct audit_status	s;
981 		memset(&s, 0, sizeof(s));
982 		s.enabled		= audit_enabled;
983 		s.failure		= audit_failure;
984 		s.pid			= audit_pid;
985 		s.rate_limit		= audit_rate_limit;
986 		s.backlog_limit		= audit_backlog_limit;
987 		s.lost			= atomic_read(&audit_lost);
988 		s.backlog		= skb_queue_len(&audit_queue);
989 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
990 		s.backlog_wait_time	= audit_backlog_wait_time;
991 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
992 		break;
993 	}
994 	case AUDIT_SET: {
995 		struct audit_status	s;
996 		memset(&s, 0, sizeof(s));
997 		/* guard against past and future API changes */
998 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
999 		if (s.mask & AUDIT_STATUS_ENABLED) {
1000 			err = audit_set_enabled(s.enabled);
1001 			if (err < 0)
1002 				return err;
1003 		}
1004 		if (s.mask & AUDIT_STATUS_FAILURE) {
1005 			err = audit_set_failure(s.failure);
1006 			if (err < 0)
1007 				return err;
1008 		}
1009 		if (s.mask & AUDIT_STATUS_PID) {
1010 			/* NOTE: we are using task_tgid_vnr() below because
1011 			 *       the s.pid value is relative to the namespace
1012 			 *       of the caller; at present this doesn't matter
1013 			 *       much since you can really only run auditd
1014 			 *       from the initial pid namespace, but something
1015 			 *       to keep in mind if this changes */
1016 			int new_pid = s.pid;
1017 			pid_t requesting_pid = task_tgid_vnr(current);
1018 
1019 			if ((!new_pid) && (requesting_pid != audit_pid)) {
1020 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
1021 				return -EACCES;
1022 			}
1023 			if (audit_pid && new_pid &&
1024 			    audit_replace(requesting_pid) != -ECONNREFUSED) {
1025 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
1026 				return -EEXIST;
1027 			}
1028 			if (audit_enabled != AUDIT_OFF)
1029 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
1030 			if (new_pid) {
1031 				if (audit_sock)
1032 					sock_put(audit_sock);
1033 				audit_pid = new_pid;
1034 				audit_nlk_portid = NETLINK_CB(skb).portid;
1035 				sock_hold(skb->sk);
1036 				audit_sock = skb->sk;
1037 			} else {
1038 				auditd_reset();
1039 			}
1040 			wake_up_interruptible(&kauditd_wait);
1041 		}
1042 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1043 			err = audit_set_rate_limit(s.rate_limit);
1044 			if (err < 0)
1045 				return err;
1046 		}
1047 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1048 			err = audit_set_backlog_limit(s.backlog_limit);
1049 			if (err < 0)
1050 				return err;
1051 		}
1052 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1053 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1054 				return -EINVAL;
1055 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1056 				return -EINVAL;
1057 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1058 			if (err < 0)
1059 				return err;
1060 		}
1061 		break;
1062 	}
1063 	case AUDIT_GET_FEATURE:
1064 		err = audit_get_feature(skb);
1065 		if (err)
1066 			return err;
1067 		break;
1068 	case AUDIT_SET_FEATURE:
1069 		err = audit_set_feature(skb);
1070 		if (err)
1071 			return err;
1072 		break;
1073 	case AUDIT_USER:
1074 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1077 			return 0;
1078 
1079 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1080 		if (err == 1) { /* match or error */
1081 			err = 0;
1082 			if (msg_type == AUDIT_USER_TTY) {
1083 				err = tty_audit_push();
1084 				if (err)
1085 					break;
1086 			}
1087 			mutex_unlock(&audit_cmd_mutex);
1088 			audit_log_common_recv_msg(&ab, msg_type);
1089 			if (msg_type != AUDIT_USER_TTY)
1090 				audit_log_format(ab, " msg='%.*s'",
1091 						 AUDIT_MESSAGE_TEXT_MAX,
1092 						 (char *)data);
1093 			else {
1094 				int size;
1095 
1096 				audit_log_format(ab, " data=");
1097 				size = nlmsg_len(nlh);
1098 				if (size > 0 &&
1099 				    ((unsigned char *)data)[size - 1] == '\0')
1100 					size--;
1101 				audit_log_n_untrustedstring(ab, data, size);
1102 			}
1103 			audit_set_portid(ab, NETLINK_CB(skb).portid);
1104 			audit_log_end(ab);
1105 			mutex_lock(&audit_cmd_mutex);
1106 		}
1107 		break;
1108 	case AUDIT_ADD_RULE:
1109 	case AUDIT_DEL_RULE:
1110 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1111 			return -EINVAL;
1112 		if (audit_enabled == AUDIT_LOCKED) {
1113 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1114 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1115 			audit_log_end(ab);
1116 			return -EPERM;
1117 		}
1118 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1119 					   seq, data, nlmsg_len(nlh));
1120 		break;
1121 	case AUDIT_LIST_RULES:
1122 		err = audit_list_rules_send(skb, seq);
1123 		break;
1124 	case AUDIT_TRIM:
1125 		audit_trim_trees();
1126 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1127 		audit_log_format(ab, " op=trim res=1");
1128 		audit_log_end(ab);
1129 		break;
1130 	case AUDIT_MAKE_EQUIV: {
1131 		void *bufp = data;
1132 		u32 sizes[2];
1133 		size_t msglen = nlmsg_len(nlh);
1134 		char *old, *new;
1135 
1136 		err = -EINVAL;
1137 		if (msglen < 2 * sizeof(u32))
1138 			break;
1139 		memcpy(sizes, bufp, 2 * sizeof(u32));
1140 		bufp += 2 * sizeof(u32);
1141 		msglen -= 2 * sizeof(u32);
1142 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1143 		if (IS_ERR(old)) {
1144 			err = PTR_ERR(old);
1145 			break;
1146 		}
1147 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1148 		if (IS_ERR(new)) {
1149 			err = PTR_ERR(new);
1150 			kfree(old);
1151 			break;
1152 		}
1153 		/* OK, here comes... */
1154 		err = audit_tag_tree(old, new);
1155 
1156 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1157 
1158 		audit_log_format(ab, " op=make_equiv old=");
1159 		audit_log_untrustedstring(ab, old);
1160 		audit_log_format(ab, " new=");
1161 		audit_log_untrustedstring(ab, new);
1162 		audit_log_format(ab, " res=%d", !err);
1163 		audit_log_end(ab);
1164 		kfree(old);
1165 		kfree(new);
1166 		break;
1167 	}
1168 	case AUDIT_SIGNAL_INFO:
1169 		len = 0;
1170 		if (audit_sig_sid) {
1171 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1172 			if (err)
1173 				return err;
1174 		}
1175 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1176 		if (!sig_data) {
1177 			if (audit_sig_sid)
1178 				security_release_secctx(ctx, len);
1179 			return -ENOMEM;
1180 		}
1181 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1182 		sig_data->pid = audit_sig_pid;
1183 		if (audit_sig_sid) {
1184 			memcpy(sig_data->ctx, ctx, len);
1185 			security_release_secctx(ctx, len);
1186 		}
1187 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1188 				 sig_data, sizeof(*sig_data) + len);
1189 		kfree(sig_data);
1190 		break;
1191 	case AUDIT_TTY_GET: {
1192 		struct audit_tty_status s;
1193 		unsigned int t;
1194 
1195 		t = READ_ONCE(current->signal->audit_tty);
1196 		s.enabled = t & AUDIT_TTY_ENABLE;
1197 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1198 
1199 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1200 		break;
1201 	}
1202 	case AUDIT_TTY_SET: {
1203 		struct audit_tty_status s, old;
1204 		struct audit_buffer	*ab;
1205 		unsigned int t;
1206 
1207 		memset(&s, 0, sizeof(s));
1208 		/* guard against past and future API changes */
1209 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1210 		/* check if new data is valid */
1211 		if ((s.enabled != 0 && s.enabled != 1) ||
1212 		    (s.log_passwd != 0 && s.log_passwd != 1))
1213 			err = -EINVAL;
1214 
1215 		if (err)
1216 			t = READ_ONCE(current->signal->audit_tty);
1217 		else {
1218 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1219 			t = xchg(&current->signal->audit_tty, t);
1220 		}
1221 		old.enabled = t & AUDIT_TTY_ENABLE;
1222 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1223 
1224 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1225 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1226 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1227 				 old.enabled, s.enabled, old.log_passwd,
1228 				 s.log_passwd, !err);
1229 		audit_log_end(ab);
1230 		break;
1231 	}
1232 	default:
1233 		err = -EINVAL;
1234 		break;
1235 	}
1236 
1237 	return err < 0 ? err : 0;
1238 }
1239 
1240 /*
1241  * Get message from skb.  Each message is processed by audit_receive_msg.
1242  * Malformed skbs with wrong length are discarded silently.
