1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized = AUDIT_UNINITIALIZED; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 }; 111 static struct auditd_connection __rcu *auditd_conn; 112 static DEFINE_SPINLOCK(auditd_conn_lock); 113 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 115 * to that number per second. This prevents DoS attacks, but results in 116 * audit records being dropped. */ 117 static u32 audit_rate_limit; 118 119 /* Number of outstanding audit_buffers allowed. 120 * When set to zero, this means unlimited. */ 121 static u32 audit_backlog_limit = 64; 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 124 125 /* The identity of the user shutting down the audit system. */ 126 static kuid_t audit_sig_uid = INVALID_UID; 127 static pid_t audit_sig_pid = -1; 128 static u32 audit_sig_sid; 129 130 /* Records can be lost in several ways: 131 0) [suppressed in audit_alloc] 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 133 2) out of memory in audit_log_move [alloc_skb] 134 3) suppressed due to audit_rate_limit 135 4) suppressed due to audit_backlog_limit 136 */ 137 static atomic_t audit_lost = ATOMIC_INIT(0); 138 139 /* Monotonically increasing sum of time the kernel has spent 140 * waiting while the backlog limit is exceeded. 141 */ 142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 143 144 /* Hash for inode-based rules */ 145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 146 147 static struct kmem_cache *audit_buffer_cache; 148 149 /* queue msgs to send via kauditd_task */ 150 static struct sk_buff_head audit_queue; 151 /* queue msgs due to temporary unicast send problems */ 152 static struct sk_buff_head audit_retry_queue; 153 /* queue msgs waiting for new auditd connection */ 154 static struct sk_buff_head audit_hold_queue; 155 156 /* queue servicing thread */ 157 static struct task_struct *kauditd_task; 158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 159 160 /* waitqueue for callers who are blocked on the audit backlog */ 161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 162 163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 164 .mask = -1, 165 .features = 0, 166 .lock = 0,}; 167 168 static char *audit_feature_names[2] = { 169 "only_unset_loginuid", 170 "loginuid_immutable", 171 }; 172 173 /** 174 * struct audit_ctl_mutex - serialize requests from userspace 175 * @lock: the mutex used for locking 176 * @owner: the task which owns the lock 177 * 178 * Description: 179 * This is the lock struct used to ensure we only process userspace requests 180 * in an orderly fashion. We can't simply use a mutex/lock here because we 181 * need to track lock ownership so we don't end up blocking the lock owner in 182 * audit_log_start() or similar. 183 */ 184 static struct audit_ctl_mutex { 185 struct mutex lock; 186 void *owner; 187 } audit_cmd_mutex; 188 189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 190 * audit records. Since printk uses a 1024 byte buffer, this buffer 191 * should be at least that large. */ 192 #define AUDIT_BUFSIZ 1024 193 194 /* The audit_buffer is used when formatting an audit record. The caller 195 * locks briefly to get the record off the freelist or to allocate the 196 * buffer, and locks briefly to send the buffer to the netlink layer or 197 * to place it on a transmit queue. Multiple audit_buffers can be in 198 * use simultaneously. */ 199 struct audit_buffer { 200 struct sk_buff *skb; /* formatted skb ready to send */ 201 struct audit_context *ctx; /* NULL or associated context */ 202 gfp_t gfp_mask; 203 }; 204 205 struct audit_reply { 206 __u32 portid; 207 struct net *net; 208 struct sk_buff *skb; 209 }; 210 211 /** 212 * auditd_test_task - Check to see if a given task is an audit daemon 213 * @task: the task to check 214 * 215 * Description: 216 * Return 1 if the task is a registered audit daemon, 0 otherwise. 217 */ 218 int auditd_test_task(struct task_struct *task) 219 { 220 int rc; 221 struct auditd_connection *ac; 222 223 rcu_read_lock(); 224 ac = rcu_dereference(auditd_conn); 225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 226 rcu_read_unlock(); 227 228 return rc; 229 } 230 231 /** 232 * audit_ctl_lock - Take the audit control lock 233 */ 234 void audit_ctl_lock(void) 235 { 236 mutex_lock(&audit_cmd_mutex.lock); 237 audit_cmd_mutex.owner = current; 238 } 239 240 /** 241 * audit_ctl_unlock - Drop the audit control lock 242 */ 243 void audit_ctl_unlock(void) 244 { 245 audit_cmd_mutex.owner = NULL; 246 mutex_unlock(&audit_cmd_mutex.lock); 247 } 248 249 /** 250 * audit_ctl_owner_current - Test to see if the current task owns the lock 251 * 252 * Description: 253 * Return true if the current task owns the audit control lock, false if it 254 * doesn't own the lock. 255 */ 256 static bool audit_ctl_owner_current(void) 257 { 258 return (current == audit_cmd_mutex.owner); 259 } 260 261 /** 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace 263 * 264 * Description: 265 * Returns the PID in relation to the namespace, 0 on failure. 266 */ 267 static pid_t auditd_pid_vnr(void) 268 { 269 pid_t pid; 270 const struct auditd_connection *ac; 271 272 rcu_read_lock(); 273 ac = rcu_dereference(auditd_conn); 274 if (!ac || !ac->pid) 275 pid = 0; 276 else 277 pid = pid_vnr(ac->pid); 278 rcu_read_unlock(); 279 280 return pid; 281 } 282 283 /** 284 * audit_get_sk - Return the audit socket for the given network namespace 285 * @net: the destination network namespace 286 * 287 * Description: 288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 289 * that a reference is held for the network namespace while the sock is in use. 290 */ 291 static struct sock *audit_get_sk(const struct net *net) 292 { 293 struct audit_net *aunet; 294 295 if (!net) 296 return NULL; 297 298 aunet = net_generic(net, audit_net_id); 299 return aunet->sk; 300 } 301 302 void audit_panic(const char *message) 303 { 304 switch (audit_failure) { 305 case AUDIT_FAIL_SILENT: 306 break; 307 case AUDIT_FAIL_PRINTK: 308 if (printk_ratelimit()) 309 pr_err("%s\n", message); 310 break; 311 case AUDIT_FAIL_PANIC: 312 panic("audit: %s\n", message); 313 break; 314 } 315 } 316 317 static inline int audit_rate_check(void) 318 { 319 static unsigned long last_check = 0; 320 static int messages = 0; 321 static DEFINE_SPINLOCK(lock); 322 unsigned long flags; 323 unsigned long now; 324 unsigned long elapsed; 325 int retval = 0; 326 327 if (!audit_rate_limit) return 1; 328 329 spin_lock_irqsave(&lock, flags); 330 if (++messages < audit_rate_limit) { 331 retval = 1; 332 } else { 333 now = jiffies; 334 elapsed = now - last_check; 335 if (elapsed > HZ) { 336 last_check = now; 337 messages = 0; 338 retval = 1; 339 } 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 343 return retval; 344 } 345 346 /** 347 * audit_log_lost - conditionally log lost audit message event 348 * @message: the message stating reason for lost audit message 349 * 350 * Emit at least 1 message per second, even if audit_rate_check is 351 * throttling. 352 * Always increment the lost messages counter. 353 */ 354 void audit_log_lost(const char *message) 355 { 356 static unsigned long last_msg = 0; 357 static DEFINE_SPINLOCK(lock); 358 unsigned long flags; 359 unsigned long now; 360 int print; 361 362 atomic_inc(&audit_lost); 363 364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 365 366 if (!print) { 367 spin_lock_irqsave(&lock, flags); 368 now = jiffies; 369 if (now - last_msg > HZ) { 370 print = 1; 371 last_msg = now; 372 } 373 spin_unlock_irqrestore(&lock, flags); 374 } 375 376 if (print) { 377 if (printk_ratelimit()) 378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 379 atomic_read(&audit_lost), 380 audit_rate_limit, 381 audit_backlog_limit); 382 audit_panic(message); 383 } 384 } 385 386 static int audit_log_config_change(char *function_name, u32 new, u32 old, 387 int allow_changes) 388 { 389 struct audit_buffer *ab; 390 int rc = 0; 391 392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 393 if (unlikely(!ab)) 394 return rc; 395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 396 audit_log_session_info(ab); 397 rc = audit_log_task_context(ab); 398 if (rc) 399 allow_changes = 0; /* Something weird, deny request */ 400 audit_log_format(ab, " res=%d", allow_changes); 401 audit_log_end(ab); 402 return rc; 403 } 404 405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 406 { 407 int allow_changes, rc = 0; 408 u32 old = *to_change; 409 410 /* check if we are locked */ 411 if (audit_enabled == AUDIT_LOCKED) 412 allow_changes = 0; 413 else 414 allow_changes = 1; 415 416 if (audit_enabled != AUDIT_OFF) { 417 rc = audit_log_config_change(function_name, new, old, allow_changes); 418 if (rc) 419 allow_changes = 0; 420 } 421 422 /* If we are allowed, make the change */ 423 if (allow_changes == 1) 424 *to_change = new; 425 /* Not allowed, update reason */ 426 else if (rc == 0) 427 rc = -EPERM; 428 return rc; 429 } 430 431 static int audit_set_rate_limit(u32 limit) 432 { 433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 434 } 435 436 static int audit_set_backlog_limit(u32 limit) 437 { 438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 439 } 440 441 static int audit_set_backlog_wait_time(u32 timeout) 442 { 443 return audit_do_config_change("audit_backlog_wait_time", 444 &audit_backlog_wait_time, timeout); 445 } 446 447 static int audit_set_enabled(u32 state) 448 { 449 int rc; 450 if (state > AUDIT_LOCKED) 451 return -EINVAL; 452 453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 454 if (!rc) 455 audit_ever_enabled |= !!state; 456 457 return rc; 458 } 459 460 static int audit_set_failure(u32 state) 461 { 462 if (state != AUDIT_FAIL_SILENT 463 && state != AUDIT_FAIL_PRINTK 464 && state != AUDIT_FAIL_PANIC) 465 return -EINVAL; 466 467 return audit_do_config_change("audit_failure", &audit_failure, state); 468 } 469 470 /** 471 * auditd_conn_free - RCU helper to release an auditd connection struct 472 * @rcu: RCU head 473 * 474 * Description: 475 * Drop any references inside the auditd connection tracking struct and free 476 * the memory. 477 */ 478 static void auditd_conn_free(struct rcu_head *rcu) 479 { 480 struct auditd_connection *ac; 481 482 ac = container_of(rcu, struct auditd_connection, rcu); 483 put_pid(ac->pid); 484 put_net(ac->net); 485 kfree(ac); 486 } 487 488 /** 489 * auditd_set - Set/Reset the auditd connection state 490 * @pid: auditd PID 491 * @portid: auditd netlink portid 492 * @net: auditd network namespace pointer 493 * 494 * Description: 495 * This function will obtain and drop network namespace references as 496 * necessary. Returns zero on success, negative values on failure. 497 */ 498 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 499 { 500 unsigned long flags; 501 struct auditd_connection *ac_old, *ac_new; 502 503 if (!pid || !net) 504 return -EINVAL; 505 506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 507 if (!ac_new) 508 return -ENOMEM; 509 ac_new->pid = get_pid(pid); 510 ac_new->portid = portid; 511 ac_new->net = get_net(net); 512 513 spin_lock_irqsave(&auditd_conn_lock, flags); 514 ac_old = rcu_dereference_protected(auditd_conn, 515 lockdep_is_held(&auditd_conn_lock)); 516 rcu_assign_pointer(auditd_conn, ac_new); 517 spin_unlock_irqrestore(&auditd_conn_lock, flags); 518 519 if (ac_old) 520 call_rcu(&ac_old->rcu, auditd_conn_free); 521 522 return 0; 523 } 524 525 /** 526 * kauditd_printk_skb - Print the audit record to the ring buffer 527 * @skb: audit record 528 * 529 * Whatever the reason, this packet may not make it to the auditd connection 530 * so write it via printk so the information isn't completely lost. 531 */ 532 static void kauditd_printk_skb(struct sk_buff *skb) 533 { 534 struct nlmsghdr *nlh = nlmsg_hdr(skb); 535 char *data = nlmsg_data(nlh); 536 537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 539 } 540 541 /** 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 543 * @skb: audit record 544 * @error: error code (unused) 545 * 546 * Description: 547 * This should only be used by the kauditd_thread when it fails to flush the 548 * hold queue. 549 */ 550 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 551 { 552 /* put the record back in the queue */ 553 skb_queue_tail(&audit_hold_queue, skb); 554 } 555 556 /** 557 * kauditd_hold_skb - Queue an audit record, waiting for auditd 558 * @skb: audit record 559 * @error: error code 560 * 561 * Description: 562 * Queue the audit record, waiting for an instance of auditd. When this 563 * function is called we haven't given up yet on sending the record, but things 564 * are not looking good. The first thing we want to do is try to write the 565 * record via printk and then see if we want to try and hold on to the record 566 * and queue it, if we have room. If we want to hold on to the record, but we 567 * don't have room, record a record lost message. 568 */ 569 static void kauditd_hold_skb(struct sk_buff *skb, int error) 570 { 571 /* at this point it is uncertain if we will ever send this to auditd so 572 * try to send the message via printk before we go any further */ 573 kauditd_printk_skb(skb); 574 575 /* can we just silently drop the message? */ 576 if (!audit_default) 577 goto drop; 578 579 /* the hold queue is only for when the daemon goes away completely, 580 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 581 * record on the retry queue unless it's full, in which case drop it 582 */ 583 if (error == -EAGAIN) { 584 if (!audit_backlog_limit || 585 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 586 skb_queue_tail(&audit_retry_queue, skb); 587 return; 588 } 589 audit_log_lost("kauditd retry queue overflow"); 590 goto drop; 591 } 592 593 /* if we have room in the hold queue, queue the message */ 594 if (!audit_backlog_limit || 595 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 596 skb_queue_tail(&audit_hold_queue, skb); 597 return; 598 } 599 600 /* we have no other options - drop the message */ 601 audit_log_lost("kauditd hold queue overflow"); 602 drop: 603 kfree_skb(skb); 604 } 605 606 /** 607 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 608 * @skb: audit record 609 * @error: error code (unused) 610 * 611 * Description: 612 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 613 * but for some reason we are having problems sending it audit records so 614 * queue the given record and attempt to resend. 615 */ 616 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 617 { 618 if (!audit_backlog_limit || 619 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 620 skb_queue_tail(&audit_retry_queue, skb); 621 return; 622 } 623 624 /* we have to drop the record, send it via printk as a last effort */ 625 kauditd_printk_skb(skb); 626 audit_log_lost("kauditd retry queue overflow"); 627 kfree_skb(skb); 628 } 629 630 /** 631 * auditd_reset - Disconnect the auditd connection 632 * @ac: auditd connection state 633 * 634 * Description: 635 * Break the auditd/kauditd connection and move all the queued records into the 636 * hold queue in case auditd reconnects. It is important to note that the @ac 637 * pointer should never be dereferenced inside this function as it may be NULL 638 * or invalid, you can only compare the memory address! If @ac is NULL then 639 * the connection will always be reset. 640 */ 641 static void auditd_reset(const struct auditd_connection *ac) 642 { 643 unsigned long flags; 644 struct sk_buff *skb; 645 struct auditd_connection *ac_old; 646 647 /* if it isn't already broken, break the connection */ 648 spin_lock_irqsave(&auditd_conn_lock, flags); 649 ac_old = rcu_dereference_protected(auditd_conn, 650 lockdep_is_held(&auditd_conn_lock)); 651 if (ac && ac != ac_old) { 652 /* someone already registered a new auditd connection */ 653 spin_unlock_irqrestore(&auditd_conn_lock, flags); 654 return; 655 } 656 rcu_assign_pointer(auditd_conn, NULL); 657 spin_unlock_irqrestore(&auditd_conn_lock, flags); 658 659 if (ac_old) 660 call_rcu(&ac_old->rcu, auditd_conn_free); 661 662 /* flush the retry queue to the hold queue, but don't touch the main 663 * queue since we need to process that normally for multicast */ 664 while ((skb = skb_dequeue(&audit_retry_queue))) 665 kauditd_hold_skb(skb, -ECONNREFUSED); 666 } 667 668 /** 669 * auditd_send_unicast_skb - Send a record via unicast to auditd 670 * @skb: audit record 671 * 672 * Description: 673 * Send a skb to the audit daemon, returns positive/zero values on success and 674 * negative values on failure; in all cases the skb will be consumed by this 675 * function. If the send results in -ECONNREFUSED the connection with auditd 676 * will be reset. This function may sleep so callers should not hold any locks 677 * where this would cause a problem. 