xref: /openbmc/linux/kernel/audit.c (revision 861e10be)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 
53 #include <linux/audit.h>
54 
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <linux/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 #include <linux/pid_namespace.h>
65 
66 #include "audit.h"
67 
68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
69  * (Initialization happens after skb_init is called.) */
70 #define AUDIT_DISABLED		-1
71 #define AUDIT_UNINITIALIZED	0
72 #define AUDIT_INITIALIZED	1
73 static int	audit_initialized;
74 
75 #define AUDIT_OFF	0
76 #define AUDIT_ON	1
77 #define AUDIT_LOCKED	2
78 int		audit_enabled;
79 int		audit_ever_enabled;
80 
81 EXPORT_SYMBOL_GPL(audit_enabled);
82 
83 /* Default state when kernel boots without any parameters. */
84 static int	audit_default;
85 
86 /* If auditing cannot proceed, audit_failure selects what happens. */
87 static int	audit_failure = AUDIT_FAIL_PRINTK;
88 
89 /*
90  * If audit records are to be written to the netlink socket, audit_pid
91  * contains the pid of the auditd process and audit_nlk_portid contains
92  * the portid to use to send netlink messages to that process.
93  */
94 int		audit_pid;
95 static int	audit_nlk_portid;
96 
97 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
98  * to that number per second.  This prevents DoS attacks, but results in
99  * audit records being dropped. */
100 static int	audit_rate_limit;
101 
102 /* Number of outstanding audit_buffers allowed. */
103 static int	audit_backlog_limit = 64;
104 static int	audit_backlog_wait_time = 60 * HZ;
105 static int	audit_backlog_wait_overflow = 0;
106 
107 /* The identity of the user shutting down the audit system. */
108 kuid_t		audit_sig_uid = INVALID_UID;
109 pid_t		audit_sig_pid = -1;
110 u32		audit_sig_sid = 0;
111 
112 /* Records can be lost in several ways:
113    0) [suppressed in audit_alloc]
114    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
115    2) out of memory in audit_log_move [alloc_skb]
116    3) suppressed due to audit_rate_limit
117    4) suppressed due to audit_backlog_limit
118 */
119 static atomic_t    audit_lost = ATOMIC_INIT(0);
120 
121 /* The netlink socket. */
122 static struct sock *audit_sock;
123 
124 /* Hash for inode-based rules */
125 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
126 
127 /* The audit_freelist is a list of pre-allocated audit buffers (if more
128  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
129  * being placed on the freelist). */
130 static DEFINE_SPINLOCK(audit_freelist_lock);
131 static int	   audit_freelist_count;
132 static LIST_HEAD(audit_freelist);
133 
134 static struct sk_buff_head audit_skb_queue;
135 /* queue of skbs to send to auditd when/if it comes back */
136 static struct sk_buff_head audit_skb_hold_queue;
137 static struct task_struct *kauditd_task;
138 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
139 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
140 
141 /* Serialize requests from userspace. */
142 DEFINE_MUTEX(audit_cmd_mutex);
143 
144 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
145  * audit records.  Since printk uses a 1024 byte buffer, this buffer
146  * should be at least that large. */
147 #define AUDIT_BUFSIZ 1024
148 
149 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
150  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
151 #define AUDIT_MAXFREE  (2*NR_CPUS)
152 
153 /* The audit_buffer is used when formatting an audit record.  The caller
154  * locks briefly to get the record off the freelist or to allocate the
155  * buffer, and locks briefly to send the buffer to the netlink layer or
156  * to place it on a transmit queue.  Multiple audit_buffers can be in
157  * use simultaneously. */
158 struct audit_buffer {
159 	struct list_head     list;
160 	struct sk_buff       *skb;	/* formatted skb ready to send */
161 	struct audit_context *ctx;	/* NULL or associated context */
162 	gfp_t		     gfp_mask;
163 };
164 
165 struct audit_reply {
166 	int pid;
167 	struct sk_buff *skb;
168 };
169 
170 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
171 {
172 	if (ab) {
173 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
174 		nlh->nlmsg_pid = pid;
175 	}
176 }
177 
178 void audit_panic(const char *message)
179 {
180 	switch (audit_failure)
181 	{
182 	case AUDIT_FAIL_SILENT:
183 		break;
184 	case AUDIT_FAIL_PRINTK:
185 		if (printk_ratelimit())
186 			printk(KERN_ERR "audit: %s\n", message);
187 		break;
188 	case AUDIT_FAIL_PANIC:
189 		/* test audit_pid since printk is always losey, why bother? */
190 		if (audit_pid)
191 			panic("audit: %s\n", message);
192 		break;
193 	}
194 }
195 
196 static inline int audit_rate_check(void)
197 {
198 	static unsigned long	last_check = 0;
199 	static int		messages   = 0;
200 	static DEFINE_SPINLOCK(lock);
201 	unsigned long		flags;
202 	unsigned long		now;
203 	unsigned long		elapsed;
204 	int			retval	   = 0;
205 
206 	if (!audit_rate_limit) return 1;
207 
208 	spin_lock_irqsave(&lock, flags);
209 	if (++messages < audit_rate_limit) {
210 		retval = 1;
211 	} else {
212 		now     = jiffies;
213 		elapsed = now - last_check;
214 		if (elapsed > HZ) {
215 			last_check = now;
216 			messages   = 0;
217 			retval     = 1;
218 		}
219 	}
220 	spin_unlock_irqrestore(&lock, flags);
221 
222 	return retval;
223 }
224 
225 /**
226  * audit_log_lost - conditionally log lost audit message event
227  * @message: the message stating reason for lost audit message
228  *
229  * Emit at least 1 message per second, even if audit_rate_check is
230  * throttling.
231  * Always increment the lost messages counter.
