xref: /openbmc/linux/kernel/audit.c (revision 8684014d)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/init.h>
47 #include <linux/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56 
57 #include <linux/audit.h>
58 
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_overflow = 0;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	struct net *net;
186 	struct sk_buff *skb;
187 };
188 
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time, timeout);
342 }
343 
344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	/* take a reference in case we can't send it and we want to hold it */
409 	skb_get(skb);
410 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 	if (err < 0) {
412 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 		if (audit_pid) {
414 			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 			audit_log_lost("auditd disappeared");
416 			audit_pid = 0;
417 			audit_sock = NULL;
418 		}
419 		/* we might get lucky and get this in the next auditd */
420 		audit_hold_skb(skb);
421 	} else
422 		/* drop the extra reference if sent ok */
423 		consume_skb(skb);
424 }
425 
426 /*
427  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
428  *
429  * This function doesn't consume an skb as might be expected since it has to
430  * copy it anyways.
431  */
432 static void kauditd_send_multicast_skb(struct sk_buff *skb)
433 {
434 	struct sk_buff		*copy;
435 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
436 	struct sock		*sock = aunet->nlsk;
437 
438 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
439 		return;
440 
441 	/*
442 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
443 	 * using skb_get() is necessary because non-standard mods are made to
444 	 * the skb by the original kaudit unicast socket send routine.  The
445 	 * existing auditd daemon assumes this breakage.  Fixing this would
446 	 * require co-ordinating a change in the established protocol between
447 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
448 	 * no reason for new multicast clients to continue with this
449 	 * non-compliance.
450 	 */
451 	copy = skb_copy(skb, GFP_KERNEL);
452 	if (!copy)
453 		return;
454 
455 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
456 }
457 
458 /*
459  * flush_hold_queue - empty the hold queue if auditd appears
460  *
461  * If auditd just started, drain the queue of messages already
462  * sent to syslog/printk.  Remember loss here is ok.  We already
463  * called audit_log_lost() if it didn't go out normally.  so the
464  * race between the skb_dequeue and the next check for audit_pid
465  * doesn't matter.
466  *
467  * If you ever find kauditd to be too slow we can get a perf win
468  * by doing our own locking and keeping better track if there
469  * are messages in this queue.  I don't see the need now, but
470  * in 5 years when I want to play with this again I'll see this
471  * note and still have no friggin idea what i'm thinking today.
472  */
473 static void flush_hold_queue(void)
474 {
475 	struct sk_buff *skb;
476 
477 	if (!audit_default || !audit_pid)
478 		return;
479 
480 	skb = skb_dequeue(&audit_skb_hold_queue);
481 	if (likely(!skb))
482 		return;
483 
484 	while (skb && audit_pid) {
485 		kauditd_send_skb(skb);
486 		skb = skb_dequeue(&audit_skb_hold_queue);
487 	}
488 
489 	/*
490 	 * if auditd just disappeared but we
491 	 * dequeued an skb we need to drop ref
492 	 */
493 	if (skb)
494 		consume_skb(skb);
495 }
496 
497 static int kauditd_thread(void *dummy)
498 {
499 	set_freezable();
500 	while (!kthread_should_stop()) {
501 		struct sk_buff *skb;
502 
503 		flush_hold_queue();
504 
505 		skb = skb_dequeue(&audit_skb_queue);
506 
507 		if (skb) {
508 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
509 				wake_up(&audit_backlog_wait);
510 			if (audit_pid)
511 				kauditd_send_skb(skb);
512 			else
513 				audit_printk_skb(skb);
514 			continue;
515 		}
516 
517 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
518 	}
519 	return 0;
520 }
521 
522 int audit_send_list(void *_dest)
523 {
524 	struct audit_netlink_list *dest = _dest;
525 	struct sk_buff *skb;
526 	struct net *net = dest->net;
527 	struct audit_net *aunet = net_generic(net, audit_net_id);
528 
529 	/* wait for parent to finish and send an ACK */
530 	mutex_lock(&audit_cmd_mutex);
531 	mutex_unlock(&audit_cmd_mutex);
532 
533 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
534 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
535 
536 	put_net(net);
537 	kfree(dest);
538 
539 	return 0;
540 }
541 
542 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
543 				 int multi, const void *payload, int size)
544 {
545 	struct sk_buff	*skb;
546 	struct nlmsghdr	*nlh;
547 	void		*data;
548 	int		flags = multi ? NLM_F_MULTI : 0;
549 	int		t     = done  ? NLMSG_DONE  : type;
550 
551 	skb = nlmsg_new(size, GFP_KERNEL);
552 	if (!skb)
553 		return NULL;
554 
555 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
556 	if (!nlh)
557 		goto out_kfree_skb;
558 	data = nlmsg_data(nlh);
559 	memcpy(data, payload, size);
560 	return skb;
561 
562 out_kfree_skb:
563 	kfree_skb(skb);
564 	return NULL;
565 }
566 
567 static int audit_send_reply_thread(void *arg)
568 {
569 	struct audit_reply *reply = (struct audit_reply *)arg;
570 	struct net *net = reply->net;
571 	struct audit_net *aunet = net_generic(net, audit_net_id);
572 
573 	mutex_lock(&audit_cmd_mutex);
574 	mutex_unlock(&audit_cmd_mutex);
575 
576 	/* Ignore failure. It'll only happen if the sender goes away,
577 	   because our timeout is set to infinite. */
578 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
579 	put_net(net);
580 	kfree(reply);
581 	return 0;
582 }
583 /**
584  * audit_send_reply - send an audit reply message via netlink
585  * @request_skb: skb of request we are replying to (used to target the reply)
586  * @seq: sequence number
587  * @type: audit message type
588  * @done: done (last) flag
589  * @multi: multi-part message flag
590  * @payload: payload data
591  * @size: payload size
592  *
593  * Allocates an skb, builds the netlink message, and sends it to the port id.
594  * No failure notifications.
595  */
596 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
597 			     int multi, const void *payload, int size)
598 {
599 	u32 portid = NETLINK_CB(request_skb).portid;
600 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
601 	struct sk_buff *skb;
602 	struct task_struct *tsk;
603 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
604 					    GFP_KERNEL);
605 
606 	if (!reply)
607 		return;
608 
609 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
610 	if (!skb)
611 		goto out;
612 
613 	reply->net = get_net(net);
614 	reply->portid = portid;
615 	reply->skb = skb;
616 
617 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
618 	if (!IS_ERR(tsk))
619 		return;
620 	kfree_skb(skb);
621 out:
622 	kfree(reply);
623 }
624 
625 /*
626  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
627  * control messages.