678 */ 679 static int auditd_send_unicast_skb(struct sk_buff *skb) 680 { 681 int rc; 682 u32 portid; 683 struct net *net; 684 struct sock *sk; 685 struct auditd_connection *ac; 686 687 /* NOTE: we can't call netlink_unicast while in the RCU section so 688 * take a reference to the network namespace and grab local 689 * copies of the namespace, the sock, and the portid; the 690 * namespace and sock aren't going to go away while we hold a 691 * reference and if the portid does become invalid after the RCU 692 * section netlink_unicast() should safely return an error */ 693 694 rcu_read_lock(); 695 ac = rcu_dereference(auditd_conn); 696 if (!ac) { 697 rcu_read_unlock(); 698 kfree_skb(skb); 699 rc = -ECONNREFUSED; 700 goto err; 701 } 702 net = get_net(ac->net); 703 sk = audit_get_sk(net); 704 portid = ac->portid; 705 rcu_read_unlock(); 706 707 rc = netlink_unicast(sk, skb, portid, 0); 708 put_net(net); 709 if (rc < 0) 710 goto err; 711 712 return rc; 713 714 err: 715 if (ac && rc == -ECONNREFUSED) 716 auditd_reset(ac); 717 return rc; 718 } 719 720 /** 721 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 722 * @sk: the sending sock 723 * @portid: the netlink destination 724 * @queue: the skb queue to process 725 * @retry_limit: limit on number of netlink unicast failures 726 * @skb_hook: per-skb hook for additional processing 727 * @err_hook: hook called if the skb fails the netlink unicast send 728 * 729 * Description: 730 * Run through the given queue and attempt to send the audit records to auditd, 731 * returns zero on success, negative values on failure. It is up to the caller 732 * to ensure that the @sk is valid for the duration of this function. 733 * 734 */ 735 static int kauditd_send_queue(struct sock *sk, u32 portid, 736 struct sk_buff_head *queue, 737 unsigned int retry_limit, 738 void (*skb_hook)(struct sk_buff *skb), 739 void (*err_hook)(struct sk_buff *skb, int error)) 740 { 741 int rc = 0; 742 struct sk_buff *skb = NULL; 743 struct sk_buff *skb_tail; 744 unsigned int failed = 0; 745 746 /* NOTE: kauditd_thread takes care of all our locking, we just use 747 * the netlink info passed to us (e.g. sk and portid) */ 748 749 skb_tail = skb_peek_tail(queue); 750 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 751 /* call the skb_hook for each skb we touch */ 752 if (skb_hook) 753 (*skb_hook)(skb); 754 755 /* can we send to anyone via unicast? */ 756 if (!sk) { 757 if (err_hook) 758 (*err_hook)(skb, -ECONNREFUSED); 759 continue; 760 } 761 762 retry: 763 /* grab an extra skb reference in case of error */ 764 skb_get(skb); 765 rc = netlink_unicast(sk, skb, portid, 0); 766 if (rc < 0) { 767 /* send failed - try a few times unless fatal error */ 768 if (++failed >= retry_limit || 769 rc == -ECONNREFUSED || rc == -EPERM) { 770 sk = NULL; 771 if (err_hook) 772 (*err_hook)(skb, rc); 773 if (rc == -EAGAIN) 774 rc = 0; 775 /* continue to drain the queue */ 776 continue; 777 } else 778 goto retry; 779 } else { 780 /* skb sent - drop the extra reference and continue */ 781 consume_skb(skb); 782 failed = 0; 783 } 784 } 785 786 return (rc >= 0 ? 0 : rc); 787 } 788 789 /* 790 * kauditd_send_multicast_skb - Send a record to any multicast listeners 791 * @skb: audit record 792 * 793 * Description: 794 * Write a multicast message to anyone listening in the initial network 795 * namespace. This function doesn't consume an skb as might be expected since 796 * it has to copy it anyways. 797 */ 798 static void kauditd_send_multicast_skb(struct sk_buff *skb) 799 { 800 struct sk_buff *copy; 801 struct sock *sock = audit_get_sk(&init_net); 802 struct nlmsghdr *nlh; 803 804 /* NOTE: we are not taking an additional reference for init_net since 805 * we don't have to worry about it going away */ 806 807 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 808 return; 809 810 /* 811 * The seemingly wasteful skb_copy() rather than bumping the refcount 812 * using skb_get() is necessary because non-standard mods are made to 813 * the skb by the original kaudit unicast socket send routine. The 814 * existing auditd daemon assumes this breakage. Fixing this would 815 * require co-ordinating a change in the established protocol between 816 * the kaudit kernel subsystem and the auditd userspace code. There is 817 * no reason for new multicast clients to continue with this 818 * non-compliance. 819 */ 820 copy = skb_copy(skb, GFP_KERNEL); 821 if (!copy) 822 return; 823 nlh = nlmsg_hdr(copy); 824 nlh->nlmsg_len = skb->len; 825 826 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 827 } 828 829 /** 830 * kauditd_thread - Worker thread to send audit records to userspace 831 * @dummy: unused 832 */ 833 static int kauditd_thread(void *dummy) 834 { 835 int rc; 836 u32 portid = 0; 837 struct net *net = NULL; 838 struct sock *sk = NULL; 839 struct auditd_connection *ac; 840 841 #define UNICAST_RETRIES 5 842 843 set_freezable(); 844 while (!kthread_should_stop()) { 845 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 846 rcu_read_lock(); 847 ac = rcu_dereference(auditd_conn); 848 if (!ac) { 849 rcu_read_unlock(); 850 goto main_queue; 851 } 852 net = get_net(ac->net); 853 sk = audit_get_sk(net); 854 portid = ac->portid; 855 rcu_read_unlock(); 856 857 /* attempt to flush the hold queue */ 858 rc = kauditd_send_queue(sk, portid, 859 &audit_hold_queue, UNICAST_RETRIES, 860 NULL, kauditd_rehold_skb); 861 if (rc < 0) { 862 sk = NULL; 863 auditd_reset(ac); 864 goto main_queue; 865 } 866 867 /* attempt to flush the retry queue */ 868 rc = kauditd_send_queue(sk, portid, 869 &audit_retry_queue, UNICAST_RETRIES, 870 NULL, kauditd_hold_skb); 871 if (rc < 0) { 872 sk = NULL; 873 auditd_reset(ac); 874 goto main_queue; 875 } 876 877 main_queue: 878 /* process the main queue - do the multicast send and attempt 879 * unicast, dump failed record sends to the retry queue; if 880 * sk == NULL due to previous failures we will just do the 881 * multicast send and move the record to the hold queue */ 882 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 883 kauditd_send_multicast_skb, 884 (sk ? 885 kauditd_retry_skb : kauditd_hold_skb)); 886 if (ac && rc < 0) 887 auditd_reset(ac); 888 sk = NULL; 889 890 /* drop our netns reference, no auditd sends past this line */ 891 if (net) { 892 put_net(net); 893 net = NULL; 894 } 895 896 /* we have processed all the queues so wake everyone */ 897 wake_up(&audit_backlog_wait); 898 899 /* NOTE: we want to wake up if there is anything on the queue, 900 * regardless of if an auditd is connected, as we need to 901 * do the multicast send and rotate records from the 902 * main queue to the retry/hold queues */ 903 wait_event_freezable(kauditd_wait, 904 (skb_queue_len(&audit_queue) ? 1 : 0)); 905 } 906 907 return 0; 908 } 909 910 int audit_send_list_thread(void *_dest) 911 { 912 struct audit_netlink_list *dest = _dest; 913 struct sk_buff *skb; 914 struct sock *sk = audit_get_sk(dest->net); 915 916 /* wait for parent to finish and send an ACK */ 917 audit_ctl_lock(); 918 audit_ctl_unlock(); 919 920 while ((skb = __skb_dequeue(&dest->q)) != NULL) 921 netlink_unicast(sk, skb, dest->portid, 0); 922 923 put_net(dest->net); 924 kfree(dest); 925 926 return 0; 927 } 928 929 struct sk_buff *audit_make_reply(int seq, int type, int done, 930 int multi, const void *payload, int size) 931 { 932 struct sk_buff *skb; 933 struct nlmsghdr *nlh; 934 void *data; 935 int flags = multi ? NLM_F_MULTI : 0; 936 int t = done ? NLMSG_DONE : type; 937 938 skb = nlmsg_new(size, GFP_KERNEL); 939 if (!skb) 940 return NULL; 941 942 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 943 if (!nlh) 944 goto out_kfree_skb; 945 data = nlmsg_data(nlh); 946 memcpy(data, payload, size); 947 return skb; 948 949 out_kfree_skb: 950 kfree_skb(skb); 951 return NULL; 952 } 953 954 static void audit_free_reply(struct audit_reply *reply) 955 { 956 if (!reply) 957 return; 958 959 kfree_skb(reply->skb); 960 if (reply->net) 961 put_net(reply->net); 962 kfree(reply); 963 } 964 965 static int audit_send_reply_thread(void *arg) 966 { 967 struct audit_reply *reply = (struct audit_reply *)arg; 968 969 audit_ctl_lock(); 970 audit_ctl_unlock(); 971 972 /* Ignore failure. It'll only happen if the sender goes away, 973 because our timeout is set to infinite. */ 974 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 975 reply->skb = NULL; 976 audit_free_reply(reply); 977 return 0; 978 } 979 980 /** 981 * audit_send_reply - send an audit reply message via netlink 982 * @request_skb: skb of request we are replying to (used to target the reply) 983 * @seq: sequence number 984 * @type: audit message type 985 * @done: done (last) flag 986 * @multi: multi-part message flag 987 * @payload: payload data 988 * @size: payload size 989 * 990 * Allocates a skb, builds the netlink message, and sends it to the port id. 991 */ 992 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 993 int multi, const void *payload, int size) 994 { 995 struct task_struct *tsk; 996 struct audit_reply *reply; 997 998 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 999 if (!reply) 1000 return; 1001 1002 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1003 if (!reply->skb) 1004 goto err; 1005 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1006 reply->portid = NETLINK_CB(request_skb).portid; 1007 1008 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1009 if (IS_ERR(tsk)) 1010 goto err; 1011 1012 return; 1013 1014 err: 1015 audit_free_reply(reply); 1016 } 1017 1018 /* 1019 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1020 * control messages. 