1243  */
1244 static void audit_receive_skb(struct sk_buff *skb)
1245 {
1246 	struct nlmsghdr *nlh;
1247 	/*
1248 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1249 	 * if the nlmsg_len was not aligned
1250 	 */
1251 	int len;
1252 	int err;
1253 
1254 	nlh = nlmsg_hdr(skb);
1255 	len = skb->len;
1256 
1257 	while (nlmsg_ok(nlh, len)) {
1258 		err = audit_receive_msg(skb, nlh);
1259 		/* if err or if this message says it wants a response */
1260 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1261 			netlink_ack(skb, nlh, err);
1262 
1263 		nlh = nlmsg_next(nlh, &len);
1264 	}
1265 }
1266 
1267 /* Receive messages from netlink socket. */
1268 static void audit_receive(struct sk_buff  *skb)
1269 {
1270 	mutex_lock(&audit_cmd_mutex);
1271 	audit_receive_skb(skb);
1272 	mutex_unlock(&audit_cmd_mutex);
1273 }
1274 
1275 /* Run custom bind function on netlink socket group connect or bind requests. */
1276 static int audit_bind(struct net *net, int group)
1277 {
1278 	if (!capable(CAP_AUDIT_READ))
1279 		return -EPERM;
1280 
1281 	return 0;
1282 }
1283 
1284 static int __net_init audit_net_init(struct net *net)
1285 {
1286 	struct netlink_kernel_cfg cfg = {
1287 		.input	= audit_receive,
1288 		.bind	= audit_bind,
1289 		.flags	= NL_CFG_F_NONROOT_RECV,
1290 		.groups	= AUDIT_NLGRP_MAX,
1291 	};
1292 
1293 	struct audit_net *aunet = net_generic(net, audit_net_id);
1294 
1295 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1296 	if (aunet->nlsk == NULL) {
1297 		audit_panic("cannot initialize netlink socket in namespace");
1298 		return -ENOMEM;
1299 	}
1300 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1301 	return 0;
1302 }
1303 
1304 static void __net_exit audit_net_exit(struct net *net)
1305 {
1306 	struct audit_net *aunet = net_generic(net, audit_net_id);
1307 	struct sock *sock = aunet->nlsk;
1308 	mutex_lock(&audit_cmd_mutex);
1309 	if (sock == audit_sock)
1310 		auditd_reset();
1311 	mutex_unlock(&audit_cmd_mutex);
1312 
1313 	netlink_kernel_release(sock);
1314 	aunet->nlsk = NULL;
1315 }
1316 
1317 static struct pernet_operations audit_net_ops __net_initdata = {
1318 	.init = audit_net_init,
1319 	.exit = audit_net_exit,
1320 	.id = &audit_net_id,
1321 	.size = sizeof(struct audit_net),
1322 };
1323 
1324 /* Initialize audit support at boot time. */
1325 static int __init audit_init(void)
1326 {
1327 	int i;
1328 
1329 	if (audit_initialized == AUDIT_DISABLED)
1330 		return 0;
1331 
1332 	pr_info("initializing netlink subsys (%s)\n",
1333 		audit_default ? "enabled" : "disabled");
1334 	register_pernet_subsys(&audit_net_ops);
1335 
1336 	skb_queue_head_init(&audit_queue);
1337 	skb_queue_head_init(&audit_retry_queue);
1338 	skb_queue_head_init(&audit_hold_queue);
1339 	audit_initialized = AUDIT_INITIALIZED;
1340 	audit_enabled = audit_default;
1341 	audit_ever_enabled |= !!audit_default;
1342 
1343 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1344 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1345 
1346 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1347 	if (IS_ERR(kauditd_task)) {
1348 		int err = PTR_ERR(kauditd_task);
1349 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1350 	}
1351 
1352 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1353 
1354 	return 0;
1355 }
1356 __initcall(audit_init);
1357 
1358 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1359 static int __init audit_enable(char *str)
1360 {
1361 	audit_default = !!simple_strtol(str, NULL, 0);
1362 	if (!audit_default)
1363 		audit_initialized = AUDIT_DISABLED;
1364 
1365 	pr_info("%s\n", audit_default ?
1366 		"enabled (after initialization)" : "disabled (until reboot)");
1367 
1368 	return 1;
1369 }
1370 __setup("audit=", audit_enable);
1371 
1372 /* Process kernel command-line parameter at boot time.
1373  * audit_backlog_limit=<n> */
1374 static int __init audit_backlog_limit_set(char *str)
1375 {
1376 	u32 audit_backlog_limit_arg;
1377 
1378 	pr_info("audit_backlog_limit: ");
1379 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1380 		pr_cont("using default of %u, unable to parse %s\n",
1381 			audit_backlog_limit, str);
1382 		return 1;
1383 	}
1384 
1385 	audit_backlog_limit = audit_backlog_limit_arg;
1386 	pr_cont("%d\n", audit_backlog_limit);
1387 
1388 	return 1;
1389 }
1390 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1391 
1392 static void audit_buffer_free(struct audit_buffer *ab)
1393 {
1394 	unsigned long flags;
1395 
1396 	if (!ab)
1397 		return;
1398 
1399 	kfree_skb(ab->skb);
1400 	spin_lock_irqsave(&audit_freelist_lock, flags);
1401 	if (audit_freelist_count > AUDIT_MAXFREE)
1402 		kfree(ab);
1403 	else {
1404 		audit_freelist_count++;
1405 		list_add(&ab->list, &audit_freelist);
1406 	}
1407 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1408 }
1409 
1410 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1411 						gfp_t gfp_mask, int type)
1412 {
1413 	unsigned long flags;
1414 	struct audit_buffer *ab = NULL;
1415 	struct nlmsghdr *nlh;
1416 
1417 	spin_lock_irqsave(&audit_freelist_lock, flags);
1418 	if (!list_empty(&audit_freelist)) {
1419 		ab = list_entry(audit_freelist.next,
1420 				struct audit_buffer, list);
1421 		list_del(&ab->list);
1422 		--audit_freelist_count;
1423 	}
1424 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1425 
1426 	if (!ab) {
1427 		ab = kmalloc(sizeof(*ab), gfp_mask);
1428 		if (!ab)
1429 			goto err;
1430 	}
1431 
1432 	ab->ctx = ctx;
1433 	ab->gfp_mask = gfp_mask;
1434 
1435 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1436 	if (!ab->skb)
1437 		goto err;
1438 
1439 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1440 	if (!nlh)
1441 		goto out_kfree_skb;
1442 
1443 	return ab;
1444 
1445 out_kfree_skb:
1446 	kfree_skb(ab->skb);
1447 	ab->skb = NULL;
1448 err:
1449 	audit_buffer_free(ab);
1450 	return NULL;
1451 }
1452 
1453 /**
1454  * audit_serial - compute a serial number for the audit record
1455  *
1456  * Compute a serial number for the audit record.  Audit records are
1457  * written to user-space as soon as they are generated, so a complete
1458  * audit record may be written in several pieces.  The timestamp of the
1459  * record and this serial number are used by the user-space tools to
1460  * determine which pieces belong to the same audit record.  The
1461  * (timestamp,serial) tuple is unique for each syscall and is live from
1462  * syscall entry to syscall exit.
