xref: /openbmc/linux/kernel/audit.c (revision 6a613ac6)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70 
71 #include "audit.h"
72 
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74  * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED		-1
76 #define AUDIT_UNINITIALIZED	0
77 #define AUDIT_INITIALIZED	1
78 static int	audit_initialized;
79 
80 #define AUDIT_OFF	0
81 #define AUDIT_ON	1
82 #define AUDIT_LOCKED	2
83 u32		audit_enabled;
84 u32		audit_ever_enabled;
85 
86 EXPORT_SYMBOL_GPL(audit_enabled);
87 
88 /* Default state when kernel boots without any parameters. */
89 static u32	audit_default;
90 
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32	audit_failure = AUDIT_FAIL_PRINTK;
93 
94 /*
95  * If audit records are to be written to the netlink socket, audit_pid
96  * contains the pid of the auditd process and audit_nlk_portid contains
97  * the portid to use to send netlink messages to that process.
98  */
99 int		audit_pid;
100 static __u32	audit_nlk_portid;
101 
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103  * to that number per second.  This prevents DoS attacks, but results in
104  * audit records being dropped. */
105 static u32	audit_rate_limit;
106 
107 /* Number of outstanding audit_buffers allowed.
108  * When set to zero, this means unlimited. */
109 static u32	audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32	audit_backlog_wait_overflow = 0;
114 
115 /* The identity of the user shutting down the audit system. */
116 kuid_t		audit_sig_uid = INVALID_UID;
117 pid_t		audit_sig_pid = -1;
118 u32		audit_sig_sid = 0;
119 
120 /* Records can be lost in several ways:
121    0) [suppressed in audit_alloc]
122    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123    2) out of memory in audit_log_move [alloc_skb]
124    3) suppressed due to audit_rate_limit
125    4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t    audit_lost = ATOMIC_INIT(0);
128 
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132 
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135 
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138  * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int	   audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142 
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149 
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 				   .mask = -1,
152 				   .features = 0,
153 				   .lock = 0,};
154 
155 static char *audit_feature_names[2] = {
156 	"only_unset_loginuid",
157 	"loginuid_immutable",
158 };
159 
160 
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163 
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165  * audit records.  Since printk uses a 1024 byte buffer, this buffer
166  * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168 
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE  (2*NR_CPUS)
172 
173 /* The audit_buffer is used when formatting an audit record.  The caller
174  * locks briefly to get the record off the freelist or to allocate the
175  * buffer, and locks briefly to send the buffer to the netlink layer or
176  * to place it on a transmit queue.  Multiple audit_buffers can be in
177  * use simultaneously. */
178 struct audit_buffer {
179 	struct list_head     list;
180 	struct sk_buff       *skb;	/* formatted skb ready to send */
181 	struct audit_context *ctx;	/* NULL or associated context */
182 	gfp_t		     gfp_mask;
183 };
184 
185 struct audit_reply {
186 	__u32 portid;
187 	struct net *net;
188 	struct sk_buff *skb;
189 };
190 
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 	if (ab) {
194 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 		nlh->nlmsg_pid = portid;
196 	}
197 }
198 
199 void audit_panic(const char *message)
200 {
201 	switch (audit_failure) {
202 	case AUDIT_FAIL_SILENT:
203 		break;
204 	case AUDIT_FAIL_PRINTK:
205 		if (printk_ratelimit())
206 			pr_err("%s\n", message);
207 		break;
208 	case AUDIT_FAIL_PANIC:
209 		/* test audit_pid since printk is always losey, why bother? */
210 		if (audit_pid)
211 			panic("audit: %s\n", message);
212 		break;
213 	}
214 }
215 
216 static inline int audit_rate_check(void)
217 {
218 	static unsigned long	last_check = 0;
219 	static int		messages   = 0;
220 	static DEFINE_SPINLOCK(lock);
221 	unsigned long		flags;
222 	unsigned long		now;
223 	unsigned long		elapsed;
224 	int			retval	   = 0;
225 
226 	if (!audit_rate_limit) return 1;
227 
228 	spin_lock_irqsave(&lock, flags);
229 	if (++messages < audit_rate_limit) {
230 		retval = 1;
231 	} else {
232 		now     = jiffies;
233 		elapsed = now - last_check;
234 		if (elapsed > HZ) {
235 			last_check = now;
236 			messages   = 0;
237 			retval     = 1;
238 		}
239 	}
240 	spin_unlock_irqrestore(&lock, flags);
241 
242 	return retval;
243 }
244 
245 /**
246  * audit_log_lost - conditionally log lost audit message event
247  * @message: the message stating reason for lost audit message
248  *
249  * Emit at least 1 message per second, even if audit_rate_check is
250  * throttling.