232 */
233 void audit_log_lost(const char *message)
234 {
235 	static unsigned long	last_msg = 0;
236 	static DEFINE_SPINLOCK(lock);
237 	unsigned long		flags;
238 	unsigned long		now;
239 	int			print;
240 
241 	atomic_inc(&audit_lost);
242 
243 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
244 
245 	if (!print) {
246 		spin_lock_irqsave(&lock, flags);
247 		now = jiffies;
248 		if (now - last_msg > HZ) {
249 			print = 1;
250 			last_msg = now;
251 		}
252 		spin_unlock_irqrestore(&lock, flags);
253 	}
254 
255 	if (print) {
256 		if (printk_ratelimit())
257 			printk(KERN_WARNING
258 				"audit: audit_lost=%d audit_rate_limit=%d "
259 				"audit_backlog_limit=%d\n",
260 				atomic_read(&audit_lost),
261 				audit_rate_limit,
262 				audit_backlog_limit);
263 		audit_panic(message);
264 	}
265 }
266 
267 static int audit_log_config_change(char *function_name, int new, int old,
268 				   kuid_t loginuid, u32 sessionid, u32 sid,
269 				   int allow_changes)
270 {
271 	struct audit_buffer *ab;
272 	int rc = 0;
273 
274 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
275 	if (unlikely(!ab))
276 		return rc;
277 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
278 			 old, from_kuid(&init_user_ns, loginuid), sessionid);
279 	if (sid) {
280 		char *ctx = NULL;
281 		u32 len;
282 
283 		rc = security_secid_to_secctx(sid, &ctx, &len);
284 		if (rc) {
285 			audit_log_format(ab, " sid=%u", sid);
286 			allow_changes = 0; /* Something weird, deny request */
287 		} else {
288 			audit_log_format(ab, " subj=%s", ctx);
289 			security_release_secctx(ctx, len);
290 		}
291 	}
292 	audit_log_format(ab, " res=%d", allow_changes);
293 	audit_log_end(ab);
294 	return rc;
295 }
296 
297 static int audit_do_config_change(char *function_name, int *to_change,
298 				  int new, kuid_t loginuid, u32 sessionid,
299 				  u32 sid)
300 {
301 	int allow_changes, rc = 0, old = *to_change;
302 
303 	/* check if we are locked */
304 	if (audit_enabled == AUDIT_LOCKED)
305 		allow_changes = 0;
306 	else
307 		allow_changes = 1;
308 
309 	if (audit_enabled != AUDIT_OFF) {
310 		rc = audit_log_config_change(function_name, new, old, loginuid,
311 					     sessionid, sid, allow_changes);
312 		if (rc)
313 			allow_changes = 0;
314 	}
315 
316 	/* If we are allowed, make the change */
317 	if (allow_changes == 1)
318 		*to_change = new;
319 	/* Not allowed, update reason */
320 	else if (rc == 0)
321 		rc = -EPERM;
322 	return rc;
323 }
324 
325 static int audit_set_rate_limit(int limit, kuid_t loginuid, u32 sessionid,
326 				u32 sid)
327 {
328 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
329 				      limit, loginuid, sessionid, sid);
330 }
331 
332 static int audit_set_backlog_limit(int limit, kuid_t loginuid, u32 sessionid,
333 				   u32 sid)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
336 				      limit, loginuid, sessionid, sid);
337 }
338 
339 static int audit_set_enabled(int state, kuid_t loginuid, u32 sessionid, u32 sid)
340 {
341 	int rc;
342 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
343 		return -EINVAL;
344 
345 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
346 				     loginuid, sessionid, sid);
347 
348 	if (!rc)
349 		audit_ever_enabled |= !!state;
350 
351 	return rc;
352 }
353 
354 static int audit_set_failure(int state, kuid_t loginuid, u32 sessionid, u32 sid)
355 {
356 	if (state != AUDIT_FAIL_SILENT
357 	    && state != AUDIT_FAIL_PRINTK
358 	    && state != AUDIT_FAIL_PANIC)
359 		return -EINVAL;
360 
361 	return audit_do_config_change("audit_failure", &audit_failure, state,
362 				      loginuid, sessionid, sid);
363 }
364 
365 /*
366  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
367  * already have been sent via prink/syslog and so if these messages are dropped
368  * it is not a huge concern since we already passed the audit_log_lost()
369  * notification and stuff.  This is just nice to get audit messages during
370  * boot before auditd is running or messages generated while auditd is stopped.
371  * This only holds messages is audit_default is set, aka booting with audit=1
372  * or building your kernel that way.
373  */
374 static void audit_hold_skb(struct sk_buff *skb)
375 {
376 	if (audit_default &&
377 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
378 		skb_queue_tail(&audit_skb_hold_queue, skb);
379 	else
380 		kfree_skb(skb);
381 }
382 
383 /*
384  * For one reason or another this nlh isn't getting delivered to the userspace
385  * audit daemon, just send it to printk.
386  */
387 static void audit_printk_skb(struct sk_buff *skb)
388 {
389 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
390 	char *data = nlmsg_data(nlh);
391 
392 	if (nlh->nlmsg_type != AUDIT_EOE) {
393 		if (printk_ratelimit())
394 			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
395 		else
396 			audit_log_lost("printk limit exceeded\n");
397 	}
398 
399 	audit_hold_skb(skb);
400 }
401 
402 static void kauditd_send_skb(struct sk_buff *skb)
403 {
404 	int err;
405 	/* take a reference in case we can't send it and we want to hold it */
406 	skb_get(skb);
407 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
408 	if (err < 0) {
409 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
410 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
411 		audit_log_lost("auditd disappeared\n");
412 		audit_pid = 0;
413 		/* we might get lucky and get this in the next auditd */
414 		audit_hold_skb(skb);
415 	} else
416 		/* drop the extra reference if sent ok */
417 		consume_skb(skb);
418 }
419 
420 static int kauditd_thread(void *dummy)
421 {
422 	struct sk_buff *skb;
423 
424 	set_freezable();
425 	while (!kthread_should_stop()) {
426 		/*
427 		 * if auditd just started drain the queue of messages already
428 		 * sent to syslog/printk.  remember loss here is ok.  we already
429 		 * called audit_log_lost() if it didn't go out normally.  so the
430 		 * race between the skb_dequeue and the next check for audit_pid
431 		 * doesn't matter.