1463  *
1464  * NOTE: Another possibility is to store the formatted records off the
1465  * audit context (for those records that have a context), and emit them
1466  * all at syscall exit.  However, this could delay the reporting of
1467  * significant errors until syscall exit (or never, if the system
1468  * halts).
1469  */
1470 unsigned int audit_serial(void)
1471 {
1472 	static atomic_t serial = ATOMIC_INIT(0);
1473 
1474 	return atomic_add_return(1, &serial);
1475 }
1476 
1477 static inline void audit_get_stamp(struct audit_context *ctx,
1478 				   struct timespec *t, unsigned int *serial)
1479 {
1480 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1481 		*t = CURRENT_TIME;
1482 		*serial = audit_serial();
1483 	}
1484 }
1485 
1486 /**
1487  * audit_log_start - obtain an audit buffer
1488  * @ctx: audit_context (may be NULL)
1489  * @gfp_mask: type of allocation
1490  * @type: audit message type
1491  *
1492  * Returns audit_buffer pointer on success or NULL on error.
1493  *
1494  * Obtain an audit buffer.  This routine does locking to obtain the
1495  * audit buffer, but then no locking is required for calls to
1496  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1497  * syscall, then the syscall is marked as auditable and an audit record
1498  * will be written at syscall exit.  If there is no associated task, then
1499  * task context (ctx) should be NULL.
1500  */
1501 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1502 				     int type)
1503 {
1504 	struct audit_buffer *ab;
1505 	struct timespec t;
1506 	unsigned int uninitialized_var(serial);
1507 
1508 	if (audit_initialized != AUDIT_INITIALIZED)
1509 		return NULL;
1510 
1511 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1512 		return NULL;
1513 
1514 	/* don't ever fail/sleep on these two conditions:
1515 	 * 1. auditd generated record - since we need auditd to drain the
1516 	 *    queue; also, when we are checking for auditd, compare PIDs using
1517 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1518 	 *    using a PID anchored in the caller's namespace
1519 	 * 2. audit command message - record types 1000 through 1099 inclusive
1520 	 *    are command messages/records used to manage the kernel subsystem
1521 	 *    and the audit userspace, blocking on these messages could cause
1522 	 *    problems under load so don't do it (note: not all of these
1523 	 *    command types are valid as record types, but it is quicker to
1524 	 *    just check two ints than a series of ints in a if/switch stmt) */
1525 	if (!((audit_pid && audit_pid == task_tgid_vnr(current)) ||
1526 	      (type >= 1000 && type <= 1099))) {
1527 		long sleep_time = audit_backlog_wait_time;
1528 
1529 		while (audit_backlog_limit &&
1530 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1531 			/* wake kauditd to try and flush the queue */
1532 			wake_up_interruptible(&kauditd_wait);
1533 
1534 			/* sleep if we are allowed and we haven't exhausted our
1535 			 * backlog wait limit */
1536 			if ((gfp_mask & __GFP_DIRECT_RECLAIM) &&
1537 			    (sleep_time > 0)) {
1538 				DECLARE_WAITQUEUE(wait, current);
1539 
1540 				add_wait_queue_exclusive(&audit_backlog_wait,
1541 							 &wait);
1542 				set_current_state(TASK_UNINTERRUPTIBLE);
1543 				sleep_time = schedule_timeout(sleep_time);
1544 				remove_wait_queue(&audit_backlog_wait, &wait);
1545 			} else {
1546 				if (audit_rate_check() && printk_ratelimit())
1547 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1548 						skb_queue_len(&audit_queue),
1549 						audit_backlog_limit);
1550 				audit_log_lost("backlog limit exceeded");
1551 				return NULL;
1552 			}
1553 		}
1554 	}
1555 
1556 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1557 	if (!ab) {
1558 		audit_log_lost("out of memory in audit_log_start");
1559 		return NULL;
1560 	}
1561 
1562 	audit_get_stamp(ab->ctx, &t, &serial);
1563 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1564 			 t.tv_sec, t.tv_nsec/1000000, serial);
1565 
1566 	return ab;
1567 }
1568 
1569 /**
1570  * audit_expand - expand skb in the audit buffer
1571  * @ab: audit_buffer
1572  * @extra: space to add at tail of the skb
1573  *
1574  * Returns 0 (no space) on failed expansion, or available space if
1575  * successful.
