1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/init.h> 47 #include <linux/types.h> 48 #include <linux/atomic.h> 49 #include <linux/mm.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/err.h> 53 #include <linux/kthread.h> 54 #include <linux/kernel.h> 55 #include <linux/syscalls.h> 56 57 #include <linux/audit.h> 58 59 #include <net/sock.h> 60 #include <net/netlink.h> 61 #include <linux/skbuff.h> 62 #ifdef CONFIG_SECURITY 63 #include <linux/security.h> 64 #endif 65 #include <linux/freezer.h> 66 #include <linux/tty.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 static u32 audit_backlog_wait_overflow = 0; 112 113 /* The identity of the user shutting down the audit system. */ 114 kuid_t audit_sig_uid = INVALID_UID; 115 pid_t audit_sig_pid = -1; 116 u32 audit_sig_sid = 0; 117 118 /* Records can be lost in several ways: 119 0) [suppressed in audit_alloc] 120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 121 2) out of memory in audit_log_move [alloc_skb] 122 3) suppressed due to audit_rate_limit 123 4) suppressed due to audit_backlog_limit 124 */ 125 static atomic_t audit_lost = ATOMIC_INIT(0); 126 127 /* The netlink socket. */ 128 static struct sock *audit_sock; 129 static int audit_net_id; 130 131 /* Hash for inode-based rules */ 132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 133 134 /* The audit_freelist is a list of pre-allocated audit buffers (if more 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 136 * being placed on the freelist). */ 137 static DEFINE_SPINLOCK(audit_freelist_lock); 138 static int audit_freelist_count; 139 static LIST_HEAD(audit_freelist); 140 141 static struct sk_buff_head audit_skb_queue; 142 /* queue of skbs to send to auditd when/if it comes back */ 143 static struct sk_buff_head audit_skb_hold_queue; 144 static struct task_struct *kauditd_task; 145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 147 148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 149 .mask = -1, 150 .features = 0, 151 .lock = 0,}; 152 153 static char *audit_feature_names[2] = { 154 "only_unset_loginuid", 155 "loginuid_immutable", 156 }; 157 158 159 /* Serialize requests from userspace. */ 160 DEFINE_MUTEX(audit_cmd_mutex); 161 162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 163 * audit records. Since printk uses a 1024 byte buffer, this buffer 164 * should be at least that large. */ 165 #define AUDIT_BUFSIZ 1024 166 167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 169 #define AUDIT_MAXFREE (2*NR_CPUS) 170 171 /* The audit_buffer is used when formatting an audit record. The caller 172 * locks briefly to get the record off the freelist or to allocate the 173 * buffer, and locks briefly to send the buffer to the netlink layer or 174 * to place it on a transmit queue. Multiple audit_buffers can be in 175 * use simultaneously. */ 176 struct audit_buffer { 177 struct list_head list; 178 struct sk_buff *skb; /* formatted skb ready to send */ 179 struct audit_context *ctx; /* NULL or associated context */ 180 gfp_t gfp_mask; 181 }; 182 183 struct audit_reply { 184 __u32 portid; 185 struct net *net; 186 struct sk_buff *skb; 187 }; 188 189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 190 { 191 if (ab) { 192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 193 nlh->nlmsg_pid = portid; 194 } 195 } 196 197 void audit_panic(const char *message) 198 { 199 switch (audit_failure) { 200 case AUDIT_FAIL_SILENT: 201 break; 202 case AUDIT_FAIL_PRINTK: 203 if (printk_ratelimit()) 204 pr_err("%s\n", message); 205 break; 206 case AUDIT_FAIL_PANIC: 207 /* test audit_pid since printk is always losey, why bother? */ 208 if (audit_pid) 209 panic("audit: %s\n", message); 210 break; 211 } 212 } 213 214 static inline int audit_rate_check(void) 215 { 216 static unsigned long last_check = 0; 217 static int messages = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 unsigned long elapsed; 222 int retval = 0; 223 224 if (!audit_rate_limit) return 1; 225 226 spin_lock_irqsave(&lock, flags); 227 if (++messages < audit_rate_limit) { 228 retval = 1; 229 } else { 230 now = jiffies; 231 elapsed = now - last_check; 232 if (elapsed > HZ) { 233 last_check = now; 234 messages = 0; 235 retval = 1; 236 } 237 } 238 spin_unlock_irqrestore(&lock, flags); 239 240 return retval; 241 } 242 243 /** 244 * audit_log_lost - conditionally log lost audit message event 245 * @message: the message stating reason for lost audit message 246 * 247 * Emit at least 1 message per second, even if audit_rate_check is 248 * throttling. 249 * Always increment the lost messages counter. 250 */ 251 void audit_log_lost(const char *message) 252 { 253 static unsigned long last_msg = 0; 254 static DEFINE_SPINLOCK(lock); 255 unsigned long flags; 256 unsigned long now; 257 int print; 258 259 atomic_inc(&audit_lost); 260 261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 262 263 if (!print) { 264 spin_lock_irqsave(&lock, flags); 265 now = jiffies; 266 if (now - last_msg > HZ) { 267 print = 1; 268 last_msg = now; 269 } 270 spin_unlock_irqrestore(&lock, flags); 271 } 272 273 if (print) { 274 if (printk_ratelimit()) 275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 276 atomic_read(&audit_lost), 277 audit_rate_limit, 278 audit_backlog_limit); 279 audit_panic(message); 280 } 281 } 282 283 static int audit_log_config_change(char *function_name, u32 new, u32 old, 284 int allow_changes) 285 { 286 struct audit_buffer *ab; 287 int rc = 0; 288 289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 290 if (unlikely(!ab)) 291 return rc; 292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 293 audit_log_session_info(ab); 294 rc = audit_log_task_context(ab); 295 if (rc) 296 allow_changes = 0; /* Something weird, deny request */ 297 audit_log_format(ab, " res=%d", allow_changes); 298 audit_log_end(ab); 299 return rc; 300 } 301 302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 303 { 304 int allow_changes, rc = 0; 305 u32 old = *to_change; 306 307 /* check if we are locked */ 308 if (audit_enabled == AUDIT_LOCKED) 309 allow_changes = 0; 310 else 311 allow_changes = 1; 312 313 if (audit_enabled != AUDIT_OFF) { 314 rc = audit_log_config_change(function_name, new, old, allow_changes); 315 if (rc) 316 allow_changes = 0; 317 } 318 319 /* If we are allowed, make the change */ 320 if (allow_changes == 1) 321 *to_change = new; 322 /* Not allowed, update reason */ 323 else if (rc == 0) 324 rc = -EPERM; 325 return rc; 326 } 327 328 static int audit_set_rate_limit(u32 limit) 329 { 330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 331 } 332 333 static int audit_set_backlog_limit(u32 limit) 334 { 335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 336 } 337 338 static int audit_set_backlog_wait_time(u32 timeout) 339 { 340 return audit_do_config_change("audit_backlog_wait_time", 341 &audit_backlog_wait_time, timeout); 342 } 343 344 static int audit_set_enabled(u32 state) 345 { 346 int rc; 347 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 348 return -EINVAL; 349 350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 351 if (!rc) 352 audit_ever_enabled |= !!state; 353 354 return rc; 355 } 356 357 static int audit_set_failure(u32 state) 358 { 359 if (state != AUDIT_FAIL_SILENT 360 && state != AUDIT_FAIL_PRINTK 361 && state != AUDIT_FAIL_PANIC) 362 return -EINVAL; 363 364 return audit_do_config_change("audit_failure", &audit_failure, state); 365 } 366 367 /* 368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 369 * already have been sent via prink/syslog and so if these messages are dropped 370 * it is not a huge concern since we already passed the audit_log_lost() 371 * notification and stuff. This is just nice to get audit messages during 372 * boot before auditd is running or messages generated while auditd is stopped. 