628  */
629 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
630 {
631 	int err = 0;
632 
633 	/* Only support initial user namespace for now. */
634 	/*
635 	 * We return ECONNREFUSED because it tricks userspace into thinking
636 	 * that audit was not configured into the kernel.  Lots of users
637 	 * configure their PAM stack (because that's what the distro does)
638 	 * to reject login if unable to send messages to audit.  If we return
639 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
640 	 * configured in and will let login proceed.  If we return EPERM
641 	 * userspace will reject all logins.  This should be removed when we
642 	 * support non init namespaces!!
643 	 */
644 	if (current_user_ns() != &init_user_ns)
645 		return -ECONNREFUSED;
646 
647 	switch (msg_type) {
648 	case AUDIT_LIST:
649 	case AUDIT_ADD:
650 	case AUDIT_DEL:
651 		return -EOPNOTSUPP;
652 	case AUDIT_GET:
653 	case AUDIT_SET:
654 	case AUDIT_GET_FEATURE:
655 	case AUDIT_SET_FEATURE:
656 	case AUDIT_LIST_RULES:
657 	case AUDIT_ADD_RULE:
658 	case AUDIT_DEL_RULE:
659 	case AUDIT_SIGNAL_INFO:
660 	case AUDIT_TTY_GET:
661 	case AUDIT_TTY_SET:
662 	case AUDIT_TRIM:
663 	case AUDIT_MAKE_EQUIV:
664 		/* Only support auditd and auditctl in initial pid namespace
665 		 * for now. */
666 		if ((task_active_pid_ns(current) != &init_pid_ns))
667 			return -EPERM;
668 
669 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
670 			err = -EPERM;
671 		break;
672 	case AUDIT_USER:
673 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
674 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
675 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
676 			err = -EPERM;
677 		break;
678 	default:  /* bad msg */
679 		err = -EINVAL;
680 	}
681 
682 	return err;
683 }
684 
685 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
686 {
687 	int rc = 0;
688 	uid_t uid = from_kuid(&init_user_ns, current_uid());
689 	pid_t pid = task_tgid_nr(current);
690 
691 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
692 		*ab = NULL;
693 		return rc;
694 	}
695 
696 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
697 	if (unlikely(!*ab))
698 		return rc;
699 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
700 	audit_log_session_info(*ab);
701 	audit_log_task_context(*ab);
702 
703 	return rc;
704 }
705 
706 int is_audit_feature_set(int i)
707 {
708 	return af.features & AUDIT_FEATURE_TO_MASK(i);
709 }
710 
711 
712 static int audit_get_feature(struct sk_buff *skb)
713 {
714 	u32 seq;
715 
716 	seq = nlmsg_hdr(skb)->nlmsg_seq;
717 
718 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
719 
720 	return 0;
721 }
722 
723 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
724 				     u32 old_lock, u32 new_lock, int res)
725 {
726 	struct audit_buffer *ab;
727 
728 	if (audit_enabled == AUDIT_OFF)
729 		return;
730 
731 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
732 	audit_log_task_info(ab, current);
733 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
734 			 audit_feature_names[which], !!old_feature, !!new_feature,
735 			 !!old_lock, !!new_lock, res);
736 	audit_log_end(ab);
737 }
738 
739 static int audit_set_feature(struct sk_buff *skb)
740 {
741 	struct audit_features *uaf;
742 	int i;
743 
744 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
745 	uaf = nlmsg_data(nlmsg_hdr(skb));
746 
747 	/* if there is ever a version 2 we should handle that here */
748 
749 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
750 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
751 		u32 old_feature, new_feature, old_lock, new_lock;
752 
753 		/* if we are not changing this feature, move along */
754 		if (!(feature & uaf->mask))
755 			continue;
756 
757 		old_feature = af.features & feature;
758 		new_feature = uaf->features & feature;
759 		new_lock = (uaf->lock | af.lock) & feature;
760 		old_lock = af.lock & feature;
761 
762 		/* are we changing a locked feature? */
763 		if (old_lock && (new_feature != old_feature)) {
764 			audit_log_feature_change(i, old_feature, new_feature,
765 						 old_lock, new_lock, 0);
766 			return -EPERM;
767 		}
768 	}
769 	/* nothing invalid, do the changes */
770 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
771 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
772 		u32 old_feature, new_feature, old_lock, new_lock;
773 
774 		/* if we are not changing this feature, move along */
775 		if (!(feature & uaf->mask))
776 			continue;
777 
778 		old_feature = af.features & feature;
779 		new_feature = uaf->features & feature;
780 		old_lock = af.lock & feature;
781 		new_lock = (uaf->lock | af.lock) & feature;
782 
783 		if (new_feature != old_feature)
784 			audit_log_feature_change(i, old_feature, new_feature,
785 						 old_lock, new_lock, 1);
786 
787 		if (new_feature)
788 			af.features |= feature;
789 		else
790 			af.features &= ~feature;
791 		af.lock |= new_lock;
792 	}
793 
794 	return 0;
795 }
796 
797 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
798 {
799 	u32			seq;
800 	void			*data;
801 	int			err;
802 	struct audit_buffer	*ab;
803 	u16			msg_type = nlh->nlmsg_type;
804 	struct audit_sig_info   *sig_data;
805 	char			*ctx = NULL;
806 	u32			len;
807 
808 	err = audit_netlink_ok(skb, msg_type);
809 	if (err)
810 		return err;
811 
812 	/* As soon as there's any sign of userspace auditd,
813 	 * start kauditd to talk to it */
814 	if (!kauditd_task) {
815 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
816 		if (IS_ERR(kauditd_task)) {
817 			err = PTR_ERR(kauditd_task);
818 			kauditd_task = NULL;
819 			return err;
820 		}
821 	}
822 	seq  = nlh->nlmsg_seq;
823 	data = nlmsg_data(nlh);
824 
825 	switch (msg_type) {
826 	case AUDIT_GET: {
827 		struct audit_status	s;
828 		memset(&s, 0, sizeof(s));
829 		s.enabled		= audit_enabled;
830 		s.failure		= audit_failure;
831 		s.pid			= audit_pid;
832 		s.rate_limit		= audit_rate_limit;
833 		s.backlog_limit		= audit_backlog_limit;
834 		s.lost			= atomic_read(&audit_lost);
835 		s.backlog		= skb_queue_len(&audit_skb_queue);
836 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
837 		s.backlog_wait_time	= audit_backlog_wait_time;
838 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
839 		break;
840 	}
841 	case AUDIT_SET: {
842 		struct audit_status	s;
843 		memset(&s, 0, sizeof(s));
844 		/* guard against past and future API changes */
845 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
846 		if (s.mask & AUDIT_STATUS_ENABLED) {
847 			err = audit_set_enabled(s.enabled);
848 			if (err < 0)
849 				return err;
850 		}
851 		if (s.mask & AUDIT_STATUS_FAILURE) {