432 		 *
433 		 * if you ever find kauditd to be too slow we can get a perf win
434 		 * by doing our own locking and keeping better track if there
435 		 * are messages in this queue.  I don't see the need now, but
436 		 * in 5 years when I want to play with this again I'll see this
437 		 * note and still have no friggin idea what i'm thinking today.
438 		 */
439 		if (audit_default && audit_pid) {
440 			skb = skb_dequeue(&audit_skb_hold_queue);
441 			if (unlikely(skb)) {
442 				while (skb && audit_pid) {
443 					kauditd_send_skb(skb);
444 					skb = skb_dequeue(&audit_skb_hold_queue);
445 				}
446 			}
447 		}
448 
449 		skb = skb_dequeue(&audit_skb_queue);
450 		wake_up(&audit_backlog_wait);
451 		if (skb) {
452 			if (audit_pid)
453 				kauditd_send_skb(skb);
454 			else
455 				audit_printk_skb(skb);
456 		} else {
457 			DECLARE_WAITQUEUE(wait, current);
458 			set_current_state(TASK_INTERRUPTIBLE);
459 			add_wait_queue(&kauditd_wait, &wait);
460 
461 			if (!skb_queue_len(&audit_skb_queue)) {
462 				try_to_freeze();
463 				schedule();
464 			}
465 
466 			__set_current_state(TASK_RUNNING);
467 			remove_wait_queue(&kauditd_wait, &wait);
468 		}
469 	}
470 	return 0;
471 }
472 
473 int audit_send_list(void *_dest)
474 {
475 	struct audit_netlink_list *dest = _dest;
476 	int pid = dest->pid;
477 	struct sk_buff *skb;
478 
479 	/* wait for parent to finish and send an ACK */
480 	mutex_lock(&audit_cmd_mutex);
481 	mutex_unlock(&audit_cmd_mutex);
482 
483 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
484 		netlink_unicast(audit_sock, skb, pid, 0);
485 
486 	kfree(dest);
487 
488 	return 0;
489 }
490 
491 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
492 				 int multi, const void *payload, int size)
493 {
494 	struct sk_buff	*skb;
495 	struct nlmsghdr	*nlh;
496 	void		*data;
497 	int		flags = multi ? NLM_F_MULTI : 0;
498 	int		t     = done  ? NLMSG_DONE  : type;
499 
500 	skb = nlmsg_new(size, GFP_KERNEL);
501 	if (!skb)
502 		return NULL;
503 
504 	nlh	= nlmsg_put(skb, pid, seq, t, size, flags);
505 	if (!nlh)
506 		goto out_kfree_skb;
507 	data = nlmsg_data(nlh);
508 	memcpy(data, payload, size);
509 	return skb;
510 
511 out_kfree_skb:
512 	kfree_skb(skb);
513 	return NULL;
514 }
515 
516 static int audit_send_reply_thread(void *arg)
517 {
518 	struct audit_reply *reply = (struct audit_reply *)arg;
519 
520 	mutex_lock(&audit_cmd_mutex);
521 	mutex_unlock(&audit_cmd_mutex);
522 
523 	/* Ignore failure. It'll only happen if the sender goes away,
524 	   because our timeout is set to infinite. */
525 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
526 	kfree(reply);
527 	return 0;
528 }
529 /**
530  * audit_send_reply - send an audit reply message via netlink
531  * @pid: process id to send reply to
532  * @seq: sequence number
533  * @type: audit message type
534  * @done: done (last) flag
535  * @multi: multi-part message flag
536  * @payload: payload data
537  * @size: payload size
538  *
539  * Allocates an skb, builds the netlink message, and sends it to the pid.
540  * No failure notifications.
541  */
542 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
543 			     const void *payload, int size)
544 {
545 	struct sk_buff *skb;
546 	struct task_struct *tsk;
547 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
548 					    GFP_KERNEL);
549 
550 	if (!reply)
551 		return;
552 
553 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
554 	if (!skb)
555 		goto out;
556 
557 	reply->pid = pid;
558 	reply->skb = skb;
559 
560 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
561 	if (!IS_ERR(tsk))
562 		return;
563 	kfree_skb(skb);
564 out:
565 	kfree(reply);
566 }
567 
568 /*
569  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
570  * control messages.