373 * This only holds messages is audit_default is set, aka booting with audit=1 374 * or building your kernel that way. 375 */ 376 static void audit_hold_skb(struct sk_buff *skb) 377 { 378 if (audit_default && 379 (!audit_backlog_limit || 380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 381 skb_queue_tail(&audit_skb_hold_queue, skb); 382 else 383 kfree_skb(skb); 384 } 385 386 /* 387 * For one reason or another this nlh isn't getting delivered to the userspace 388 * audit daemon, just send it to printk. 389 */ 390 static void audit_printk_skb(struct sk_buff *skb) 391 { 392 struct nlmsghdr *nlh = nlmsg_hdr(skb); 393 char *data = nlmsg_data(nlh); 394 395 if (nlh->nlmsg_type != AUDIT_EOE) { 396 if (printk_ratelimit()) 397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 398 else 399 audit_log_lost("printk limit exceeded"); 400 } 401 402 audit_hold_skb(skb); 403 } 404 405 static void kauditd_send_skb(struct sk_buff *skb) 406 { 407 int err; 408 /* take a reference in case we can't send it and we want to hold it */ 409 skb_get(skb); 410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 411 if (err < 0) { 412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 413 if (audit_pid) { 414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 415 audit_log_lost("auditd disappeared"); 416 audit_pid = 0; 417 audit_sock = NULL; 418 } 419 /* we might get lucky and get this in the next auditd */ 420 audit_hold_skb(skb); 421 } else 422 /* drop the extra reference if sent ok */ 423 consume_skb(skb); 424 } 425 426 /* 427 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 428 * 429 * This function doesn't consume an skb as might be expected since it has to 430 * copy it anyways. 431 */ 432 static void kauditd_send_multicast_skb(struct sk_buff *skb) 433 { 434 struct sk_buff *copy; 435 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 436 struct sock *sock = aunet->nlsk; 437 438 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 439 return; 440 441 /* 442 * The seemingly wasteful skb_copy() rather than bumping the refcount 443 * using skb_get() is necessary because non-standard mods are made to 444 * the skb by the original kaudit unicast socket send routine. The 445 * existing auditd daemon assumes this breakage. Fixing this would 446 * require co-ordinating a change in the established protocol between 447 * the kaudit kernel subsystem and the auditd userspace code. There is 448 * no reason for new multicast clients to continue with this 449 * non-compliance. 450 */ 451 copy = skb_copy(skb, GFP_KERNEL); 452 if (!copy) 453 return; 454 455 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 456 } 457 458 /* 459 * flush_hold_queue - empty the hold queue if auditd appears 460 * 461 * If auditd just started, drain the queue of messages already 462 * sent to syslog/printk. Remember loss here is ok. We already 463 * called audit_log_lost() if it didn't go out normally. so the 464 * race between the skb_dequeue and the next check for audit_pid 465 * doesn't matter. 466 * 467 * If you ever find kauditd to be too slow we can get a perf win 468 * by doing our own locking and keeping better track if there 469 * are messages in this queue. I don't see the need now, but 470 * in 5 years when I want to play with this again I'll see this 471 * note and still have no friggin idea what i'm thinking today. 472 */ 473 static void flush_hold_queue(void) 474 { 475 struct sk_buff *skb; 476 477 if (!audit_default || !audit_pid) 478 return; 479 480 skb = skb_dequeue(&audit_skb_hold_queue); 481 if (likely(!skb)) 482 return; 483 484 while (skb && audit_pid) { 485 kauditd_send_skb(skb); 486 skb = skb_dequeue(&audit_skb_hold_queue); 487 } 488 489 /* 490 * if auditd just disappeared but we 491 * dequeued an skb we need to drop ref 492 */ 493 if (skb) 494 consume_skb(skb); 495 } 496 497 static int kauditd_thread(void *dummy) 498 { 499 set_freezable(); 500 while (!kthread_should_stop()) { 501 struct sk_buff *skb; 502 503 flush_hold_queue(); 504 505 skb = skb_dequeue(&audit_skb_queue); 506 507 if (skb) { 508 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 509 wake_up(&audit_backlog_wait); 510 if (audit_pid) 511 kauditd_send_skb(skb); 512 else 513 audit_printk_skb(skb); 514 continue; 515 } 516 517 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 518 } 519 return 0; 520 } 521 522 int audit_send_list(void *_dest) 523 { 524 struct audit_netlink_list *dest = _dest; 525 struct sk_buff *skb; 526 struct net *net = dest->net; 527 struct audit_net *aunet = net_generic(net, audit_net_id); 528 529 /* wait for parent to finish and send an ACK */ 530 mutex_lock(&audit_cmd_mutex); 531 mutex_unlock(&audit_cmd_mutex); 532 533 while ((skb = __skb_dequeue(&dest->q)) != NULL) 534 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 535 536 put_net(net); 537 kfree(dest); 538 539 return 0; 540 } 541 542 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 543 int multi, const void *payload, int size) 544 { 545 struct sk_buff *skb; 546 struct nlmsghdr *nlh; 547 void *data; 548 int flags = multi ? NLM_F_MULTI : 0; 549 int t = done ? NLMSG_DONE : type; 550 551 skb = nlmsg_new(size, GFP_KERNEL); 552 if (!skb) 553 return NULL; 554 555 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 556 if (!nlh) 557 goto out_kfree_skb; 558 data = nlmsg_data(nlh); 559 memcpy(data, payload, size); 560 return skb; 561 562 out_kfree_skb: 563 kfree_skb(skb); 564 return NULL; 565 } 566 567 static int audit_send_reply_thread(void *arg) 568 { 569 struct audit_reply *reply = (struct audit_reply *)arg; 570 struct net *net = reply->net; 571 struct audit_net *aunet = net_generic(net, audit_net_id); 572 573 mutex_lock(&audit_cmd_mutex); 574 mutex_unlock(&audit_cmd_mutex); 575 576 /* Ignore failure. It'll only happen if the sender goes away, 577 because our timeout is set to infinite. */ 578 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 579 put_net(net); 580 kfree(reply); 581 return 0; 582 } 583 /** 584 * audit_send_reply - send an audit reply message via netlink 585 * @request_skb: skb of request we are replying to (used to target the reply) 586 * @seq: sequence number 587 * @type: audit message type 588 * @done: done (last) flag 589 * @multi: multi-part message flag 590 * @payload: payload data 591 * @size: payload size 592 * 593 * Allocates an skb, builds the netlink message, and sends it to the port id. 594 * No failure notifications. 