852 			err = audit_set_failure(s.failure);
853 			if (err < 0)
854 				return err;
855 		}
856 		if (s.mask & AUDIT_STATUS_PID) {
857 			int new_pid = s.pid;
858 
859 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
860 				return -EACCES;
861 			if (audit_enabled != AUDIT_OFF)
862 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
863 			audit_pid = new_pid;
864 			audit_nlk_portid = NETLINK_CB(skb).portid;
865 			audit_sock = skb->sk;
866 		}
867 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
868 			err = audit_set_rate_limit(s.rate_limit);
869 			if (err < 0)
870 				return err;
871 		}
872 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
873 			err = audit_set_backlog_limit(s.backlog_limit);
874 			if (err < 0)
875 				return err;
876 		}
877 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
878 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
879 				return -EINVAL;
880 			if (s.backlog_wait_time < 0 ||
881 			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
882 				return -EINVAL;
883 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
884 			if (err < 0)
885 				return err;
886 		}
887 		break;
888 	}
889 	case AUDIT_GET_FEATURE:
890 		err = audit_get_feature(skb);
891 		if (err)
892 			return err;
893 		break;
894 	case AUDIT_SET_FEATURE:
895 		err = audit_set_feature(skb);
896 		if (err)
897 			return err;
898 		break;
899 	case AUDIT_USER:
900 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
901 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
902 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
903 			return 0;
904 
905 		err = audit_filter_user(msg_type);
906 		if (err == 1) { /* match or error */
907 			err = 0;
908 			if (msg_type == AUDIT_USER_TTY) {
909 				err = tty_audit_push_current();
910 				if (err)
911 					break;
912 			}
913 			mutex_unlock(&audit_cmd_mutex);
914 			audit_log_common_recv_msg(&ab, msg_type);
915 			if (msg_type != AUDIT_USER_TTY)
916 				audit_log_format(ab, " msg='%.*s'",
917 						 AUDIT_MESSAGE_TEXT_MAX,
918 						 (char *)data);
919 			else {
920 				int size;
921 
922 				audit_log_format(ab, " data=");
923 				size = nlmsg_len(nlh);
924 				if (size > 0 &&
925 				    ((unsigned char *)data)[size - 1] == '\0')
926 					size--;
927 				audit_log_n_untrustedstring(ab, data, size);
928 			}
929 			audit_set_portid(ab, NETLINK_CB(skb).portid);
930 			audit_log_end(ab);
931 			mutex_lock(&audit_cmd_mutex);
932 		}
933 		break;
934 	case AUDIT_ADD_RULE:
935 	case AUDIT_DEL_RULE:
936 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
937 			return -EINVAL;
938 		if (audit_enabled == AUDIT_LOCKED) {
939 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
940 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
941 			audit_log_end(ab);
942 			return -EPERM;
943 		}
944 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
945 					   seq, data, nlmsg_len(nlh));
946 		break;
947 	case AUDIT_LIST_RULES:
948 		err = audit_list_rules_send(skb, seq);
949 		break;
950 	case AUDIT_TRIM:
951 		audit_trim_trees();
952 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
953 		audit_log_format(ab, " op=trim res=1");
954 		audit_log_end(ab);
955 		break;
956 	case AUDIT_MAKE_EQUIV: {
957 		void *bufp = data;
958 		u32 sizes[2];
959 		size_t msglen = nlmsg_len(nlh);
960 		char *old, *new;
961 
962 		err = -EINVAL;
963 		if (msglen < 2 * sizeof(u32))
964 			break;
965 		memcpy(sizes, bufp, 2 * sizeof(u32));
966 		bufp += 2 * sizeof(u32);
967 		msglen -= 2 * sizeof(u32);
968 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
969 		if (IS_ERR(old)) {
970 			err = PTR_ERR(old);
971 			break;
972 		}
973 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
974 		if (IS_ERR(new)) {
975 			err = PTR_ERR(new);
976 			kfree(old);
977 			break;
978 		}
979 		/* OK, here comes... */
980 		err = audit_tag_tree(old, new);
981 
982 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
983 
984 		audit_log_format(ab, " op=make_equiv old=");
985 		audit_log_untrustedstring(ab, old);
986 		audit_log_format(ab, " new=");
987 		audit_log_untrustedstring(ab, new);
988 		audit_log_format(ab, " res=%d", !err);
989 		audit_log_end(ab);
990 		kfree(old);
991 		kfree(new);
992 		break;
993 	}
994 	case AUDIT_SIGNAL_INFO:
995 		len = 0;
996 		if (audit_sig_sid) {
997 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
998 			if (err)
999 				return err;
1000 		}
1001 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1002 		if (!sig_data) {
1003 			if (audit_sig_sid)
1004 				security_release_secctx(ctx, len);
1005 			return -ENOMEM;
1006 		}
1007 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1008 		sig_data->pid = audit_sig_pid;
1009 		if (audit_sig_sid) {
1010 			memcpy(sig_data->ctx, ctx, len);
1011 			security_release_secctx(ctx, len);
1012 		}
1013 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1014 				 sig_data, sizeof(*sig_data) + len);
1015 		kfree(sig_data);
1016 		break;
1017 	case AUDIT_TTY_GET: {
1018 		struct audit_tty_status s;
1019 		struct task_struct *tsk = current;
1020 
1021 		spin_lock(&tsk->sighand->siglock);
1022 		s.enabled = tsk->signal->audit_tty;
1023 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1024 		spin_unlock(&tsk->sighand->siglock);
1025 
1026 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1027 		break;
1028 	}
1029 	case AUDIT_TTY_SET: {
1030 		struct audit_tty_status s, old;
1031 		struct task_struct *tsk = current;
1032 		struct audit_buffer	*ab;
1033 
1034 		memset(&s, 0, sizeof(s));
1035 		/* guard against past and future API changes */
1036 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1037 		/* check if new data is valid */
1038 		if ((s.enabled != 0 && s.enabled != 1) ||
1039 		    (s.log_passwd != 0 && s.log_passwd != 1))
1040 			err = -EINVAL;
1041 
1042 		spin_lock(&tsk->sighand->siglock);
1043 		old.enabled = tsk->signal->audit_tty;
1044 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1045 		if (!err) {
1046 			tsk->signal->audit_tty = s.enabled;
1047 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1048 		}
1049 		spin_unlock(&tsk->sighand->siglock);
1050 
1051 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1052 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1053 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1054 				 old.enabled, s.enabled, old.log_passwd,
1055 				 s.log_passwd, !err);
1056 		audit_log_end(ab);
1057 		break;
1058 	}
1059 	default:
1060 		err = -EINVAL;
1061 		break;
1062 	}
1063 
1064 	return err < 0 ? err : 0;
1065 }
1066 
1067 /*
1068  * Get message from skb.  Each message is processed by audit_receive_msg.
