xref: /openbmc/linux/kernel/audit.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized = AUDIT_UNINITIALIZED;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113 
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115  * to that number per second.  This prevents DoS attacks, but results in
116  * audit records being dropped. */
117 static u32	audit_rate_limit;
118 
119 /* Number of outstanding audit_buffers allowed.
120  * When set to zero, this means unlimited. */
121 static u32	audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t		audit_sig_uid = INVALID_UID;
127 static pid_t		audit_sig_pid = -1;
128 static u32		audit_sig_sid;
129 
130 /* Records can be lost in several ways:
131    0) [suppressed in audit_alloc]
132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133    2) out of memory in audit_log_move [alloc_skb]
134    3) suppressed due to audit_rate_limit
135    4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t	audit_lost = ATOMIC_INIT(0);
138 
139 /* Monotonically increasing sum of time the kernel has spent
140  * waiting while the backlog limit is exceeded.
141  */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143 
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146 
147 static struct kmem_cache *audit_buffer_cache;
148 
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155 
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159 
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162 
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 				   .mask = -1,
165 				   .features = 0,
166 				   .lock = 0,};
167 
168 static char *audit_feature_names[2] = {
169 	"only_unset_loginuid",
170 	"loginuid_immutable",
171 };
172 
173 /**
174  * struct audit_ctl_mutex - serialize requests from userspace
175  * @lock: the mutex used for locking
176  * @owner: the task which owns the lock
177  *
178  * Description:
179  * This is the lock struct used to ensure we only process userspace requests
180  * in an orderly fashion.  We can't simply use a mutex/lock here because we
181  * need to track lock ownership so we don't end up blocking the lock owner in
182  * audit_log_start() or similar.
183  */
184 static struct audit_ctl_mutex {
185 	struct mutex lock;
186 	void *owner;
187 } audit_cmd_mutex;
188 
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
191  * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193 
194 /* The audit_buffer is used when formatting an audit record.  The caller
195  * locks briefly to get the record off the freelist or to allocate the
196  * buffer, and locks briefly to send the buffer to the netlink layer or
197  * to place it on a transmit queue.  Multiple audit_buffers can be in
198  * use simultaneously. */
199 struct audit_buffer {
200 	struct sk_buff       *skb;	/* formatted skb ready to send */
201 	struct audit_context *ctx;	/* NULL or associated context */
202 	gfp_t		     gfp_mask;
203 };
204 
205 struct audit_reply {
206 	__u32 portid;
207 	struct net *net;
208 	struct sk_buff *skb;
209 };
210 
211 /**
212  * auditd_test_task - Check to see if a given task is an audit daemon
213  * @task: the task to check
214  *
215  * Description:
216  * Return 1 if the task is a registered audit daemon, 0 otherwise.
217  */
218 int auditd_test_task(struct task_struct *task)
219 {
220 	int rc;
221 	struct auditd_connection *ac;
222 
223 	rcu_read_lock();
224 	ac = rcu_dereference(auditd_conn);
225 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 	rcu_read_unlock();
227 
228 	return rc;
229 }
230 
231 /**
232  * audit_ctl_lock - Take the audit control lock
233  */
234 void audit_ctl_lock(void)
235 {
236 	mutex_lock(&audit_cmd_mutex.lock);
237 	audit_cmd_mutex.owner = current;
238 }
239 
240 /**
241  * audit_ctl_unlock - Drop the audit control lock
242  */
243 void audit_ctl_unlock(void)
244 {
245 	audit_cmd_mutex.owner = NULL;
246 	mutex_unlock(&audit_cmd_mutex.lock);
247 }
248 
249 /**
250  * audit_ctl_owner_current - Test to see if the current task owns the lock
251  *
252  * Description:
253  * Return true if the current task owns the audit control lock, false if it
254  * doesn't own the lock.
255  */
256 static bool audit_ctl_owner_current(void)
257 {
258 	return (current == audit_cmd_mutex.owner);
259 }
260 
261 /**
262  * auditd_pid_vnr - Return the auditd PID relative to the namespace
263  *
264  * Description:
265  * Returns the PID in relation to the namespace, 0 on failure.
266  */
267 static pid_t auditd_pid_vnr(void)
268 {
269 	pid_t pid;
270 	const struct auditd_connection *ac;
271 
272 	rcu_read_lock();
273 	ac = rcu_dereference(auditd_conn);
274 	if (!ac || !ac->pid)
275 		pid = 0;
276 	else
277 		pid = pid_vnr(ac->pid);
278 	rcu_read_unlock();
279 
280 	return pid;
281 }
282 
283 /**
284  * audit_get_sk - Return the audit socket for the given network namespace
285  * @net: the destination network namespace
286  *
287  * Description:
288  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
289  * that a reference is held for the network namespace while the sock is in use.
290  */
291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 	struct audit_net *aunet;
294 
295 	if (!net)
296 		return NULL;
297 
298 	aunet = net_generic(net, audit_net_id);
299 	return aunet->sk;
300 }
301 
302 void audit_panic(const char *message)
303 {
304 	switch (audit_failure) {
305 	case AUDIT_FAIL_SILENT:
306 		break;
307 	case AUDIT_FAIL_PRINTK:
308 		if (printk_ratelimit())
309 			pr_err("%s\n", message);
310 		break;
311 	case AUDIT_FAIL_PANIC:
312 		panic("audit: %s\n", message);
313 		break;
314 	}
315 }
316 
317 static inline int audit_rate_check(void)
318 {
319 	static unsigned long	last_check = 0;
320 	static int		messages   = 0;
321 	static DEFINE_SPINLOCK(lock);
322 	unsigned long		flags;
323 	unsigned long		now;
324 	unsigned long		elapsed;
325 	int			retval	   = 0;
326 
327 	if (!audit_rate_limit) return 1;
328 
329 	spin_lock_irqsave(&lock, flags);
330 	if (++messages < audit_rate_limit) {
331 		retval = 1;
332 	} else {
333 		now     = jiffies;
334 		elapsed = now - last_check;
335 		if (elapsed > HZ) {
336 			last_check = now;
337 			messages   = 0;
338 			retval     = 1;
339 		}
340 	}
341 	spin_unlock_irqrestore(&lock, flags);
342 
343 	return retval;
344 }
345 
346 /**
347  * audit_log_lost - conditionally log lost audit message event
348  * @message: the message stating reason for lost audit message
349  *
350  * Emit at least 1 message per second, even if audit_rate_check is
351  * throttling.
352  * Always increment the lost messages counter.
353 */
354 void audit_log_lost(const char *message)
355 {
356 	static unsigned long	last_msg = 0;
357 	static DEFINE_SPINLOCK(lock);
358 	unsigned long		flags;
359 	unsigned long		now;
360 	int			print;
361 
362 	atomic_inc(&audit_lost);
363 
364 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365 
366 	if (!print) {
367 		spin_lock_irqsave(&lock, flags);
368 		now = jiffies;
369 		if (now - last_msg > HZ) {
370 			print = 1;
371 			last_msg = now;
372 		}
373 		spin_unlock_irqrestore(&lock, flags);
374 	}
375 
376 	if (print) {
377 		if (printk_ratelimit())
378 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 				atomic_read(&audit_lost),
380 				audit_rate_limit,
381 				audit_backlog_limit);
382 		audit_panic(message);
383 	}
384 }
385 
386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 				   int allow_changes)
388 {
389 	struct audit_buffer *ab;
390 	int rc = 0;
391 
392 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 	if (unlikely(!ab))
394 		return rc;
395 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 	audit_log_session_info(ab);
397 	rc = audit_log_task_context(ab);
398 	if (rc)
399 		allow_changes = 0; /* Something weird, deny request */
400 	audit_log_format(ab, " res=%d", allow_changes);
401 	audit_log_end(ab);
402 	return rc;
403 }
404 
405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 	int allow_changes, rc = 0;
408 	u32 old = *to_change;
409 
410 	/* check if we are locked */
411 	if (audit_enabled == AUDIT_LOCKED)
412 		allow_changes = 0;
413 	else
414 		allow_changes = 1;
415 
416 	if (audit_enabled != AUDIT_OFF) {
417 		rc = audit_log_config_change(function_name, new, old, allow_changes);
418 		if (rc)
419 			allow_changes = 0;
420 	}
421 
422 	/* If we are allowed, make the change */
423 	if (allow_changes == 1)
424 		*to_change = new;
425 	/* Not allowed, update reason */
426 	else if (rc == 0)
427 		rc = -EPERM;
428 	return rc;
429 }
430 
431 static int audit_set_rate_limit(u32 limit)
432 {
433 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435 
436 static int audit_set_backlog_limit(u32 limit)
437 {
438 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440 
441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 	return audit_do_config_change("audit_backlog_wait_time",
444 				      &audit_backlog_wait_time, timeout);
445 }
446 
447 static int audit_set_enabled(u32 state)
448 {
449 	int rc;
450 	if (state > AUDIT_LOCKED)
451 		return -EINVAL;
452 
453 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
454 	if (!rc)
455 		audit_ever_enabled |= !!state;
456 
457 	return rc;
458 }
459 
460 static int audit_set_failure(u32 state)
461 {
462 	if (state != AUDIT_FAIL_SILENT
463 	    && state != AUDIT_FAIL_PRINTK
464 	    && state != AUDIT_FAIL_PANIC)
465 		return -EINVAL;
466 
467 	return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469 
470 /**
471  * auditd_conn_free - RCU helper to release an auditd connection struct
472  * @rcu: RCU head
473  *
474  * Description:
475  * Drop any references inside the auditd connection tracking struct and free
476  * the memory.