1021 */ 1022 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1023 { 1024 int err = 0; 1025 1026 /* Only support initial user namespace for now. */ 1027 /* 1028 * We return ECONNREFUSED because it tricks userspace into thinking 1029 * that audit was not configured into the kernel. Lots of users 1030 * configure their PAM stack (because that's what the distro does) 1031 * to reject login if unable to send messages to audit. If we return 1032 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1033 * configured in and will let login proceed. If we return EPERM 1034 * userspace will reject all logins. This should be removed when we 1035 * support non init namespaces!! 1036 */ 1037 if (current_user_ns() != &init_user_ns) 1038 return -ECONNREFUSED; 1039 1040 switch (msg_type) { 1041 case AUDIT_LIST: 1042 case AUDIT_ADD: 1043 case AUDIT_DEL: 1044 return -EOPNOTSUPP; 1045 case AUDIT_GET: 1046 case AUDIT_SET: 1047 case AUDIT_GET_FEATURE: 1048 case AUDIT_SET_FEATURE: 1049 case AUDIT_LIST_RULES: 1050 case AUDIT_ADD_RULE: 1051 case AUDIT_DEL_RULE: 1052 case AUDIT_SIGNAL_INFO: 1053 case AUDIT_TTY_GET: 1054 case AUDIT_TTY_SET: 1055 case AUDIT_TRIM: 1056 case AUDIT_MAKE_EQUIV: 1057 /* Only support auditd and auditctl in initial pid namespace 1058 * for now. */ 1059 if (task_active_pid_ns(current) != &init_pid_ns) 1060 return -EPERM; 1061 1062 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1063 err = -EPERM; 1064 break; 1065 case AUDIT_USER: 1066 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1067 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1068 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1069 err = -EPERM; 1070 break; 1071 default: /* bad msg */ 1072 err = -EINVAL; 1073 } 1074 1075 return err; 1076 } 1077 1078 static void audit_log_common_recv_msg(struct audit_context *context, 1079 struct audit_buffer **ab, u16 msg_type) 1080 { 1081 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1082 pid_t pid = task_tgid_nr(current); 1083 1084 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1085 *ab = NULL; 1086 return; 1087 } 1088 1089 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1090 if (unlikely(!*ab)) 1091 return; 1092 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1093 audit_log_session_info(*ab); 1094 audit_log_task_context(*ab); 1095 } 1096 1097 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1098 u16 msg_type) 1099 { 1100 audit_log_common_recv_msg(NULL, ab, msg_type); 1101 } 1102 1103 static int is_audit_feature_set(int i) 1104 { 1105 return af.features & AUDIT_FEATURE_TO_MASK(i); 1106 } 1107 1108 1109 static int audit_get_feature(struct sk_buff *skb) 1110 { 1111 u32 seq; 1112 1113 seq = nlmsg_hdr(skb)->nlmsg_seq; 1114 1115 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1116 1117 return 0; 1118 } 1119 1120 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1121 u32 old_lock, u32 new_lock, int res) 1122 { 1123 struct audit_buffer *ab; 1124 1125 if (audit_enabled == AUDIT_OFF) 1126 return; 1127 1128 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1129 if (!ab) 1130 return; 1131 audit_log_task_info(ab); 1132 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1133 audit_feature_names[which], !!old_feature, !!new_feature, 1134 !!old_lock, !!new_lock, res); 1135 audit_log_end(ab); 1136 } 1137 1138 static int audit_set_feature(struct audit_features *uaf) 1139 { 1140 int i; 1141 1142 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1143 1144 /* if there is ever a version 2 we should handle that here */ 1145 1146 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1147 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1148 u32 old_feature, new_feature, old_lock, new_lock; 1149 1150 /* if we are not changing this feature, move along */ 1151 if (!(feature & uaf->mask)) 1152 continue; 1153 1154 old_feature = af.features & feature; 1155 new_feature = uaf->features & feature; 1156 new_lock = (uaf->lock | af.lock) & feature; 1157 old_lock = af.lock & feature; 1158 1159 /* are we changing a locked feature? */ 1160 if (old_lock && (new_feature != old_feature)) { 1161 audit_log_feature_change(i, old_feature, new_feature, 1162 old_lock, new_lock, 0); 1163 return -EPERM; 1164 } 1165 } 1166 /* nothing invalid, do the changes */ 1167 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1168 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1169 u32 old_feature, new_feature, old_lock, new_lock; 1170 1171 /* if we are not changing this feature, move along */ 1172 if (!(feature & uaf->mask)) 1173 continue; 1174 1175 old_feature = af.features & feature; 1176 new_feature = uaf->features & feature; 1177 old_lock = af.lock & feature; 1178 new_lock = (uaf->lock | af.lock) & feature; 1179 1180 if (new_feature != old_feature) 1181 audit_log_feature_change(i, old_feature, new_feature, 1182 old_lock, new_lock, 1); 1183 1184 if (new_feature) 1185 af.features |= feature; 1186 else 1187 af.features &= ~feature; 1188 af.lock |= new_lock; 1189 } 1190 1191 return 0; 1192 } 1193 1194 static int audit_replace(struct pid *pid) 1195 { 1196 pid_t pvnr; 1197 struct sk_buff *skb; 1198 1199 pvnr = pid_vnr(pid); 1200 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1201 if (!skb) 1202 return -ENOMEM; 1203 return auditd_send_unicast_skb(skb); 1204 } 1205 1206 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1207 { 1208 u32 seq; 1209 void *data; 1210 int data_len; 1211 int err; 1212 struct audit_buffer *ab; 1213 u16 msg_type = nlh->nlmsg_type; 1214 struct audit_sig_info *sig_data; 1215 char *ctx = NULL; 1216 u32 len; 1217 1218 err = audit_netlink_ok(skb, msg_type); 1219 if (err) 1220 return err; 1221 1222 seq = nlh->nlmsg_seq; 1223 data = nlmsg_data(nlh); 1224 data_len = nlmsg_len(nlh); 1225 1226 switch (msg_type) { 1227 case AUDIT_GET: { 1228 struct audit_status s; 1229 memset(&s, 0, sizeof(s)); 1230 s.enabled = audit_enabled; 1231 s.failure = audit_failure; 1232 /* NOTE: use pid_vnr() so the PID is relative to the current 1233 * namespace */ 1234 s.pid = auditd_pid_vnr(); 1235 s.rate_limit = audit_rate_limit; 1236 s.backlog_limit = audit_backlog_limit; 1237 s.lost = atomic_read(&audit_lost); 1238 s.backlog = skb_queue_len(&audit_queue); 1239 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1240 s.backlog_wait_time = audit_backlog_wait_time; 1241 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1242 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1243 break; 1244 } 1245 case AUDIT_SET: { 1246 struct audit_status s; 1247 memset(&s, 0, sizeof(s)); 1248 /* guard against past and future API changes */ 1249 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1250 if (s.mask & AUDIT_STATUS_ENABLED) { 1251 err = audit_set_enabled(s.enabled); 1252 if (err < 0) 1253 return err; 1254 } 1255 if (s.mask & AUDIT_STATUS_FAILURE) { 1256 err = audit_set_failure(s.failure); 1257 if (err < 0) 1258 return err; 1259 } 1260 if (s.mask & AUDIT_STATUS_PID) { 1261 /* NOTE: we are using the vnr PID functions below 1262 * because the s.pid value is relative to the 1263 * namespace of the caller; at present this 1264 * doesn't matter much since you can really only 1265 * run auditd from the initial pid namespace, but 1266 * something to keep in mind if this changes */ 1267 pid_t new_pid = s.pid; 1268 pid_t auditd_pid; 1269 struct pid *req_pid = task_tgid(current); 1270 1271 /* Sanity check - PID values must match. Setting 1272 * pid to 0 is how auditd ends auditing. */ 1273 if (new_pid && (new_pid != pid_vnr(req_pid))) 1274 return -EINVAL; 1275 1276 /* test the auditd connection */ 1277 audit_replace(req_pid); 1278 1279 auditd_pid = auditd_pid_vnr(); 1280 if (auditd_pid) { 1281 /* replacing a healthy auditd is not allowed */ 1282 if (new_pid) { 1283 audit_log_config_change("audit_pid", 1284 new_pid, auditd_pid, 0); 1285 return -EEXIST; 1286 } 1287 /* only current auditd can unregister itself */ 1288 if (pid_vnr(req_pid) != auditd_pid) { 1289 audit_log_config_change("audit_pid", 1290 new_pid, auditd_pid, 0); 1291 return -EACCES; 1292 } 1293 } 1294 1295 if (new_pid) { 1296 /* register a new auditd connection */ 1297 err = auditd_set(req_pid, 1298 NETLINK_CB(skb).portid, 1299 sock_net(NETLINK_CB(skb).sk)); 1300 if (audit_enabled != AUDIT_OFF) 1301 audit_log_config_change("audit_pid", 1302 new_pid, 1303 auditd_pid, 1304 err ? 