1069  * Malformed skbs with wrong length are discarded silently.
1070  */
1071 static void audit_receive_skb(struct sk_buff *skb)
1072 {
1073 	struct nlmsghdr *nlh;
1074 	/*
1075 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1076 	 * if the nlmsg_len was not aligned
1077 	 */
1078 	int len;
1079 	int err;
1080 
1081 	nlh = nlmsg_hdr(skb);
1082 	len = skb->len;
1083 
1084 	while (nlmsg_ok(nlh, len)) {
1085 		err = audit_receive_msg(skb, nlh);
1086 		/* if err or if this message says it wants a response */
1087 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1088 			netlink_ack(skb, nlh, err);
1089 
1090 		nlh = nlmsg_next(nlh, &len);
1091 	}
1092 }
1093 
1094 /* Receive messages from netlink socket. */
1095 static void audit_receive(struct sk_buff  *skb)
1096 {
1097 	mutex_lock(&audit_cmd_mutex);
1098 	audit_receive_skb(skb);
1099 	mutex_unlock(&audit_cmd_mutex);
1100 }
1101 
1102 /* Run custom bind function on netlink socket group connect or bind requests. */
1103 static int audit_bind(int group)
1104 {
1105 	if (!capable(CAP_AUDIT_READ))
1106 		return -EPERM;
1107 
1108 	return 0;
1109 }
1110 
1111 static int __net_init audit_net_init(struct net *net)
1112 {
1113 	struct netlink_kernel_cfg cfg = {
1114 		.input	= audit_receive,
1115 		.bind	= audit_bind,
1116 		.flags	= NL_CFG_F_NONROOT_RECV,
1117 		.groups	= AUDIT_NLGRP_MAX,
1118 	};
1119 
1120 	struct audit_net *aunet = net_generic(net, audit_net_id);
1121 
1122 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1123 	if (aunet->nlsk == NULL) {
1124 		audit_panic("cannot initialize netlink socket in namespace");
1125 		return -ENOMEM;
1126 	}
1127 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1128 	return 0;
1129 }
1130 
1131 static void __net_exit audit_net_exit(struct net *net)
1132 {
1133 	struct audit_net *aunet = net_generic(net, audit_net_id);
1134 	struct sock *sock = aunet->nlsk;
1135 	if (sock == audit_sock) {
1136 		audit_pid = 0;
1137 		audit_sock = NULL;
1138 	}
1139 
1140 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1141 	synchronize_net();
1142 	netlink_kernel_release(sock);
1143 }
1144 
1145 static struct pernet_operations audit_net_ops __net_initdata = {
1146 	.init = audit_net_init,
1147 	.exit = audit_net_exit,
1148 	.id = &audit_net_id,
1149 	.size = sizeof(struct audit_net),
1150 };
1151 
1152 /* Initialize audit support at boot time. */
1153 static int __init audit_init(void)
1154 {
1155 	int i;
1156 
1157 	if (audit_initialized == AUDIT_DISABLED)
1158 		return 0;
1159 
1160 	pr_info("initializing netlink subsys (%s)\n",
1161 		audit_default ? "enabled" : "disabled");
1162 	register_pernet_subsys(&audit_net_ops);
1163 
1164 	skb_queue_head_init(&audit_skb_queue);
1165 	skb_queue_head_init(&audit_skb_hold_queue);
1166 	audit_initialized = AUDIT_INITIALIZED;
1167 	audit_enabled = audit_default;
1168 	audit_ever_enabled |= !!audit_default;
1169 
1170 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1171 
1172 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1173 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1174 
1175 	return 0;
1176 }
1177 __initcall(audit_init);
1178 
1179 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1180 static int __init audit_enable(char *str)
1181 {
1182 	audit_default = !!simple_strtol(str, NULL, 0);
1183 	if (!audit_default)
1184 		audit_initialized = AUDIT_DISABLED;
1185 
1186 	pr_info("%s\n", audit_default ?
1187 		"enabled (after initialization)" : "disabled (until reboot)");
1188 
1189 	return 1;
1190 }
1191 __setup("audit=", audit_enable);
1192 
1193 /* Process kernel command-line parameter at boot time.