251  * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 	static unsigned long	last_msg = 0;
256 	static DEFINE_SPINLOCK(lock);
257 	unsigned long		flags;
258 	unsigned long		now;
259 	int			print;
260 
261 	atomic_inc(&audit_lost);
262 
263 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264 
265 	if (!print) {
266 		spin_lock_irqsave(&lock, flags);
267 		now = jiffies;
268 		if (now - last_msg > HZ) {
269 			print = 1;
270 			last_msg = now;
271 		}
272 		spin_unlock_irqrestore(&lock, flags);
273 	}
274 
275 	if (print) {
276 		if (printk_ratelimit())
277 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 				atomic_read(&audit_lost),
279 				audit_rate_limit,
280 				audit_backlog_limit);
281 		audit_panic(message);
282 	}
283 }
284 
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 				   int allow_changes)
287 {
288 	struct audit_buffer *ab;
289 	int rc = 0;
290 
291 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 	if (unlikely(!ab))
293 		return rc;
294 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 	audit_log_session_info(ab);
296 	rc = audit_log_task_context(ab);
297 	if (rc)
298 		allow_changes = 0; /* Something weird, deny request */
299 	audit_log_format(ab, " res=%d", allow_changes);
300 	audit_log_end(ab);
301 	return rc;
302 }
303 
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 	int allow_changes, rc = 0;
307 	u32 old = *to_change;
308 
309 	/* check if we are locked */
310 	if (audit_enabled == AUDIT_LOCKED)
311 		allow_changes = 0;
312 	else
313 		allow_changes = 1;
314 
315 	if (audit_enabled != AUDIT_OFF) {
316 		rc = audit_log_config_change(function_name, new, old, allow_changes);
317 		if (rc)
318 			allow_changes = 0;
319 	}
320 
321 	/* If we are allowed, make the change */
322 	if (allow_changes == 1)
323 		*to_change = new;
324 	/* Not allowed, update reason */
325 	else if (rc == 0)
326 		rc = -EPERM;
327 	return rc;
328 }
329 
330 static int audit_set_rate_limit(u32 limit)
331 {
332 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334 
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339 
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 	return audit_do_config_change("audit_backlog_wait_time",
343 				      &audit_backlog_wait_time_master, timeout);
344 }
345 
346 static int audit_set_enabled(u32 state)
347 {
348 	int rc;
349 	if (state > AUDIT_LOCKED)
350 		return -EINVAL;
351 
352 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
353 	if (!rc)
354 		audit_ever_enabled |= !!state;
355 
356 	return rc;
357 }
358 
359 static int audit_set_failure(u32 state)
360 {
361 	if (state != AUDIT_FAIL_SILENT
362 	    && state != AUDIT_FAIL_PRINTK
363 	    && state != AUDIT_FAIL_PANIC)
364 		return -EINVAL;
365 
366 	return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368 
369 /*
370  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
371  * already have been sent via prink/syslog and so if these messages are dropped
372  * it is not a huge concern since we already passed the audit_log_lost()
373  * notification and stuff.  This is just nice to get audit messages during
374  * boot before auditd is running or messages generated while auditd is stopped.
375  * This only holds messages is audit_default is set, aka booting with audit=1
376  * or building your kernel that way.
377  */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 	if (audit_default &&
381 	    (!audit_backlog_limit ||
382 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 		skb_queue_tail(&audit_skb_hold_queue, skb);
384 	else
385 		kfree_skb(skb);
386 }
387 
388 /*
389  * For one reason or another this nlh isn't getting delivered to the userspace
390  * audit daemon, just send it to printk.
391  */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 	char *data = nlmsg_data(nlh);
396 
397 	if (nlh->nlmsg_type != AUDIT_EOE) {
398 		if (printk_ratelimit())
399 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 		else
401 			audit_log_lost("printk limit exceeded");
402 	}
403 
404 	audit_hold_skb(skb);
405 }
406 
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 	int err;
410 	int attempts = 0;
411 #define AUDITD_RETRIES 5
412 
413 restart:
414 	/* take a reference in case we can't send it and we want to hold it */
415 	skb_get(skb);
416 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
417 	if (err < 0) {
418 		pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
419 		       audit_pid, err);
420 		if (audit_pid) {
421 			if (err == -ECONNREFUSED || err == -EPERM
422 			    || ++attempts >= AUDITD_RETRIES) {
423 				char s[32];
424 
425 				snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
426 				audit_log_lost(s);
427 				audit_pid = 0;
428 				audit_sock = NULL;
429 			} else {
430 				pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
431 					attempts, audit_pid);
432 				set_current_state(TASK_INTERRUPTIBLE);
433 				schedule();
434 				__set_current_state(TASK_RUNNING);
435 				goto restart;
436 			}
437 		}
438 		/* we might get lucky and get this in the next auditd */
439 		audit_hold_skb(skb);
440 	} else
441 		/* drop the extra reference if sent ok */
442 		consume_skb(skb);
443 }
444 
445 /*
446  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
447  *
448  * This function doesn't consume an skb as might be expected since it has to
449  * copy it anyways.
450  */
451 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
452 {
453 	struct sk_buff		*copy;
454 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
455 	struct sock		*sock = aunet->nlsk;
456 
457 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
458 		return;
459 
460 	/*
461 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
462 	 * using skb_get() is necessary because non-standard mods are made to
463 	 * the skb by the original kaudit unicast socket send routine.  The
464 	 * existing auditd daemon assumes this breakage.  Fixing this would
465 	 * require co-ordinating a change in the established protocol between
466 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
467 	 * no reason for new multicast clients to continue with this
468 	 * non-compliance.
469 	 */
470 	copy = skb_copy(skb, gfp_mask);
471 	if (!copy)
472 		return;
473 
474 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
475 }
476 
477 /*
478  * flush_hold_queue - empty the hold queue if auditd appears
479  *
480  * If auditd just started, drain the queue of messages already
481  * sent to syslog/printk.  Remember loss here is ok.  We already
482  * called audit_log_lost() if it didn't go out normally.  so the
483  * race between the skb_dequeue and the next check for audit_pid
484  * doesn't matter.
485  *
486  * If you ever find kauditd to be too slow we can get a perf win
487  * by doing our own locking and keeping better track if there
488  * are messages in this queue.  I don't see the need now, but
489  * in 5 years when I want to play with this again I'll see this
490  * note and still have no friggin idea what i'm thinking today.