595 */ 596 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 597 int multi, const void *payload, int size) 598 { 599 u32 portid = NETLINK_CB(request_skb).portid; 600 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 601 struct sk_buff *skb; 602 struct task_struct *tsk; 603 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 604 GFP_KERNEL); 605 606 if (!reply) 607 return; 608 609 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 610 if (!skb) 611 goto out; 612 613 reply->net = get_net(net); 614 reply->portid = portid; 615 reply->skb = skb; 616 617 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 618 if (!IS_ERR(tsk)) 619 return; 620 kfree_skb(skb); 621 out: 622 kfree(reply); 623 } 624 625 /* 626 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 627 * control messages. 628 */ 629 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 630 { 631 int err = 0; 632 633 /* Only support initial user namespace for now. */ 634 /* 635 * We return ECONNREFUSED because it tricks userspace into thinking 636 * that audit was not configured into the kernel. Lots of users 637 * configure their PAM stack (because that's what the distro does) 638 * to reject login if unable to send messages to audit. If we return 639 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 640 * configured in and will let login proceed. If we return EPERM 641 * userspace will reject all logins. This should be removed when we 642 * support non init namespaces!! 643 */ 644 if (current_user_ns() != &init_user_ns) 645 return -ECONNREFUSED; 646 647 switch (msg_type) { 648 case AUDIT_LIST: 649 case AUDIT_ADD: 650 case AUDIT_DEL: 651 return -EOPNOTSUPP; 652 case AUDIT_GET: 653 case AUDIT_SET: 654 case AUDIT_GET_FEATURE: 655 case AUDIT_SET_FEATURE: 656 case AUDIT_LIST_RULES: 657 case AUDIT_ADD_RULE: 658 case AUDIT_DEL_RULE: 659 case AUDIT_SIGNAL_INFO: 660 case AUDIT_TTY_GET: 661 case AUDIT_TTY_SET: 662 case AUDIT_TRIM: 663 case AUDIT_MAKE_EQUIV: 664 /* Only support auditd and auditctl in initial pid namespace 665 * for now. */ 666 if ((task_active_pid_ns(current) != &init_pid_ns)) 667 return -EPERM; 668 669 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 670 err = -EPERM; 671 break; 672 case AUDIT_USER: 673 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 674 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 675 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 676 err = -EPERM; 677 break; 678 default: /* bad msg */ 679 err = -EINVAL; 680 } 681 682 return err; 683 } 684 685 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 686 { 687 int rc = 0; 688 uid_t uid = from_kuid(&init_user_ns, current_uid()); 689 pid_t pid = task_tgid_nr(current); 690 691 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 692 *ab = NULL; 693 return rc; 694 } 695 696 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 697 if (unlikely(!*ab)) 698 return rc; 699 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 700 audit_log_session_info(*ab); 701 audit_log_task_context(*ab); 702 703 return rc; 704 } 705 706 int is_audit_feature_set(int i) 707 { 708 return af.features & AUDIT_FEATURE_TO_MASK(i); 709 } 710 711 712 static int audit_get_feature(struct sk_buff *skb) 713 { 714 u32 seq; 715 716 seq = nlmsg_hdr(skb)->nlmsg_seq; 717 718 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 719 720 return 0; 721 } 722 723 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 724 u32 old_lock, u32 new_lock, int res) 725 { 726 struct audit_buffer *ab; 727 728 if (audit_enabled == AUDIT_OFF) 729 return; 730 731 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 732 audit_log_task_info(ab, current); 733 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 734 audit_feature_names[which], !!old_feature, !!new_feature, 735 !!old_lock, !!new_lock, res); 736 audit_log_end(ab); 737 } 738 739 static int audit_set_feature(struct sk_buff *skb) 740 { 741 struct audit_features *uaf; 742 int i; 743 744 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 745 uaf = nlmsg_data(nlmsg_hdr(skb)); 746 747 /* if there is ever a version 2 we should handle that here */ 748 749 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 750 u32 feature = AUDIT_FEATURE_TO_MASK(i); 751 u32 old_feature, new_feature, old_lock, new_lock; 752 753 /* if we are not changing this feature, move along */ 754 if (!(feature & uaf->mask)) 755 continue; 756 757 old_feature = af.features & feature; 758 new_feature = uaf->features & feature; 759 new_lock = (uaf->lock | af.lock) & feature; 760 old_lock = af.lock & feature; 761 762 /* are we changing a locked feature? */ 763 if (old_lock && (new_feature != old_feature)) { 764 audit_log_feature_change(i, old_feature, new_feature, 765 old_lock, new_lock, 0); 766 return -EPERM; 767 } 768 } 769 /* nothing invalid, do the changes */ 770 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 771 u32 feature = AUDIT_FEATURE_TO_MASK(i); 772 u32 old_feature, new_feature, old_lock, new_lock; 773 774 /* if we are not changing this feature, move along */ 775 if (!(feature & uaf->mask)) 776 continue; 777 778 old_feature = af.features & feature; 779 new_feature = uaf->features & feature; 780 old_lock = af.lock & feature; 781 new_lock = (uaf->lock | af.lock) & feature; 782 783 if (new_feature != old_feature) 784 audit_log_feature_change(i, old_feature, new_feature, 785 old_lock, new_lock, 1); 786 787 if (new_feature) 788 af.features |= feature; 789 else 790 af.features &= ~feature; 791 af.lock |= new_lock; 792 } 793 794 return 0; 795 } 796 797 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 798 { 799 u32 seq; 800 void *data; 801 int err; 802 struct audit_buffer *ab; 803 u16 msg_type = nlh->nlmsg_type; 804 struct audit_sig_info *sig_data; 805 char *ctx = NULL; 806 u32 len; 807 808 err = audit_netlink_ok(skb, msg_type); 809 if (err) 810 return err; 811 812 /* As soon as there's any sign of userspace auditd, 813 * start kauditd to talk to it */ 814 if (!kauditd_task) { 815 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 816 if (IS_ERR(kauditd_task)) { 817 err = PTR_ERR(kauditd_task); 818 kauditd_task = NULL; 819 return err; 820 } 821 } 822 seq = nlh->nlmsg_seq; 823 data = nlmsg_data(nlh); 824 825 switch (msg_type) { 826 case AUDIT_GET: { 827 struct audit_status s; 828 memset(&s, 0, sizeof(s)); 829 s.enabled = audit_enabled; 830 s.failure = audit_failure; 831 s.pid = audit_pid; 832 s.rate_limit = audit_rate_limit; 833 s.backlog_limit = audit_backlog_limit; 834 s.lost = atomic_read(&audit_lost); 