0 : 1); 1305 if (err) 1306 return err; 1307 1308 /* try to process any backlog */ 1309 wake_up_interruptible(&kauditd_wait); 1310 } else { 1311 if (audit_enabled != AUDIT_OFF) 1312 audit_log_config_change("audit_pid", 1313 new_pid, 1314 auditd_pid, 1); 1315 1316 /* unregister the auditd connection */ 1317 auditd_reset(NULL); 1318 } 1319 } 1320 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1321 err = audit_set_rate_limit(s.rate_limit); 1322 if (err < 0) 1323 return err; 1324 } 1325 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1326 err = audit_set_backlog_limit(s.backlog_limit); 1327 if (err < 0) 1328 return err; 1329 } 1330 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1331 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1332 return -EINVAL; 1333 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1334 return -EINVAL; 1335 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1336 if (err < 0) 1337 return err; 1338 } 1339 if (s.mask == AUDIT_STATUS_LOST) { 1340 u32 lost = atomic_xchg(&audit_lost, 0); 1341 1342 audit_log_config_change("lost", 0, lost, 1); 1343 return lost; 1344 } 1345 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1346 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1347 1348 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1349 return actual; 1350 } 1351 break; 1352 } 1353 case AUDIT_GET_FEATURE: 1354 err = audit_get_feature(skb); 1355 if (err) 1356 return err; 1357 break; 1358 case AUDIT_SET_FEATURE: 1359 if (data_len < sizeof(struct audit_features)) 1360 return -EINVAL; 1361 err = audit_set_feature(data); 1362 if (err) 1363 return err; 1364 break; 1365 case AUDIT_USER: 1366 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1367 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1368 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1369 return 0; 1370 /* exit early if there isn't at least one character to print */ 1371 if (data_len < 2) 1372 return -EINVAL; 1373 1374 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1375 if (err == 1) { /* match or error */ 1376 char *str = data; 1377 1378 err = 0; 1379 if (msg_type == AUDIT_USER_TTY) { 1380 err = tty_audit_push(); 1381 if (err) 1382 break; 1383 } 1384 audit_log_user_recv_msg(&ab, msg_type); 1385 if (msg_type != AUDIT_USER_TTY) { 1386 /* ensure NULL termination */ 1387 str[data_len - 1] = '\0'; 1388 audit_log_format(ab, " msg='%.*s'", 1389 AUDIT_MESSAGE_TEXT_MAX, 1390 str); 1391 } else { 1392 audit_log_format(ab, " data="); 1393 if (str[data_len - 1] == '\0') 1394 data_len--; 1395 audit_log_n_untrustedstring(ab, str, data_len); 1396 } 1397 audit_log_end(ab); 1398 } 1399 break; 1400 case AUDIT_ADD_RULE: 1401 case AUDIT_DEL_RULE: 1402 if (data_len < sizeof(struct audit_rule_data)) 1403 return -EINVAL; 1404 if (audit_enabled == AUDIT_LOCKED) { 1405 audit_log_common_recv_msg(audit_context(), &ab, 1406 AUDIT_CONFIG_CHANGE); 1407 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1408 msg_type == AUDIT_ADD_RULE ? 1409 "add_rule" : "remove_rule", 1410 audit_enabled); 1411 audit_log_end(ab); 1412 return -EPERM; 1413 } 1414 err = audit_rule_change(msg_type, seq, data, data_len); 1415 break; 1416 case AUDIT_LIST_RULES: 1417 err = audit_list_rules_send(skb, seq); 1418 break; 1419 case AUDIT_TRIM: 1420 audit_trim_trees(); 1421 audit_log_common_recv_msg(audit_context(), &ab, 1422 AUDIT_CONFIG_CHANGE); 1423 audit_log_format(ab, " op=trim res=1"); 1424 audit_log_end(ab); 1425 break; 1426 case AUDIT_MAKE_EQUIV: { 1427 void *bufp = data; 1428 u32 sizes[2]; 1429 size_t msglen = data_len; 1430 char *old, *new; 1431 1432 err = -EINVAL; 1433 if (msglen < 2 * sizeof(u32)) 1434 break; 1435 memcpy(sizes, bufp, 2 * sizeof(u32)); 1436 bufp += 2 * sizeof(u32); 1437 msglen -= 2 * sizeof(u32); 1438 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1439 if (IS_ERR(old)) { 1440 err = PTR_ERR(old); 1441 break; 1442 } 1443 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1444 if (IS_ERR(new)) { 1445 err = PTR_ERR(new); 1446 kfree(old); 1447 break; 1448 } 1449 /* OK, here comes... */ 1450 err = audit_tag_tree(old, new); 1451 1452 audit_log_common_recv_msg(audit_context(), &ab, 1453 AUDIT_CONFIG_CHANGE); 1454 audit_log_format(ab, " op=make_equiv old="); 1455 audit_log_untrustedstring(ab, old); 1456 audit_log_format(ab, " new="); 1457 audit_log_untrustedstring(ab, new); 1458 audit_log_format(ab, " res=%d", !err); 1459 audit_log_end(ab); 1460 kfree(old); 1461 kfree(new); 1462 break; 1463 } 1464 case AUDIT_SIGNAL_INFO: 1465 len = 0; 1466 if (audit_sig_sid) { 1467 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1468 if (err) 1469 return err; 1470 } 1471 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL); 1472 if (!sig_data) { 1473 if (audit_sig_sid) 1474 security_release_secctx(ctx, len); 1475 return -ENOMEM; 1476 } 1477 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1478 sig_data->pid = audit_sig_pid; 1479 if (audit_sig_sid) { 1480 memcpy(sig_data->ctx, ctx, len); 1481 security_release_secctx(ctx, len); 1482 } 1483 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1484 sig_data, struct_size(sig_data, ctx, len)); 1485 kfree(sig_data); 1486 break; 1487 case AUDIT_TTY_GET: { 1488 struct audit_tty_status s; 1489 unsigned int t; 1490 1491 t = READ_ONCE(current->signal->audit_tty); 1492 s.enabled = t & AUDIT_TTY_ENABLE; 1493 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1494 1495 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1496 break; 1497 } 1498 case AUDIT_TTY_SET: { 1499 struct audit_tty_status s, old; 1500 struct audit_buffer *ab; 1501 unsigned int t; 1502 1503 memset(&s, 0, sizeof(s)); 1504 /* guard against past and future API changes */ 1505 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1506 /* check if new data is valid */ 1507 if ((s.enabled != 0 && s.enabled != 1) || 1508 (s.log_passwd != 0 && s.log_passwd != 1)) 1509 err = -EINVAL; 1510 1511 if (err) 1512 t = READ_ONCE(current->signal->audit_tty); 1513 else { 1514 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1515 t = xchg(¤t->signal->audit_tty, t); 1516 } 1517 old.enabled = t & AUDIT_TTY_ENABLE; 1518 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1519 1520 audit_log_common_recv_msg(audit_context(), &ab, 1521 AUDIT_CONFIG_CHANGE); 1522 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1523 " old-log_passwd=%d new-log_passwd=%d res=%d", 1524 old.enabled, s.enabled, old.log_passwd, 1525 s.log_passwd, !err); 1526 audit_log_end(ab); 1527 break; 1528 } 1529 default: 1530 err = -EINVAL; 1531 break; 1532 } 1533 1534 return err < 0 ? err : 0; 1535 } 1536 1537 /** 1538 * audit_receive - receive messages from a netlink control socket 1539 * @skb: the message buffer 1540 * 1541 * Parse the provided skb and deal with any messages that may be present, 1542 * malformed skbs are discarded. 1543 */ 1544 static void audit_receive(struct sk_buff *skb) 1545 { 1546 struct nlmsghdr *nlh; 1547 /* 1548 * len MUST be signed for nlmsg_next to be able to dec it below 0 1549 * if the nlmsg_len was not aligned 1550 */ 1551 int len; 1552 int err; 1553 1554 nlh = nlmsg_hdr(skb); 1555 len = skb->len; 1556 1557 audit_ctl_lock(); 1558 while (nlmsg_ok(nlh, len)) { 1559 err = audit_receive_msg(skb, nlh); 1560 /* if err or if this message says it wants a response */ 1561 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1562 netlink_ack(skb, nlh, err, NULL); 1563 1564 nlh = nlmsg_next(nlh, &len); 1565 } 1566 audit_ctl_unlock(); 1567 1568 /* can't block with the ctrl lock, so penalize the sender now */ 1569 if (audit_backlog_limit && 1570 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1571 DECLARE_WAITQUEUE(wait, current); 1572 1573 /* wake kauditd to try and flush the queue */ 1574 wake_up_interruptible(&kauditd_wait); 1575 1576 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1577 set_current_state(TASK_UNINTERRUPTIBLE); 1578 schedule_timeout(audit_backlog_wait_time); 1579 remove_wait_queue(&audit_backlog_wait, &wait); 1580 } 1581 } 1582 1583 /* Log information about who is connecting to the audit multicast socket */ 1584 static void audit_log_multicast(int group, const char *op, int err) 1585 { 1586 const struct cred *cred; 1587 struct tty_struct *tty; 1588 char comm[sizeof(current->comm)]; 1589 struct audit_buffer *ab; 1590 1591 if (!audit_enabled) 1592 return; 1593 1594 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1595 if (!ab) 1596 return; 1597 1598 cred = current_cred(); 1599 tty = audit_get_tty(); 1600 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1601 task_pid_nr(current), 1602 from_kuid(&init_user_ns, cred->uid), 1603 