477  */
478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 	struct auditd_connection *ac;
481 
482 	ac = container_of(rcu, struct auditd_connection, rcu);
483 	put_pid(ac->pid);
484 	put_net(ac->net);
485 	kfree(ac);
486 }
487 
488 /**
489  * auditd_set - Set/Reset the auditd connection state
490  * @pid: auditd PID
491  * @portid: auditd netlink portid
492  * @net: auditd network namespace pointer
493  *
494  * Description:
495  * This function will obtain and drop network namespace references as
496  * necessary.  Returns zero on success, negative values on failure.
497  */
498 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
499 {
500 	unsigned long flags;
501 	struct auditd_connection *ac_old, *ac_new;
502 
503 	if (!pid || !net)
504 		return -EINVAL;
505 
506 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
507 	if (!ac_new)
508 		return -ENOMEM;
509 	ac_new->pid = get_pid(pid);
510 	ac_new->portid = portid;
511 	ac_new->net = get_net(net);
512 
513 	spin_lock_irqsave(&auditd_conn_lock, flags);
514 	ac_old = rcu_dereference_protected(auditd_conn,
515 					   lockdep_is_held(&auditd_conn_lock));
516 	rcu_assign_pointer(auditd_conn, ac_new);
517 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
518 
519 	if (ac_old)
520 		call_rcu(&ac_old->rcu, auditd_conn_free);
521 
522 	return 0;
523 }
524 
525 /**
526  * kauditd_printk_skb - Print the audit record to the ring buffer
527  * @skb: audit record
528  *
529  * Whatever the reason, this packet may not make it to the auditd connection
530  * so write it via printk so the information isn't completely lost.
531  */
532 static void kauditd_printk_skb(struct sk_buff *skb)
533 {
534 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
535 	char *data = nlmsg_data(nlh);
536 
537 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
538 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
539 }
540 
541 /**
542  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
543  * @skb: audit record
544  * @error: error code (unused)
545  *
546  * Description:
547  * This should only be used by the kauditd_thread when it fails to flush the
548  * hold queue.
549  */
550 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
551 {
552 	/* put the record back in the queue */
553 	skb_queue_tail(&audit_hold_queue, skb);
554 }
555 
556 /**
557  * kauditd_hold_skb - Queue an audit record, waiting for auditd
558  * @skb: audit record
559  * @error: error code
560  *
561  * Description:
562  * Queue the audit record, waiting for an instance of auditd.  When this
563  * function is called we haven't given up yet on sending the record, but things
564  * are not looking good.  The first thing we want to do is try to write the
565  * record via printk and then see if we want to try and hold on to the record
566  * and queue it, if we have room.  If we want to hold on to the record, but we
567  * don't have room, record a record lost message.
568  */
569 static void kauditd_hold_skb(struct sk_buff *skb, int error)
570 {
571 	/* at this point it is uncertain if we will ever send this to auditd so
572 	 * try to send the message via printk before we go any further */
573 	kauditd_printk_skb(skb);
574 
575 	/* can we just silently drop the message? */
576 	if (!audit_default)
577 		goto drop;
578 
579 	/* the hold queue is only for when the daemon goes away completely,
580 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
581 	 * record on the retry queue unless it's full, in which case drop it
582 	 */
583 	if (error == -EAGAIN) {
584 		if (!audit_backlog_limit ||
585 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
586 			skb_queue_tail(&audit_retry_queue, skb);
587 			return;
588 		}
589 		audit_log_lost("kauditd retry queue overflow");
590 		goto drop;
591 	}
592 
593 	/* if we have room in the hold queue, queue the message */
594 	if (!audit_backlog_limit ||
595 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
596 		skb_queue_tail(&audit_hold_queue, skb);
597 		return;
598 	}
599 
600 	/* we have no other options - drop the message */
601 	audit_log_lost("kauditd hold queue overflow");
602 drop:
603 	kfree_skb(skb);
604 }
605 
606 /**
607  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
608  * @skb: audit record
609  * @error: error code (unused)
610  *
611  * Description:
612  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
613  * but for some reason we are having problems sending it audit records so
614  * queue the given record and attempt to resend.
615  */
616 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
617 {
618 	if (!audit_backlog_limit ||
619 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
620 		skb_queue_tail(&audit_retry_queue, skb);
621 		return;
622 	}
623 
624 	/* we have to drop the record, send it via printk as a last effort */
625 	kauditd_printk_skb(skb);
626 	audit_log_lost("kauditd retry queue overflow");
627 	kfree_skb(skb);
628 }
629 
630 /**
631  * auditd_reset - Disconnect the auditd connection
632  * @ac: auditd connection state
633  *
634  * Description:
635  * Break the auditd/kauditd connection and move all the queued records into the
636  * hold queue in case auditd reconnects.  It is important to note that the @ac
637  * pointer should never be dereferenced inside this function as it may be NULL
638  * or invalid, you can only compare the memory address!  If @ac is NULL then
639  * the connection will always be reset.
640  */
641 static void auditd_reset(const struct auditd_connection *ac)
642 {
643 	unsigned long flags;
644 	struct sk_buff *skb;
645 	struct auditd_connection *ac_old;
646 
647 	/* if it isn't already broken, break the connection */
648 	spin_lock_irqsave(&auditd_conn_lock, flags);
649 	ac_old = rcu_dereference_protected(auditd_conn,
650 					   lockdep_is_held(&auditd_conn_lock));
651 	if (ac && ac != ac_old) {
652 		/* someone already registered a new auditd connection */
653 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
654 		return;
655 	}
656 	rcu_assign_pointer(auditd_conn, NULL);
657 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
658 
659 	if (ac_old)
660 		call_rcu(&ac_old->rcu, auditd_conn_free);
661 
662 	/* flush the retry queue to the hold queue, but don't touch the main
663 	 * queue since we need to process that normally for multicast */
664 	while ((skb = skb_dequeue(&audit_retry_queue)))
665 		kauditd_hold_skb(skb, -ECONNREFUSED);
666 }
667 
668 /**
669  * auditd_send_unicast_skb - Send a record via unicast to auditd
670  * @skb: audit record
671  *
672  * Description:
673  * Send a skb to the audit daemon, returns positive/zero values on success and
674  * negative values on failure; in all cases the skb will be consumed by this
675  * function.  If the send results in -ECONNREFUSED the connection with auditd
676  * will be reset.  This function may sleep so callers should not hold any locks
677  * where this would cause a problem.
678  */
679 static int auditd_send_unicast_skb(struct sk_buff *skb)
680 {
681 	int rc;
682 	u32 portid;
683 	struct net *net;
684 	struct sock *sk;
685 	struct auditd_connection *ac;
686 
687 	/* NOTE: we can't call netlink_unicast while in the RCU section so
688 	 *       take a reference to the network namespace and grab local
689 	 *       copies of the namespace, the sock, and the portid; the
690 	 *       namespace and sock aren't going to go away while we hold a
691 	 *       reference and if the portid does become invalid after the RCU
692 	 *       section netlink_unicast() should safely return an error */
693 
694 	rcu_read_lock();
695 	ac = rcu_dereference(auditd_conn);
696 	if (!ac) {
697 		rcu_read_unlock();
698 		kfree_skb(skb);
699 		rc = -ECONNREFUSED;
700 		goto err;
701 	}
702 	net = get_net(ac->net);
703 	sk = audit_get_sk(net);
704 	portid = ac->portid;
705 	rcu_read_unlock();
706 
707 	rc = netlink_unicast(sk, skb, portid, 0);
708 	put_net(net);
709 	if (rc < 0)
710 		goto err;
711 
712 	return rc;
713 
714 err:
715 	if (ac && rc == -ECONNREFUSED)
716 		auditd_reset(ac);
717 	return rc;
718 }
719 
720 /**
721  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
722  * @sk: the sending sock
723  * @portid: the netlink destination
724  * @queue: the skb queue to process
725  * @retry_limit: limit on number of netlink unicast failures
726  * @skb_hook: per-skb hook for additional processing
727  * @err_hook: hook called if the skb fails the netlink unicast send
728  *
729  * Description:
730  * Run through the given queue and attempt to send the audit records to auditd,
731  * returns zero on success, negative values on failure.  It is up to the caller
732  * to ensure that the @sk is valid for the duration of this function.