835 s.backlog = skb_queue_len(&audit_skb_queue); 836 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 837 s.backlog_wait_time = audit_backlog_wait_time; 838 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 839 break; 840 } 841 case AUDIT_SET: { 842 struct audit_status s; 843 memset(&s, 0, sizeof(s)); 844 /* guard against past and future API changes */ 845 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 846 if (s.mask & AUDIT_STATUS_ENABLED) { 847 err = audit_set_enabled(s.enabled); 848 if (err < 0) 849 return err; 850 } 851 if (s.mask & AUDIT_STATUS_FAILURE) { 852 err = audit_set_failure(s.failure); 853 if (err < 0) 854 return err; 855 } 856 if (s.mask & AUDIT_STATUS_PID) { 857 int new_pid = s.pid; 858 859 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 860 return -EACCES; 861 if (audit_enabled != AUDIT_OFF) 862 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 863 audit_pid = new_pid; 864 audit_nlk_portid = NETLINK_CB(skb).portid; 865 audit_sock = skb->sk; 866 } 867 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 868 err = audit_set_rate_limit(s.rate_limit); 869 if (err < 0) 870 return err; 871 } 872 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 873 err = audit_set_backlog_limit(s.backlog_limit); 874 if (err < 0) 875 return err; 876 } 877 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 878 if (sizeof(s) > (size_t)nlh->nlmsg_len) 879 return -EINVAL; 880 if (s.backlog_wait_time < 0 || 881 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 882 return -EINVAL; 883 err = audit_set_backlog_wait_time(s.backlog_wait_time); 884 if (err < 0) 885 return err; 886 } 887 break; 888 } 889 case AUDIT_GET_FEATURE: 890 err = audit_get_feature(skb); 891 if (err) 892 return err; 893 break; 894 case AUDIT_SET_FEATURE: 895 err = audit_set_feature(skb); 896 if (err) 897 return err; 898 break; 899 case AUDIT_USER: 900 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 901 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 902 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 903 return 0; 904 905 err = audit_filter_user(msg_type); 906 if (err == 1) { /* match or error */ 907 err = 0; 908 if (msg_type == AUDIT_USER_TTY) { 909 err = tty_audit_push_current(); 910 if (err) 911 break; 912 } 913 mutex_unlock(&audit_cmd_mutex); 914 audit_log_common_recv_msg(&ab, msg_type); 915 if (msg_type != AUDIT_USER_TTY) 916 audit_log_format(ab, " msg='%.*s'", 917 AUDIT_MESSAGE_TEXT_MAX, 918 (char *)data); 919 else { 920 int size; 921 922 audit_log_format(ab, " data="); 923 size = nlmsg_len(nlh); 924 if (size > 0 && 925 ((unsigned char *)data)[size - 1] == '\0') 926 size--; 927 audit_log_n_untrustedstring(ab, data, size); 928 } 929 audit_set_portid(ab, NETLINK_CB(skb).portid); 930 audit_log_end(ab); 931 mutex_lock(&audit_cmd_mutex); 932 } 933 break; 934 case AUDIT_ADD_RULE: 935 case AUDIT_DEL_RULE: 936 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 937 return -EINVAL; 938 if (audit_enabled == AUDIT_LOCKED) { 939 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 940 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 941 audit_log_end(ab); 942 return -EPERM; 943 } 944 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 945 seq, data, nlmsg_len(nlh)); 946 break; 947 case AUDIT_LIST_RULES: 948 err = audit_list_rules_send(skb, seq); 949 break; 950 case AUDIT_TRIM: 951 audit_trim_trees(); 952 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 953 audit_log_format(ab, " op=trim res=1"); 954 audit_log_end(ab); 955 break; 956 case AUDIT_MAKE_EQUIV: { 957 void *bufp = data; 958 u32 sizes[2]; 959 size_t msglen = nlmsg_len(nlh); 960 char *old, *new; 961 962 err = -EINVAL; 963 if (msglen < 2 * sizeof(u32)) 964 break; 965 memcpy(sizes, bufp, 2 * sizeof(u32)); 966 bufp += 2 * sizeof(u32); 967 msglen -= 2 * sizeof(u32); 968 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 969 if (IS_ERR(old)) { 970 err = PTR_ERR(old); 971 break; 972 } 973 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 974 if (IS_ERR(new)) { 975 err = PTR_ERR(new); 976 kfree(old); 977 break; 978 } 979 /* OK, here comes... */ 980 err = audit_tag_tree(old, new); 981 982 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 983 984 audit_log_format(ab, " op=make_equiv old="); 985 audit_log_untrustedstring(ab, old); 986 audit_log_format(ab, " new="); 987 audit_log_untrustedstring(ab, new); 988 audit_log_format(ab, " res=%d", !err); 989 audit_log_end(ab); 990 kfree(old); 991 kfree(new); 992 break; 993 } 994 case AUDIT_SIGNAL_INFO: 995 len = 0; 996 if (audit_sig_sid) { 997 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 998 if (err) 999 return err; 1000 } 1001 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1002 if (!sig_data) { 1003 if (audit_sig_sid) 1004 security_release_secctx(ctx, len); 1005 return -ENOMEM; 1006 } 1007 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1008 sig_data->pid = audit_sig_pid; 1009 if (audit_sig_sid) { 1010 memcpy(sig_data->ctx, ctx, len); 1011 security_release_secctx(ctx, len); 1012 } 1013 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1014 sig_data, sizeof(*sig_data) + len); 1015 kfree(sig_data); 1016 break; 1017 case AUDIT_TTY_GET: { 1018 struct audit_tty_status s; 1019 struct task_struct *tsk = current; 1020 1021 spin_lock(&tsk->sighand->siglock); 1022 s.enabled = tsk->signal->audit_tty; 1023 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1024 spin_unlock(&tsk->sighand->siglock); 1025 1026 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1027 break; 1028 } 1029 case AUDIT_TTY_SET: { 1030 struct audit_tty_status s, old; 1031 struct task_struct *tsk = current; 1032 struct audit_buffer *ab; 1033 1034 memset(&s, 0, sizeof(s)); 1035 /* guard against past and future API changes */ 1036 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1037 /* check if new data is valid */ 1038 if ((s.enabled != 0 && s.enabled != 1) || 1039 (s.log_passwd != 0 && s.log_passwd != 1)) 1040 err = -EINVAL; 1041 1042 spin_lock(&tsk->sighand->siglock); 1043 old.enabled = tsk->signal->audit_tty; 1044 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1045 if (!err) { 1046 tsk->signal->audit_tty = s.enabled; 1047 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1048 } 1049 spin_unlock(&tsk->sighand->siglock); 1050 1051 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1052 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1053 " old-log_passwd=%d new-log_passwd=%d res=%d", 1054 old.enabled, s.enabled, old.log_passwd, 1055 s.log_passwd, !err); 1056 audit_log_end(ab); 1057 break; 1058 } 1059 default: 1060 err = -EINVAL; 1061 break; 1062 } 1063 1064 return err < 0 ? err : 0; 1065 } 1066 1067 /* 1068 * Get message from skb. Each message is processed by audit_receive_msg. 1069 * Malformed skbs with wrong length are discarded silently. 