571  */
572 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
573 {
574 	int err = 0;
575 
576 	/* Only support the initial namespaces for now. */
577 	if ((current_user_ns() != &init_user_ns) ||
578 	    (task_active_pid_ns(current) != &init_pid_ns))
579 		return -EPERM;
580 
581 	switch (msg_type) {
582 	case AUDIT_GET:
583 	case AUDIT_LIST:
584 	case AUDIT_LIST_RULES:
585 	case AUDIT_SET:
586 	case AUDIT_ADD:
587 	case AUDIT_ADD_RULE:
588 	case AUDIT_DEL:
589 	case AUDIT_DEL_RULE:
590 	case AUDIT_SIGNAL_INFO:
591 	case AUDIT_TTY_GET:
592 	case AUDIT_TTY_SET:
593 	case AUDIT_TRIM:
594 	case AUDIT_MAKE_EQUIV:
595 		if (!capable(CAP_AUDIT_CONTROL))
596 			err = -EPERM;
597 		break;
598 	case AUDIT_USER:
599 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
600 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
601 		if (!capable(CAP_AUDIT_WRITE))
602 			err = -EPERM;
603 		break;
604 	default:  /* bad msg */
605 		err = -EINVAL;
606 	}
607 
608 	return err;
609 }
610 
611 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
612 				     kuid_t auid, u32 ses, u32 sid)
613 {
614 	int rc = 0;
615 	char *ctx = NULL;
616 	u32 len;
617 
618 	if (!audit_enabled) {
619 		*ab = NULL;
620 		return rc;
621 	}
622 
623 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
624 	if (unlikely(!*ab))
625 		return rc;
626 	audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
627 			 task_tgid_vnr(current),
628 			 from_kuid(&init_user_ns, current_uid()),
629 			 from_kuid(&init_user_ns, auid), ses);
630 	if (sid) {
631 		rc = security_secid_to_secctx(sid, &ctx, &len);
632 		if (rc)
633 			audit_log_format(*ab, " ssid=%u", sid);
634 		else {
635 			audit_log_format(*ab, " subj=%s", ctx);
636 			security_release_secctx(ctx, len);
637 		}
638 	}
639 
640 	return rc;
641 }
642 
643 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
644 {
645 	u32			seq, sid;
646 	void			*data;
647 	struct audit_status	*status_get, status_set;
648 	int			err;
649 	struct audit_buffer	*ab;
650 	u16			msg_type = nlh->nlmsg_type;
651 	kuid_t			loginuid; /* loginuid of sender */
652 	u32			sessionid;
653 	struct audit_sig_info   *sig_data;
654 	char			*ctx = NULL;
655 	u32			len;
656 
657 	err = audit_netlink_ok(skb, msg_type);
658 	if (err)
659 		return err;
660 
661 	/* As soon as there's any sign of userspace auditd,
662 	 * start kauditd to talk to it */
663 	if (!kauditd_task)
664 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
665 	if (IS_ERR(kauditd_task)) {
666 		err = PTR_ERR(kauditd_task);
667 		kauditd_task = NULL;
668 		return err;
669 	}
670 
671 	loginuid = audit_get_loginuid(current);
672 	sessionid = audit_get_sessionid(current);
673 	security_task_getsecid(current, &sid);
674 	seq  = nlh->nlmsg_seq;
675 	data = nlmsg_data(nlh);
676 
677 	switch (msg_type) {
678 	case AUDIT_GET:
679 		status_set.enabled	 = audit_enabled;
680 		status_set.failure	 = audit_failure;
681 		status_set.pid		 = audit_pid;
682 		status_set.rate_limit	 = audit_rate_limit;
683 		status_set.backlog_limit = audit_backlog_limit;
684 		status_set.lost		 = atomic_read(&audit_lost);
685 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
686 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
687 				 &status_set, sizeof(status_set));
688 		break;
689 	case AUDIT_SET:
690 		if (nlh->nlmsg_len < sizeof(struct audit_status))
691 			return -EINVAL;
692 		status_get   = (struct audit_status *)data;
693 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
694 			err = audit_set_enabled(status_get->enabled,
695 						loginuid, sessionid, sid);
696 			if (err < 0)
697 				return err;
698 		}
699 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
700 			err = audit_set_failure(status_get->failure,
701 						loginuid, sessionid, sid);
702 			if (err < 0)
703 				return err;
704 		}
705 		if (status_get->mask & AUDIT_STATUS_PID) {
706 			int new_pid = status_get->pid;
707 
708 			if (audit_enabled != AUDIT_OFF)
709 				audit_log_config_change("audit_pid", new_pid,
710 							audit_pid, loginuid,
711 							sessionid, sid, 1);
712 
713 			audit_pid = new_pid;
714 			audit_nlk_portid = NETLINK_CB(skb).portid;
715 		}
716 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
717 			err = audit_set_rate_limit(status_get->rate_limit,
718 						   loginuid, sessionid, sid);
719 			if (err < 0)
720 				return err;
721 		}
722 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
723 			err = audit_set_backlog_limit(status_get->backlog_limit,
724 						      loginuid, sessionid, sid);
725 		break;
726 	case AUDIT_USER:
727 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
728 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
729 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
730 			return 0;
731 
732 		err = audit_filter_user();
733 		if (err == 1) {
734 			err = 0;
735 			if (msg_type == AUDIT_USER_TTY) {
736 				err = tty_audit_push_task(current, loginuid,
737 							     sessionid);
738 				if (err)
739 					break;
740 			}
741 			audit_log_common_recv_msg(&ab, msg_type,
742 						  loginuid, sessionid, sid);
743 
744 			if (msg_type != AUDIT_USER_TTY)
745 				audit_log_format(ab, " msg='%.1024s'",
746 						 (char *)data);
747 			else {
748 				int size;
749 
750 				audit_log_format(ab, " msg=");
751 				size = nlmsg_len(nlh);
752 				if (size > 0 &&
753 				    ((unsigned char *)data)[size - 1] == '\0')
754 					size--;
755 				audit_log_n_untrustedstring(ab, data, size);
756 			}
757 			audit_set_pid(ab, NETLINK_CB(skb).portid);
758 			audit_log_end(ab);
759 		}
760 		break;
761 	case AUDIT_ADD:
762 	case AUDIT_DEL:
763 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
764 			return -EINVAL;
765 		if (audit_enabled == AUDIT_LOCKED) {
766 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
767 						  loginuid, sessionid, sid);
768 
769 			audit_log_format(ab, " audit_enabled=%d res=0",
770 					 audit_enabled);
771 			audit_log_end(ab);
772 			return -EPERM;
773 		}
774 		/* fallthrough */
775 	case AUDIT_LIST:
776 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
777 					   seq, data, nlmsg_len(nlh),
778 					   loginuid, sessionid, sid);
779 		break;
780 	case AUDIT_ADD_RULE:
781 	case AUDIT_DEL_RULE:
782 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
783 			return -EINVAL;
784 		if (audit_enabled == AUDIT_LOCKED) {