733  *
734  */
735 static int kauditd_send_queue(struct sock *sk, u32 portid,
736 			      struct sk_buff_head *queue,
737 			      unsigned int retry_limit,
738 			      void (*skb_hook)(struct sk_buff *skb),
739 			      void (*err_hook)(struct sk_buff *skb, int error))
740 {
741 	int rc = 0;
742 	struct sk_buff *skb = NULL;
743 	struct sk_buff *skb_tail;
744 	unsigned int failed = 0;
745 
746 	/* NOTE: kauditd_thread takes care of all our locking, we just use
747 	 *       the netlink info passed to us (e.g. sk and portid) */
748 
749 	skb_tail = skb_peek_tail(queue);
750 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
751 		/* call the skb_hook for each skb we touch */
752 		if (skb_hook)
753 			(*skb_hook)(skb);
754 
755 		/* can we send to anyone via unicast? */
756 		if (!sk) {
757 			if (err_hook)
758 				(*err_hook)(skb, -ECONNREFUSED);
759 			continue;
760 		}
761 
762 retry:
763 		/* grab an extra skb reference in case of error */
764 		skb_get(skb);
765 		rc = netlink_unicast(sk, skb, portid, 0);
766 		if (rc < 0) {
767 			/* send failed - try a few times unless fatal error */
768 			if (++failed >= retry_limit ||
769 			    rc == -ECONNREFUSED || rc == -EPERM) {
770 				sk = NULL;
771 				if (err_hook)
772 					(*err_hook)(skb, rc);
773 				if (rc == -EAGAIN)
774 					rc = 0;
775 				/* continue to drain the queue */
776 				continue;
777 			} else
778 				goto retry;
779 		} else {
780 			/* skb sent - drop the extra reference and continue */
781 			consume_skb(skb);
782 			failed = 0;
783 		}
784 	}
785 
786 	return (rc >= 0 ? 0 : rc);
787 }
788 
789 /*
790  * kauditd_send_multicast_skb - Send a record to any multicast listeners
791  * @skb: audit record
792  *
793  * Description:
794  * Write a multicast message to anyone listening in the initial network
795  * namespace.  This function doesn't consume an skb as might be expected since
796  * it has to copy it anyways.
797  */
798 static void kauditd_send_multicast_skb(struct sk_buff *skb)
799 {
800 	struct sk_buff *copy;
801 	struct sock *sock = audit_get_sk(&init_net);
802 	struct nlmsghdr *nlh;
803 
804 	/* NOTE: we are not taking an additional reference for init_net since
805 	 *       we don't have to worry about it going away */
806 
807 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
808 		return;
809 
810 	/*
811 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
812 	 * using skb_get() is necessary because non-standard mods are made to
813 	 * the skb by the original kaudit unicast socket send routine.  The
814 	 * existing auditd daemon assumes this breakage.  Fixing this would
815 	 * require co-ordinating a change in the established protocol between
816 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
817 	 * no reason for new multicast clients to continue with this
818 	 * non-compliance.
819 	 */
820 	copy = skb_copy(skb, GFP_KERNEL);
821 	if (!copy)
822 		return;
823 	nlh = nlmsg_hdr(copy);
824 	nlh->nlmsg_len = skb->len;
825 
826 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
827 }
828 
829 /**
830  * kauditd_thread - Worker thread to send audit records to userspace
831  * @dummy: unused
832  */
833 static int kauditd_thread(void *dummy)
834 {
835 	int rc;
836 	u32 portid = 0;
837 	struct net *net = NULL;
838 	struct sock *sk = NULL;
839 	struct auditd_connection *ac;
840 
841 #define UNICAST_RETRIES 5
842 
843 	set_freezable();
844 	while (!kthread_should_stop()) {
845 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
846 		rcu_read_lock();
847 		ac = rcu_dereference(auditd_conn);
848 		if (!ac) {
849 			rcu_read_unlock();
850 			goto main_queue;
851 		}
852 		net = get_net(ac->net);
853 		sk = audit_get_sk(net);
854 		portid = ac->portid;
855 		rcu_read_unlock();
856 
857 		/* attempt to flush the hold queue */
858 		rc = kauditd_send_queue(sk, portid,
859 					&audit_hold_queue, UNICAST_RETRIES,
860 					NULL, kauditd_rehold_skb);
861 		if (rc < 0) {
862 			sk = NULL;
863 			auditd_reset(ac);
864 			goto main_queue;
865 		}
866 
867 		/* attempt to flush the retry queue */
868 		rc = kauditd_send_queue(sk, portid,
869 					&audit_retry_queue, UNICAST_RETRIES,
870 					NULL, kauditd_hold_skb);
871 		if (rc < 0) {
872 			sk = NULL;
873 			auditd_reset(ac);
874 			goto main_queue;
875 		}
876 
877 main_queue:
878 		/* process the main queue - do the multicast send and attempt
879 		 * unicast, dump failed record sends to the retry queue; if
880 		 * sk == NULL due to previous failures we will just do the
881 		 * multicast send and move the record to the hold queue */
882 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
883 					kauditd_send_multicast_skb,
884 					(sk ?
885 					 kauditd_retry_skb : kauditd_hold_skb));
886 		if (ac && rc < 0)
887 			auditd_reset(ac);
888 		sk = NULL;
889 
890 		/* drop our netns reference, no auditd sends past this line */
891 		if (net) {
892 			put_net(net);
893 			net = NULL;
894 		}
895 
896 		/* we have processed all the queues so wake everyone */
897 		wake_up(&audit_backlog_wait);
898 
899 		/* NOTE: we want to wake up if there is anything on the queue,
900 		 *       regardless of if an auditd is connected, as we need to
901 		 *       do the multicast send and rotate records from the
902 		 *       main queue to the retry/hold queues */
903 		wait_event_freezable(kauditd_wait,
904 				     (skb_queue_len(&audit_queue) ? 1 : 0));
905 	}
906 
907 	return 0;
908 }
909 
910 int audit_send_list_thread(void *_dest)
911 {
912 	struct audit_netlink_list *dest = _dest;
913 	struct sk_buff *skb;
914 	struct sock *sk = audit_get_sk(dest->net);
915 
916 	/* wait for parent to finish and send an ACK */
917 	audit_ctl_lock();
918 	audit_ctl_unlock();
919 
920 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
921 		netlink_unicast(sk, skb, dest->portid, 0);
922 
923 	put_net(dest->net);
924 	kfree(dest);
925 
926 	return 0;
927 }
928 
929 struct sk_buff *audit_make_reply(int seq, int type, int done,
930 				 int multi, const void *payload, int size)
931 {
932 	struct sk_buff	*skb;
933 	struct nlmsghdr	*nlh;
934 	void		*data;
935 	int		flags = multi ? NLM_F_MULTI : 0;
936 	int		t     = done  ? NLMSG_DONE  : type;
937 
938 	skb = nlmsg_new(size, GFP_KERNEL);
939 	if (!skb)
940 		return NULL;
941 
942 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
943 	if (!nlh)
944 		goto out_kfree_skb;
945 	data = nlmsg_data(nlh);
946 	memcpy(data, payload, size);
947 	return skb;
948 
949 out_kfree_skb:
950 	kfree_skb(skb);
951 	return NULL;
952 }
953 
954 static void audit_free_reply(struct audit_reply *reply)
955 {
956 	if (!reply)
957 		return;
958 
959 	kfree_skb(reply->skb);
960 	if (reply->net)
961 		put_net(reply->net);
962 	kfree(reply);
963 }
964 
965 static int audit_send_reply_thread(void *arg)
966 {
967 	struct audit_reply *reply = (struct audit_reply *)arg;
968 
969 	audit_ctl_lock();
970 	audit_ctl_unlock();
971 
972 	/* Ignore failure. It'll only happen if the sender goes away,
973 	   because our timeout is set to infinite. */
974 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
975 	reply->skb = NULL;
976 	audit_free_reply(reply);
977 	return 0;
978 }
979 
980 /**
981  * audit_send_reply - send an audit reply message via netlink
982  * @request_skb: skb of request we are replying to (used to target the reply)
983  * @seq: sequence number
984  * @type: audit message type
985  * @done: done (last) flag
986  * @multi: multi-part message flag
987  * @payload: payload data
988  * @size: payload size
989  *
990  * Allocates a skb, builds the netlink message, and sends it to the port id.
991  */
992 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
993 			     int multi, const void *payload, int size)
994 {
995 	struct task_struct *tsk;
996 	struct audit_reply *reply;
997 
998 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
999 	if (!reply)
1000 		return;
1001 
1002 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1003 	if (!reply->skb)
1004 		goto err;
1005 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1006 	reply->portid = NETLINK_CB(request_skb).portid;
1007 
1008 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1009 	if (IS_ERR(tsk))
1010 		goto err;
1011 
1012 	return;
1013 
1014 err:
1015 	audit_free_reply(reply);
1016 }
1017 
1018 /*
1019  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1020  * control messages.
1021  */
1022 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1023 {
1024 	int err = 0;
1025 
1026 	/* Only support initial user namespace for now. */
1027 	/*
1028 	 * We return ECONNREFUSED because it tricks userspace into thinking
1029 	 * that audit was not configured into the kernel.  Lots of users
1030 	 * configure their PAM stack (because that's what the distro does)
1031 	 * to reject login if unable to send messages to audit.  If we return
1032 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1033 	 * configured in and will let login proceed.  If we return EPERM
1034 	 * userspace will reject all logins.  This should be removed when we
1035 	 * support non init namespaces!!