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1604 tty ? tty_name(tty) : "(none)", 1605 audit_get_sessionid(current)); 1606 audit_put_tty(tty); 1607 audit_log_task_context(ab); /* subj= */ 1608 audit_log_format(ab, " comm="); 1609 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1610 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1611 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1612 audit_log_end(ab); 1613 } 1614 1615 /* Run custom bind function on netlink socket group connect or bind requests. */ 1616 static int audit_multicast_bind(struct net *net, int group) 1617 { 1618 int err = 0; 1619 1620 if (!capable(CAP_AUDIT_READ)) 1621 err = -EPERM; 1622 audit_log_multicast(group, "connect", err); 1623 return err; 1624 } 1625 1626 static void audit_multicast_unbind(struct net *net, int group) 1627 { 1628 audit_log_multicast(group, "disconnect", 0); 1629 } 1630 1631 static int __net_init audit_net_init(struct net *net) 1632 { 1633 struct netlink_kernel_cfg cfg = { 1634 .input = audit_receive, 1635 .bind = audit_multicast_bind, 1636 .unbind = audit_multicast_unbind, 1637 .flags = NL_CFG_F_NONROOT_RECV, 1638 .groups = AUDIT_NLGRP_MAX, 1639 }; 1640 1641 struct audit_net *aunet = net_generic(net, audit_net_id); 1642 1643 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1644 if (aunet->sk == NULL) { 1645 audit_panic("cannot initialize netlink socket in namespace"); 1646 return -ENOMEM; 1647 } 1648 /* limit the timeout in case auditd is blocked/stopped */ 1649 aunet->sk->sk_sndtimeo = HZ / 10; 1650 1651 return 0; 1652 } 1653 1654 static void __net_exit audit_net_exit(struct net *net) 1655 { 1656 struct audit_net *aunet = net_generic(net, audit_net_id); 1657 1658 /* NOTE: you would think that we would want to check the auditd 1659 * connection and potentially reset it here if it lives in this 1660 * namespace, but since the auditd connection tracking struct holds a 1661 * reference to this namespace (see auditd_set()) we are only ever 1662 * going to get here after that connection has been released */ 1663 1664 netlink_kernel_release(aunet->sk); 1665 } 1666 1667 static struct pernet_operations audit_net_ops __net_initdata = { 1668 .init = audit_net_init, 1669 .exit = audit_net_exit, 1670 .id = &audit_net_id, 1671 .size = sizeof(struct audit_net), 1672 }; 1673 1674 /* Initialize audit support at boot time. */ 1675 static int __init audit_init(void) 1676 { 1677 int i; 1678 1679 if (audit_initialized == AUDIT_DISABLED) 1680 return 0; 1681 1682 audit_buffer_cache = kmem_cache_create("audit_buffer", 1683 sizeof(struct audit_buffer), 1684 0, SLAB_PANIC, NULL); 1685 1686 skb_queue_head_init(&audit_queue); 1687 skb_queue_head_init(&audit_retry_queue); 1688 skb_queue_head_init(&audit_hold_queue); 1689 1690 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1691 INIT_LIST_HEAD(&audit_inode_hash[i]); 1692 1693 mutex_init(&audit_cmd_mutex.lock); 1694 audit_cmd_mutex.owner = NULL; 1695 1696 pr_info("initializing netlink subsys (%s)\n", 1697 audit_default ? "enabled" : "disabled"); 1698 register_pernet_subsys(&audit_net_ops); 1699 1700 audit_initialized = AUDIT_INITIALIZED; 1701 1702 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1703 if (IS_ERR(kauditd_task)) { 1704 int err = PTR_ERR(kauditd_task); 1705 panic("audit: failed to start the kauditd thread (%d)\n", err); 1706 } 1707 1708 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1709 "state=initialized audit_enabled=%u res=1", 1710 audit_enabled); 1711 1712 return 0; 1713 } 1714 postcore_initcall(audit_init); 1715 1716 /* 1717 * Process kernel command-line parameter at boot time. 1718 * audit={0|off} or audit={1|on}. 1719 */ 1720 static int __init audit_enable(char *str) 1721 { 1722 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1723 audit_default = AUDIT_OFF; 1724 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1725 audit_default = AUDIT_ON; 1726 else { 1727 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1728 audit_default = AUDIT_ON; 1729 } 1730 1731 if (audit_default == AUDIT_OFF) 1732 audit_initialized = AUDIT_DISABLED; 1733 if (audit_set_enabled(audit_default)) 1734 pr_err("audit: error setting audit state (%d)\n", 1735 audit_default); 1736 1737 pr_info("%s\n", audit_default ? 1738 "enabled (after initialization)" : "disabled (until reboot)"); 1739 1740 return 1; 1741 } 1742 __setup("audit=", audit_enable); 1743 1744 /* Process kernel command-line parameter at boot time. 1745 * audit_backlog_limit=<n> */ 1746 static int __init audit_backlog_limit_set(char *str) 1747 { 1748 u32 audit_backlog_limit_arg; 1749 1750 pr_info("audit_backlog_limit: "); 1751 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1752 pr_cont("using default of %u, unable to parse %s\n", 1753 audit_backlog_limit, str); 1754 return 1; 1755 } 1756 1757 audit_backlog_limit = audit_backlog_limit_arg; 1758 pr_cont("%d\n", audit_backlog_limit); 1759 1760 return 1; 1761 } 1762 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1763 1764 static void audit_buffer_free(struct audit_buffer *ab) 1765 { 1766 if (!ab) 1767 return; 1768 1769 kfree_skb(ab->skb); 1770 kmem_cache_free(audit_buffer_cache, ab); 1771 } 1772 1773 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1774 gfp_t gfp_mask, int type) 1775 { 1776 struct audit_buffer *ab; 1777 1778 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1779 if (!ab) 1780 return NULL; 1781 1782 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1783 if (!ab->skb) 1784 goto err; 1785 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1786 goto err; 1787 1788 ab->ctx = ctx; 1789 ab->gfp_mask = gfp_mask; 1790 1791 return ab; 1792 1793 err: 1794 audit_buffer_free(ab); 1795 return NULL; 1796 } 1797 1798 /** 1799 * audit_serial - compute a serial number for the audit record 1800 * 1801 * Compute a serial number for the audit record. Audit records are 1802 * written to user-space as soon as they are generated, so a complete 1803 * audit record may be written in several pieces. The timestamp of the 1804 * record and this serial number are used by the user-space tools to 1805 * determine which pieces belong to the same audit record. The 1806 * (timestamp,serial) tuple is unique for each syscall and is live from 1807 * syscall entry to syscall exit. 1808 * 1809 * NOTE: Another possibility is to store the formatted records off the 1810 * audit context (for those records that have a context), and emit them 1811 * all at syscall exit. However, this could delay the reporting of 1812 * significant errors until syscall exit (or never, if the system 1813 * halts). 1814 */ 1815 unsigned int audit_serial(void) 1816 { 1817 static atomic_t serial = ATOMIC_INIT(0); 1818 1819 return atomic_inc_return(&serial); 1820 } 1821 1822 static inline void audit_get_stamp(struct audit_context *ctx, 1823 struct timespec64 *t, unsigned int *serial) 1824 { 1825 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1826 ktime_get_coarse_real_ts64(t); 1827 *serial = audit_serial(); 1828 } 1829 } 1830 1831 /** 1832 * audit_log_start - obtain an audit buffer 1833 * @ctx: audit_context (may be NULL) 1834 * @gfp_mask: type of allocation 1835 * @type: audit message type 1836 * 1837 * Returns audit_buffer pointer on success or NULL on error. 1838 * 1839 * Obtain an audit buffer. This routine does locking to obtain the 1840 * audit buffer, but then no locking is required for calls to 1841 * audit_log_*format. If the task (ctx) is a task that is currently in a 1842 * syscall, then the syscall is marked as auditable and an audit record 1843 * will be written at syscall exit. If there is no associated task, then 1844 * task context (ctx) should be NULL. 1845 */ 1846 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1847 int type) 1848 { 1849 struct audit_buffer *ab; 1850 struct timespec64 t; 1851 unsigned int serial; 1852 1853 if (audit_initialized != AUDIT_INITIALIZED) 1854 return NULL; 1855 1856 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1857 return NULL; 1858 1859 /* NOTE: don't ever fail/sleep on these two conditions: 1860 * 1. auditd generated record - since we need auditd to drain the 1861 * queue; also, when we are checking for auditd, compare PIDs using 1862 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1863 * using a PID anchored in the caller's namespace 1864 * 2. generator holding the audit_cmd_mutex - we don't want to block 1865 * while holding the mutex, although we do penalize the sender 1866 * later in audit_receive() when it is safe to block 1867 */ 1868 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1869 long stime = audit_backlog_wait_time; 1870 1871 while (audit_backlog_limit && 