785 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
786 						  loginuid, sessionid, sid);
787 
788 			audit_log_format(ab, " audit_enabled=%d res=0",
789 					 audit_enabled);
790 			audit_log_end(ab);
791 			return -EPERM;
792 		}
793 		/* fallthrough */
794 	case AUDIT_LIST_RULES:
795 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
796 					   seq, data, nlmsg_len(nlh),
797 					   loginuid, sessionid, sid);
798 		break;
799 	case AUDIT_TRIM:
800 		audit_trim_trees();
801 
802 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
803 					  loginuid, sessionid, sid);
804 
805 		audit_log_format(ab, " op=trim res=1");
806 		audit_log_end(ab);
807 		break;
808 	case AUDIT_MAKE_EQUIV: {
809 		void *bufp = data;
810 		u32 sizes[2];
811 		size_t msglen = nlmsg_len(nlh);
812 		char *old, *new;
813 
814 		err = -EINVAL;
815 		if (msglen < 2 * sizeof(u32))
816 			break;
817 		memcpy(sizes, bufp, 2 * sizeof(u32));
818 		bufp += 2 * sizeof(u32);
819 		msglen -= 2 * sizeof(u32);
820 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
821 		if (IS_ERR(old)) {
822 			err = PTR_ERR(old);
823 			break;
824 		}
825 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
826 		if (IS_ERR(new)) {
827 			err = PTR_ERR(new);
828 			kfree(old);
829 			break;
830 		}
831 		/* OK, here comes... */
832 		err = audit_tag_tree(old, new);
833 
834 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
835 					  loginuid, sessionid, sid);
836 
837 		audit_log_format(ab, " op=make_equiv old=");
838 		audit_log_untrustedstring(ab, old);
839 		audit_log_format(ab, " new=");
840 		audit_log_untrustedstring(ab, new);
841 		audit_log_format(ab, " res=%d", !err);
842 		audit_log_end(ab);
843 		kfree(old);
844 		kfree(new);
845 		break;
846 	}
847 	case AUDIT_SIGNAL_INFO:
848 		len = 0;
849 		if (audit_sig_sid) {
850 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
851 			if (err)
852 				return err;
853 		}
854 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
855 		if (!sig_data) {
856 			if (audit_sig_sid)
857 				security_release_secctx(ctx, len);
858 			return -ENOMEM;
859 		}
860 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
861 		sig_data->pid = audit_sig_pid;
862 		if (audit_sig_sid) {
863 			memcpy(sig_data->ctx, ctx, len);
864 			security_release_secctx(ctx, len);
865 		}
866 		audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
867 				0, 0, sig_data, sizeof(*sig_data) + len);
868 		kfree(sig_data);
869 		break;
870 	case AUDIT_TTY_GET: {
871 		struct audit_tty_status s;
872 		struct task_struct *tsk = current;
873 
874 		spin_lock_irq(&tsk->sighand->siglock);
875 		s.enabled = tsk->signal->audit_tty != 0;
876 		spin_unlock_irq(&tsk->sighand->siglock);
877 
878 		audit_send_reply(NETLINK_CB(skb).portid, seq,
879 				 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
880 		break;
881 	}
882 	case AUDIT_TTY_SET: {
883 		struct audit_tty_status *s;
884 		struct task_struct *tsk = current;
885 
886 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
887 			return -EINVAL;
888 		s = data;
889 		if (s->enabled != 0 && s->enabled != 1)
890 			return -EINVAL;
891 
892 		spin_lock_irq(&tsk->sighand->siglock);
893 		tsk->signal->audit_tty = s->enabled != 0;
894 		spin_unlock_irq(&tsk->sighand->siglock);
895 		break;
896 	}
897 	default:
898 		err = -EINVAL;
899 		break;
900 	}
901 
902 	return err < 0 ? err : 0;
903 }
904 
905 /*
906  * Get message from skb.  Each message is processed by audit_receive_msg.
907  * Malformed skbs with wrong length are discarded silently.
908  */
909 static void audit_receive_skb(struct sk_buff *skb)
910 {
911 	struct nlmsghdr *nlh;
912 	/*
913 	 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
914 	 * if the nlmsg_len was not aligned
915 	 */
916 	int len;
917 	int err;
918 
919 	nlh = nlmsg_hdr(skb);
920 	len = skb->len;
921 
922 	while (NLMSG_OK(nlh, len)) {
923 		err = audit_receive_msg(skb, nlh);
924 		/* if err or if this message says it wants a response */
925 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
926 			netlink_ack(skb, nlh, err);
927 
928 		nlh = NLMSG_NEXT(nlh, len);
929 	}
930 }
931 
932 /* Receive messages from netlink socket. */
933 static void audit_receive(struct sk_buff  *skb)
934 {
935 	mutex_lock(&audit_cmd_mutex);
936 	audit_receive_skb(skb);
937 	mutex_unlock(&audit_cmd_mutex);
938 }
939 
940 /* Initialize audit support at boot time. */
941 static int __init audit_init(void)
942 {
943 	int i;
944 	struct netlink_kernel_cfg cfg = {
945 		.input	= audit_receive,
946 	};
947 
948 	if (audit_initialized == AUDIT_DISABLED)
949 		return 0;
950 
951 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
952 	       audit_default ? "enabled" : "disabled");
953 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg);
954 	if (!audit_sock)
955 		audit_panic("cannot initialize netlink socket");
956 	else
957 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
958 
959 	skb_queue_head_init(&audit_skb_queue);
960 	skb_queue_head_init(&audit_skb_hold_queue);
961 	audit_initialized = AUDIT_INITIALIZED;
962 	audit_enabled = audit_default;
963 	audit_ever_enabled |= !!audit_default;
964 
965 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
966 
967 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
968 		INIT_LIST_HEAD(&audit_inode_hash[i]);
969 
970 	return 0;
971 }
972 __initcall(audit_init);
973 
974 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
975 static int __init audit_enable(char *str)
976 {
977 	audit_default = !!simple_strtol(str, NULL, 0);
978 	if (!audit_default)
979 		audit_initialized = AUDIT_DISABLED;
980 
981 	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
982 
983 	if (audit_initialized == AUDIT_INITIALIZED) {
984 		audit_enabled = audit_default;
985 		audit_ever_enabled |= !!audit_default;
986 	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
987 		printk(" (after initialization)");
988 	} else {
989 		printk(" (until reboot)");
990 	}
991 	printk("\n");
992 
993 	return 1;
994 }
995 
996 __setup("audit=", audit_enable);
997 
998 static void audit_buffer_free(struct audit_buffer *ab)
999 {
1000 	unsigned long flags;
1001 
1002 	if (!ab)
1003 		return;
1004 
1005 	if (ab->skb)
1006 		kfree_skb(ab->skb);
1007 
1008 	spin_lock_irqsave(&audit_freelist_lock, flags);
1009 	if (audit_freelist_count > AUDIT_MAXFREE)
1010 		kfree(ab);