1036 	 */
1037 	if (current_user_ns() != &init_user_ns)
1038 		return -ECONNREFUSED;
1039 
1040 	switch (msg_type) {
1041 	case AUDIT_LIST:
1042 	case AUDIT_ADD:
1043 	case AUDIT_DEL:
1044 		return -EOPNOTSUPP;
1045 	case AUDIT_GET:
1046 	case AUDIT_SET:
1047 	case AUDIT_GET_FEATURE:
1048 	case AUDIT_SET_FEATURE:
1049 	case AUDIT_LIST_RULES:
1050 	case AUDIT_ADD_RULE:
1051 	case AUDIT_DEL_RULE:
1052 	case AUDIT_SIGNAL_INFO:
1053 	case AUDIT_TTY_GET:
1054 	case AUDIT_TTY_SET:
1055 	case AUDIT_TRIM:
1056 	case AUDIT_MAKE_EQUIV:
1057 		/* Only support auditd and auditctl in initial pid namespace
1058 		 * for now. */
1059 		if (task_active_pid_ns(current) != &init_pid_ns)
1060 			return -EPERM;
1061 
1062 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1063 			err = -EPERM;
1064 		break;
1065 	case AUDIT_USER:
1066 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1067 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1068 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1069 			err = -EPERM;
1070 		break;
1071 	default:  /* bad msg */
1072 		err = -EINVAL;
1073 	}
1074 
1075 	return err;
1076 }
1077 
1078 static void audit_log_common_recv_msg(struct audit_context *context,
1079 					struct audit_buffer **ab, u16 msg_type)
1080 {
1081 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1082 	pid_t pid = task_tgid_nr(current);
1083 
1084 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1085 		*ab = NULL;
1086 		return;
1087 	}
1088 
1089 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1090 	if (unlikely(!*ab))
1091 		return;
1092 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1093 	audit_log_session_info(*ab);
1094 	audit_log_task_context(*ab);
1095 }
1096 
1097 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1098 					   u16 msg_type)
1099 {
1100 	audit_log_common_recv_msg(NULL, ab, msg_type);
1101 }
1102 
1103 static int is_audit_feature_set(int i)
1104 {
1105 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1106 }
1107 
1108 
1109 static int audit_get_feature(struct sk_buff *skb)
1110 {
1111 	u32 seq;
1112 
1113 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1114 
1115 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1116 
1117 	return 0;
1118 }
1119 
1120 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1121 				     u32 old_lock, u32 new_lock, int res)
1122 {
1123 	struct audit_buffer *ab;
1124 
1125 	if (audit_enabled == AUDIT_OFF)
1126 		return;
1127 
1128 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1129 	if (!ab)
1130 		return;
1131 	audit_log_task_info(ab);
1132 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1133 			 audit_feature_names[which], !!old_feature, !!new_feature,
1134 			 !!old_lock, !!new_lock, res);
1135 	audit_log_end(ab);
1136 }
1137 
1138 static int audit_set_feature(struct audit_features *uaf)
1139 {
1140 	int i;
1141 
1142 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1143 
1144 	/* if there is ever a version 2 we should handle that here */
1145 
1146 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148 		u32 old_feature, new_feature, old_lock, new_lock;
1149 
1150 		/* if we are not changing this feature, move along */
1151 		if (!(feature & uaf->mask))
1152 			continue;
1153 
1154 		old_feature = af.features & feature;
1155 		new_feature = uaf->features & feature;
1156 		new_lock = (uaf->lock | af.lock) & feature;
1157 		old_lock = af.lock & feature;
1158 
1159 		/* are we changing a locked feature? */
1160 		if (old_lock && (new_feature != old_feature)) {
1161 			audit_log_feature_change(i, old_feature, new_feature,
1162 						 old_lock, new_lock, 0);
1163 			return -EPERM;
1164 		}
1165 	}
1166 	/* nothing invalid, do the changes */
1167 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1168 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1169 		u32 old_feature, new_feature, old_lock, new_lock;
1170 
1171 		/* if we are not changing this feature, move along */
1172 		if (!(feature & uaf->mask))
1173 			continue;
1174 
1175 		old_feature = af.features & feature;
1176 		new_feature = uaf->features & feature;
1177 		old_lock = af.lock & feature;
1178 		new_lock = (uaf->lock | af.lock) & feature;
1179 
1180 		if (new_feature != old_feature)
1181 			audit_log_feature_change(i, old_feature, new_feature,
1182 						 old_lock, new_lock, 1);
1183 
1184 		if (new_feature)
1185 			af.features |= feature;
1186 		else
1187 			af.features &= ~feature;
1188 		af.lock |= new_lock;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int audit_replace(struct pid *pid)
1195 {
1196 	pid_t pvnr;
1197 	struct sk_buff *skb;
1198 
1199 	pvnr = pid_vnr(pid);
1200 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1201 	if (!skb)
1202 		return -ENOMEM;
1203 	return auditd_send_unicast_skb(skb);
1204 }
1205 
1206 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1207 {
1208 	u32			seq;
1209 	void			*data;
1210 	int			data_len;
1211 	int			err;
1212 	struct audit_buffer	*ab;
1213 	u16			msg_type = nlh->nlmsg_type;
1214 	struct audit_sig_info   *sig_data;
1215 	char			*ctx = NULL;
1216 	u32			len;
1217 
1218 	err = audit_netlink_ok(skb, msg_type);
1219 	if (err)
1220 		return err;
1221 
1222 	seq  = nlh->nlmsg_seq;
1223 	data = nlmsg_data(nlh);
1224 	data_len = nlmsg_len(nlh);
1225 
1226 	switch (msg_type) {
1227 	case AUDIT_GET: {
1228 		struct audit_status	s;
1229 		memset(&s, 0, sizeof(s));
1230 		s.enabled		   = audit_enabled;
1231 		s.failure		   = audit_failure;
1232 		/* NOTE: use pid_vnr() so the PID is relative to the current
1233 		 *       namespace */
1234 		s.pid			   = auditd_pid_vnr();
1235 		s.rate_limit		   = audit_rate_limit;
1236 		s.backlog_limit		   = audit_backlog_limit;
1237 		s.lost			   = atomic_read(&audit_lost);
1238 		s.backlog		   = skb_queue_len(&audit_queue);
1239 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1240 		s.backlog_wait_time	   = audit_backlog_wait_time;
1241 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1242 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1243 		break;
1244 	}
1245 	case AUDIT_SET: {
1246 		struct audit_status	s;
1247 		memset(&s, 0, sizeof(s));
1248 		/* guard against past and future API changes */
1249 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1250 		if (s.mask & AUDIT_STATUS_ENABLED) {
1251 			err = audit_set_enabled(s.enabled);
1252 			if (err < 0)
1253 				return err;
1254 		}
1255 		if (s.mask & AUDIT_STATUS_FAILURE) {
1256 			err = audit_set_failure(s.failure);
1257 			if (err < 0)
1258 				return err;
1259 		}
1260 		if (s.mask & AUDIT_STATUS_PID) {
1261 			/* NOTE: we are using the vnr PID functions below
1262 			 *       because the s.pid value is relative to the
1263 			 *       namespace of the caller; at present this
1264 			 *       doesn't matter much since you can really only
1265 			 *       run auditd from the initial pid namespace, but
1266 			 *       something to keep in mind if this changes */
1267 			pid_t new_pid = s.pid;
1268 			pid_t auditd_pid;
1269 			struct pid *req_pid = task_tgid(current);
1270 
1271 			/* Sanity check - PID values must match. Setting
1272 			 * pid to 0 is how auditd ends auditing. */
1273 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1274 				return -EINVAL;
1275 
1276 			/* test the auditd connection */
1277 			audit_replace(req_pid);
1278 
1279 			auditd_pid = auditd_pid_vnr();
1280 			if (auditd_pid) {
1281 				/* replacing a healthy auditd is not allowed */
1282 				if (new_pid) {
1283 					audit_log_config_change("audit_pid",
1284 							new_pid, auditd_pid, 0);
1285 					return -EEXIST;
1286 				}
1287 				/* only current auditd can unregister itself */
1288 				if (pid_vnr(req_pid) != auditd_pid) {
1289 					audit_log_config_change("audit_pid",
1290 							new_pid, auditd_pid, 0);
1291 					return -EACCES;
1292 				}
1293 			}
1294 
1295 			if (new_pid) {
1296 				/* register a new auditd connection */
1297 				err = auditd_set(req_pid,
1298 						 NETLINK_CB(skb).portid,
1299 						 sock_net(NETLINK_CB(skb).sk));
1300 				if (audit_enabled != AUDIT_OFF)
1301 					audit_log_config_change("audit_pid",
1302 								new_pid,
1303 								auditd_pid,
1304 								err ? 0 : 1);
1305 				if (err)
1306 					return err;
1307 
1308 				/* try to process any backlog */
1309 				wake_up_interruptible(&kauditd_wait);
1310 			} else {
1311 				if (audit_enabled != AUDIT_OFF)
1312 					audit_log_config_change("audit_pid",
1313 								new_pid,
1314 								auditd_pid, 1);
1315 
1316 				/* unregister the auditd connection */
1317 				auditd_reset(NULL);
1318 			}
1319 		}
1320 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1321 			err = audit_set_rate_limit(s.rate_limit);
1322 			if (err < 0)
1323 				return err;
1324 		}
1325 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1326 			err = audit_set_backlog_limit(s.backlog_limit);
1327 			if (err < 0)
1328 				return err;
1329 		}
1330 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1331 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1332 				return -EINVAL;
1333 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1334 				return -EINVAL;
1335 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1336 			if (err < 0)
1337 				return err;
1338 		}
1339 		if (s.mask == AUDIT_STATUS_LOST) {
1340 			u32 lost = atomic_xchg(&audit_lost, 0);
1341 
1342 			audit_log_config_change("lost", 0, lost, 1);
1343 			return lost;
1344 		}
1345 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1346 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1347 
1348 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1349 			return actual;
1350 		}
1351 		break;
1352 	}
1353 	case AUDIT_GET_FEATURE:
1354 		err = audit_get_feature(skb);
1355 		if (err)
1356 			return err;
1357 		break;
1358 	case AUDIT_SET_FEATURE:
1359 		if (data_len < sizeof(struct audit_features))
1360 			return -EINVAL;
1361 		err = audit_set_feature(data);
1362 		if (err)
1363 			return err;
1364 		break;
1365 	case AUDIT_USER:
1366 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1367 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1368 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1369 			return 0;
1370 		/* exit early if there isn't at least one character to print */
1371 		if (data_len < 2)
1372 			return -EINVAL;
1373 
1374 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1375 		if (err == 1) { /* match or error */
1376 			char *str = data;
1377 
1378 			err = 0;
1379 			if (msg_type == AUDIT_USER_TTY) {
1380 				err = tty_audit_push();
1381 				if (err)
1382 					break;
1383 			}
1384 			audit_log_user_recv_msg(&ab, msg_type);
1385 			if (msg_type != AUDIT_USER_TTY) {
1386 				/* ensure NULL termination */
1387 				str[data_len - 1] = '\0';
1388 				audit_log_format(ab, " msg='%.*s'",
1389 						 AUDIT_MESSAGE_TEXT_MAX,
1390 						 str);
1391 			} else {
1392 				audit_log_format(ab, " data=");
1393 				if (str[data_len - 1] == '\0')
1394 					data_len--;
1395 				audit_log_n_untrustedstring(ab, str, data_len);
1396 			}
1397 			audit_log_end(ab);
1398 		}
1399 		break;
1400 	case AUDIT_ADD_RULE:
1401 	case AUDIT_DEL_RULE:
1402 		if (data_len < sizeof(struct audit_rule_data))
1403 			return -EINVAL;
1404 		if (audit_enabled == AUDIT_LOCKED) {
1405 			audit_log_common_recv_msg(audit_context(), &ab,
1406 						  AUDIT_CONFIG_CHANGE);
1407 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1408 					 msg_type == AUDIT_ADD_RULE ?