491  */
492 static void flush_hold_queue(void)
493 {
494 	struct sk_buff *skb;
495 
496 	if (!audit_default || !audit_pid)
497 		return;
498 
499 	skb = skb_dequeue(&audit_skb_hold_queue);
500 	if (likely(!skb))
501 		return;
502 
503 	while (skb && audit_pid) {
504 		kauditd_send_skb(skb);
505 		skb = skb_dequeue(&audit_skb_hold_queue);
506 	}
507 
508 	/*
509 	 * if auditd just disappeared but we
510 	 * dequeued an skb we need to drop ref
511 	 */
512 	if (skb)
513 		consume_skb(skb);
514 }
515 
516 static int kauditd_thread(void *dummy)
517 {
518 	set_freezable();
519 	while (!kthread_should_stop()) {
520 		struct sk_buff *skb;
521 
522 		flush_hold_queue();
523 
524 		skb = skb_dequeue(&audit_skb_queue);
525 
526 		if (skb) {
527 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
528 				wake_up(&audit_backlog_wait);
529 			if (audit_pid)
530 				kauditd_send_skb(skb);
531 			else
532 				audit_printk_skb(skb);
533 			continue;
534 		}
535 
536 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
537 	}
538 	return 0;
539 }
540 
541 int audit_send_list(void *_dest)
542 {
543 	struct audit_netlink_list *dest = _dest;
544 	struct sk_buff *skb;
545 	struct net *net = dest->net;
546 	struct audit_net *aunet = net_generic(net, audit_net_id);
547 
548 	/* wait for parent to finish and send an ACK */
549 	mutex_lock(&audit_cmd_mutex);
550 	mutex_unlock(&audit_cmd_mutex);
551 
552 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
553 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
554 
555 	put_net(net);
556 	kfree(dest);
557 
558 	return 0;
559 }
560 
561 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
562 				 int multi, const void *payload, int size)
563 {
564 	struct sk_buff	*skb;
565 	struct nlmsghdr	*nlh;
566 	void		*data;
567 	int		flags = multi ? NLM_F_MULTI : 0;
568 	int		t     = done  ? NLMSG_DONE  : type;
569 
570 	skb = nlmsg_new(size, GFP_KERNEL);
571 	if (!skb)
572 		return NULL;
573 
574 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
575 	if (!nlh)
576 		goto out_kfree_skb;
577 	data = nlmsg_data(nlh);
578 	memcpy(data, payload, size);
579 	return skb;
580 
581 out_kfree_skb:
582 	kfree_skb(skb);
583 	return NULL;
584 }
585 
586 static int audit_send_reply_thread(void *arg)
587 {
588 	struct audit_reply *reply = (struct audit_reply *)arg;
589 	struct net *net = reply->net;
590 	struct audit_net *aunet = net_generic(net, audit_net_id);
591 
592 	mutex_lock(&audit_cmd_mutex);
593 	mutex_unlock(&audit_cmd_mutex);
594 
595 	/* Ignore failure. It'll only happen if the sender goes away,
596 	   because our timeout is set to infinite. */
597 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
598 	put_net(net);
599 	kfree(reply);
600 	return 0;
601 }
602 /**
603  * audit_send_reply - send an audit reply message via netlink
604  * @request_skb: skb of request we are replying to (used to target the reply)
605  * @seq: sequence number
606  * @type: audit message type
607  * @done: done (last) flag
608  * @multi: multi-part message flag
609  * @payload: payload data
610  * @size: payload size
611  *
612  * Allocates an skb, builds the netlink message, and sends it to the port id.
613  * No failure notifications.
614  */
615 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
616 			     int multi, const void *payload, int size)
617 {
618 	u32 portid = NETLINK_CB(request_skb).portid;
619 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
620 	struct sk_buff *skb;
621 	struct task_struct *tsk;
622 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
623 					    GFP_KERNEL);
624 
625 	if (!reply)
626 		return;
627 
628 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
629 	if (!skb)
630 		goto out;
631 
632 	reply->net = get_net(net);
633 	reply->portid = portid;
634 	reply->skb = skb;
635 
636 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
637 	if (!IS_ERR(tsk))
638 		return;
639 	kfree_skb(skb);
640 out:
641 	kfree(reply);
642 }
643 
644 /*
645  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
646  * control messages.
647  */
648 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
649 {
650 	int err = 0;
651 
652 	/* Only support initial user namespace for now. */
653 	/*
654 	 * We return ECONNREFUSED because it tricks userspace into thinking
655 	 * that audit was not configured into the kernel.  Lots of users
656 	 * configure their PAM stack (because that's what the distro does)
657 	 * to reject login if unable to send messages to audit.  If we return
658 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
659 	 * configured in and will let login proceed.  If we return EPERM
660 	 * userspace will reject all logins.  This should be removed when we
661 	 * support non init namespaces!!
662 	 */
663 	if (current_user_ns() != &init_user_ns)
664 		return -ECONNREFUSED;
665 
666 	switch (msg_type) {
667 	case AUDIT_LIST:
668 	case AUDIT_ADD:
669 	case AUDIT_DEL:
670 		return -EOPNOTSUPP;
671 	case AUDIT_GET:
672 	case AUDIT_SET:
673 	case AUDIT_GET_FEATURE:
674 	case AUDIT_SET_FEATURE:
675 	case AUDIT_LIST_RULES:
676 	case AUDIT_ADD_RULE:
677 	case AUDIT_DEL_RULE:
678 	case AUDIT_SIGNAL_INFO:
679 	case AUDIT_TTY_GET:
680 	case AUDIT_TTY_SET:
681 	case AUDIT_TRIM:
682 	case AUDIT_MAKE_EQUIV:
683 		/* Only support auditd and auditctl in initial pid namespace
684 		 * for now. */
685 		if (task_active_pid_ns(current) != &init_pid_ns)
686 			return -EPERM;
687 
688 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
689 			err = -EPERM;
690 		break;
691 	case AUDIT_USER:
692 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
693 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
694 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
695 			err = -EPERM;
696 		break;
697 	default:  /* bad msg */