1011 	else {
1012 		audit_freelist_count++;
1013 		list_add(&ab->list, &audit_freelist);
1014 	}
1015 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1016 }
1017 
1018 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1019 						gfp_t gfp_mask, int type)
1020 {
1021 	unsigned long flags;
1022 	struct audit_buffer *ab = NULL;
1023 	struct nlmsghdr *nlh;
1024 
1025 	spin_lock_irqsave(&audit_freelist_lock, flags);
1026 	if (!list_empty(&audit_freelist)) {
1027 		ab = list_entry(audit_freelist.next,
1028 				struct audit_buffer, list);
1029 		list_del(&ab->list);
1030 		--audit_freelist_count;
1031 	}
1032 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1033 
1034 	if (!ab) {
1035 		ab = kmalloc(sizeof(*ab), gfp_mask);
1036 		if (!ab)
1037 			goto err;
1038 	}
1039 
1040 	ab->ctx = ctx;
1041 	ab->gfp_mask = gfp_mask;
1042 
1043 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1044 	if (!ab->skb)
1045 		goto err;
1046 
1047 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1048 	if (!nlh)
1049 		goto out_kfree_skb;
1050 
1051 	return ab;
1052 
1053 out_kfree_skb:
1054 	kfree_skb(ab->skb);
1055 	ab->skb = NULL;
1056 err:
1057 	audit_buffer_free(ab);
1058 	return NULL;
1059 }
1060 
1061 /**
1062  * audit_serial - compute a serial number for the audit record
1063  *
1064  * Compute a serial number for the audit record.  Audit records are
1065  * written to user-space as soon as they are generated, so a complete
1066  * audit record may be written in several pieces.  The timestamp of the
1067  * record and this serial number are used by the user-space tools to
1068  * determine which pieces belong to the same audit record.  The
1069  * (timestamp,serial) tuple is unique for each syscall and is live from
1070  * syscall entry to syscall exit.
1071  *
1072  * NOTE: Another possibility is to store the formatted records off the
1073  * audit context (for those records that have a context), and emit them
1074  * all at syscall exit.  However, this could delay the reporting of
1075  * significant errors until syscall exit (or never, if the system
1076  * halts).
1077  */
1078 unsigned int audit_serial(void)
1079 {
1080 	static DEFINE_SPINLOCK(serial_lock);
1081 	static unsigned int serial = 0;
1082 
1083 	unsigned long flags;
1084 	unsigned int ret;
1085 
1086 	spin_lock_irqsave(&serial_lock, flags);
1087 	do {
1088 		ret = ++serial;
1089 	} while (unlikely(!ret));
1090 	spin_unlock_irqrestore(&serial_lock, flags);
1091 
1092 	return ret;
1093 }
1094 
1095 static inline void audit_get_stamp(struct audit_context *ctx,
1096 				   struct timespec *t, unsigned int *serial)
1097 {
1098 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1099 		*t = CURRENT_TIME;
1100 		*serial = audit_serial();
1101 	}
1102 }
1103 
1104 /*
1105  * Wait for auditd to drain the queue a little
1106  */
1107 static void wait_for_auditd(unsigned long sleep_time)
1108 {
1109 	DECLARE_WAITQUEUE(wait, current);
1110 	set_current_state(TASK_INTERRUPTIBLE);
1111 	add_wait_queue(&audit_backlog_wait, &wait);
1112 
1113 	if (audit_backlog_limit &&
1114 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1115 		schedule_timeout(sleep_time);
1116 
1117 	__set_current_state(TASK_RUNNING);
1118 	remove_wait_queue(&audit_backlog_wait, &wait);
1119 }
1120 
1121 /* Obtain an audit buffer.  This routine does locking to obtain the
1122  * audit buffer, but then no locking is required for calls to
1123  * audit_log_*format.  If the tsk is a task that is currently in a
1124  * syscall, then the syscall is marked as auditable and an audit record
1125  * will be written at syscall exit.  If there is no associated task, tsk
1126  * should be NULL. */
1127 
1128 /**
1129  * audit_log_start - obtain an audit buffer
1130  * @ctx: audit_context (may be NULL)
1131  * @gfp_mask: type of allocation
1132  * @type: audit message type
1133  *
1134  * Returns audit_buffer pointer on success or NULL on error.
1135  *
1136  * Obtain an audit buffer.  This routine does locking to obtain the
1137  * audit buffer, but then no locking is required for calls to
1138  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1139  * syscall, then the syscall is marked as auditable and an audit record
1140  * will be written at syscall exit.  If there is no associated task, then
1141  * task context (ctx) should be NULL.
1142  */
1143 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1144 				     int type)
1145 {
1146 	struct audit_buffer	*ab	= NULL;
1147 	struct timespec		t;
1148 	unsigned int		uninitialized_var(serial);
1149 	int reserve;
1150 	unsigned long timeout_start = jiffies;
1151 
1152 	if (audit_initialized != AUDIT_INITIALIZED)
1153 		return NULL;
1154 
1155 	if (unlikely(audit_filter_type(type)))
1156 		return NULL;
1157 
1158 	if (gfp_mask & __GFP_WAIT)
1159 		reserve = 0;
1160 	else
1161 		reserve = 5; /* Allow atomic callers to go up to five
1162 				entries over the normal backlog limit */
1163 
1164 	while (audit_backlog_limit
1165 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1166 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1167 			unsigned long sleep_time;
1168 
1169 			sleep_time = timeout_start + audit_backlog_wait_time -
1170 					jiffies;
1171 			if ((long)sleep_time > 0)
1172 				wait_for_auditd(sleep_time);
1173 			continue;
1174 		}
1175 		if (audit_rate_check() && printk_ratelimit())
1176 			printk(KERN_WARNING
1177 			       "audit: audit_backlog=%d > "
1178 			       "audit_backlog_limit=%d\n",
1179 			       skb_queue_len(&audit_skb_queue),
1180 			       audit_backlog_limit);
1181 		audit_log_lost("backlog limit exceeded");
1182 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1183 		wake_up(&audit_backlog_wait);
1184 		return NULL;
1185 	}
1186 
1187 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1188 	if (!ab) {
1189 		audit_log_lost("out of memory in audit_log_start");
1190 		return NULL;
1191 	}
1192 
1193 	audit_get_stamp(ab->ctx, &t, &serial);
1194 
1195 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1196 			 t.tv_sec, t.tv_nsec/1000000, serial);
1197 	return ab;
1198 }
1199 
1200 /**
1201  * audit_expand - expand skb in the audit buffer
1202  * @ab: audit_buffer
1203  * @extra: space to add at tail of the skb
1204  *
1205  * Returns 0 (no space) on failed expansion, or available space if
1206  * successful.