1194  * audit_backlog_limit=<n> */
1195 static int __init audit_backlog_limit_set(char *str)
1196 {
1197 	u32 audit_backlog_limit_arg;
1198 
1199 	pr_info("audit_backlog_limit: ");
1200 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1201 		pr_cont("using default of %u, unable to parse %s\n",
1202 			audit_backlog_limit, str);
1203 		return 1;
1204 	}
1205 
1206 	audit_backlog_limit = audit_backlog_limit_arg;
1207 	pr_cont("%d\n", audit_backlog_limit);
1208 
1209 	return 1;
1210 }
1211 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1212 
1213 static void audit_buffer_free(struct audit_buffer *ab)
1214 {
1215 	unsigned long flags;
1216 
1217 	if (!ab)
1218 		return;
1219 
1220 	if (ab->skb)
1221 		kfree_skb(ab->skb);
1222 
1223 	spin_lock_irqsave(&audit_freelist_lock, flags);
1224 	if (audit_freelist_count > AUDIT_MAXFREE)
1225 		kfree(ab);
1226 	else {
1227 		audit_freelist_count++;
1228 		list_add(&ab->list, &audit_freelist);
1229 	}
1230 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1231 }
1232 
1233 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1234 						gfp_t gfp_mask, int type)
1235 {
1236 	unsigned long flags;
1237 	struct audit_buffer *ab = NULL;
1238 	struct nlmsghdr *nlh;
1239 
1240 	spin_lock_irqsave(&audit_freelist_lock, flags);
1241 	if (!list_empty(&audit_freelist)) {
1242 		ab = list_entry(audit_freelist.next,
1243 				struct audit_buffer, list);
1244 		list_del(&ab->list);
1245 		--audit_freelist_count;
1246 	}
1247 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1248 
1249 	if (!ab) {
1250 		ab = kmalloc(sizeof(*ab), gfp_mask);
1251 		if (!ab)
1252 			goto err;
1253 	}
1254 
1255 	ab->ctx = ctx;
1256 	ab->gfp_mask = gfp_mask;
1257 
1258 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1259 	if (!ab->skb)
1260 		goto err;
1261 
1262 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1263 	if (!nlh)
1264 		goto out_kfree_skb;
1265 
1266 	return ab;
1267 
1268 out_kfree_skb:
1269 	kfree_skb(ab->skb);
1270 	ab->skb = NULL;
1271 err:
1272 	audit_buffer_free(ab);
1273 	return NULL;
1274 }
1275 
1276 /**
1277  * audit_serial - compute a serial number for the audit record
1278  *
1279  * Compute a serial number for the audit record.  Audit records are
1280  * written to user-space as soon as they are generated, so a complete
1281  * audit record may be written in several pieces.  The timestamp of the
1282  * record and this serial number are used by the user-space tools to
1283  * determine which pieces belong to the same audit record.  The
1284  * (timestamp,serial) tuple is unique for each syscall and is live from
1285  * syscall entry to syscall exit.
1286  *
1287  * NOTE: Another possibility is to store the formatted records off the
1288  * audit context (for those records that have a context), and emit them
1289  * all at syscall exit.  However, this could delay the reporting of
1290  * significant errors until syscall exit (or never, if the system
1291  * halts).
1292  */
1293 unsigned int audit_serial(void)
1294 {
1295 	static atomic_t serial = ATOMIC_INIT(0);
1296 
1297 	return atomic_add_return(1, &serial);
1298 }
1299 
1300 static inline void audit_get_stamp(struct audit_context *ctx,
1301 				   struct timespec *t, unsigned int *serial)
1302 {
1303 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1304 		*t = CURRENT_TIME;
1305 		*serial = audit_serial();
1306 	}
1307 }
1308 
1309 /*
1310  * Wait for auditd to drain the queue a little
1311  */
1312 static long wait_for_auditd(long sleep_time)
1313 {
1314 	DECLARE_WAITQUEUE(wait, current);
1315 	set_current_state(TASK_UNINTERRUPTIBLE);
1316 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1317 
1318 	if (audit_backlog_limit &&
1319 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1320 		sleep_time = schedule_timeout(sleep_time);
1321 
1322 	__set_current_state(TASK_RUNNING);
1323 	remove_wait_queue(&audit_backlog_wait, &wait);
1324 
1325 	return sleep_time;
1326 }
1327 
1328 /**
1329  * audit_log_start - obtain an audit buffer
1330  * @ctx: audit_context (may be NULL)
1331  * @gfp_mask: type of allocation
1332  * @type: audit message type
1333  *
1334  * Returns audit_buffer pointer on success or NULL on error.
1335  *
1336  * Obtain an audit buffer.  This routine does locking to obtain the
1337  * audit buffer, but then no locking is required for calls to
1338  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1339  * syscall, then the syscall is marked as auditable and an audit record
1340  * will be written at syscall exit.  If there is no associated task, then
1341  * task context (ctx) should be NULL.
1342  */
1343 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1344 				     int type)
1345 {
1346 	struct audit_buffer	*ab	= NULL;
1347 	struct timespec		t;
1348 	unsigned int		uninitialized_var(serial);
1349 	int reserve = 5; /* Allow atomic callers to go up to five
1350 			    entries over the normal backlog limit */
1351 	unsigned long timeout_start = jiffies;
1352 
1353 	if (audit_initialized != AUDIT_INITIALIZED)
1354 		return NULL;
1355 
1356 	if (unlikely(audit_filter_type(type)))
1357 		return NULL;
1358 
1359 	if (gfp_mask & __GFP_WAIT) {
1360 		if (audit_pid && audit_pid == current->pid)
1361 			gfp_mask &= ~__GFP_WAIT;
1362 		else
1363 			reserve = 0;
1364 	}
1365 
1366 	while (audit_backlog_limit
1367 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1368 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1369 			long sleep_time;
1370 
1371 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1372 			if (sleep_time > 0) {
1373 				sleep_time = wait_for_auditd(sleep_time);
1374 				if (sleep_time > 0)
1375 					continue;
1376 			}
1377 		}
1378 		if (audit_rate_check() && printk_ratelimit())
1379 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1380 				skb_queue_len(&audit_skb_queue),
1381 				audit_backlog_limit);
1382 		audit_log_lost("backlog limit exceeded");
1383 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1384 		wake_up(&audit_backlog_wait);
1385 		return NULL;
1386 	}
1387 
1388 	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1389 
1390 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1391 	if (!ab) {
1392 		audit_log_lost("out of memory in audit_log_start");
1393 		return NULL;
1394 	}
1395 
1396 	audit_get_stamp(ab->ctx, &t, &serial);
1397 
1398 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1399 			 t.tv_sec, t.tv_nsec/1000000, serial);
1400 	return ab;
1401 }
1402 
1403 /**
1404  * audit_expand - expand skb in the audit buffer
1405  * @ab: audit_buffer
1406  * @extra: space to add at tail of the skb
1407  *
1408  * Returns 0 (no space) on failed expansion, or available space if
1409  * successful.
1410  */
1411 static inline int audit_expand(struct audit_buffer *ab, int extra)
1412 {
1413 	struct sk_buff *skb = ab->skb;
1414 	int oldtail = skb_tailroom(skb);
1415 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1416 	int newtail = skb_tailroom(skb);
1417 
1418 	if (ret < 0) {
1419 		audit_log_lost("out of memory in audit_expand");
1420 		return 0;
1421 	}
1422 
1423 	skb->truesize += newtail - oldtail;
1424 	return newtail;
1425 }
1426 
1427 /*
1428  * Format an audit message into the audit buffer.  If there isn't enough
1429  * room in the audit buffer, more room will be allocated and vsnprint
1430  * will be called a second time.  Currently, we assume that a printk
1431  * can't format message larger than 1024 bytes, so we don't either.