1576  */
1577 static inline int audit_expand(struct audit_buffer *ab, int extra)
1578 {
1579 	struct sk_buff *skb = ab->skb;
1580 	int oldtail = skb_tailroom(skb);
1581 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1582 	int newtail = skb_tailroom(skb);
1583 
1584 	if (ret < 0) {
1585 		audit_log_lost("out of memory in audit_expand");
1586 		return 0;
1587 	}
1588 
1589 	skb->truesize += newtail - oldtail;
1590 	return newtail;
1591 }
1592 
1593 /*
1594  * Format an audit message into the audit buffer.  If there isn't enough
1595  * room in the audit buffer, more room will be allocated and vsnprint
1596  * will be called a second time.  Currently, we assume that a printk
1597  * can't format message larger than 1024 bytes, so we don't either.
1598  */
1599 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1600 			      va_list args)
1601 {
1602 	int len, avail;
1603 	struct sk_buff *skb;
1604 	va_list args2;
1605 
1606 	if (!ab)
1607 		return;
1608 
1609 	BUG_ON(!ab->skb);
1610 	skb = ab->skb;
1611 	avail = skb_tailroom(skb);
1612 	if (avail == 0) {
1613 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1614 		if (!avail)
1615 			goto out;
1616 	}
1617 	va_copy(args2, args);
1618 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1619 	if (len >= avail) {
1620 		/* The printk buffer is 1024 bytes long, so if we get
1621 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1622 		 * log everything that printk could have logged. */
1623 		avail = audit_expand(ab,
1624 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1625 		if (!avail)
1626 			goto out_va_end;
1627 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1628 	}
1629 	if (len > 0)
1630 		skb_put(skb, len);
1631 out_va_end:
1632 	va_end(args2);
1633 out:
1634 	return;
1635 }
1636 
1637 /**
1638  * audit_log_format - format a message into the audit buffer.
1639  * @ab: audit_buffer
1640  * @fmt: format string
1641  * @...: optional parameters matching @fmt string
1642  *
1643  * All the work is done in audit_log_vformat.
1644  */
1645 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1646 {
1647 	va_list args;
1648 
1649 	if (!ab)
1650 		return;
1651 	va_start(args, fmt);
1652 	audit_log_vformat(ab, fmt, args);
1653 	va_end(args);
1654 }
1655 
1656 /**
1657  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1658  * @ab: the audit_buffer
1659  * @buf: buffer to convert to hex
1660  * @len: length of @buf to be converted
1661  *
1662  * No return value; failure to expand is silently ignored.
1663  *
1664  * This function will take the passed buf and convert it into a string of
1665  * ascii hex digits. The new string is placed onto the skb.
1666  */
1667 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1668 		size_t len)
1669 {
1670 	int i, avail, new_len;
1671 	unsigned char *ptr;
1672 	struct sk_buff *skb;
1673 
1674 	if (!ab)
1675 		return;
1676 
1677 	BUG_ON(!ab->skb);
1678 	skb = ab->skb;
1679 	avail = skb_tailroom(skb);
1680 	new_len = len<<1;
1681 	if (new_len >= avail) {
1682 		/* Round the buffer request up to the next multiple */
1683 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1684 		avail = audit_expand(ab, new_len);
1685 		if (!avail)
1686 			return;
1687 	}
1688 
1689 	ptr = skb_tail_pointer(skb);
1690 	for (i = 0; i < len; i++)
1691 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1692 	*ptr = 0;
1693 	skb_put(skb, len << 1); /* new string is twice the old string */
1694 }
1695 
1696 /*
1697  * Format a string of no more than slen characters into the audit buffer,
1698  * enclosed in quote marks.
1699  */
1700 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1701 			size_t slen)
1702 {
1703 	int avail, new_len;
1704 	unsigned char *ptr;
1705 	struct sk_buff *skb;
1706 
1707 	if (!ab)
1708 		return;
1709 
1710 	BUG_ON(!ab->skb);
1711 	skb = ab->skb;
1712 	avail = skb_tailroom(skb);
1713 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1714 	if (new_len > avail) {
1715 		avail = audit_expand(ab, new_len);
1716 		if (!avail)
1717 			return;
1718 	}
1719 	ptr = skb_tail_pointer(skb);
1720 	*ptr++ = '"';
1721 	memcpy(ptr, string, slen);
1722 	ptr += slen;
1723 	*ptr++ = '"';
1724 	*ptr = 0;
1725 	skb_put(skb, slen + 2);	/* don't include null terminator */
1726 }
1727 
1728 /**
1729  * audit_string_contains_control - does a string need to be logged in hex
1730  * @string: string to be checked
1731  * @len: max length of the string to check
1732  */
1733 bool audit_string_contains_control(const char *string, size_t len)
1734 {
1735 	const unsigned char *p;
1736 	for (p = string; p < (const unsigned char *)string + len; p++) {
1737 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1738 			return true;
1739 	}
1740 	return false;
1741 }
1742 
1743 /**
1744  * audit_log_n_untrustedstring - log a string that may contain random characters
1745  * @ab: audit_buffer
1746  * @len: length of string (not including trailing null)
1747  * @string: string to be logged
1748  *
1749  * This code will escape a string that is passed to it if the string
1750  * contains a control character, unprintable character, double quote mark,
1751  * or a space. Unescaped strings will start and end with a double quote mark.