1409 						"add_rule" : "remove_rule",
1410 					 audit_enabled);
1411 			audit_log_end(ab);
1412 			return -EPERM;
1413 		}
1414 		err = audit_rule_change(msg_type, seq, data, data_len);
1415 		break;
1416 	case AUDIT_LIST_RULES:
1417 		err = audit_list_rules_send(skb, seq);
1418 		break;
1419 	case AUDIT_TRIM:
1420 		audit_trim_trees();
1421 		audit_log_common_recv_msg(audit_context(), &ab,
1422 					  AUDIT_CONFIG_CHANGE);
1423 		audit_log_format(ab, " op=trim res=1");
1424 		audit_log_end(ab);
1425 		break;
1426 	case AUDIT_MAKE_EQUIV: {
1427 		void *bufp = data;
1428 		u32 sizes[2];
1429 		size_t msglen = data_len;
1430 		char *old, *new;
1431 
1432 		err = -EINVAL;
1433 		if (msglen < 2 * sizeof(u32))
1434 			break;
1435 		memcpy(sizes, bufp, 2 * sizeof(u32));
1436 		bufp += 2 * sizeof(u32);
1437 		msglen -= 2 * sizeof(u32);
1438 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1439 		if (IS_ERR(old)) {
1440 			err = PTR_ERR(old);
1441 			break;
1442 		}
1443 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1444 		if (IS_ERR(new)) {
1445 			err = PTR_ERR(new);
1446 			kfree(old);
1447 			break;
1448 		}
1449 		/* OK, here comes... */
1450 		err = audit_tag_tree(old, new);
1451 
1452 		audit_log_common_recv_msg(audit_context(), &ab,
1453 					  AUDIT_CONFIG_CHANGE);
1454 		audit_log_format(ab, " op=make_equiv old=");
1455 		audit_log_untrustedstring(ab, old);
1456 		audit_log_format(ab, " new=");
1457 		audit_log_untrustedstring(ab, new);
1458 		audit_log_format(ab, " res=%d", !err);
1459 		audit_log_end(ab);
1460 		kfree(old);
1461 		kfree(new);
1462 		break;
1463 	}
1464 	case AUDIT_SIGNAL_INFO:
1465 		len = 0;
1466 		if (audit_sig_sid) {
1467 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1468 			if (err)
1469 				return err;
1470 		}
1471 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1472 		if (!sig_data) {
1473 			if (audit_sig_sid)
1474 				security_release_secctx(ctx, len);
1475 			return -ENOMEM;
1476 		}
1477 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1478 		sig_data->pid = audit_sig_pid;
1479 		if (audit_sig_sid) {
1480 			memcpy(sig_data->ctx, ctx, len);
1481 			security_release_secctx(ctx, len);
1482 		}
1483 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1484 				 sig_data, struct_size(sig_data, ctx, len));
1485 		kfree(sig_data);
1486 		break;
1487 	case AUDIT_TTY_GET: {
1488 		struct audit_tty_status s;
1489 		unsigned int t;
1490 
1491 		t = READ_ONCE(current->signal->audit_tty);
1492 		s.enabled = t & AUDIT_TTY_ENABLE;
1493 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1494 
1495 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1496 		break;
1497 	}
1498 	case AUDIT_TTY_SET: {
1499 		struct audit_tty_status s, old;
1500 		struct audit_buffer	*ab;
1501 		unsigned int t;
1502 
1503 		memset(&s, 0, sizeof(s));
1504 		/* guard against past and future API changes */
1505 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1506 		/* check if new data is valid */
1507 		if ((s.enabled != 0 && s.enabled != 1) ||
1508 		    (s.log_passwd != 0 && s.log_passwd != 1))
1509 			err = -EINVAL;
1510 
1511 		if (err)
1512 			t = READ_ONCE(current->signal->audit_tty);
1513 		else {
1514 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1515 			t = xchg(&current->signal->audit_tty, t);
1516 		}
1517 		old.enabled = t & AUDIT_TTY_ENABLE;
1518 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1519 
1520 		audit_log_common_recv_msg(audit_context(), &ab,
1521 					  AUDIT_CONFIG_CHANGE);
1522 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1523 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1524 				 old.enabled, s.enabled, old.log_passwd,
1525 				 s.log_passwd, !err);
1526 		audit_log_end(ab);
1527 		break;
1528 	}
1529 	default:
1530 		err = -EINVAL;
1531 		break;
1532 	}
1533 
1534 	return err < 0 ? err : 0;
1535 }
1536 
1537 /**
1538  * audit_receive - receive messages from a netlink control socket
1539  * @skb: the message buffer
1540  *
1541  * Parse the provided skb and deal with any messages that may be present,
1542  * malformed skbs are discarded.