1872 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1873 /* wake kauditd to try and flush the queue */ 1874 wake_up_interruptible(&kauditd_wait); 1875 1876 /* sleep if we are allowed and we haven't exhausted our 1877 * backlog wait limit */ 1878 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1879 long rtime = stime; 1880 1881 DECLARE_WAITQUEUE(wait, current); 1882 1883 add_wait_queue_exclusive(&audit_backlog_wait, 1884 &wait); 1885 set_current_state(TASK_UNINTERRUPTIBLE); 1886 stime = schedule_timeout(rtime); 1887 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1888 remove_wait_queue(&audit_backlog_wait, &wait); 1889 } else { 1890 if (audit_rate_check() && printk_ratelimit()) 1891 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1892 skb_queue_len(&audit_queue), 1893 audit_backlog_limit); 1894 audit_log_lost("backlog limit exceeded"); 1895 return NULL; 1896 } 1897 } 1898 } 1899 1900 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1901 if (!ab) { 1902 audit_log_lost("out of memory in audit_log_start"); 1903 return NULL; 1904 } 1905 1906 audit_get_stamp(ab->ctx, &t, &serial); 1907 /* cancel dummy context to enable supporting records */ 1908 if (ctx) 1909 ctx->dummy = 0; 1910 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1911 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1912 1913 return ab; 1914 } 1915 1916 /** 1917 * audit_expand - expand skb in the audit buffer 1918 * @ab: audit_buffer 1919 * @extra: space to add at tail of the skb 1920 * 1921 * Returns 0 (no space) on failed expansion, or available space if 1922 * successful. 1923 */ 1924 static inline int audit_expand(struct audit_buffer *ab, int extra) 1925 { 1926 struct sk_buff *skb = ab->skb; 1927 int oldtail = skb_tailroom(skb); 1928 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1929 int newtail = skb_tailroom(skb); 1930 1931 if (ret < 0) { 1932 audit_log_lost("out of memory in audit_expand"); 1933 return 0; 1934 } 1935 1936 skb->truesize += newtail - oldtail; 1937 return newtail; 1938 } 1939 1940 /* 1941 * Format an audit message into the audit buffer. If there isn't enough 1942 * room in the audit buffer, more room will be allocated and vsnprint 1943 * will be called a second time. Currently, we assume that a printk 1944 * can't format message larger than 1024 bytes, so we don't either. 1945 */ 1946 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1947 va_list args) 1948 { 1949 int len, avail; 1950 struct sk_buff *skb; 1951 va_list args2; 1952 1953 if (!ab) 1954 return; 1955 1956 BUG_ON(!ab->skb); 1957 skb = ab->skb; 1958 avail = skb_tailroom(skb); 1959 if (avail == 0) { 1960 avail = audit_expand(ab, AUDIT_BUFSIZ); 1961 if (!avail) 1962 goto out; 1963 } 1964 va_copy(args2, args); 1965 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1966 if (len >= avail) { 1967 /* The printk buffer is 1024 bytes long, so if we get 1968 * here and AUDIT_BUFSIZ is at least 1024, then we can 1969 * log everything that printk could have logged. */ 1970 avail = audit_expand(ab, 1971 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1972 if (!avail) 1973 goto out_va_end; 1974 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1975 } 1976 if (len > 0) 1977 skb_put(skb, len); 1978 out_va_end: 1979 va_end(args2); 1980 out: 1981 return; 1982 } 1983 1984 /** 1985 * audit_log_format - format a message into the audit buffer. 1986 * @ab: audit_buffer 1987 * @fmt: format string 1988 * @...: optional parameters matching @fmt string 1989 * 1990 * All the work is done in audit_log_vformat. 1991 */ 1992 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1993 { 1994 va_list args; 1995 1996 if (!ab) 1997 return; 1998 va_start(args, fmt); 1999 audit_log_vformat(ab, fmt, args); 2000 va_end(args); 2001 } 2002 2003 /** 2004 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2005 * @ab: the audit_buffer 2006 * @buf: buffer to convert to hex 2007 * @len: length of @buf to be converted 2008 * 2009 * No return value; failure to expand is silently ignored. 2010 * 2011 * This function will take the passed buf and convert it into a string of 2012 * ascii hex digits. The new string is placed onto the skb. 2013 */ 2014 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2015 size_t len) 2016 { 2017 int i, avail, new_len; 2018 unsigned char *ptr; 2019 struct sk_buff *skb; 2020 2021 if (!ab) 2022 return; 2023 2024 BUG_ON(!ab->skb); 2025 skb = ab->skb; 2026 avail = skb_tailroom(skb); 2027 new_len = len<<1; 2028 if (new_len >= avail) { 2029 /* Round the buffer request up to the next multiple */ 2030 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2031 avail = audit_expand(ab, new_len); 2032 if (!avail) 2033 return; 2034 } 2035 2036 ptr = skb_tail_pointer(skb); 2037 for (i = 0; i < len; i++) 2038 ptr = hex_byte_pack_upper(ptr, buf[i]); 2039 *ptr = 0; 2040 skb_put(skb, len << 1); /* new string is twice the old string */ 2041 } 2042 2043 /* 2044 * Format a string of no more than slen characters into the audit buffer, 2045 * enclosed in quote marks. 2046 */ 2047 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2048 size_t slen) 2049 { 2050 int avail, new_len; 2051 unsigned char *ptr; 2052 struct sk_buff *skb; 2053 2054 if (!ab) 2055 return; 2056 2057 BUG_ON(!ab->skb); 2058 skb = ab->skb; 2059 avail = skb_tailroom(skb); 2060 new_len = slen + 3; /* enclosing quotes + null terminator */ 2061 if (new_len > avail) { 2062 avail = audit_expand(ab, new_len); 2063 if (!avail) 2064 return; 2065 } 2066 ptr = skb_tail_pointer(skb); 2067 *ptr++ = '"'; 2068 memcpy(ptr, string, slen); 2069 ptr += slen; 2070 *ptr++ = '"'; 2071 *ptr = 0; 2072 skb_put(skb, slen + 2); /* don't include null terminator */ 2073 } 2074 2075 /** 2076 * audit_string_contains_control - does a string need to be logged in hex 2077 * @string: string to be checked 2078 * @len: max length of the string to check 2079 */ 2080 bool audit_string_contains_control(const char *string, size_t len) 2081 { 2082 const unsigned char *p; 2083 for (p = string; p < (const unsigned char *)string + len; p++) { 2084 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2085 return true; 2086 } 2087 return false; 2088 } 2089 2090 /** 2091 * audit_log_n_untrustedstring - log a string that may contain random characters 2092 * @ab: audit_buffer 2093 * @len: length of string (not including trailing null) 2094 * @string: string to be logged 2095 * 2096 * This code will escape a string that is passed to it if the string 2097 * contains a control character, unprintable character, double quote mark, 2098 * or a space. Unescaped strings will start and end with a double quote mark. 2099 * Strings that are escaped are printed in hex (2 digits per char). 2100 * 2101 * The caller specifies the number of characters in the string to log, which may 2102 * or may not be the entire string. 2103 */ 2104 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2105 size_t len) 2106 { 2107 if (audit_string_contains_control(string, len)) 2108 audit_log_n_hex(ab, string, len); 2109 else 2110 audit_log_n_string(ab, string, len); 2111 } 2112 2113 /** 2114 * audit_log_untrustedstring - log a string that may contain random characters 2115 * @ab: audit_buffer 2116 * @string: string to be logged 2117 * 2118 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2119 * determine string length. 2120 */ 2121 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2122 { 2123 audit_log_n_untrustedstring(ab, string, strlen(string)); 2124 } 2125 2126 /* This is a helper-function to print the escaped d_path */ 2127 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2128 const struct path *path) 2129 { 2130 char *p, *pathname; 2131 2132 if (prefix) 2133 audit_log_format(ab, "%s", prefix); 2134 2135 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2136 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2137 if (!pathname) { 2138 audit_log_format(ab, "\"<no_memory>\""); 2139 return; 2140 } 2141 p = d_path(path, pathname, PATH_MAX+11); 2142 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2143 /* FIXME: can we save some information here? */ 2144 audit_log_format(ab, "\"<too_long>\""); 2145 } else 2146 audit_log_untrustedstring(ab, p); 2147 kfree(pathname); 2148 } 2149 2150 void audit_log_session_info(struct audit_buffer *ab) 2151 { 2152 unsigned int sessionid = audit_get_sessionid(current); 2153 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2154 2155 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2156 } 2157 2158 void audit_log_key(struct audit_buffer *ab, char *key) 2159 { 2160 audit_log_format(ab, " key="); 2161 if (key) 2162 audit_log_untrustedstring(ab, key); 2163 else 2164 