1070 */ 1071 static void audit_receive_skb(struct sk_buff *skb) 1072 { 1073 struct nlmsghdr *nlh; 1074 /* 1075 * len MUST be signed for nlmsg_next to be able to dec it below 0 1076 * if the nlmsg_len was not aligned 1077 */ 1078 int len; 1079 int err; 1080 1081 nlh = nlmsg_hdr(skb); 1082 len = skb->len; 1083 1084 while (nlmsg_ok(nlh, len)) { 1085 err = audit_receive_msg(skb, nlh); 1086 /* if err or if this message says it wants a response */ 1087 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1088 netlink_ack(skb, nlh, err); 1089 1090 nlh = nlmsg_next(nlh, &len); 1091 } 1092 } 1093 1094 /* Receive messages from netlink socket. */ 1095 static void audit_receive(struct sk_buff *skb) 1096 { 1097 mutex_lock(&audit_cmd_mutex); 1098 audit_receive_skb(skb); 1099 mutex_unlock(&audit_cmd_mutex); 1100 } 1101 1102 /* Run custom bind function on netlink socket group connect or bind requests. */ 1103 static int audit_bind(int group) 1104 { 1105 if (!capable(CAP_AUDIT_READ)) 1106 return -EPERM; 1107 1108 return 0; 1109 } 1110 1111 static int __net_init audit_net_init(struct net *net) 1112 { 1113 struct netlink_kernel_cfg cfg = { 1114 .input = audit_receive, 1115 .bind = audit_bind, 1116 .flags = NL_CFG_F_NONROOT_RECV, 1117 .groups = AUDIT_NLGRP_MAX, 1118 }; 1119 1120 struct audit_net *aunet = net_generic(net, audit_net_id); 1121 1122 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1123 if (aunet->nlsk == NULL) { 1124 audit_panic("cannot initialize netlink socket in namespace"); 1125 return -ENOMEM; 1126 } 1127 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1128 return 0; 1129 } 1130 1131 static void __net_exit audit_net_exit(struct net *net) 1132 { 1133 struct audit_net *aunet = net_generic(net, audit_net_id); 1134 struct sock *sock = aunet->nlsk; 1135 if (sock == audit_sock) { 1136 audit_pid = 0; 1137 audit_sock = NULL; 1138 } 1139 1140 RCU_INIT_POINTER(aunet->nlsk, NULL); 1141 synchronize_net(); 1142 netlink_kernel_release(sock); 1143 } 1144 1145 static struct pernet_operations audit_net_ops __net_initdata = { 1146 .init = audit_net_init, 1147 .exit = audit_net_exit, 1148 .id = &audit_net_id, 1149 .size = sizeof(struct audit_net), 1150 }; 1151 1152 /* Initialize audit support at boot time. */ 1153 static int __init audit_init(void) 1154 { 1155 int i; 1156 1157 if (audit_initialized == AUDIT_DISABLED) 1158 return 0; 1159 1160 pr_info("initializing netlink subsys (%s)\n", 1161 audit_default ? "enabled" : "disabled"); 1162 register_pernet_subsys(&audit_net_ops); 1163 1164 skb_queue_head_init(&audit_skb_queue); 1165 skb_queue_head_init(&audit_skb_hold_queue); 1166 audit_initialized = AUDIT_INITIALIZED; 1167 audit_enabled = audit_default; 1168 audit_ever_enabled |= !!audit_default; 1169 1170 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1171 1172 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1173 INIT_LIST_HEAD(&audit_inode_hash[i]); 1174 1175 return 0; 1176 } 1177 __initcall(audit_init); 1178 1179 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1180 static int __init audit_enable(char *str) 1181 { 1182 audit_default = !!simple_strtol(str, NULL, 0); 1183 if (!audit_default) 1184 audit_initialized = AUDIT_DISABLED; 1185 1186 pr_info("%s\n", audit_default ? 1187 "enabled (after initialization)" : "disabled (until reboot)"); 1188 1189 return 1; 1190 } 1191 __setup("audit=", audit_enable); 1192 1193 /* Process kernel command-line parameter at boot time. 1194 * audit_backlog_limit=<n> */ 1195 static int __init audit_backlog_limit_set(char *str) 1196 { 1197 u32 audit_backlog_limit_arg; 1198 1199 pr_info("audit_backlog_limit: "); 1200 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1201 pr_cont("using default of %u, unable to parse %s\n", 1202 audit_backlog_limit, str); 1203 return 1; 1204 } 1205 1206 audit_backlog_limit = audit_backlog_limit_arg; 1207 pr_cont("%d\n", audit_backlog_limit); 1208 1209 return 1; 1210 } 1211 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1212 1213 static void audit_buffer_free(struct audit_buffer *ab) 1214 { 1215 unsigned long flags; 1216 1217 if (!ab) 1218 return; 1219 1220 if (ab->skb) 1221 kfree_skb(ab->skb); 1222 1223 spin_lock_irqsave(&audit_freelist_lock, flags); 1224 if (audit_freelist_count > AUDIT_MAXFREE) 1225 kfree(ab); 1226 else { 1227 audit_freelist_count++; 1228 list_add(&ab->list, &audit_freelist); 1229 } 1230 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1231 } 1232 1233 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1234 gfp_t gfp_mask, int type) 1235 { 1236 unsigned long flags; 1237 struct audit_buffer *ab = NULL; 1238 struct nlmsghdr *nlh; 1239 1240 spin_lock_irqsave(&audit_freelist_lock, flags); 1241 if (!list_empty(&audit_freelist)) { 1242 ab = list_entry(audit_freelist.next, 1243 struct audit_buffer, list); 1244 list_del(&ab->list); 1245 --audit_freelist_count; 1246 } 1247 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1248 1249 if (!ab) { 1250 ab = kmalloc(sizeof(*ab), gfp_mask); 1251 if (!ab) 1252 goto err; 1253 } 1254 1255 ab->ctx = ctx; 1256 ab->gfp_mask = gfp_mask; 1257 1258 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1259 if (!ab->skb) 1260 goto err; 1261 1262 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1263 if (!nlh) 1264 goto out_kfree_skb; 1265 1266 return ab; 1267 1268 out_kfree_skb: 1269 kfree_skb(ab->skb); 1270 ab->skb = NULL; 1271 err: 1272 audit_buffer_free(ab); 1273 return NULL; 1274 } 1275 1276 /** 1277 * audit_serial - compute a serial number for the audit record 1278 * 1279 * Compute a serial number for the audit record. Audit records are 1280 * written to user-space as soon as they are generated, so a complete 1281 * audit record may be written in several pieces. The timestamp of the 1282 * record and this serial number are used by the user-space tools to 1283 * determine which pieces belong to the same audit record. The 1284 * (timestamp,serial) tuple is unique for each syscall and is live from 1285 * syscall entry to syscall exit. 1286 * 1287 * NOTE: Another possibility is to store the formatted records off the 1288 * audit context (for those records that have a context), and emit them 1289 * all at syscall exit. However, this could delay the reporting of 1290 * significant errors until syscall exit (or never, if the system 1291 * halts). 1292 */ 1293 unsigned int audit_serial(void) 1294 { 1295 static atomic_t serial = ATOMIC_INIT(0); 1296 1297 return atomic_add_return(1, &serial); 1298 } 1299 1300 static inline void audit_get_stamp(struct audit_context *ctx, 1301 struct timespec *t, unsigned int *serial) 1302 { 1303 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1304 *t = CURRENT_TIME; 1305 *serial = audit_serial(); 1306 } 1307 } 1308 1309 /* 1310 * Wait for auditd to drain the queue a little 1311 */ 1312 static long wait_for_auditd(long sleep_time) 1313 { 1314 DECLARE_WAITQUEUE(wait, current); 1315 set_current_state(TASK_UNINTERRUPTIBLE); 1316 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1317 1318 if (audit_backlog_limit && 1319 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1320 sleep_time = schedule_timeout(sleep_time); 1321 1322 __set_current_state(TASK_RUNNING); 1323 remove_wait_queue(&audit_backlog_wait, &wait); 1324 1325 return sleep_time; 1326 } 1327 1328 /** 1329 * audit_log_start - obtain an audit buffer 1330 * @ctx: audit_context (may be NULL) 1331 * @gfp_mask: type of allocation 1332 * @type: audit message type 1333 * 1334 * Returns audit_buffer pointer on success or NULL on error. 