1543  */
1544 static void audit_receive(struct sk_buff  *skb)
1545 {
1546 	struct nlmsghdr *nlh;
1547 	/*
1548 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1549 	 * if the nlmsg_len was not aligned
1550 	 */
1551 	int len;
1552 	int err;
1553 
1554 	nlh = nlmsg_hdr(skb);
1555 	len = skb->len;
1556 
1557 	audit_ctl_lock();
1558 	while (nlmsg_ok(nlh, len)) {
1559 		err = audit_receive_msg(skb, nlh);
1560 		/* if err or if this message says it wants a response */
1561 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1562 			netlink_ack(skb, nlh, err, NULL);
1563 
1564 		nlh = nlmsg_next(nlh, &len);
1565 	}
1566 	audit_ctl_unlock();
1567 
1568 	/* can't block with the ctrl lock, so penalize the sender now */
1569 	if (audit_backlog_limit &&
1570 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1571 		DECLARE_WAITQUEUE(wait, current);
1572 
1573 		/* wake kauditd to try and flush the queue */
1574 		wake_up_interruptible(&kauditd_wait);
1575 
1576 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1577 		set_current_state(TASK_UNINTERRUPTIBLE);
1578 		schedule_timeout(audit_backlog_wait_time);
1579 		remove_wait_queue(&audit_backlog_wait, &wait);
1580 	}
1581 }
1582 
1583 /* Log information about who is connecting to the audit multicast socket */
1584 static void audit_log_multicast(int group, const char *op, int err)
1585 {
1586 	const struct cred *cred;
1587 	struct tty_struct *tty;
1588 	char comm[sizeof(current->comm)];
1589 	struct audit_buffer *ab;
1590 
1591 	if (!audit_enabled)
1592 		return;
1593 
1594 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1595 	if (!ab)
1596 		return;
1597 
1598 	cred = current_cred();
1599 	tty = audit_get_tty();
1600 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1601 			 task_pid_nr(current),
1602 			 from_kuid(&init_user_ns, cred->uid),
1603 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1604 			 tty ? tty_name(tty) : "(none)",
1605 			 audit_get_sessionid(current));
1606 	audit_put_tty(tty);
1607 	audit_log_task_context(ab); /* subj= */
1608 	audit_log_format(ab, " comm=");
1609 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1610 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1611 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1612 	audit_log_end(ab);
1613 }
1614 
1615 /* Run custom bind function on netlink socket group connect or bind requests. */
1616 static int audit_multicast_bind(struct net *net, int group)
1617 {
1618 	int err = 0;
1619 
1620 	if (!capable(CAP_AUDIT_READ))
1621 		err = -EPERM;
1622 	audit_log_multicast(group, "connect", err);
1623 	return err;
1624 }
1625 
1626 static void audit_multicast_unbind(struct net *net, int group)
1627 {
1628 	audit_log_multicast(group, "disconnect", 0);
1629 }
1630 
1631 static int __net_init audit_net_init(struct net *net)
1632 {
1633 	struct netlink_kernel_cfg cfg = {
1634 		.input	= audit_receive,
1635 		.bind	= audit_multicast_bind,
1636 		.unbind	= audit_multicast_unbind,
1637 		.flags	= NL_CFG_F_NONROOT_RECV,
1638 		.groups	= AUDIT_NLGRP_MAX,
1639 	};
1640 
1641 	struct audit_net *aunet = net_generic(net, audit_net_id);
1642 
1643 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1644 	if (aunet->sk == NULL) {
1645 		audit_panic("cannot initialize netlink socket in namespace");
1646 		return -ENOMEM;
1647 	}
1648 	/* limit the timeout in case auditd is blocked/stopped */
1649 	aunet->sk->sk_sndtimeo = HZ / 10;
1650 
1651 	return 0;
1652 }
1653 
1654 static void __net_exit audit_net_exit(struct net *net)
1655 {
1656 	struct audit_net *aunet = net_generic(net, audit_net_id);
1657 
1658 	/* NOTE: you would think that we would want to check the auditd
1659 	 * connection and potentially reset it here if it lives in this
1660 	 * namespace, but since the auditd connection tracking struct holds a
1661 	 * reference to this namespace (see auditd_set()) we are only ever
1662 	 * going to get here after that connection has been released */
1663 
1664 	netlink_kernel_release(aunet->sk);
1665 }
1666 
1667 static struct pernet_operations audit_net_ops __net_initdata = {
1668 	.init = audit_net_init,
1669 	.exit = audit_net_exit,
1670 	.id = &audit_net_id,
1671 	.size = sizeof(struct audit_net),
1672 };
1673 
1674 /* Initialize audit support at boot time. */
1675 static int __init audit_init(void)
1676 {
1677 	int i;
1678 
1679 	if (audit_initialized == AUDIT_DISABLED)
1680 		return 0;
1681 
1682 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1683 					       sizeof(struct audit_buffer),
1684 					       0, SLAB_PANIC, NULL);
1685 
1686 	skb_queue_head_init(&audit_queue);
1687 	skb_queue_head_init(&audit_retry_queue);
1688 	skb_queue_head_init(&audit_hold_queue);
1689 
1690 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1691 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1692 
1693 	mutex_init(&audit_cmd_mutex.lock);
1694 	audit_cmd_mutex.owner = NULL;
1695 
1696 	pr_info("initializing netlink subsys (%s)\n",
1697 		audit_default ? "enabled" : "disabled");
1698 	register_pernet_subsys(&audit_net_ops);
1699 
1700 	audit_initialized = AUDIT_INITIALIZED;
1701 
1702 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1703 	if (IS_ERR(kauditd_task)) {
1704 		int err = PTR_ERR(kauditd_task);
1705 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1706 	}
1707 
1708 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1709 		"state=initialized audit_enabled=%u res=1",
1710 		 audit_enabled);
1711 
1712 	return 0;
1713 }
1714 postcore_initcall(audit_init);
1715 
1716 /*
1717  * Process kernel command-line parameter at boot time.
1718  * audit={0|off} or audit={1|on}.
1719  */
1720 static int __init audit_enable(char *str)
1721 {
1722 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1723 		audit_default = AUDIT_OFF;
1724 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1725 		audit_default = AUDIT_ON;
1726 	else {
1727 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1728 		audit_default = AUDIT_ON;
1729 	}
1730 
1731 	if (audit_default == AUDIT_OFF)
1732 		audit_initialized = AUDIT_DISABLED;
1733 	if (audit_set_enabled(audit_default))
1734 		pr_err("audit: error setting audit state (%d)\n",
1735 		       audit_default);
1736 
1737 	pr_info("%s\n", audit_default ?
1738 		"enabled (after initialization)" : "disabled (until reboot)");
1739 
1740 	return 1;
1741 }
1742 __setup("audit=", audit_enable);
1743 
1744 /* Process kernel command-line parameter at boot time.
1745  * audit_backlog_limit=<n> */
1746 static int __init audit_backlog_limit_set(char *str)
1747 {
1748 	u32 audit_backlog_limit_arg;
1749 
1750 	pr_info("audit_backlog_limit: ");
1751 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1752 		pr_cont("using default of %u, unable to parse %s\n",
1753 			audit_backlog_limit, str);
1754 		return 1;
1755 	}
1756 
1757 	audit_backlog_limit = audit_backlog_limit_arg;
1758 	pr_cont("%d\n", audit_backlog_limit);
1759 
1760 	return 1;
1761 }
1762 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1763 
1764 static void audit_buffer_free(struct audit_buffer *ab)
1765 {
1766 	if (!ab)
1767 		return;
1768 
1769 	kfree_skb(ab->skb);
1770 	kmem_cache_free(audit_buffer_cache, ab);
1771 }
1772 
1773 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1774 					       gfp_t gfp_mask, int type)
1775 {
1776 	struct audit_buffer *ab;
1777 
1778 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1779 	if (!ab)
1780 		return NULL;
1781 
1782 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1783 	if (!ab->skb)
1784 		goto err;
1785 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1786 		goto err;
1787 
1788 	ab->ctx = ctx;
1789 	ab->gfp_mask = gfp_mask;
1790 
1791 	return ab;
1792 
1793 err:
1794 	audit_buffer_free(ab);
1795 	return NULL;
1796 }
1797 
1798 /**
1799  * audit_serial - compute a serial number for the audit record
1800  *
1801  * Compute a serial number for the audit record.  Audit records are
1802  * written to user-space as soon as they are generated, so a complete
1803  * audit record may be written in several pieces.  The timestamp of the
1804  * record and this serial number are used by the user-space tools to
1805  * determine which pieces belong to the same audit record.  The
1806  * (timestamp,serial) tuple is unique for each syscall and is live from
1807  * syscall entry to syscall exit.
1808  *
1809  * NOTE: Another possibility is to store the formatted records off the
1810  * audit context (for those records that have a context), and emit them
1811  * all at syscall exit.  However, this could delay the reporting of
1812  * significant errors until syscall exit (or never, if the system
1813  * halts).
1814  */
1815 unsigned int audit_serial(void)
1816 {
1817 	static atomic_t serial = ATOMIC_INIT(0);
1818 
1819 	return atomic_inc_return(&serial);
1820 }
1821 
1822 static inline void audit_get_stamp(struct audit_context *ctx,
1823 				   struct timespec64 *t, unsigned int *serial)
1824 {
1825 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1826 		ktime_get_coarse_real_ts64(t);
1827 		*serial = audit_serial();
1828 	}
1829 }
1830 
1831 /**
1832  * audit_log_start - obtain an audit buffer
1833  * @ctx: audit_context (may be NULL)
1834  * @gfp_mask: type of allocation
1835  * @type: audit message type
1836  *
1837  * Returns audit_buffer pointer on success or NULL on error.
1838  *
1839  * Obtain an audit buffer.  This routine does locking to obtain the
1840  * audit buffer, but then no locking is required for calls to
1841  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1842  * syscall, then the syscall is marked as auditable and an audit record
1843  * will be written at syscall exit.  If there is no associated task, then
1844  * task context (ctx) should be NULL.