698 		err = -EINVAL;
699 	}
700 
701 	return err;
702 }
703 
704 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
705 {
706 	uid_t uid = from_kuid(&init_user_ns, current_uid());
707 	pid_t pid = task_tgid_nr(current);
708 
709 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
710 		*ab = NULL;
711 		return;
712 	}
713 
714 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
715 	if (unlikely(!*ab))
716 		return;
717 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
718 	audit_log_session_info(*ab);
719 	audit_log_task_context(*ab);
720 }
721 
722 int is_audit_feature_set(int i)
723 {
724 	return af.features & AUDIT_FEATURE_TO_MASK(i);
725 }
726 
727 
728 static int audit_get_feature(struct sk_buff *skb)
729 {
730 	u32 seq;
731 
732 	seq = nlmsg_hdr(skb)->nlmsg_seq;
733 
734 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
735 
736 	return 0;
737 }
738 
739 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
740 				     u32 old_lock, u32 new_lock, int res)
741 {
742 	struct audit_buffer *ab;
743 
744 	if (audit_enabled == AUDIT_OFF)
745 		return;
746 
747 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
748 	audit_log_task_info(ab, current);
749 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
750 			 audit_feature_names[which], !!old_feature, !!new_feature,
751 			 !!old_lock, !!new_lock, res);
752 	audit_log_end(ab);
753 }
754 
755 static int audit_set_feature(struct sk_buff *skb)
756 {
757 	struct audit_features *uaf;
758 	int i;
759 
760 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
761 	uaf = nlmsg_data(nlmsg_hdr(skb));
762 
763 	/* if there is ever a version 2 we should handle that here */
764 
765 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
766 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
767 		u32 old_feature, new_feature, old_lock, new_lock;
768 
769 		/* if we are not changing this feature, move along */
770 		if (!(feature & uaf->mask))
771 			continue;
772 
773 		old_feature = af.features & feature;
774 		new_feature = uaf->features & feature;
775 		new_lock = (uaf->lock | af.lock) & feature;
776 		old_lock = af.lock & feature;
777 
778 		/* are we changing a locked feature? */
779 		if (old_lock && (new_feature != old_feature)) {
780 			audit_log_feature_change(i, old_feature, new_feature,
781 						 old_lock, new_lock, 0);
782 			return -EPERM;
783 		}
784 	}
785 	/* nothing invalid, do the changes */
786 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
787 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
788 		u32 old_feature, new_feature, old_lock, new_lock;
789 
790 		/* if we are not changing this feature, move along */
791 		if (!(feature & uaf->mask))
792 			continue;
793 
794 		old_feature = af.features & feature;
795 		new_feature = uaf->features & feature;
796 		old_lock = af.lock & feature;
797 		new_lock = (uaf->lock | af.lock) & feature;
798 
799 		if (new_feature != old_feature)
800 			audit_log_feature_change(i, old_feature, new_feature,
801 						 old_lock, new_lock, 1);
802 
803 		if (new_feature)
804 			af.features |= feature;
805 		else
806 			af.features &= ~feature;
807 		af.lock |= new_lock;
808 	}
809 
810 	return 0;
811 }
812 
813 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
814 {
815 	u32			seq;
816 	void			*data;
817 	int			err;
818 	struct audit_buffer	*ab;
819 	u16			msg_type = nlh->nlmsg_type;
820 	struct audit_sig_info   *sig_data;
821 	char			*ctx = NULL;
822 	u32			len;
823 
824 	err = audit_netlink_ok(skb, msg_type);
825 	if (err)
826 		return err;
827 
828 	/* As soon as there's any sign of userspace auditd,
829 	 * start kauditd to talk to it */
830 	if (!kauditd_task) {
831 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
832 		if (IS_ERR(kauditd_task)) {
833 			err = PTR_ERR(kauditd_task);
834 			kauditd_task = NULL;
835 			return err;
836 		}
837 	}
838 	seq  = nlh->nlmsg_seq;
839 	data = nlmsg_data(nlh);
840 
841 	switch (msg_type) {
842 	case AUDIT_GET: {
843 		struct audit_status	s;
844 		memset(&s, 0, sizeof(s));
845 		s.enabled		= audit_enabled;
846 		s.failure		= audit_failure;
847 		s.pid			= audit_pid;
848 		s.rate_limit		= audit_rate_limit;
849 		s.backlog_limit		= audit_backlog_limit;
850 		s.lost			= atomic_read(&audit_lost);
851 		s.backlog		= skb_queue_len(&audit_skb_queue);
852 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
853 		s.backlog_wait_time	= audit_backlog_wait_time_master;
854 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
855 		break;
856 	}
857 	case AUDIT_SET: {
858 		struct audit_status	s;
859 		memset(&s, 0, sizeof(s));
860 		/* guard against past and future API changes */
861 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
862 		if (s.mask & AUDIT_STATUS_ENABLED) {
863 			err = audit_set_enabled(s.enabled);
864 			if (err < 0)
865 				return err;
866 		}
867 		if (s.mask & AUDIT_STATUS_FAILURE) {
868 			err = audit_set_failure(s.failure);
869 			if (err < 0)
870 				return err;
871 		}
872 		if (s.mask & AUDIT_STATUS_PID) {
873 			int new_pid = s.pid;
874 
875 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
876 				return -EACCES;
877 			if (audit_enabled != AUDIT_OFF)
878 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
879 			audit_pid = new_pid;
880 			audit_nlk_portid = NETLINK_CB(skb).portid;
881 			audit_sock = skb->sk;
882 		}
883 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
884 			err = audit_set_rate_limit(s.rate_limit);
885 			if (err < 0)
886 				return err;
887 		}
888 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
889 			err = audit_set_backlog_limit(s.backlog_limit);
890 			if (err < 0)
891 				return err;
892 		}
893 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
894 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