1335 * 1336 * Obtain an audit buffer. This routine does locking to obtain the 1337 * audit buffer, but then no locking is required for calls to 1338 * audit_log_*format. If the task (ctx) is a task that is currently in a 1339 * syscall, then the syscall is marked as auditable and an audit record 1340 * will be written at syscall exit. If there is no associated task, then 1341 * task context (ctx) should be NULL. 1342 */ 1343 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1344 int type) 1345 { 1346 struct audit_buffer *ab = NULL; 1347 struct timespec t; 1348 unsigned int uninitialized_var(serial); 1349 int reserve = 5; /* Allow atomic callers to go up to five 1350 entries over the normal backlog limit */ 1351 unsigned long timeout_start = jiffies; 1352 1353 if (audit_initialized != AUDIT_INITIALIZED) 1354 return NULL; 1355 1356 if (unlikely(audit_filter_type(type))) 1357 return NULL; 1358 1359 if (gfp_mask & __GFP_WAIT) { 1360 if (audit_pid && audit_pid == current->pid) 1361 gfp_mask &= ~__GFP_WAIT; 1362 else 1363 reserve = 0; 1364 } 1365 1366 while (audit_backlog_limit 1367 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1368 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1369 long sleep_time; 1370 1371 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1372 if (sleep_time > 0) { 1373 sleep_time = wait_for_auditd(sleep_time); 1374 if (sleep_time > 0) 1375 continue; 1376 } 1377 } 1378 if (audit_rate_check() && printk_ratelimit()) 1379 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1380 skb_queue_len(&audit_skb_queue), 1381 audit_backlog_limit); 1382 audit_log_lost("backlog limit exceeded"); 1383 audit_backlog_wait_time = audit_backlog_wait_overflow; 1384 wake_up(&audit_backlog_wait); 1385 return NULL; 1386 } 1387 1388 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 1389 1390 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1391 if (!ab) { 1392 audit_log_lost("out of memory in audit_log_start"); 1393 return NULL; 1394 } 1395 1396 audit_get_stamp(ab->ctx, &t, &serial); 1397 1398 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1399 t.tv_sec, t.tv_nsec/1000000, serial); 1400 return ab; 1401 } 1402 1403 /** 1404 * audit_expand - expand skb in the audit buffer 1405 * @ab: audit_buffer 1406 * @extra: space to add at tail of the skb 1407 * 1408 * Returns 0 (no space) on failed expansion, or available space if 1409 * successful. 1410 */ 1411 static inline int audit_expand(struct audit_buffer *ab, int extra) 1412 { 1413 struct sk_buff *skb = ab->skb; 1414 int oldtail = skb_tailroom(skb); 1415 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1416 int newtail = skb_tailroom(skb); 1417 1418 if (ret < 0) { 1419 audit_log_lost("out of memory in audit_expand"); 1420 return 0; 1421 } 1422 1423 skb->truesize += newtail - oldtail; 1424 return newtail; 1425 } 1426 1427 /* 1428 * Format an audit message into the audit buffer. If there isn't enough 1429 * room in the audit buffer, more room will be allocated and vsnprint 1430 * will be called a second time. Currently, we assume that a printk 1431 * can't format message larger than 1024 bytes, so we don't either. 1432 */ 1433 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1434 va_list args) 1435 { 1436 int len, avail; 1437 struct sk_buff *skb; 1438 va_list args2; 1439 1440 if (!ab) 1441 return; 1442 1443 BUG_ON(!ab->skb); 1444 skb = ab->skb; 1445 avail = skb_tailroom(skb); 1446 if (avail == 0) { 1447 avail = audit_expand(ab, AUDIT_BUFSIZ); 1448 if (!avail) 1449 goto out; 1450 } 1451 va_copy(args2, args); 1452 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1453 if (len >= avail) { 1454 /* The printk buffer is 1024 bytes long, so if we get 1455 * here and AUDIT_BUFSIZ is at least 1024, then we can 1456 * log everything that printk could have logged. */ 1457 avail = audit_expand(ab, 1458 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1459 if (!avail) 1460 goto out_va_end; 1461 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1462 } 1463 if (len > 0) 1464 skb_put(skb, len); 1465 out_va_end: 1466 va_end(args2); 1467 out: 1468 return; 1469 } 1470 1471 /** 1472 * audit_log_format - format a message into the audit buffer. 1473 * @ab: audit_buffer 1474 * @fmt: format string 1475 * @...: optional parameters matching @fmt string 1476 * 1477 * All the work is done in audit_log_vformat. 1478 */ 1479 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1480 { 1481 va_list args; 1482 1483 if (!ab) 1484 return; 1485 va_start(args, fmt); 1486 audit_log_vformat(ab, fmt, args); 1487 va_end(args); 1488 } 1489 1490 /** 1491 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1492 * @ab: the audit_buffer 1493 * @buf: buffer to convert to hex 1494 * @len: length of @buf to be converted 1495 * 1496 * No return value; failure to expand is silently ignored. 1497 * 1498 * This function will take the passed buf and convert it into a string of 1499 * ascii hex digits. The new string is placed onto the skb. 1500 */ 1501 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1502 size_t len) 1503 { 1504 int i, avail, new_len; 1505 unsigned char *ptr; 1506 struct sk_buff *skb; 1507 1508 if (!ab) 1509 return; 1510 1511 BUG_ON(!ab->skb); 1512 skb = ab->skb; 1513 avail = skb_tailroom(skb); 1514 new_len = len<<1; 1515 if (new_len >= avail) { 1516 /* Round the buffer request up to the next multiple */ 1517 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1518 avail = audit_expand(ab, new_len); 1519 if (!avail) 1520 return; 1521 } 1522 1523 ptr = skb_tail_pointer(skb); 1524 for (i = 0; i < len; i++) 1525 ptr = hex_byte_pack_upper(ptr, buf[i]); 1526 *ptr = 0; 1527 skb_put(skb, len << 1); /* new string is twice the old string */ 1528 } 1529 1530 /* 1531 * Format a string of no more than slen characters into the audit buffer, 1532 * enclosed in quote marks. 