1207  */
1208 static inline int audit_expand(struct audit_buffer *ab, int extra)
1209 {
1210 	struct sk_buff *skb = ab->skb;
1211 	int oldtail = skb_tailroom(skb);
1212 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1213 	int newtail = skb_tailroom(skb);
1214 
1215 	if (ret < 0) {
1216 		audit_log_lost("out of memory in audit_expand");
1217 		return 0;
1218 	}
1219 
1220 	skb->truesize += newtail - oldtail;
1221 	return newtail;
1222 }
1223 
1224 /*
1225  * Format an audit message into the audit buffer.  If there isn't enough
1226  * room in the audit buffer, more room will be allocated and vsnprint
1227  * will be called a second time.  Currently, we assume that a printk
1228  * can't format message larger than 1024 bytes, so we don't either.
1229  */
1230 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1231 			      va_list args)
1232 {
1233 	int len, avail;
1234 	struct sk_buff *skb;
1235 	va_list args2;
1236 
1237 	if (!ab)
1238 		return;
1239 
1240 	BUG_ON(!ab->skb);
1241 	skb = ab->skb;
1242 	avail = skb_tailroom(skb);
1243 	if (avail == 0) {
1244 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1245 		if (!avail)
1246 			goto out;
1247 	}
1248 	va_copy(args2, args);
1249 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1250 	if (len >= avail) {
1251 		/* The printk buffer is 1024 bytes long, so if we get
1252 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1253 		 * log everything that printk could have logged. */
1254 		avail = audit_expand(ab,
1255 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1256 		if (!avail)
1257 			goto out_va_end;
1258 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1259 	}
1260 	if (len > 0)
1261 		skb_put(skb, len);
1262 out_va_end:
1263 	va_end(args2);
1264 out:
1265 	return;
1266 }
1267 
1268 /**
1269  * audit_log_format - format a message into the audit buffer.
1270  * @ab: audit_buffer
1271  * @fmt: format string
1272  * @...: optional parameters matching @fmt string
1273  *
1274  * All the work is done in audit_log_vformat.
1275  */
1276 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1277 {
1278 	va_list args;
1279 
1280 	if (!ab)
1281 		return;
1282 	va_start(args, fmt);
1283 	audit_log_vformat(ab, fmt, args);
1284 	va_end(args);
1285 }
1286 
1287 /**
1288  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1289  * @ab: the audit_buffer
1290  * @buf: buffer to convert to hex
1291  * @len: length of @buf to be converted
1292  *
1293  * No return value; failure to expand is silently ignored.
1294  *
1295  * This function will take the passed buf and convert it into a string of
1296  * ascii hex digits. The new string is placed onto the skb.
1297  */
1298 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1299 		size_t len)
1300 {
1301 	int i, avail, new_len;
1302 	unsigned char *ptr;
1303 	struct sk_buff *skb;
1304 	static const unsigned char *hex = "0123456789ABCDEF";
1305 
1306 	if (!ab)
1307 		return;
1308 
1309 	BUG_ON(!ab->skb);
1310 	skb = ab->skb;
1311 	avail = skb_tailroom(skb);
1312 	new_len = len<<1;
1313 	if (new_len >= avail) {
1314 		/* Round the buffer request up to the next multiple */
1315 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1316 		avail = audit_expand(ab, new_len);
1317 		if (!avail)
1318 			return;
1319 	}
1320 
1321 	ptr = skb_tail_pointer(skb);
1322 	for (i=0; i<len; i++) {
1323 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1324 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1325 	}
1326 	*ptr = 0;
1327 	skb_put(skb, len << 1); /* new string is twice the old string */
1328 }
1329 
1330 /*
1331  * Format a string of no more than slen characters into the audit buffer,
1332  * enclosed in quote marks.
1333  */
1334 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1335 			size_t slen)
1336 {
1337 	int avail, new_len;
1338 	unsigned char *ptr;
1339 	struct sk_buff *skb;
1340 
1341 	if (!ab)
1342 		return;
1343 
1344 	BUG_ON(!ab->skb);
1345 	skb = ab->skb;
1346 	avail = skb_tailroom(skb);
1347 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1348 	if (new_len > avail) {
1349 		avail = audit_expand(ab, new_len);
1350 		if (!avail)
1351 			return;
1352 	}
1353 	ptr = skb_tail_pointer(skb);
1354 	*ptr++ = '"';
1355 	memcpy(ptr, string, slen);
1356 	ptr += slen;
1357 	*ptr++ = '"';
1358 	*ptr = 0;
1359 	skb_put(skb, slen + 2);	/* don't include null terminator */
1360 }
1361 
1362 /**
1363  * audit_string_contains_control - does a string need to be logged in hex
1364  * @string: string to be checked
1365  * @len: max length of the string to check
1366  */
1367 int audit_string_contains_control(const char *string, size_t len)
1368 {
1369 	const unsigned char *p;
1370 	for (p = string; p < (const unsigned char *)string + len; p++) {
1371 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1372 			return 1;
1373 	}
1374 	return 0;
1375 }
1376 
1377 /**
1378  * audit_log_n_untrustedstring - log a string that may contain random characters
1379  * @ab: audit_buffer
1380  * @len: length of string (not including trailing null)
1381  * @string: string to be logged
1382  *
1383  * This code will escape a string that is passed to it if the string
1384  * contains a control character, unprintable character, double quote mark,
1385  * or a space. Unescaped strings will start and end with a double quote mark.