895 				return -EINVAL;
896 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
897 				return -EINVAL;
898 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
899 			if (err < 0)
900 				return err;
901 		}
902 		break;
903 	}
904 	case AUDIT_GET_FEATURE:
905 		err = audit_get_feature(skb);
906 		if (err)
907 			return err;
908 		break;
909 	case AUDIT_SET_FEATURE:
910 		err = audit_set_feature(skb);
911 		if (err)
912 			return err;
913 		break;
914 	case AUDIT_USER:
915 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
916 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
917 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
918 			return 0;
919 
920 		err = audit_filter_user(msg_type);
921 		if (err == 1) { /* match or error */
922 			err = 0;
923 			if (msg_type == AUDIT_USER_TTY) {
924 				err = tty_audit_push_current();
925 				if (err)
926 					break;
927 			}
928 			mutex_unlock(&audit_cmd_mutex);
929 			audit_log_common_recv_msg(&ab, msg_type);
930 			if (msg_type != AUDIT_USER_TTY)
931 				audit_log_format(ab, " msg='%.*s'",
932 						 AUDIT_MESSAGE_TEXT_MAX,
933 						 (char *)data);
934 			else {
935 				int size;
936 
937 				audit_log_format(ab, " data=");
938 				size = nlmsg_len(nlh);
939 				if (size > 0 &&
940 				    ((unsigned char *)data)[size - 1] == '\0')
941 					size--;
942 				audit_log_n_untrustedstring(ab, data, size);
943 			}
944 			audit_set_portid(ab, NETLINK_CB(skb).portid);
945 			audit_log_end(ab);
946 			mutex_lock(&audit_cmd_mutex);
947 		}
948 		break;
949 	case AUDIT_ADD_RULE:
950 	case AUDIT_DEL_RULE:
951 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
952 			return -EINVAL;
953 		if (audit_enabled == AUDIT_LOCKED) {
954 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
955 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
956 			audit_log_end(ab);
957 			return -EPERM;
958 		}
959 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
960 					   seq, data, nlmsg_len(nlh));
961 		break;
962 	case AUDIT_LIST_RULES:
963 		err = audit_list_rules_send(skb, seq);
964 		break;
965 	case AUDIT_TRIM:
966 		audit_trim_trees();
967 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
968 		audit_log_format(ab, " op=trim res=1");
969 		audit_log_end(ab);
970 		break;
971 	case AUDIT_MAKE_EQUIV: {
972 		void *bufp = data;
973 		u32 sizes[2];
974 		size_t msglen = nlmsg_len(nlh);
975 		char *old, *new;
976 
977 		err = -EINVAL;
978 		if (msglen < 2 * sizeof(u32))
979 			break;
980 		memcpy(sizes, bufp, 2 * sizeof(u32));
981 		bufp += 2 * sizeof(u32);
982 		msglen -= 2 * sizeof(u32);
983 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
984 		if (IS_ERR(old)) {
985 			err = PTR_ERR(old);
986 			break;
987 		}
988 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
989 		if (IS_ERR(new)) {
990 			err = PTR_ERR(new);
991 			kfree(old);
992 			break;
993 		}
994 		/* OK, here comes... */
995 		err = audit_tag_tree(old, new);
996 
997 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
998 
999 		audit_log_format(ab, " op=make_equiv old=");
1000 		audit_log_untrustedstring(ab, old);
1001 		audit_log_format(ab, " new=");
1002 		audit_log_untrustedstring(ab, new);
1003 		audit_log_format(ab, " res=%d", !err);
1004 		audit_log_end(ab);
1005 		kfree(old);
1006 		kfree(new);
1007 		break;
1008 	}
1009 	case AUDIT_SIGNAL_INFO:
1010 		len = 0;
1011 		if (audit_sig_sid) {
1012 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1013 			if (err)
1014 				return err;
1015 		}
1016 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1017 		if (!sig_data) {
1018 			if (audit_sig_sid)
1019 				security_release_secctx(ctx, len);
1020 			return -ENOMEM;
1021 		}
1022 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1023 		sig_data->pid = audit_sig_pid;
1024 		if (audit_sig_sid) {
1025 			memcpy(sig_data->ctx, ctx, len);
1026 			security_release_secctx(ctx, len);
1027 		}
1028 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1029 				 sig_data, sizeof(*sig_data) + len);
1030 		kfree(sig_data);
1031 		break;
1032 	case AUDIT_TTY_GET: {
1033 		struct audit_tty_status s;
1034 		struct task_struct *tsk = current;
1035 
1036 		spin_lock(&tsk->sighand->siglock);
1037 		s.enabled = tsk->signal->audit_tty;
1038 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1039 		spin_unlock(&tsk->sighand->siglock);
1040 
1041 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1042 		break;
1043 	}
1044 	case AUDIT_TTY_SET: {
1045 		struct audit_tty_status s, old;
1046 		struct task_struct *tsk = current;
1047 		struct audit_buffer	*ab;
1048 
1049 		memset(&s, 0, sizeof(s));
1050 		/* guard against past and future API changes */
1051 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1052 		/* check if new data is valid */
1053 		if ((s.enabled != 0 && s.enabled != 1) ||
1054 		    (s.log_passwd != 0 && s.log_passwd != 1))
1055 			err = -EINVAL;
1056 
1057 		spin_lock(&tsk->sighand->siglock);
1058 		old.enabled = tsk->signal->audit_tty;
1059 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1060 		if (!err) {
1061 			tsk->signal->audit_tty = s.enabled;
1062 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1063 		}
1064 		spin_unlock(&tsk->sighand->siglock);
1065 
1066 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1067 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1068 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1069 				 old.enabled, s.enabled, old.log_passwd,
1070 				 s.log_passwd, !err);
1071 		audit_log_end(ab);
1072 		break;
1073 	}
1074 	default:
1075 		err = -EINVAL;
1076 		break;
1077 	}
1078 
1079 	return err < 0 ? err : 0;
1080 }
1081 
1082 /*
1083  * Get message from skb.  Each message is processed by audit_receive_msg.
1084  * Malformed skbs with wrong length are discarded silently.