1533 */ 1534 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1535 size_t slen) 1536 { 1537 int avail, new_len; 1538 unsigned char *ptr; 1539 struct sk_buff *skb; 1540 1541 if (!ab) 1542 return; 1543 1544 BUG_ON(!ab->skb); 1545 skb = ab->skb; 1546 avail = skb_tailroom(skb); 1547 new_len = slen + 3; /* enclosing quotes + null terminator */ 1548 if (new_len > avail) { 1549 avail = audit_expand(ab, new_len); 1550 if (!avail) 1551 return; 1552 } 1553 ptr = skb_tail_pointer(skb); 1554 *ptr++ = '"'; 1555 memcpy(ptr, string, slen); 1556 ptr += slen; 1557 *ptr++ = '"'; 1558 *ptr = 0; 1559 skb_put(skb, slen + 2); /* don't include null terminator */ 1560 } 1561 1562 /** 1563 * audit_string_contains_control - does a string need to be logged in hex 1564 * @string: string to be checked 1565 * @len: max length of the string to check 1566 */ 1567 int audit_string_contains_control(const char *string, size_t len) 1568 { 1569 const unsigned char *p; 1570 for (p = string; p < (const unsigned char *)string + len; p++) { 1571 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1572 return 1; 1573 } 1574 return 0; 1575 } 1576 1577 /** 1578 * audit_log_n_untrustedstring - log a string that may contain random characters 1579 * @ab: audit_buffer 1580 * @len: length of string (not including trailing null) 1581 * @string: string to be logged 1582 * 1583 * This code will escape a string that is passed to it if the string 1584 * contains a control character, unprintable character, double quote mark, 1585 * or a space. Unescaped strings will start and end with a double quote mark. 1586 * Strings that are escaped are printed in hex (2 digits per char). 1587 * 1588 * The caller specifies the number of characters in the string to log, which may 1589 * or may not be the entire string. 1590 */ 1591 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1592 size_t len) 1593 { 1594 if (audit_string_contains_control(string, len)) 1595 audit_log_n_hex(ab, string, len); 1596 else 1597 audit_log_n_string(ab, string, len); 1598 } 1599 1600 /** 1601 * audit_log_untrustedstring - log a string that may contain random characters 1602 * @ab: audit_buffer 1603 * @string: string to be logged 1604 * 1605 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1606 * determine string length. 1607 */ 1608 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1609 { 1610 audit_log_n_untrustedstring(ab, string, strlen(string)); 1611 } 1612 1613 /* This is a helper-function to print the escaped d_path */ 1614 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1615 const struct path *path) 1616 { 1617 char *p, *pathname; 1618 1619 if (prefix) 1620 audit_log_format(ab, "%s", prefix); 1621 1622 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1623 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1624 if (!pathname) { 1625 audit_log_string(ab, "<no_memory>"); 1626 return; 1627 } 1628 p = d_path(path, pathname, PATH_MAX+11); 1629 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1630 /* FIXME: can we save some information here? */ 1631 audit_log_string(ab, "<too_long>"); 1632 } else 1633 audit_log_untrustedstring(ab, p); 1634 kfree(pathname); 1635 } 1636 1637 void audit_log_session_info(struct audit_buffer *ab) 1638 { 1639 unsigned int sessionid = audit_get_sessionid(current); 1640 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1641 1642 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1643 } 1644 1645 void audit_log_key(struct audit_buffer *ab, char *key) 1646 { 1647 audit_log_format(ab, " key="); 1648 if (key) 1649 audit_log_untrustedstring(ab, key); 1650 else 1651 audit_log_format(ab, "(null)"); 1652 } 1653 1654 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1655 { 1656 int i; 1657 1658 audit_log_format(ab, " %s=", prefix); 1659 CAP_FOR_EACH_U32(i) { 1660 audit_log_format(ab, "%08x", 1661 cap->cap[CAP_LAST_U32 - i]); 1662 } 1663 } 1664 1665 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1666 { 1667 kernel_cap_t *perm = &name->fcap.permitted; 1668 kernel_cap_t *inh = &name->fcap.inheritable; 1669 int log = 0; 1670 1671 if (!cap_isclear(*perm)) { 1672 audit_log_cap(ab, "cap_fp", perm); 1673 log = 1; 1674 } 1675 if (!cap_isclear(*inh)) { 1676 audit_log_cap(ab, "cap_fi", inh); 1677 log = 1; 1678 } 1679 1680 if (log) 1681 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1682 name->fcap.fE, name->fcap_ver); 1683 } 1684 1685 static inline int audit_copy_fcaps(struct audit_names *name, 1686 const struct dentry *dentry) 1687 { 1688 struct cpu_vfs_cap_data caps; 1689 int rc; 1690 1691 if (!dentry) 1692 return 0; 1693 1694 rc = get_vfs_caps_from_disk(dentry, &caps); 1695 if (rc) 1696 return rc; 1697 1698 name->fcap.permitted = caps.permitted; 1699 name->fcap.inheritable = caps.inheritable; 1700 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1701 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1702 VFS_CAP_REVISION_SHIFT; 1703 1704 return 0; 1705 } 1706 1707 /* Copy inode data into an audit_names. */ 1708 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1709 const struct inode *inode) 1710 { 1711 name->ino = inode->i_ino; 1712 name->dev = inode->i_sb->s_dev; 1713 name->mode = inode->i_mode; 1714 name->uid = inode->i_uid; 1715 name->gid = inode->i_gid; 1716 name->rdev = inode->i_rdev; 1717 security_inode_getsecid(inode, &name->osid); 1718 audit_copy_fcaps(name, dentry); 1719 } 1720 1721 /** 1722 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1723 * @context: audit_context for the task 1724 * @n: audit_names structure with reportable details 1725 * @path: optional path to report instead of audit_names->name 1726 * @record_num: record number to report when handling a list of names 1727 * @call_panic: optional pointer to int that will be updated if secid fails 1728 */ 1729 void audit_log_name(struct audit_context *context, struct audit_names *n, 1730 struct path *path, int record_num, int *call_panic) 1731 { 1732 struct audit_buffer *ab; 1733 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1734 if (!ab) 1735 return; 1736 1737 audit_log_format(ab, "item=%d", record_num); 1738 1739 if (path) 1740 audit_log_d_path(ab, " name=", path); 1741 else if (n->name) { 1742 switch (n->name_len) { 1743 case AUDIT_NAME_FULL: 1744 /* log the full path */ 1745 audit_log_format(ab, " name="); 1746 audit_log_untrustedstring(ab, n->name->name); 1747 break; 1748 case 0: 1749 /* name was specified as a relative path and the 1750 * directory component is the cwd */ 1751 audit_log_d_path(ab, " name=", &context->pwd); 1752 break; 1753 default: 1754 /* log the name's directory component */ 1755 audit_log_format(ab, " name="); 1756 audit_log_n_untrustedstring(ab, n->name->name, 1757 n->name_len); 1758 } 1759 } else 1760 audit_log_format(ab, " name=(null)"); 1761 1762 if (n->ino != (unsigned long)-1) { 1763 audit_log_format(ab, " inode=%lu" 1764 " dev=%02x:%02x mode=%#ho" 1765 " ouid=%u ogid=%u rdev=%02x:%02x", 1766 n->ino, 1767 MAJOR(n->dev), 1768 MINOR(n->dev), 1769 n->mode, 1770 from_kuid(&init_user_ns, n->uid), 1771 from_kgid(&init_user_ns, n->gid), 1772 MAJOR(n->rdev), 1773 MINOR(n->rdev)); 1774 } 1775 if (n->osid != 0) { 1776 char *ctx = NULL; 1777 u32 len; 1778 if (security_secid_to_secctx( 1779 n->osid, &ctx, &len)) { 1780 audit_log_format(ab, " osid=%u", n->osid); 1781 if (call_panic) 1782 *call_panic = 2; 1783 } else { 1784 audit_log_format(ab, " obj=%s", ctx); 1785 security_release_secctx(ctx, len); 1786 } 1787 } 1788 1789 /* log the audit_names record type */ 1790 audit_log_format(ab, " nametype="); 1791 switch(n->type) { 1792 case AUDIT_TYPE_NORMAL: 1793 audit_log_format(ab, "NORMAL"); 1794 break; 1795 case AUDIT_TYPE_PARENT: 1796 audit_log_format(ab, "PARENT"); 1797 break; 1798 case AUDIT_TYPE_CHILD_DELETE: 1799 audit_log_format(ab, "DELETE"); 1800 break; 1801 case AUDIT_TYPE_CHILD_CREATE: 1802 audit_log_format(ab, "CREATE"); 1803 break; 1804 default: 1805 audit_log_format(ab, "UNKNOWN"); 1806 break; 1807 } 1808 1809 audit_log_fcaps(ab, n); 1810 audit_log_end(ab); 1811 } 1812 1813 int audit_log_task_context(struct audit_buffer *ab) 1814 { 1815 char *ctx = NULL; 1816 unsigned len; 1817 int error; 1818 u32 sid; 1819 1820 security_task_getsecid(current, &sid); 1821 if (!sid) 1822 return 0; 1823 1824 error = security_secid_to_secctx(sid, &ctx, &len); 1825 if (error) { 1826 if (error != -EINVAL) 1827 goto error_path; 1828 return 0; 1829 } 1830 1831 audit_log_format(ab, " subj=%s", ctx); 1832 security_release_secctx(ctx, len); 1833 return 0; 1834 1835 error_path: 1836 audit_panic("error in audit_log_task_context"); 1837 return error; 1838 } 1839 EXPORT_SYMBOL(audit_log_task_context); 1840 1841 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1842 { 1843 const struct cred *cred; 1844 char comm[sizeof(tsk->comm)]; 1845 struct mm_struct *mm = tsk->mm; 1846 char *tty; 1847 1848 if (!ab) 1849 return; 1850 1851 /* tsk == current */ 1852 cred = current_cred(); 1853 1854 spin_lock_irq(&tsk->sighand->siglock); 1855 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1856 tty = tsk->signal->tty->name; 1857 else 1858 tty = "(none)"; 1859 spin_unlock_irq(&tsk->sighand->siglock); 1860 1861 audit_log_format(ab, 1862 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1863 " euid=%u suid=%u fsuid=%u" 1864 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1865 task_ppid_nr(tsk), 1866 task_pid_nr(tsk), 1867 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1868 from_kuid(&init_user_ns, cred->uid), 1869 from_kgid(&init_user_ns, cred->gid), 1870 from_kuid(&init_user_ns, cred->euid), 1871 from_kuid(&init_user_ns, cred->suid), 1872 from_kuid(&init_user_ns, cred->fsuid), 1873 from_kgid(&init_user_ns, cred->egid), 1874 from_kgid(&init_user_ns, cred->sgid), 1875 from_kgid(&init_user_ns, cred->fsgid), 1876 tty, audit_get_sessionid(tsk)); 1877 1878 audit_log_format(ab, " comm="); 1879 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1880 1881 if (mm) { 1882 down_read(&mm->mmap_sem); 1883 if (mm->exe_file) 1884 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1885 up_read(&mm->mmap_sem); 1886 } else 1887 audit_log_format(ab, " exe=(null)"); 1888 audit_log_task_context(ab); 1889 } 1890 EXPORT_SYMBOL(audit_log_task_info); 1891 1892 /** 1893 * audit_log_link_denied - report a link restriction denial 1894 * @operation: specific link opreation 1895 * @link: the path that triggered the restriction 1896 */ 1897 void audit_log_link_denied(const char *operation, struct path *link) 1898 { 1899 struct audit_buffer *ab; 1900 struct audit_names *name; 1901 1902 name = kzalloc(sizeof(*name), GFP_NOFS); 1903 if (!name) 1904 return; 1905 1906 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1907 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1908 AUDIT_ANOM_LINK); 1909 if (!ab) 1910 goto out; 1911 audit_log_format(ab, "op=%s", operation); 1912 audit_log_task_info(ab, current); 1913 audit_log_format(ab, " res=0"); 1914 audit_log_end(ab); 1915 1916 /* Generate AUDIT_PATH record with object. */ 1917 name->type = AUDIT_TYPE_NORMAL; 1918 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1919 audit_log_name(current->audit_context, name, link, 0, NULL); 1920 out: 1921 kfree(name); 1922 } 1923 1924 /** 1925 * audit_log_end - end one audit record 1926 * @ab: the audit_buffer 1927 * 1928 * netlink_unicast() cannot be called inside an irq context because it blocks 1929 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1930 * on a queue and a tasklet is scheduled to remove them from the queue outside 1931 * the irq context. May be called in any context. 1932 */ 1933 void audit_log_end(struct audit_buffer *ab) 1934 { 1935 if (!ab) 1936 return; 1937 if (!audit_rate_check()) { 1938 audit_log_lost("rate limit exceeded"); 1939 } else { 1940 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1941 1942 nlh->nlmsg_len = ab->skb->len; 1943 kauditd_send_multicast_skb(ab->skb); 1944 1945 /* 1946 * The original kaudit unicast socket sends up messages with 1947 * nlmsg_len set to the payload length rather than the entire 1948 * message length. This breaks the standard set by netlink. 1949 * The existing auditd daemon assumes this breakage. Fixing 1950 * this would require co-ordinating a change in the established 1951 * protocol between the kaudit kernel subsystem and the auditd 1952 * userspace code. 1953 */ 1954 nlh->nlmsg_len -= NLMSG_HDRLEN; 1955 1956 if (audit_pid) { 1957 skb_queue_tail(&audit_skb_queue, ab->skb); 1958 wake_up_interruptible(&kauditd_wait); 1959 } else { 1960 audit_printk_skb(ab->skb); 1961 } 1962 ab->skb = NULL; 1963 } 1964 audit_buffer_free(ab); 1965 } 1966 1967 /** 1968 * audit_log - Log an audit record 1969 * @ctx: audit context 1970 * @gfp_mask: type of allocation 1971 * @type: audit message type 1972 * @fmt: format string to use 1973 * @...: variable parameters matching the format string 1974 * 1975 * This is a convenience function that calls audit_log_start, 1976 * audit_log_vformat, and audit_log_end. It may be called 1977 * in any context. 1978 */ 1979 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1980 const char *fmt, ...) 1981 { 1982 struct audit_buffer *ab; 1983 va_list args; 1984 1985 ab = audit_log_start(ctx, gfp_mask, type); 1986 if (ab) { 1987 va_start(args, fmt); 1988 audit_log_vformat(ab, fmt, args); 1989 va_end(args); 1990 audit_log_end(ab); 1991 } 1992 } 1993 1994 #ifdef CONFIG_SECURITY 1995 /** 1996 * audit_log_secctx - Converts and logs SELinux context 1997 * @ab: audit_buffer 1998 * @secid: security number 1999 * 2000 * This is a helper function that calls security_secid_to_secctx to convert 2001 * secid to secctx and then adds the (converted) SELinux context to the audit 2002 * log by calling audit_log_format, thus also preventing leak of internal secid 2003 * to userspace. If secid cannot be converted audit_panic is called. 2004 */ 2005 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2006 { 2007 u32 len; 2008 char *secctx; 2009 2010 if (security_secid_to_secctx(secid, &secctx, &len)) { 2011 audit_panic("Cannot convert secid to context"); 2012 } else { 2013 audit_log_format(ab, " obj=%s", secctx); 2014 security_release_secctx(secctx, len); 2015 } 2016 } 2017 EXPORT_SYMBOL(audit_log_secctx); 2018 #endif 2019 2020 EXPORT_SYMBOL(audit_log_start); 2021 EXPORT_SYMBOL(audit_log_end); 2022 EXPORT_SYMBOL(audit_log_format); 2023 EXPORT_SYMBOL(audit_log); 2024