1386  * Strings that are escaped are printed in hex (2 digits per char).
1387  *
1388  * The caller specifies the number of characters in the string to log, which may
1389  * or may not be the entire string.
1390  */
1391 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1392 				 size_t len)
1393 {
1394 	if (audit_string_contains_control(string, len))
1395 		audit_log_n_hex(ab, string, len);
1396 	else
1397 		audit_log_n_string(ab, string, len);
1398 }
1399 
1400 /**
1401  * audit_log_untrustedstring - log a string that may contain random characters
1402  * @ab: audit_buffer
1403  * @string: string to be logged
1404  *
1405  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1406  * determine string length.
1407  */
1408 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1409 {
1410 	audit_log_n_untrustedstring(ab, string, strlen(string));
1411 }
1412 
1413 /* This is a helper-function to print the escaped d_path */
1414 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1415 		      const struct path *path)
1416 {
1417 	char *p, *pathname;
1418 
1419 	if (prefix)
1420 		audit_log_format(ab, "%s", prefix);
1421 
1422 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1423 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1424 	if (!pathname) {
1425 		audit_log_string(ab, "<no_memory>");
1426 		return;
1427 	}
1428 	p = d_path(path, pathname, PATH_MAX+11);
1429 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1430 		/* FIXME: can we save some information here? */
1431 		audit_log_string(ab, "<too_long>");
1432 	} else
1433 		audit_log_untrustedstring(ab, p);
1434 	kfree(pathname);
1435 }
1436 
1437 void audit_log_key(struct audit_buffer *ab, char *key)
1438 {
1439 	audit_log_format(ab, " key=");
1440 	if (key)
1441 		audit_log_untrustedstring(ab, key);
1442 	else
1443 		audit_log_format(ab, "(null)");
1444 }
1445 
1446 /**
1447  * audit_log_link_denied - report a link restriction denial
1448  * @operation: specific link opreation
1449  * @link: the path that triggered the restriction
1450  */
1451 void audit_log_link_denied(const char *operation, struct path *link)
1452 {
1453 	struct audit_buffer *ab;
1454 
1455 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1456 			     AUDIT_ANOM_LINK);
1457 	if (!ab)
1458 		return;
1459 	audit_log_format(ab, "op=%s action=denied", operation);
1460 	audit_log_format(ab, " pid=%d comm=", current->pid);
1461 	audit_log_untrustedstring(ab, current->comm);
1462 	audit_log_d_path(ab, " path=", link);
1463 	audit_log_format(ab, " dev=");
1464 	audit_log_untrustedstring(ab, link->dentry->d_inode->i_sb->s_id);
1465 	audit_log_format(ab, " ino=%lu", link->dentry->d_inode->i_ino);
1466 	audit_log_end(ab);
1467 }
1468 
1469 /**
1470  * audit_log_end - end one audit record
1471  * @ab: the audit_buffer
1472  *
1473  * The netlink_* functions cannot be called inside an irq context, so
1474  * the audit buffer is placed on a queue and a tasklet is scheduled to
1475  * remove them from the queue outside the irq context.  May be called in
1476  * any context.
1477  */
1478 void audit_log_end(struct audit_buffer *ab)
1479 {
1480 	if (!ab)
1481 		return;
1482 	if (!audit_rate_check()) {
1483 		audit_log_lost("rate limit exceeded");
1484 	} else {
1485 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1486 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1487 
1488 		if (audit_pid) {
1489 			skb_queue_tail(&audit_skb_queue, ab->skb);
1490 			wake_up_interruptible(&kauditd_wait);
1491 		} else {
1492 			audit_printk_skb(ab->skb);
1493 		}
1494 		ab->skb = NULL;
1495 	}
1496 	audit_buffer_free(ab);
1497 }
1498 
1499 /**
1500  * audit_log - Log an audit record
1501  * @ctx: audit context
1502  * @gfp_mask: type of allocation
1503  * @type: audit message type
1504  * @fmt: format string to use
1505  * @...: variable parameters matching the format string
1506  *
1507  * This is a convenience function that calls audit_log_start,
1508  * audit_log_vformat, and audit_log_end.  It may be called
1509  * in any context.
1510  */
1511 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1512 	       const char *fmt, ...)
1513 {
1514 	struct audit_buffer *ab;
1515 	va_list args;
1516 
1517 	ab = audit_log_start(ctx, gfp_mask, type);
1518 	if (ab) {
1519 		va_start(args, fmt);
1520 		audit_log_vformat(ab, fmt, args);
1521 		va_end(args);
1522 		audit_log_end(ab);
1523 	}
1524 }
1525 
1526 #ifdef CONFIG_SECURITY
1527 /**
1528  * audit_log_secctx - Converts and logs SELinux context
1529  * @ab: audit_buffer
1530  * @secid: security number
1531  *
1532  * This is a helper function that calls security_secid_to_secctx to convert
1533  * secid to secctx and then adds the (converted) SELinux context to the audit
1534  * log by calling audit_log_format, thus also preventing leak of internal secid
1535  * to userspace. If secid cannot be converted audit_panic is called.
1536  */
1537 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1538 {
1539 	u32 len;
1540 	char *secctx;
1541 
1542 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1543 		audit_panic("Cannot convert secid to context");
1544 	} else {
1545 		audit_log_format(ab, " obj=%s", secctx);
1546 		security_release_secctx(secctx, len);
1547 	}
1548 }
1549 EXPORT_SYMBOL(audit_log_secctx);
1550 #endif
1551 
1552 EXPORT_SYMBOL(audit_log_start);
1553 EXPORT_SYMBOL(audit_log_end);
1554 EXPORT_SYMBOL(audit_log_format);
1555 EXPORT_SYMBOL(audit_log);
1556