1085  */
1086 static void audit_receive_skb(struct sk_buff *skb)
1087 {
1088 	struct nlmsghdr *nlh;
1089 	/*
1090 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1091 	 * if the nlmsg_len was not aligned
1092 	 */
1093 	int len;
1094 	int err;
1095 
1096 	nlh = nlmsg_hdr(skb);
1097 	len = skb->len;
1098 
1099 	while (nlmsg_ok(nlh, len)) {
1100 		err = audit_receive_msg(skb, nlh);
1101 		/* if err or if this message says it wants a response */
1102 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1103 			netlink_ack(skb, nlh, err);
1104 
1105 		nlh = nlmsg_next(nlh, &len);
1106 	}
1107 }
1108 
1109 /* Receive messages from netlink socket. */
1110 static void audit_receive(struct sk_buff  *skb)
1111 {
1112 	mutex_lock(&audit_cmd_mutex);
1113 	audit_receive_skb(skb);
1114 	mutex_unlock(&audit_cmd_mutex);
1115 }
1116 
1117 /* Run custom bind function on netlink socket group connect or bind requests. */
1118 static int audit_bind(struct net *net, int group)
1119 {
1120 	if (!capable(CAP_AUDIT_READ))
1121 		return -EPERM;
1122 
1123 	return 0;
1124 }
1125 
1126 static int __net_init audit_net_init(struct net *net)
1127 {
1128 	struct netlink_kernel_cfg cfg = {
1129 		.input	= audit_receive,
1130 		.bind	= audit_bind,
1131 		.flags	= NL_CFG_F_NONROOT_RECV,
1132 		.groups	= AUDIT_NLGRP_MAX,
1133 	};
1134 
1135 	struct audit_net *aunet = net_generic(net, audit_net_id);
1136 
1137 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1138 	if (aunet->nlsk == NULL) {
1139 		audit_panic("cannot initialize netlink socket in namespace");
1140 		return -ENOMEM;
1141 	}
1142 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1143 	return 0;
1144 }
1145 
1146 static void __net_exit audit_net_exit(struct net *net)
1147 {
1148 	struct audit_net *aunet = net_generic(net, audit_net_id);
1149 	struct sock *sock = aunet->nlsk;
1150 	if (sock == audit_sock) {
1151 		audit_pid = 0;
1152 		audit_sock = NULL;
1153 	}
1154 
1155 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1156 	synchronize_net();
1157 	netlink_kernel_release(sock);
1158 }
1159 
1160 static struct pernet_operations audit_net_ops __net_initdata = {
1161 	.init = audit_net_init,
1162 	.exit = audit_net_exit,
1163 	.id = &audit_net_id,
1164 	.size = sizeof(struct audit_net),
1165 };
1166 
1167 /* Initialize audit support at boot time. */
1168 static int __init audit_init(void)
1169 {
1170 	int i;
1171 
1172 	if (audit_initialized == AUDIT_DISABLED)
1173 		return 0;
1174 
1175 	pr_info("initializing netlink subsys (%s)\n",
1176 		audit_default ? "enabled" : "disabled");
1177 	register_pernet_subsys(&audit_net_ops);
1178 
1179 	skb_queue_head_init(&audit_skb_queue);
1180 	skb_queue_head_init(&audit_skb_hold_queue);
1181 	audit_initialized = AUDIT_INITIALIZED;
1182 	audit_enabled = audit_default;
1183 	audit_ever_enabled |= !!audit_default;
1184 
1185 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1186 
1187 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1188 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1189 
1190 	return 0;
1191 }
1192 __initcall(audit_init);
1193 
1194 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1195 static int __init audit_enable(char *str)
1196 {
1197 	audit_default = !!simple_strtol(str, NULL, 0);
1198 	if (!audit_default)
1199 		audit_initialized = AUDIT_DISABLED;
1200 
1201 	pr_info("%s\n", audit_default ?
1202 		"enabled (after initialization)" : "disabled (until reboot)");
1203 
1204 	return 1;
1205 }
1206 __setup("audit=", audit_enable);
1207 
1208 /* Process kernel command-line parameter at boot time.
1209  * audit_backlog_limit=<n> */
1210 static int __init audit_backlog_limit_set(char *str)
1211 {
1212 	u32 audit_backlog_limit_arg;
1213 
1214 	pr_info("audit_backlog_limit: ");
1215 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1216 		pr_cont("using default of %u, unable to parse %s\n",
1217 			audit_backlog_limit, str);
1218 		return 1;
1219 	}
1220 
1221 	audit_backlog_limit = audit_backlog_limit_arg;
1222 	pr_cont("%d\n", audit_backlog_limit);
1223 
1224 	return 1;
1225 }
1226 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1227 
1228 static void audit_buffer_free(struct audit_buffer *ab)
1229 {
1230 	unsigned long flags;
1231 
1232 	if (!ab)
1233 		return;
1234 
1235 	if (ab->skb)
1236 		kfree_skb(ab->skb);
1237 
1238 	spin_lock_irqsave(&audit_freelist_lock, flags);
1239 	if (audit_freelist_count > AUDIT_MAXFREE)
1240 		kfree(ab);
1241 	else {
1242 		audit_freelist_count++;
1243 		list_add(&ab->list, &audit_freelist);
1244 	}
1245 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1246 }
1247 
1248 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1249 						gfp_t gfp_mask, int type)
1250 {
1251 	unsigned long flags;
1252 	struct audit_buffer *ab = NULL;
1253 	struct nlmsghdr *nlh;
1254 
1255 	spin_lock_irqsave(&audit_freelist_lock, flags);
1256 	if (!list_empty(&audit_freelist)) {
1257 		ab = list_entry(audit_freelist.next,
1258 				struct audit_buffer, list);
1259 		list_del(&ab->list);
1260 		--audit_freelist_count;
1261 	}
1262 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1263 
1264 	if (!ab) {
1265 		ab = kmalloc(sizeof(*ab), gfp_mask);
1266 		if (!ab)
1267 			goto err;
1268 	}
1269 
1270 	ab->ctx = ctx;
1271 	ab->gfp_mask = gfp_mask;
1272 
1273 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1274 	if (!ab->skb)
1275 		goto err;
1276 
1277 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1278 	if (!nlh)
1279 		goto out_kfree_skb;
1280 
1281 	return ab;
1282 
1283 out_kfree_skb:
1284 	kfree_skb(ab->skb);
1285 	ab->skb = NULL;
1286 err:
1287 	audit_buffer_free(ab);
1288 	return NULL;
1289 }
1290 
1291 /**
1292  * audit_serial - compute a serial number for the audit record
1293  *
1294  * Compute a serial number for the audit record.  Audit records are
1295  * written to user-space as soon as they are generated, so a complete
1296  * audit record may be written in several pieces.  The timestamp of the
1297  * record and this serial number are used by the user-space tools to
1298  * determine which pieces belong to the same audit record.  The
1299  * (timestamp,serial) tuple is unique for each syscall and is live from
1300  * syscall entry to syscall exit.
1301  *
1302  * NOTE: Another possibility is to store the formatted records off the
1303  * audit context (for those records that have a context), and emit them
1304  * all at syscall exit.  However, this could delay the reporting of
1305  * significant errors until syscall exit (or never, if the system
1306  * halts).