1845  */
1846 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1847 				     int type)
1848 {
1849 	struct audit_buffer *ab;
1850 	struct timespec64 t;
1851 	unsigned int serial;
1852 
1853 	if (audit_initialized != AUDIT_INITIALIZED)
1854 		return NULL;
1855 
1856 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1857 		return NULL;
1858 
1859 	/* NOTE: don't ever fail/sleep on these two conditions:
1860 	 * 1. auditd generated record - since we need auditd to drain the
1861 	 *    queue; also, when we are checking for auditd, compare PIDs using
1862 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1863 	 *    using a PID anchored in the caller's namespace
1864 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1865 	 *    while holding the mutex, although we do penalize the sender
1866 	 *    later in audit_receive() when it is safe to block
1867 	 */
1868 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1869 		long stime = audit_backlog_wait_time;
1870 
1871 		while (audit_backlog_limit &&
1872 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1873 			/* wake kauditd to try and flush the queue */
1874 			wake_up_interruptible(&kauditd_wait);
1875 
1876 			/* sleep if we are allowed and we haven't exhausted our
1877 			 * backlog wait limit */
1878 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1879 				long rtime = stime;
1880 
1881 				DECLARE_WAITQUEUE(wait, current);
1882 
1883 				add_wait_queue_exclusive(&audit_backlog_wait,
1884 							 &wait);
1885 				set_current_state(TASK_UNINTERRUPTIBLE);
1886 				stime = schedule_timeout(rtime);
1887 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1888 				remove_wait_queue(&audit_backlog_wait, &wait);
1889 			} else {
1890 				if (audit_rate_check() && printk_ratelimit())
1891 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1892 						skb_queue_len(&audit_queue),
1893 						audit_backlog_limit);
1894 				audit_log_lost("backlog limit exceeded");
1895 				return NULL;
1896 			}
1897 		}
1898 	}
1899 
1900 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1901 	if (!ab) {
1902 		audit_log_lost("out of memory in audit_log_start");
1903 		return NULL;
1904 	}
1905 
1906 	audit_get_stamp(ab->ctx, &t, &serial);
1907 	/* cancel dummy context to enable supporting records */
1908 	if (ctx)
1909 		ctx->dummy = 0;
1910 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1911 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1912 
1913 	return ab;
1914 }
1915 
1916 /**
1917  * audit_expand - expand skb in the audit buffer
1918  * @ab: audit_buffer
1919  * @extra: space to add at tail of the skb
1920  *
1921  * Returns 0 (no space) on failed expansion, or available space if
1922  * successful.
1923  */
1924 static inline int audit_expand(struct audit_buffer *ab, int extra)
1925 {
1926 	struct sk_buff *skb = ab->skb;
1927 	int oldtail = skb_tailroom(skb);
1928 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1929 	int newtail = skb_tailroom(skb);
1930 
1931 	if (ret < 0) {
1932 		audit_log_lost("out of memory in audit_expand");
1933 		return 0;
1934 	}
1935 
1936 	skb->truesize += newtail - oldtail;
1937 	return newtail;
1938 }
1939 
1940 /*
1941  * Format an audit message into the audit buffer.  If there isn't enough
1942  * room in the audit buffer, more room will be allocated and vsnprint
1943  * will be called a second time.  Currently, we assume that a printk
1944  * can't format message larger than 1024 bytes, so we don't either.
1945  */
1946 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1947 			      va_list args)
1948 {
1949 	int len, avail;
1950 	struct sk_buff *skb;
1951 	va_list args2;
1952 
1953 	if (!ab)
1954 		return;
1955 
1956 	BUG_ON(!ab->skb);
1957 	skb = ab->skb;
1958 	avail = skb_tailroom(skb);
1959 	if (avail == 0) {
1960 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1961 		if (!avail)
1962 			goto out;
1963 	}
1964 	va_copy(args2, args);
1965 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1966 	if (len >= avail) {
1967 		/* The printk buffer is 1024 bytes long, so if we get
1968 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1969 		 * log everything that printk could have logged. */
1970 		avail = audit_expand(ab,
1971 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1972 		if (!avail)
1973 			goto out_va_end;
1974 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1975 	}
1976 	if (len > 0)
1977 		skb_put(skb, len);
1978 out_va_end:
1979 	va_end(args2);
1980 out:
1981 	return;
1982 }
1983 
1984 /**
1985  * audit_log_format - format a message into the audit buffer.
1986  * @ab: audit_buffer
1987  * @fmt: format string
1988  * @...: optional parameters matching @fmt string
1989  *
1990  * All the work is done in audit_log_vformat.
1991  */
1992 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1993 {
1994 	va_list args;
1995 
1996 	if (!ab)
1997 		return;
1998 	va_start(args, fmt);
1999 	audit_log_vformat(ab, fmt, args);
2000 	va_end(args);
2001 }
2002 
2003 /**
2004  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2005  * @ab: the audit_buffer
2006  * @buf: buffer to convert to hex
2007  * @len: length of @buf to be converted
2008  *
2009  * No return value; failure to expand is silently ignored.
2010  *
2011  * This function will take the passed buf and convert it into a string of
2012  * ascii hex digits. The new string is placed onto the skb.
2013  */
2014 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2015 		size_t len)
2016 {
2017 	int i, avail, new_len;
2018 	unsigned char *ptr;
2019 	struct sk_buff *skb;
2020 
2021 	if (!ab)
2022 		return;
2023 
2024 	BUG_ON(!ab->skb);
2025 	skb = ab->skb;
2026 	avail = skb_tailroom(skb);
2027 	new_len = len<<1;
2028 	if (new_len >= avail) {
2029 		/* Round the buffer request up to the next multiple */
2030 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2031 		avail = audit_expand(ab, new_len);
2032 		if (!avail)
2033 			return;
2034 	}
2035 
2036 	ptr = skb_tail_pointer(skb);
2037 	for (i = 0; i < len; i++)
2038 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2039 	*ptr = 0;
2040 	skb_put(skb, len << 1); /* new string is twice the old string */
2041 }
2042 
2043 /*
2044  * Format a string of no more than slen characters into the audit buffer,
2045  * enclosed in quote marks.
2046  */
2047 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2048 			size_t slen)
2049 {
2050 	int avail, new_len;
2051 	unsigned char *ptr;
2052 	struct sk_buff *skb;
2053 
2054 	if (!ab)
2055 		return;
2056 
2057 	BUG_ON(!ab->skb);
2058 	skb = ab->skb;
2059 	avail = skb_tailroom(skb);
2060 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2061 	if (new_len > avail) {
2062 		avail = audit_expand(ab, new_len);
2063 		if (!avail)
2064 			return;
2065 	}
2066 	ptr = skb_tail_pointer(skb);
2067 	*ptr++ = '"';
2068 	memcpy(ptr, string, slen);
2069 	ptr += slen;
2070 	*ptr++ = '"';
2071 	*ptr = 0;
2072 	skb_put(skb, slen + 2);	/* don't include null terminator */
2073 }
2074 
2075 /**
2076  * audit_string_contains_control - does a string need to be logged in hex
2077  * @string: string to be checked
2078  * @len: max length of the string to check
2079  */
2080 bool audit_string_contains_control(const char *string, size_t len)
2081 {
2082 	const unsigned char *p;
2083 	for (p = string; p < (const unsigned char *)string + len; p++) {
2084 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2085 			return true;
2086 	}
2087 	return false;
2088 }
2089 
2090 /**
2091  * audit_log_n_untrustedstring - log a string that may contain random characters
2092  * @ab: audit_buffer
2093  * @len: length of string (not including trailing null)
2094  * @string: string to be logged
2095  *
2096  * This code will escape a string that is passed to it if the string
2097  * contains a control character, unprintable character, double quote mark,
2098  * or a space. Unescaped strings will start and end with a double quote mark.
2099  * Strings that are escaped are printed in hex (2 digits per char).
2100  *
2101  * The caller specifies the number of characters in the string to log, which may
2102  * or may not be the entire string.
2103  */
2104 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2105 				 size_t len)
2106 {
2107 	if (audit_string_contains_control(string, len))
2108 		audit_log_n_hex(ab, string, len);
2109 	else
2110 		audit_log_n_string(ab, string, len);
2111 }
2112 
2113 /**
2114  * audit_log_untrustedstring - log a string that may contain random characters
2115  * @ab: audit_buffer
2116  * @string: string to be logged
2117  *
2118  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2119  * determine string length.