1432  */
1433 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1434 			      va_list args)
1435 {
1436 	int len, avail;
1437 	struct sk_buff *skb;
1438 	va_list args2;
1439 
1440 	if (!ab)
1441 		return;
1442 
1443 	BUG_ON(!ab->skb);
1444 	skb = ab->skb;
1445 	avail = skb_tailroom(skb);
1446 	if (avail == 0) {
1447 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1448 		if (!avail)
1449 			goto out;
1450 	}
1451 	va_copy(args2, args);
1452 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1453 	if (len >= avail) {
1454 		/* The printk buffer is 1024 bytes long, so if we get
1455 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1456 		 * log everything that printk could have logged. */
1457 		avail = audit_expand(ab,
1458 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1459 		if (!avail)
1460 			goto out_va_end;
1461 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1462 	}
1463 	if (len > 0)
1464 		skb_put(skb, len);
1465 out_va_end:
1466 	va_end(args2);
1467 out:
1468 	return;
1469 }
1470 
1471 /**
1472  * audit_log_format - format a message into the audit buffer.
1473  * @ab: audit_buffer
1474  * @fmt: format string
1475  * @...: optional parameters matching @fmt string
1476  *
1477  * All the work is done in audit_log_vformat.
1478  */
1479 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1480 {
1481 	va_list args;
1482 
1483 	if (!ab)
1484 		return;
1485 	va_start(args, fmt);
1486 	audit_log_vformat(ab, fmt, args);
1487 	va_end(args);
1488 }
1489 
1490 /**
1491  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1492  * @ab: the audit_buffer
1493  * @buf: buffer to convert to hex
1494  * @len: length of @buf to be converted
1495  *
1496  * No return value; failure to expand is silently ignored.
1497  *
1498  * This function will take the passed buf and convert it into a string of
1499  * ascii hex digits. The new string is placed onto the skb.
1500  */
1501 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1502 		size_t len)
1503 {
1504 	int i, avail, new_len;
1505 	unsigned char *ptr;
1506 	struct sk_buff *skb;
1507 
1508 	if (!ab)
1509 		return;
1510 
1511 	BUG_ON(!ab->skb);
1512 	skb = ab->skb;
1513 	avail = skb_tailroom(skb);
1514 	new_len = len<<1;
1515 	if (new_len >= avail) {
1516 		/* Round the buffer request up to the next multiple */
1517 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1518 		avail = audit_expand(ab, new_len);
1519 		if (!avail)
1520 			return;
1521 	}
1522 
1523 	ptr = skb_tail_pointer(skb);
1524 	for (i = 0; i < len; i++)
1525 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1526 	*ptr = 0;
1527 	skb_put(skb, len << 1); /* new string is twice the old string */
1528 }
1529 
1530 /*
1531  * Format a string of no more than slen characters into the audit buffer,
1532  * enclosed in quote marks.
1533  */
1534 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1535 			size_t slen)
1536 {
1537 	int avail, new_len;
1538 	unsigned char *ptr;
1539 	struct sk_buff *skb;
1540 
1541 	if (!ab)
1542 		return;
1543 
1544 	BUG_ON(!ab->skb);
1545 	skb = ab->skb;
1546 	avail = skb_tailroom(skb);
1547 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1548 	if (new_len > avail) {
1549 		avail = audit_expand(ab, new_len);
1550 		if (!avail)
1551 			return;
1552 	}
1553 	ptr = skb_tail_pointer(skb);
1554 	*ptr++ = '"';
1555 	memcpy(ptr, string, slen);
1556 	ptr += slen;
1557 	*ptr++ = '"';
1558 	*ptr = 0;
1559 	skb_put(skb, slen + 2);	/* don't include null terminator */
1560 }
1561 
1562 /**
1563  * audit_string_contains_control - does a string need to be logged in hex
1564  * @string: string to be checked
1565  * @len: max length of the string to check
1566  */
1567 int audit_string_contains_control(const char *string, size_t len)
1568 {
1569 	const unsigned char *p;
1570 	for (p = string; p < (const unsigned char *)string + len; p++) {
1571 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1572 			return 1;
1573 	}
1574 	return 0;
1575 }
1576 
1577 /**
1578  * audit_log_n_untrustedstring - log a string that may contain random characters
1579  * @ab: audit_buffer
1580  * @len: length of string (not including trailing null)
1581  * @string: string to be logged
1582  *
1583  * This code will escape a string that is passed to it if the string
1584  * contains a control character, unprintable character, double quote mark,
1585  * or a space. Unescaped strings will start and end with a double quote mark.
1586  * Strings that are escaped are printed in hex (2 digits per char).
1587  *
1588  * The caller specifies the number of characters in the string to log, which may
1589  * or may not be the entire string.
1590  */
1591 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1592 				 size_t len)
1593 {
1594 	if (audit_string_contains_control(string, len))
1595 		audit_log_n_hex(ab, string, len);
1596 	else
1597 		audit_log_n_string(ab, string, len);
1598 }
1599 
1600 /**
1601  * audit_log_untrustedstring - log a string that may contain random characters
1602  * @ab: audit_buffer
1603  * @string: string to be logged
1604  *
1605  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1606  * determine string length.