1307  */
1308 unsigned int audit_serial(void)
1309 {
1310 	static atomic_t serial = ATOMIC_INIT(0);
1311 
1312 	return atomic_add_return(1, &serial);
1313 }
1314 
1315 static inline void audit_get_stamp(struct audit_context *ctx,
1316 				   struct timespec *t, unsigned int *serial)
1317 {
1318 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1319 		*t = CURRENT_TIME;
1320 		*serial = audit_serial();
1321 	}
1322 }
1323 
1324 /*
1325  * Wait for auditd to drain the queue a little
1326  */
1327 static long wait_for_auditd(long sleep_time)
1328 {
1329 	DECLARE_WAITQUEUE(wait, current);
1330 	set_current_state(TASK_UNINTERRUPTIBLE);
1331 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1332 
1333 	if (audit_backlog_limit &&
1334 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1335 		sleep_time = schedule_timeout(sleep_time);
1336 
1337 	__set_current_state(TASK_RUNNING);
1338 	remove_wait_queue(&audit_backlog_wait, &wait);
1339 
1340 	return sleep_time;
1341 }
1342 
1343 /**
1344  * audit_log_start - obtain an audit buffer
1345  * @ctx: audit_context (may be NULL)
1346  * @gfp_mask: type of allocation
1347  * @type: audit message type
1348  *
1349  * Returns audit_buffer pointer on success or NULL on error.
1350  *
1351  * Obtain an audit buffer.  This routine does locking to obtain the
1352  * audit buffer, but then no locking is required for calls to
1353  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1354  * syscall, then the syscall is marked as auditable and an audit record
1355  * will be written at syscall exit.  If there is no associated task, then
1356  * task context (ctx) should be NULL.
1357  */
1358 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1359 				     int type)
1360 {
1361 	struct audit_buffer	*ab	= NULL;
1362 	struct timespec		t;
1363 	unsigned int		uninitialized_var(serial);
1364 	int reserve = 5; /* Allow atomic callers to go up to five
1365 			    entries over the normal backlog limit */
1366 	unsigned long timeout_start = jiffies;
1367 
1368 	if (audit_initialized != AUDIT_INITIALIZED)
1369 		return NULL;
1370 
1371 	if (unlikely(audit_filter_type(type)))
1372 		return NULL;
1373 
1374 	if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1375 		if (audit_pid && audit_pid == current->pid)
1376 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1377 		else
1378 			reserve = 0;
1379 	}
1380 
1381 	while (audit_backlog_limit
1382 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1383 		if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1384 			long sleep_time;
1385 
1386 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1387 			if (sleep_time > 0) {
1388 				sleep_time = wait_for_auditd(sleep_time);
1389 				if (sleep_time > 0)
1390 					continue;
1391 			}
1392 		}
1393 		if (audit_rate_check() && printk_ratelimit())
1394 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1395 				skb_queue_len(&audit_skb_queue),
1396 				audit_backlog_limit);
1397 		audit_log_lost("backlog limit exceeded");
1398 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1399 		wake_up(&audit_backlog_wait);
1400 		return NULL;
1401 	}
1402 
1403 	if (!reserve)
1404 		audit_backlog_wait_time = audit_backlog_wait_time_master;
1405 
1406 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1407 	if (!ab) {
1408 		audit_log_lost("out of memory in audit_log_start");
1409 		return NULL;
1410 	}
1411 
1412 	audit_get_stamp(ab->ctx, &t, &serial);
1413 
1414 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1415 			 t.tv_sec, t.tv_nsec/1000000, serial);
1416 	return ab;
1417 }
1418 
1419 /**
1420  * audit_expand - expand skb in the audit buffer
1421  * @ab: audit_buffer
1422  * @extra: space to add at tail of the skb
1423  *
1424  * Returns 0 (no space) on failed expansion, or available space if
1425  * successful.
1426  */
1427 static inline int audit_expand(struct audit_buffer *ab, int extra)
1428 {
1429 	struct sk_buff *skb = ab->skb;
1430 	int oldtail = skb_tailroom(skb);
1431 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1432 	int newtail = skb_tailroom(skb);
1433 
1434 	if (ret < 0) {
1435 		audit_log_lost("out of memory in audit_expand");
1436 		return 0;
1437 	}
1438 
1439 	skb->truesize += newtail - oldtail;
1440 	return newtail;
1441 }
1442 
1443 /*
1444  * Format an audit message into the audit buffer.  If there isn't enough
1445  * room in the audit buffer, more room will be allocated and vsnprint
1446  * will be called a second time.  Currently, we assume that a printk
1447  * can't format message larger than 1024 bytes, so we don't either.
1448  */
1449 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1450 			      va_list args)
1451 {
1452 	int len, avail;
1453 	struct sk_buff *skb;
1454 	va_list args2;
1455 
1456 	if (!ab)
1457 		return;
1458 
1459 	BUG_ON(!ab->skb);
1460 	skb = ab->skb;
1461 	avail = skb_tailroom(skb);
1462 	if (avail == 0) {
1463 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1464 		if (!avail)
1465 			goto out;
1466 	}
1467 	va_copy(args2, args);
1468 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1469 	if (len >= avail) {
1470 		/* The printk buffer is 1024 bytes long, so if we get
1471 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1472 		 * log everything that printk could have logged. */
1473 		avail = audit_expand(ab,
1474 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1475 		if (!avail)
1476 			goto out_va_end;
1477 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1478 	}
1479 	if (len > 0)
1480 		skb_put(skb, len);
1481 out_va_end:
1482 	va_end(args2);
1483 out:
1484 	return;
1485 }
1486 
1487 /**
1488  * audit_log_format - format a message into the audit buffer.
1489  * @ab: audit_buffer
1490  * @fmt: format string
1491  * @...: optional parameters matching @fmt string
1492  *
1493  * All the work is done in audit_log_vformat.
1494  */
1495 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1496 {
1497 	va_list args;
1498 
1499 	if (!ab)
1500 		return;
1501 	va_start(args, fmt);
1502 	audit_log_vformat(ab, fmt, args);
1503 	va_end(args);
1504 }
1505 
1506 /**
1507  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1508  * @ab: the audit_buffer
1509  * @buf: buffer to convert to hex
1510  * @len: length of @buf to be converted
1511  *
1512  * No return value; failure to expand is silently ignored.
1513  *
1514  * This function will take the passed buf and convert it into a string of
1515  * ascii hex digits. The new string is placed onto the skb.