1752  * Strings that are escaped are printed in hex (2 digits per char).
1753  *
1754  * The caller specifies the number of characters in the string to log, which may
1755  * or may not be the entire string.
1756  */
1757 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1758 				 size_t len)
1759 {
1760 	if (audit_string_contains_control(string, len))
1761 		audit_log_n_hex(ab, string, len);
1762 	else
1763 		audit_log_n_string(ab, string, len);
1764 }
1765 
1766 /**
1767  * audit_log_untrustedstring - log a string that may contain random characters
1768  * @ab: audit_buffer
1769  * @string: string to be logged
1770  *
1771  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1772  * determine string length.
1773  */
1774 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1775 {
1776 	audit_log_n_untrustedstring(ab, string, strlen(string));
1777 }
1778 
1779 /* This is a helper-function to print the escaped d_path */
1780 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1781 		      const struct path *path)
1782 {
1783 	char *p, *pathname;
1784 
1785 	if (prefix)
1786 		audit_log_format(ab, "%s", prefix);
1787 
1788 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1789 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1790 	if (!pathname) {
1791 		audit_log_string(ab, "<no_memory>");
1792 		return;
1793 	}
1794 	p = d_path(path, pathname, PATH_MAX+11);
1795 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1796 		/* FIXME: can we save some information here? */
1797 		audit_log_string(ab, "<too_long>");
1798 	} else
1799 		audit_log_untrustedstring(ab, p);
1800 	kfree(pathname);
1801 }
1802 
1803 void audit_log_session_info(struct audit_buffer *ab)
1804 {
1805 	unsigned int sessionid = audit_get_sessionid(current);
1806 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1807 
1808 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1809 }
1810 
1811 void audit_log_key(struct audit_buffer *ab, char *key)
1812 {
1813 	audit_log_format(ab, " key=");
1814 	if (key)
1815 		audit_log_untrustedstring(ab, key);
1816 	else
1817 		audit_log_format(ab, "(null)");
1818 }
1819 
1820 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1821 {
1822 	int i;
1823 
1824 	audit_log_format(ab, " %s=", prefix);
1825 	CAP_FOR_EACH_U32(i) {
1826 		audit_log_format(ab, "%08x",
1827 				 cap->cap[CAP_LAST_U32 - i]);
1828 	}
1829 }
1830 
1831 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1832 {
1833 	kernel_cap_t *perm = &name->fcap.permitted;
1834 	kernel_cap_t *inh = &name->fcap.inheritable;
1835 	int log = 0;
1836 
1837 	if (!cap_isclear(*perm)) {
1838 		audit_log_cap(ab, "cap_fp", perm);
1839 		log = 1;
1840 	}
1841 	if (!cap_isclear(*inh)) {
1842 		audit_log_cap(ab, "cap_fi", inh);
1843 		log = 1;
1844 	}
1845 
1846 	if (log)
1847 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1848 				 name->fcap.fE, name->fcap_ver);
1849 }
1850 
1851 static inline int audit_copy_fcaps(struct audit_names *name,
1852 				   const struct dentry *dentry)
1853 {
1854 	struct cpu_vfs_cap_data caps;
1855 	int rc;
1856 
1857 	if (!dentry)
1858 		return 0;
1859 
1860 	rc = get_vfs_caps_from_disk(dentry, &caps);
1861 	if (rc)
1862 		return rc;
1863 
1864 	name->fcap.permitted = caps.permitted;
1865 	name->fcap.inheritable = caps.inheritable;
1866 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1867 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1868 				VFS_CAP_REVISION_SHIFT;
1869 
1870 	return 0;
1871 }
1872 
1873 /* Copy inode data into an audit_names. */
1874 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1875 		      struct inode *inode)
1876 {
1877 	name->ino   = inode->i_ino;
1878 	name->dev   = inode->i_sb->s_dev;
1879 	name->mode  = inode->i_mode;
1880 	name->uid   = inode->i_uid;
1881 	name->gid   = inode->i_gid;
1882 	name->rdev  = inode->i_rdev;
1883 	security_inode_getsecid(inode, &name->osid);
1884 	audit_copy_fcaps(name, dentry);
1885 }
1886 
1887 /**
1888  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1889  * @context: audit_context for the task
1890  * @n: audit_names structure with reportable details
1891  * @path: optional path to report instead of audit_names->name
1892  * @record_num: record number to report when handling a list of names
1893  * @call_panic: optional pointer to int that will be updated if secid fails
1894  */
1895 void audit_log_name(struct audit_context *context, struct audit_names *n,