1607  */
1608 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1609 {
1610 	audit_log_n_untrustedstring(ab, string, strlen(string));
1611 }
1612 
1613 /* This is a helper-function to print the escaped d_path */
1614 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1615 		      const struct path *path)
1616 {
1617 	char *p, *pathname;
1618 
1619 	if (prefix)
1620 		audit_log_format(ab, "%s", prefix);
1621 
1622 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1623 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1624 	if (!pathname) {
1625 		audit_log_string(ab, "<no_memory>");
1626 		return;
1627 	}
1628 	p = d_path(path, pathname, PATH_MAX+11);
1629 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1630 		/* FIXME: can we save some information here? */
1631 		audit_log_string(ab, "<too_long>");
1632 	} else
1633 		audit_log_untrustedstring(ab, p);
1634 	kfree(pathname);
1635 }
1636 
1637 void audit_log_session_info(struct audit_buffer *ab)
1638 {
1639 	unsigned int sessionid = audit_get_sessionid(current);
1640 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1641 
1642 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1643 }
1644 
1645 void audit_log_key(struct audit_buffer *ab, char *key)
1646 {
1647 	audit_log_format(ab, " key=");
1648 	if (key)
1649 		audit_log_untrustedstring(ab, key);
1650 	else
1651 		audit_log_format(ab, "(null)");
1652 }
1653 
1654 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1655 {
1656 	int i;
1657 
1658 	audit_log_format(ab, " %s=", prefix);
1659 	CAP_FOR_EACH_U32(i) {
1660 		audit_log_format(ab, "%08x",
1661 				 cap->cap[CAP_LAST_U32 - i]);
1662 	}
1663 }
1664 
1665 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1666 {
1667 	kernel_cap_t *perm = &name->fcap.permitted;
1668 	kernel_cap_t *inh = &name->fcap.inheritable;
1669 	int log = 0;
1670 
1671 	if (!cap_isclear(*perm)) {
1672 		audit_log_cap(ab, "cap_fp", perm);
1673 		log = 1;
1674 	}
1675 	if (!cap_isclear(*inh)) {
1676 		audit_log_cap(ab, "cap_fi", inh);
1677 		log = 1;
1678 	}
1679 
1680 	if (log)
1681 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1682 				 name->fcap.fE, name->fcap_ver);
1683 }
1684 
1685 static inline int audit_copy_fcaps(struct audit_names *name,
1686 				   const struct dentry *dentry)
1687 {
1688 	struct cpu_vfs_cap_data caps;
1689 	int rc;
1690 
1691 	if (!dentry)
1692 		return 0;
1693 
1694 	rc = get_vfs_caps_from_disk(dentry, &caps);
1695 	if (rc)
1696 		return rc;
1697 
1698 	name->fcap.permitted = caps.permitted;
1699 	name->fcap.inheritable = caps.inheritable;
1700 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1701 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1702 				VFS_CAP_REVISION_SHIFT;
1703 
1704 	return 0;
1705 }
1706 
1707 /* Copy inode data into an audit_names. */
1708 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1709 		      const struct inode *inode)
1710 {
1711 	name->ino   = inode->i_ino;
1712 	name->dev   = inode->i_sb->s_dev;
1713 	name->mode  = inode->i_mode;
1714 	name->uid   = inode->i_uid;
1715 	name->gid   = inode->i_gid;
1716 	name->rdev  = inode->i_rdev;
1717 	security_inode_getsecid(inode, &name->osid);
1718 	audit_copy_fcaps(name, dentry);
1719 }
1720 
1721 /**
1722  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1723  * @context: audit_context for the task
1724  * @n: audit_names structure with reportable details
1725  * @path: optional path to report instead of audit_names->name
1726  * @record_num: record number to report when handling a list of names
1727  * @call_panic: optional pointer to int that will be updated if secid fails
1728  */
1729 void audit_log_name(struct audit_context *context, struct audit_names *n,
1730 		    struct path *path, int record_num, int *call_panic)
1731 {
1732 	struct audit_buffer *ab;
1733 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1734 	if (!ab)
1735 		return;
1736 
1737 	audit_log_format(ab, "item=%d", record_num);
1738 
1739 	if (path)
1740 		audit_log_d_path(ab, " name=", path);
1741 	else if (n->name) {
1742 		switch (n->name_len) {
1743 		case AUDIT_NAME_FULL:
1744 			/* log the full path */
1745 			audit_log_format(ab, " name=");
1746 			audit_log_untrustedstring(ab, n->name->name);
1747 			break;
1748 		case 0:
1749 			/* name was specified as a relative path and the
1750 			 * directory component is the cwd */
1751 			audit_log_d_path(ab, " name=", &context->pwd);
1752 			break;
1753 		default:
1754 			/* log the name's directory component */
1755 			audit_log_format(ab, " name=");
1756 			audit_log_n_untrustedstring(ab, n->name->name,
1757 						    n->name_len);
1758 		}
1759 	} else
1760 		audit_log_format(ab, " name=(null)");
1761 
1762 	if (n->ino != (unsigned long)-1) {
1763 		audit_log_format(ab, " inode=%lu"
1764 				 " dev=%02x:%02x mode=%#ho"
1765 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1766 				 n->ino,
1767 				 MAJOR(n->dev),
1768 				 MINOR(n->dev),
1769 				 n->mode,
1770 				 from_kuid(&init_user_ns, n->uid),
1771 				 from_kgid(&init_user_ns, n->gid),
1772 				 MAJOR(n->rdev),
1773 				 MINOR(n->rdev));
1774 	}
1775 	if (n->osid != 0) {
1776 		char *ctx = NULL;
1777 		u32 len;
1778 		if (security_secid_to_secctx(
1779 			n->osid, &ctx, &len)) {
1780 			audit_log_format(ab, " osid=%u", n->osid);
1781 			if (call_panic)
1782 				*call_panic = 2;
1783 		} else {
1784 			audit_log_format(ab, " obj=%s", ctx);
1785 			security_release_secctx(ctx, len);
1786 		}
1787 	}
1788 
1789 	/* log the audit_names record type */
1790 	audit_log_format(ab, " nametype=");
1791 	switch(n->type) {
1792 	case AUDIT_TYPE_NORMAL:
1793 		audit_log_format(ab, "NORMAL");
1794 		break;
1795 	case AUDIT_TYPE_PARENT:
1796 		audit_log_format(ab, "PARENT");
1797 		break;
1798 	case AUDIT_TYPE_CHILD_DELETE:
1799 		audit_log_format(ab, "DELETE");
1800 		break;
1801 	case AUDIT_TYPE_CHILD_CREATE:
1802 		audit_log_format(ab, "CREATE");
1803 		break;
1804 	default:
1805 		audit_log_format(ab, "UNKNOWN");
1806 		break;
1807 	}
1808 
1809 	audit_log_fcaps(ab, n);
1810 	audit_log_end(ab);
1811 }
1812 
1813 int audit_log_task_context(struct audit_buffer *ab)
1814 {
1815 	char *ctx = NULL;
1816 	unsigned len;
1817 	int error;
1818 	u32 sid;
1819 
1820 	security_task_getsecid(current, &sid);
1821 	if (!sid)
1822 		return 0;
1823 
1824 	error = security_secid_to_secctx(sid, &ctx, &len);