audit_log_format(ab, "(null)"); 2165 } 2166 2167 int audit_log_task_context(struct audit_buffer *ab) 2168 { 2169 char *ctx = NULL; 2170 unsigned len; 2171 int error; 2172 u32 sid; 2173 2174 security_current_getsecid_subj(&sid); 2175 if (!sid) 2176 return 0; 2177 2178 error = security_secid_to_secctx(sid, &ctx, &len); 2179 if (error) { 2180 if (error != -EINVAL) 2181 goto error_path; 2182 return 0; 2183 } 2184 2185 audit_log_format(ab, " subj=%s", ctx); 2186 security_release_secctx(ctx, len); 2187 return 0; 2188 2189 error_path: 2190 audit_panic("error in audit_log_task_context"); 2191 return error; 2192 } 2193 EXPORT_SYMBOL(audit_log_task_context); 2194 2195 void audit_log_d_path_exe(struct audit_buffer *ab, 2196 struct mm_struct *mm) 2197 { 2198 struct file *exe_file; 2199 2200 if (!mm) 2201 goto out_null; 2202 2203 exe_file = get_mm_exe_file(mm); 2204 if (!exe_file) 2205 goto out_null; 2206 2207 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2208 fput(exe_file); 2209 return; 2210 out_null: 2211 audit_log_format(ab, " exe=(null)"); 2212 } 2213 2214 struct tty_struct *audit_get_tty(void) 2215 { 2216 struct tty_struct *tty = NULL; 2217 unsigned long flags; 2218 2219 spin_lock_irqsave(¤t->sighand->siglock, flags); 2220 if (current->signal) 2221 tty = tty_kref_get(current->signal->tty); 2222 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2223 return tty; 2224 } 2225 2226 void audit_put_tty(struct tty_struct *tty) 2227 { 2228 tty_kref_put(tty); 2229 } 2230 2231 void audit_log_task_info(struct audit_buffer *ab) 2232 { 2233 const struct cred *cred; 2234 char comm[sizeof(current->comm)]; 2235 struct tty_struct *tty; 2236 2237 if (!ab) 2238 return; 2239 2240 cred = current_cred(); 2241 tty = audit_get_tty(); 2242 audit_log_format(ab, 2243 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2244 " euid=%u suid=%u fsuid=%u" 2245 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2246 task_ppid_nr(current), 2247 task_tgid_nr(current), 2248 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2249 from_kuid(&init_user_ns, cred->uid), 2250 from_kgid(&init_user_ns, cred->gid), 2251 from_kuid(&init_user_ns, cred->euid), 2252 from_kuid(&init_user_ns, cred->suid), 2253 from_kuid(&init_user_ns, cred->fsuid), 2254 from_kgid(&init_user_ns, cred->egid), 2255 from_kgid(&init_user_ns, cred->sgid), 2256 from_kgid(&init_user_ns, cred->fsgid), 2257 tty ? tty_name(tty) : "(none)", 2258 audit_get_sessionid(current)); 2259 audit_put_tty(tty); 2260 audit_log_format(ab, " comm="); 2261 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2262 audit_log_d_path_exe(ab, current->mm); 2263 audit_log_task_context(ab); 2264 } 2265 EXPORT_SYMBOL(audit_log_task_info); 2266 2267 /** 2268 * audit_log_path_denied - report a path restriction denial 2269 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2270 * @operation: specific operation name 2271 */ 2272 void audit_log_path_denied(int type, const char *operation) 2273 { 2274 struct audit_buffer *ab; 2275 2276 if (!audit_enabled || audit_dummy_context()) 2277 return; 2278 2279 /* Generate log with subject, operation, outcome. */ 2280 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2281 if (!ab) 2282 return; 2283 audit_log_format(ab, "op=%s", operation); 2284 audit_log_task_info(ab); 2285 audit_log_format(ab, " res=0"); 2286 audit_log_end(ab); 2287 } 2288 2289 /* global counter which is incremented every time something logs in */ 2290 static atomic_t session_id = ATOMIC_INIT(0); 2291 2292 static int audit_set_loginuid_perm(kuid_t loginuid) 2293 { 2294 /* if we are unset, we don't need privs */ 2295 if (!audit_loginuid_set(current)) 2296 return 0; 2297 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2298 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2299 return -EPERM; 2300 /* it is set, you need permission */ 2301 if (!capable(CAP_AUDIT_CONTROL)) 2302 return -EPERM; 2303 /* reject if this is not an unset and we don't allow that */ 2304 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2305 && uid_valid(loginuid)) 2306 return -EPERM; 2307 return 0; 2308 } 2309 2310 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2311 unsigned int oldsessionid, 2312 unsigned int sessionid, int rc) 2313 { 2314 struct audit_buffer *ab; 2315 uid_t uid, oldloginuid, loginuid; 2316 struct tty_struct *tty; 2317 2318 if (!audit_enabled) 2319 return; 2320 2321 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2322 if (!ab) 2323 return; 2324 2325 uid = from_kuid(&init_user_ns, task_uid(current)); 2326 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2327 loginuid = from_kuid(&init_user_ns, kloginuid); 2328 tty = audit_get_tty(); 2329 2330 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2331 audit_log_task_context(ab); 2332 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2333 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2334 oldsessionid, sessionid, !rc); 2335 audit_put_tty(tty); 2336 audit_log_end(ab); 2337 } 2338 2339 /** 2340 * audit_set_loginuid - set current task's loginuid 2341 * @loginuid: loginuid value 2342 * 2343 * Returns 0. 2344 * 2345 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2346 */ 2347 int audit_set_loginuid(kuid_t loginuid) 2348 { 2349 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2350 kuid_t oldloginuid; 2351 int rc; 2352 2353 oldloginuid = audit_get_loginuid(current); 2354 oldsessionid = audit_get_sessionid(current); 2355 2356 rc = audit_set_loginuid_perm(loginuid); 2357 if (rc) 2358 goto out; 2359 2360 /* are we setting or clearing? */ 2361 if (uid_valid(loginuid)) { 2362 sessionid = (unsigned int)atomic_inc_return(&session_id); 2363 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2364 sessionid = (unsigned int)atomic_inc_return(&session_id); 2365 } 2366 2367 current->sessionid = sessionid; 2368 current->loginuid = loginuid; 2369 out: 2370 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2371 return rc; 2372 } 2373 2374 /** 2375 * audit_signal_info - record signal info for shutting down audit subsystem 2376 * @sig: signal value 2377 * @t: task being signaled 2378 * 2379 * If the audit subsystem is being terminated, record the task (pid) 2380 * and uid that is doing that. 2381 */ 2382 int audit_signal_info(int sig, struct task_struct *t) 2383 { 2384 kuid_t uid = current_uid(), auid; 2385 2386 if (auditd_test_task(t) && 2387 (sig == SIGTERM || sig == SIGHUP || 2388 sig == SIGUSR1 || sig == SIGUSR2)) { 2389 audit_sig_pid = task_tgid_nr(current); 2390 auid = audit_get_loginuid(current); 2391 if (uid_valid(auid)) 2392 audit_sig_uid = auid; 2393 else 2394 audit_sig_uid = uid; 2395 security_current_getsecid_subj(&audit_sig_sid); 2396 } 2397 2398 return audit_signal_info_syscall(t); 2399 } 2400 2401 /** 2402 * audit_log_end - end one audit record 2403 * @ab: the audit_buffer 2404 * 2405 * We can not do a netlink send inside an irq context because it blocks (last 2406 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2407 * queue and a kthread is scheduled to remove them from the queue outside the 2408 * irq context. May be called in any context. 2409 */ 2410 void audit_log_end(struct audit_buffer *ab) 2411 { 2412 struct sk_buff *skb; 2413 struct nlmsghdr *nlh; 2414 2415 if (!ab) 2416 return; 2417 2418 if (audit_rate_check()) { 2419 skb = ab->skb; 2420 ab->skb = NULL; 2421 2422 /* setup the netlink header, see the comments in 2423 * kauditd_send_multicast_skb() for length quirks */ 2424 nlh = nlmsg_hdr(skb); 2425 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2426 2427 /* queue the netlink packet and poke the kauditd thread */ 2428 skb_queue_tail(&audit_queue, skb); 2429 wake_up_interruptible(&kauditd_wait); 2430 } else 2431 audit_log_lost("rate limit exceeded"); 2432 2433 audit_buffer_free(ab); 2434 } 2435 2436 /** 2437 * audit_log - Log an audit record 2438 * @ctx: audit context 2439 * @gfp_mask: type of allocation 2440 * @type: audit message type 2441 * @fmt: format string to use 2442 * @...: variable parameters matching the format string 2443 * 2444 * This is a convenience function that calls audit_log_start, 2445 * audit_log_vformat, and audit_log_end. It may be called 2446 * in any context. 2447 */ 2448 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2449 const char *fmt, ...) 2450 { 2451 struct audit_buffer *ab; 2452 va_list args; 2453 2454 ab = audit_log_start(ctx, gfp_mask, type); 2455 if (ab) { 2456 va_start(args, fmt); 2457 audit_log_vformat(ab, fmt, args); 2458 va_end(args); 2459 audit_log_end(ab); 2460 } 2461 } 2462 2463 EXPORT_SYMBOL(audit_log_start); 2464 EXPORT_SYMBOL(audit_log_end); 2465 EXPORT_SYMBOL(audit_log_format); 2466 EXPORT_SYMBOL(audit_log); 2467