1896 		    const struct path *path, int record_num, int *call_panic)
1897 {
1898 	struct audit_buffer *ab;
1899 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1900 	if (!ab)
1901 		return;
1902 
1903 	audit_log_format(ab, "item=%d", record_num);
1904 
1905 	if (path)
1906 		audit_log_d_path(ab, " name=", path);
1907 	else if (n->name) {
1908 		switch (n->name_len) {
1909 		case AUDIT_NAME_FULL:
1910 			/* log the full path */
1911 			audit_log_format(ab, " name=");
1912 			audit_log_untrustedstring(ab, n->name->name);
1913 			break;
1914 		case 0:
1915 			/* name was specified as a relative path and the
1916 			 * directory component is the cwd */
1917 			audit_log_d_path(ab, " name=", &context->pwd);
1918 			break;
1919 		default:
1920 			/* log the name's directory component */
1921 			audit_log_format(ab, " name=");
1922 			audit_log_n_untrustedstring(ab, n->name->name,
1923 						    n->name_len);
1924 		}
1925 	} else
1926 		audit_log_format(ab, " name=(null)");
1927 
1928 	if (n->ino != AUDIT_INO_UNSET)
1929 		audit_log_format(ab, " inode=%lu"
1930 				 " dev=%02x:%02x mode=%#ho"
1931 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1932 				 n->ino,
1933 				 MAJOR(n->dev),
1934 				 MINOR(n->dev),
1935 				 n->mode,
1936 				 from_kuid(&init_user_ns, n->uid),
1937 				 from_kgid(&init_user_ns, n->gid),
1938 				 MAJOR(n->rdev),
1939 				 MINOR(n->rdev));
1940 	if (n->osid != 0) {
1941 		char *ctx = NULL;
1942 		u32 len;
1943 		if (security_secid_to_secctx(
1944 			n->osid, &ctx, &len)) {
1945 			audit_log_format(ab, " osid=%u", n->osid);
1946 			if (call_panic)
1947 				*call_panic = 2;
1948 		} else {
1949 			audit_log_format(ab, " obj=%s", ctx);
1950 			security_release_secctx(ctx, len);
1951 		}
1952 	}
1953 
1954 	/* log the audit_names record type */
1955 	audit_log_format(ab, " nametype=");
1956 	switch(n->type) {
1957 	case AUDIT_TYPE_NORMAL:
1958 		audit_log_format(ab, "NORMAL");
1959 		break;
1960 	case AUDIT_TYPE_PARENT:
1961 		audit_log_format(ab, "PARENT");
1962 		break;
1963 	case AUDIT_TYPE_CHILD_DELETE:
1964 		audit_log_format(ab, "DELETE");
1965 		break;
1966 	case AUDIT_TYPE_CHILD_CREATE:
1967 		audit_log_format(ab, "CREATE");
1968 		break;
1969 	default:
1970 		audit_log_format(ab, "UNKNOWN");
1971 		break;
1972 	}
1973 
1974 	audit_log_fcaps(ab, n);
1975 	audit_log_end(ab);
1976 }
1977 
1978 int audit_log_task_context(struct audit_buffer *ab)
1979 {
1980 	char *ctx = NULL;
1981 	unsigned len;
1982 	int error;
1983 	u32 sid;
1984 
1985 	security_task_getsecid(current, &sid);
1986 	if (!sid)
1987 		return 0;
1988 
1989 	error = security_secid_to_secctx(sid, &ctx, &len);
1990 	if (error) {
1991 		if (error != -EINVAL)
1992 			goto error_path;
1993 		return 0;
1994 	}
1995 
1996 	audit_log_format(ab, " subj=%s", ctx);
1997 	security_release_secctx(ctx, len);
1998 	return 0;
1999 
2000 error_path:
2001 	audit_panic("error in audit_log_task_context");
2002 	return error;
2003 }
2004 EXPORT_SYMBOL(audit_log_task_context);
2005 
2006 void audit_log_d_path_exe(struct audit_buffer *ab,
2007 			  struct mm_struct *mm)
2008 {
2009 	struct file *exe_file;
2010 
2011 	if (!mm)
2012 		goto out_null;
2013 
2014 	exe_file = get_mm_exe_file(mm);
2015 	if (!exe_file)
2016 		goto out_null;
2017 
2018 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2019 	fput(exe_file);
2020 	return;
2021 out_null:
2022 	audit_log_format(ab, " exe=(null)");
2023 }
2024 
2025 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2026 {
2027 	struct tty_struct *tty = NULL;
2028 	unsigned long flags;
2029 
2030 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2031 	if (tsk->signal)
2032 		tty = tty_kref_get(tsk->signal->tty);
2033 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2034 	return tty;
2035 }
2036 
2037 void audit_put_tty(struct tty_struct *tty)
2038 {
2039 	tty_kref_put(tty);
2040 }
2041 
2042 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2043 {
2044 	const struct cred *cred;
2045 	char comm[sizeof(tsk->comm)];
2046 	struct tty_struct *tty;
2047 
2048 	if (!ab)
2049 		return;
2050 
2051 	/* tsk == current */
2052 	cred = current_cred();
2053 	tty = audit_get_tty(tsk);
2054 	audit_log_format(ab,
2055 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2056 			 " euid=%u suid=%u fsuid=%u"
2057 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2058 			 task_ppid_nr(tsk),