2120  */
2121 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2122 {
2123 	audit_log_n_untrustedstring(ab, string, strlen(string));
2124 }
2125 
2126 /* This is a helper-function to print the escaped d_path */
2127 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2128 		      const struct path *path)
2129 {
2130 	char *p, *pathname;
2131 
2132 	if (prefix)
2133 		audit_log_format(ab, "%s", prefix);
2134 
2135 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2136 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2137 	if (!pathname) {
2138 		audit_log_format(ab, "\"<no_memory>\"");
2139 		return;
2140 	}
2141 	p = d_path(path, pathname, PATH_MAX+11);
2142 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2143 		/* FIXME: can we save some information here? */
2144 		audit_log_format(ab, "\"<too_long>\"");
2145 	} else
2146 		audit_log_untrustedstring(ab, p);
2147 	kfree(pathname);
2148 }
2149 
2150 void audit_log_session_info(struct audit_buffer *ab)
2151 {
2152 	unsigned int sessionid = audit_get_sessionid(current);
2153 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2154 
2155 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2156 }
2157 
2158 void audit_log_key(struct audit_buffer *ab, char *key)
2159 {
2160 	audit_log_format(ab, " key=");
2161 	if (key)
2162 		audit_log_untrustedstring(ab, key);
2163 	else
2164 		audit_log_format(ab, "(null)");
2165 }
2166 
2167 int audit_log_task_context(struct audit_buffer *ab)
2168 {
2169 	char *ctx = NULL;
2170 	unsigned len;
2171 	int error;
2172 	u32 sid;
2173 
2174 	security_current_getsecid_subj(&sid);
2175 	if (!sid)
2176 		return 0;
2177 
2178 	error = security_secid_to_secctx(sid, &ctx, &len);
2179 	if (error) {
2180 		if (error != -EINVAL)
2181 			goto error_path;
2182 		return 0;
2183 	}
2184 
2185 	audit_log_format(ab, " subj=%s", ctx);
2186 	security_release_secctx(ctx, len);
2187 	return 0;
2188 
2189 error_path:
2190 	audit_panic("error in audit_log_task_context");
2191 	return error;
2192 }
2193 EXPORT_SYMBOL(audit_log_task_context);
2194 
2195 void audit_log_d_path_exe(struct audit_buffer *ab,
2196 			  struct mm_struct *mm)
2197 {
2198 	struct file *exe_file;
2199 
2200 	if (!mm)
2201 		goto out_null;
2202 
2203 	exe_file = get_mm_exe_file(mm);
2204 	if (!exe_file)
2205 		goto out_null;
2206 
2207 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2208 	fput(exe_file);
2209 	return;
2210 out_null:
2211 	audit_log_format(ab, " exe=(null)");
2212 }
2213 
2214 struct tty_struct *audit_get_tty(void)
2215 {
2216 	struct tty_struct *tty = NULL;
2217 	unsigned long flags;
2218 
2219 	spin_lock_irqsave(&current->sighand->siglock, flags);
2220 	if (current->signal)
2221 		tty = tty_kref_get(current->signal->tty);
2222 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2223 	return tty;
2224 }
2225 
2226 void audit_put_tty(struct tty_struct *tty)
2227 {
2228 	tty_kref_put(tty);
2229 }
2230 
2231 void audit_log_task_info(struct audit_buffer *ab)
2232 {
2233 	const struct cred *cred;
2234 	char comm[sizeof(current->comm)];
2235 	struct tty_struct *tty;
2236 
2237 	if (!ab)
2238 		return;
2239 
2240 	cred = current_cred();
2241 	tty = audit_get_tty();
2242 	audit_log_format(ab,
2243 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2244 			 " euid=%u suid=%u fsuid=%u"
2245 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2246 			 task_ppid_nr(current),
2247 			 task_tgid_nr(current),
2248 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2249 			 from_kuid(&init_user_ns, cred->uid),
2250 			 from_kgid(&init_user_ns, cred->gid),
2251 			 from_kuid(&init_user_ns, cred->euid),
2252 			 from_kuid(&init_user_ns, cred->suid),
2253 			 from_kuid(&init_user_ns, cred->fsuid),
2254 			 from_kgid(&init_user_ns, cred->egid),
2255 			 from_kgid(&init_user_ns, cred->sgid),
2256 			 from_kgid(&init_user_ns, cred->fsgid),
2257 			 tty ? tty_name(tty) : "(none)",
2258 			 audit_get_sessionid(current));
2259 	audit_put_tty(tty);
2260 	audit_log_format(ab, " comm=");
2261 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2262 	audit_log_d_path_exe(ab, current->mm);
2263 	audit_log_task_context(ab);
2264 }
2265 EXPORT_SYMBOL(audit_log_task_info);
2266 
2267 /**
2268  * audit_log_path_denied - report a path restriction denial
2269  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2270  * @operation: specific operation name
2271  */
2272 void audit_log_path_denied(int type, const char *operation)
2273 {
2274 	struct audit_buffer *ab;
2275 
2276 	if (!audit_enabled || audit_dummy_context())
2277 		return;
2278 
2279 	/* Generate log with subject, operation, outcome. */
2280 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2281 	if (!ab)
2282 		return;
2283 	audit_log_format(ab, "op=%s", operation);
2284 	audit_log_task_info(ab);
2285 	audit_log_format(ab, " res=0");
2286 	audit_log_end(ab);
2287 }
2288 
2289 /* global counter which is incremented every time something logs in */
2290 static atomic_t session_id = ATOMIC_INIT(0);
2291 
2292 static int audit_set_loginuid_perm(kuid_t loginuid)
2293 {
2294 	/* if we are unset, we don't need privs */
2295 	if (!audit_loginuid_set(current))
2296 		return 0;
2297 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2298 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2299 		return -EPERM;
2300 	/* it is set, you need permission */
2301 	if (!capable(CAP_AUDIT_CONTROL))
2302 		return -EPERM;
2303 	/* reject if this is not an unset and we don't allow that */
2304 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2305 				 && uid_valid(loginuid))
2306 		return -EPERM;
2307 	return 0;
2308 }
2309 
2310 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2311 				   unsigned int oldsessionid,
2312 				   unsigned int sessionid, int rc)
2313 {
2314 	struct audit_buffer *ab;
2315 	uid_t uid, oldloginuid, loginuid;
2316 	struct tty_struct *tty;
2317 
2318 	if (!audit_enabled)
2319 		return;
2320 
2321 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2322 	if (!ab)
2323 		return;
2324 
2325 	uid = from_kuid(&init_user_ns, task_uid(current));
2326 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2327 	loginuid = from_kuid(&init_user_ns, kloginuid);
2328 	tty = audit_get_tty();
2329 
2330 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2331 	audit_log_task_context(ab);
2332 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2333 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2334 			 oldsessionid, sessionid, !rc);
2335 	audit_put_tty(tty);
2336 	audit_log_end(ab);
2337 }
2338 
2339 /**
2340  * audit_set_loginuid - set current task's loginuid
2341  * @loginuid: loginuid value
2342  *
2343  * Returns 0.
2344  *
2345  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2346  */
2347 int audit_set_loginuid(kuid_t loginuid)
2348 {
2349 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2350 	kuid_t oldloginuid;
2351 	int rc;
2352 
2353 	oldloginuid = audit_get_loginuid(current);
2354 	oldsessionid = audit_get_sessionid(current);
2355 
2356 	rc = audit_set_loginuid_perm(loginuid);
2357 	if (rc)
2358 		goto out;
2359 
2360 	/* are we setting or clearing? */
2361 	if (uid_valid(loginuid)) {
2362 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2363 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2364 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2365 	}
2366 
2367 	current->sessionid = sessionid;
2368 	current->loginuid = loginuid;
2369 out:
2370 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2371 	return rc;
2372 }
2373 
2374 /**
2375  * audit_signal_info - record signal info for shutting down audit subsystem
2376  * @sig: signal value
2377  * @t: task being signaled
2378  *
2379  * If the audit subsystem is being terminated, record the task (pid)
2380  * and uid that is doing that.
2381  */
2382 int audit_signal_info(int sig, struct task_struct *t)
2383 {
2384 	kuid_t uid = current_uid(), auid;
2385 
2386 	if (auditd_test_task(t) &&
2387 	    (sig == SIGTERM || sig == SIGHUP ||
2388 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2389 		audit_sig_pid = task_tgid_nr(current);
2390 		auid = audit_get_loginuid(current);
2391 		if (uid_valid(auid))
2392 			audit_sig_uid = auid;
2393 		else
2394 			audit_sig_uid = uid;
2395 		security_current_getsecid_subj(&audit_sig_sid);
2396 	}
2397 
2398 	return audit_signal_info_syscall(t);
2399 }
2400 
2401 /**
2402  * audit_log_end - end one audit record
2403  * @ab: the audit_buffer
2404  *
2405  * We can not do a netlink send inside an irq context because it blocks (last
2406  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2407  * queue and a kthread is scheduled to remove them from the queue outside the
2408  * irq context.  May be called in any context.
2409  */
2410 void audit_log_end(struct audit_buffer *ab)
2411 {
2412 	struct sk_buff *skb;
2413 	struct nlmsghdr *nlh;
2414 
2415 	if (!ab)
2416 		return;
2417 
2418 	if (audit_rate_check()) {
2419 		skb = ab->skb;
2420 		ab->skb = NULL;
2421 
2422 		/* setup the netlink header, see the comments in
2423 		 * kauditd_send_multicast_skb() for length quirks */
2424 		nlh = nlmsg_hdr(skb);
2425 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2426 
2427 		/* queue the netlink packet and poke the kauditd thread */
2428 		skb_queue_tail(&audit_queue, skb);
2429 		wake_up_interruptible(&kauditd_wait);
2430 	} else
2431 		audit_log_lost("rate limit exceeded");
2432 
2433 	audit_buffer_free(ab);
2434 }
2435 
2436 /**
2437  * audit_log - Log an audit record
2438  * @ctx: audit context
2439  * @gfp_mask: type of allocation
2440  * @type: audit message type
2441  * @fmt: format string to use
2442  * @...: variable parameters matching the format string
2443  *
2444  * This is a convenience function that calls audit_log_start,
2445  * audit_log_vformat, and audit_log_end.  It may be called
2446  * in any context.
2447  */
2448 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2449 	       const char *fmt, ...)
2450 {
2451 	struct audit_buffer *ab;
2452 	va_list args;
2453 
2454 	ab = audit_log_start(ctx, gfp_mask, type);
2455 	if (ab) {
2456 		va_start(args, fmt);
2457 		audit_log_vformat(ab, fmt, args);
2458 		va_end(args);
2459 		audit_log_end(ab);
2460 	}
2461 }
2462 
2463 EXPORT_SYMBOL(audit_log_start);
2464 EXPORT_SYMBOL(audit_log_end);
2465 EXPORT_SYMBOL(audit_log_format);
2466 EXPORT_SYMBOL(audit_log);
2467