1825 	if (error) {
1826 		if (error != -EINVAL)
1827 			goto error_path;
1828 		return 0;
1829 	}
1830 
1831 	audit_log_format(ab, " subj=%s", ctx);
1832 	security_release_secctx(ctx, len);
1833 	return 0;
1834 
1835 error_path:
1836 	audit_panic("error in audit_log_task_context");
1837 	return error;
1838 }
1839 EXPORT_SYMBOL(audit_log_task_context);
1840 
1841 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1842 {
1843 	const struct cred *cred;
1844 	char comm[sizeof(tsk->comm)];
1845 	struct mm_struct *mm = tsk->mm;
1846 	char *tty;
1847 
1848 	if (!ab)
1849 		return;
1850 
1851 	/* tsk == current */
1852 	cred = current_cred();
1853 
1854 	spin_lock_irq(&tsk->sighand->siglock);
1855 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1856 		tty = tsk->signal->tty->name;
1857 	else
1858 		tty = "(none)";
1859 	spin_unlock_irq(&tsk->sighand->siglock);
1860 
1861 	audit_log_format(ab,
1862 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1863 			 " euid=%u suid=%u fsuid=%u"
1864 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1865 			 task_ppid_nr(tsk),
1866 			 task_pid_nr(tsk),
1867 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1868 			 from_kuid(&init_user_ns, cred->uid),
1869 			 from_kgid(&init_user_ns, cred->gid),
1870 			 from_kuid(&init_user_ns, cred->euid),
1871 			 from_kuid(&init_user_ns, cred->suid),
1872 			 from_kuid(&init_user_ns, cred->fsuid),
1873 			 from_kgid(&init_user_ns, cred->egid),
1874 			 from_kgid(&init_user_ns, cred->sgid),
1875 			 from_kgid(&init_user_ns, cred->fsgid),
1876 			 tty, audit_get_sessionid(tsk));
1877 
1878 	audit_log_format(ab, " comm=");
1879 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1880 
1881 	if (mm) {
1882 		down_read(&mm->mmap_sem);
1883 		if (mm->exe_file)
1884 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1885 		up_read(&mm->mmap_sem);
1886 	} else
1887 		audit_log_format(ab, " exe=(null)");
1888 	audit_log_task_context(ab);
1889 }
1890 EXPORT_SYMBOL(audit_log_task_info);
1891 
1892 /**
1893  * audit_log_link_denied - report a link restriction denial
1894  * @operation: specific link opreation
1895  * @link: the path that triggered the restriction
1896  */
1897 void audit_log_link_denied(const char *operation, struct path *link)
1898 {
1899 	struct audit_buffer *ab;
1900 	struct audit_names *name;
1901 
1902 	name = kzalloc(sizeof(*name), GFP_NOFS);
1903 	if (!name)
1904 		return;
1905 
1906 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1907 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1908 			     AUDIT_ANOM_LINK);
1909 	if (!ab)
1910 		goto out;
1911 	audit_log_format(ab, "op=%s", operation);
1912 	audit_log_task_info(ab, current);
1913 	audit_log_format(ab, " res=0");
1914 	audit_log_end(ab);
1915 
1916 	/* Generate AUDIT_PATH record with object. */
1917 	name->type = AUDIT_TYPE_NORMAL;
1918 	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1919 	audit_log_name(current->audit_context, name, link, 0, NULL);
1920 out:
1921 	kfree(name);
1922 }
1923 
1924 /**
1925  * audit_log_end - end one audit record
1926  * @ab: the audit_buffer
1927  *
1928  * netlink_unicast() cannot be called inside an irq context because it blocks
1929  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1930  * on a queue and a tasklet is scheduled to remove them from the queue outside
1931  * the irq context.  May be called in any context.
1932  */
1933 void audit_log_end(struct audit_buffer *ab)
1934 {
1935 	if (!ab)
1936 		return;
1937 	if (!audit_rate_check()) {
1938 		audit_log_lost("rate limit exceeded");
1939 	} else {
1940 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1941 
1942 		nlh->nlmsg_len = ab->skb->len;
1943 		kauditd_send_multicast_skb(ab->skb);
1944 
1945 		/*
1946 		 * The original kaudit unicast socket sends up messages with
1947 		 * nlmsg_len set to the payload length rather than the entire
1948 		 * message length.  This breaks the standard set by netlink.
1949 		 * The existing auditd daemon assumes this breakage.  Fixing
1950 		 * this would require co-ordinating a change in the established
1951 		 * protocol between the kaudit kernel subsystem and the auditd
1952 		 * userspace code.
1953 		 */
1954 		nlh->nlmsg_len -= NLMSG_HDRLEN;
1955 
1956 		if (audit_pid) {
1957 			skb_queue_tail(&audit_skb_queue, ab->skb);
1958 			wake_up_interruptible(&kauditd_wait);
1959 		} else {
1960 			audit_printk_skb(ab->skb);
1961 		}
1962 		ab->skb = NULL;
1963 	}
1964 	audit_buffer_free(ab);
1965 }
1966 
1967 /**
1968  * audit_log - Log an audit record
1969  * @ctx: audit context
1970  * @gfp_mask: type of allocation
1971  * @type: audit message type
1972  * @fmt: format string to use
1973  * @...: variable parameters matching the format string
1974  *
1975  * This is a convenience function that calls audit_log_start,
1976  * audit_log_vformat, and audit_log_end.  It may be called
1977  * in any context.
1978  */
1979 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1980 	       const char *fmt, ...)
1981 {
1982 	struct audit_buffer *ab;
1983 	va_list args;
1984 
1985 	ab = audit_log_start(ctx, gfp_mask, type);
1986 	if (ab) {
1987 		va_start(args, fmt);
1988 		audit_log_vformat(ab, fmt, args);
1989 		va_end(args);
1990 		audit_log_end(ab);
1991 	}
1992 }
1993 
1994 #ifdef CONFIG_SECURITY
1995 /**
1996  * audit_log_secctx - Converts and logs SELinux context
1997  * @ab: audit_buffer
1998  * @secid: security number
1999  *
2000  * This is a helper function that calls security_secid_to_secctx to convert
2001  * secid to secctx and then adds the (converted) SELinux context to the audit
2002  * log by calling audit_log_format, thus also preventing leak of internal secid
2003  * to userspace. If secid cannot be converted audit_panic is called.
2004  */
2005 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2006 {
2007 	u32 len;
2008 	char *secctx;
2009 
2010 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2011 		audit_panic("Cannot convert secid to context");
2012 	} else {
2013 		audit_log_format(ab, " obj=%s", secctx);
2014 		security_release_secctx(secctx, len);
2015 	}
2016 }
2017 EXPORT_SYMBOL(audit_log_secctx);
2018 #endif
2019 
2020 EXPORT_SYMBOL(audit_log_start);
2021 EXPORT_SYMBOL(audit_log_end);
2022 EXPORT_SYMBOL(audit_log_format);
2023 EXPORT_SYMBOL(audit_log);
2024