2059 			 task_tgid_nr(tsk),
2060 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2061 			 from_kuid(&init_user_ns, cred->uid),
2062 			 from_kgid(&init_user_ns, cred->gid),
2063 			 from_kuid(&init_user_ns, cred->euid),
2064 			 from_kuid(&init_user_ns, cred->suid),
2065 			 from_kuid(&init_user_ns, cred->fsuid),
2066 			 from_kgid(&init_user_ns, cred->egid),
2067 			 from_kgid(&init_user_ns, cred->sgid),
2068 			 from_kgid(&init_user_ns, cred->fsgid),
2069 			 tty ? tty_name(tty) : "(none)",
2070 			 audit_get_sessionid(tsk));
2071 	audit_put_tty(tty);
2072 	audit_log_format(ab, " comm=");
2073 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2074 	audit_log_d_path_exe(ab, tsk->mm);
2075 	audit_log_task_context(ab);
2076 }
2077 EXPORT_SYMBOL(audit_log_task_info);
2078 
2079 /**
2080  * audit_log_link_denied - report a link restriction denial
2081  * @operation: specific link operation
2082  * @link: the path that triggered the restriction
2083  */
2084 void audit_log_link_denied(const char *operation, const struct path *link)
2085 {
2086 	struct audit_buffer *ab;
2087 	struct audit_names *name;
2088 
2089 	name = kzalloc(sizeof(*name), GFP_NOFS);
2090 	if (!name)
2091 		return;
2092 
2093 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2094 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2095 			     AUDIT_ANOM_LINK);
2096 	if (!ab)
2097 		goto out;
2098 	audit_log_format(ab, "op=%s", operation);
2099 	audit_log_task_info(ab, current);
2100 	audit_log_format(ab, " res=0");
2101 	audit_log_end(ab);
2102 
2103 	/* Generate AUDIT_PATH record with object. */
2104 	name->type = AUDIT_TYPE_NORMAL;
2105 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2106 	audit_log_name(current->audit_context, name, link, 0, NULL);
2107 out:
2108 	kfree(name);
2109 }
2110 
2111 /**
2112  * audit_log_end - end one audit record
2113  * @ab: the audit_buffer
2114  *
2115  * We can not do a netlink send inside an irq context because it blocks (last
2116  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2117  * queue and a tasklet is scheduled to remove them from the queue outside the
2118  * irq context.  May be called in any context.
2119  */
2120 void audit_log_end(struct audit_buffer *ab)
2121 {
2122 	if (!ab)
2123 		return;
2124 	if (!audit_rate_check()) {
2125 		audit_log_lost("rate limit exceeded");
2126 	} else {
2127 		skb_queue_tail(&audit_queue, ab->skb);
2128 		wake_up_interruptible(&kauditd_wait);
2129 		ab->skb = NULL;
2130 	}
2131 	audit_buffer_free(ab);
2132 }
2133 
2134 /**
2135  * audit_log - Log an audit record
2136  * @ctx: audit context
2137  * @gfp_mask: type of allocation
2138  * @type: audit message type
2139  * @fmt: format string to use
2140  * @...: variable parameters matching the format string
2141  *
2142  * This is a convenience function that calls audit_log_start,
2143  * audit_log_vformat, and audit_log_end.  It may be called
2144  * in any context.
2145  */
2146 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2147 	       const char *fmt, ...)
2148 {
2149 	struct audit_buffer *ab;
2150 	va_list args;
2151 
2152 	ab = audit_log_start(ctx, gfp_mask, type);
2153 	if (ab) {
2154 		va_start(args, fmt);
2155 		audit_log_vformat(ab, fmt, args);
2156 		va_end(args);
2157 		audit_log_end(ab);
2158 	}
2159 }
2160 
2161 #ifdef CONFIG_SECURITY
2162 /**
2163  * audit_log_secctx - Converts and logs SELinux context
2164  * @ab: audit_buffer
2165  * @secid: security number
2166  *
2167  * This is a helper function that calls security_secid_to_secctx to convert
2168  * secid to secctx and then adds the (converted) SELinux context to the audit
2169  * log by calling audit_log_format, thus also preventing leak of internal secid
2170  * to userspace. If secid cannot be converted audit_panic is called.
2171  */
2172 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2173 {
2174 	u32 len;
2175 	char *secctx;
2176 
2177 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2178 		audit_panic("Cannot convert secid to context");
2179 	} else {
2180 		audit_log_format(ab, " obj=%s", secctx);
2181 		security_release_secctx(secctx, len);
2182 	}
2183 }
2184 EXPORT_SYMBOL(audit_log_secctx);
2185 #endif
2186 
2187 EXPORT_SYMBOL(audit_log_start);
2188 EXPORT_SYMBOL(audit_log_end);
2189 EXPORT_SYMBOL(audit_log_format);
2190 EXPORT_SYMBOL(audit_log);
2191