1516  */
1517 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1518 		size_t len)
1519 {
1520 	int i, avail, new_len;
1521 	unsigned char *ptr;
1522 	struct sk_buff *skb;
1523 
1524 	if (!ab)
1525 		return;
1526 
1527 	BUG_ON(!ab->skb);
1528 	skb = ab->skb;
1529 	avail = skb_tailroom(skb);
1530 	new_len = len<<1;
1531 	if (new_len >= avail) {
1532 		/* Round the buffer request up to the next multiple */
1533 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1534 		avail = audit_expand(ab, new_len);
1535 		if (!avail)
1536 			return;
1537 	}
1538 
1539 	ptr = skb_tail_pointer(skb);
1540 	for (i = 0; i < len; i++)
1541 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1542 	*ptr = 0;
1543 	skb_put(skb, len << 1); /* new string is twice the old string */
1544 }
1545 
1546 /*
1547  * Format a string of no more than slen characters into the audit buffer,
1548  * enclosed in quote marks.
1549  */
1550 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1551 			size_t slen)
1552 {
1553 	int avail, new_len;
1554 	unsigned char *ptr;
1555 	struct sk_buff *skb;
1556 
1557 	if (!ab)
1558 		return;
1559 
1560 	BUG_ON(!ab->skb);
1561 	skb = ab->skb;
1562 	avail = skb_tailroom(skb);
1563 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1564 	if (new_len > avail) {
1565 		avail = audit_expand(ab, new_len);
1566 		if (!avail)
1567 			return;
1568 	}
1569 	ptr = skb_tail_pointer(skb);
1570 	*ptr++ = '"';
1571 	memcpy(ptr, string, slen);
1572 	ptr += slen;
1573 	*ptr++ = '"';
1574 	*ptr = 0;
1575 	skb_put(skb, slen + 2);	/* don't include null terminator */
1576 }
1577 
1578 /**
1579  * audit_string_contains_control - does a string need to be logged in hex
1580  * @string: string to be checked
1581  * @len: max length of the string to check
1582  */
1583 bool audit_string_contains_control(const char *string, size_t len)
1584 {
1585 	const unsigned char *p;
1586 	for (p = string; p < (const unsigned char *)string + len; p++) {
1587 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1588 			return true;
1589 	}
1590 	return false;
1591 }
1592 
1593 /**
1594  * audit_log_n_untrustedstring - log a string that may contain random characters
1595  * @ab: audit_buffer
1596  * @len: length of string (not including trailing null)
1597  * @string: string to be logged
1598  *
1599  * This code will escape a string that is passed to it if the string
1600  * contains a control character, unprintable character, double quote mark,
1601  * or a space. Unescaped strings will start and end with a double quote mark.
1602  * Strings that are escaped are printed in hex (2 digits per char).
1603  *
1604  * The caller specifies the number of characters in the string to log, which may
1605  * or may not be the entire string.
1606  */
1607 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1608 				 size_t len)
1609 {
1610 	if (audit_string_contains_control(string, len))
1611 		audit_log_n_hex(ab, string, len);
1612 	else
1613 		audit_log_n_string(ab, string, len);
1614 }
1615 
1616 /**
1617  * audit_log_untrustedstring - log a string that may contain random characters
1618  * @ab: audit_buffer
1619  * @string: string to be logged
1620  *
1621  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1622  * determine string length.
1623  */
1624 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1625 {
1626 	audit_log_n_untrustedstring(ab, string, strlen(string));
1627 }
1628 
1629 /* This is a helper-function to print the escaped d_path */
1630 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1631 		      const struct path *path)
1632 {
1633 	char *p, *pathname;
1634 
1635 	if (prefix)
1636 		audit_log_format(ab, "%s", prefix);
1637 
1638 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1639 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1640 	if (!pathname) {
1641 		audit_log_string(ab, "<no_memory>");
1642 		return;
1643 	}
1644 	p = d_path(path, pathname, PATH_MAX+11);
1645 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1646 		/* FIXME: can we save some information here? */
1647 		audit_log_string(ab, "<too_long>");
1648 	} else
1649 		audit_log_untrustedstring(ab, p);
1650 	kfree(pathname);
1651 }
1652 
1653 void audit_log_session_info(struct audit_buffer *ab)
1654 {
1655 	unsigned int sessionid = audit_get_sessionid(current);
1656 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1657 
1658 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1659 }
1660 
1661 void audit_log_key(struct audit_buffer *ab, char *key)
1662 {
1663 	audit_log_format(ab, " key=");
1664 	if (key)
1665 		audit_log_untrustedstring(ab, key);
1666 	else
1667 		audit_log_format(ab, "(null)");
1668 }
1669 
1670 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1671 {
1672 	int i;
1673 
1674 	audit_log_format(ab, " %s=", prefix);
1675 	CAP_FOR_EACH_U32(i) {
1676 		audit_log_format(ab, "%08x",
1677 				 cap->cap[CAP_LAST_U32 - i]);
1678 	}
1679 }
1680 
1681 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1682 {
1683 	kernel_cap_t *perm = &name->fcap.permitted;
1684 	kernel_cap_t *inh = &name->fcap.inheritable;
1685 	int log = 0;
1686 
1687 	if (!cap_isclear(*perm)) {
1688 		audit_log_cap(ab, "cap_fp", perm);
1689 		log = 1;
1690 	}
1691 	if (!cap_isclear(*inh)) {
1692 		audit_log_cap(ab, "cap_fi", inh);
1693 		log = 1;
1694 	}
1695 
1696 	if (log)
1697 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1698 				 name->fcap.fE, name->fcap_ver);
1699 }
1700 
1701 static inline int audit_copy_fcaps(struct audit_names *name,
1702 				   const struct dentry *dentry)
1703 {
1704 	struct cpu_vfs_cap_data caps;
1705 	int rc;
1706 
1707 	if (!dentry)
1708 		return 0;
1709 
1710 	rc = get_vfs_caps_from_disk(dentry, &caps);
1711 	if (rc)
1712 		return rc;
1713 
1714 	name->fcap.permitted = caps.permitted;
1715 	name->fcap.inheritable = caps.inheritable;
1716 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1717 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1718 				VFS_CAP_REVISION_SHIFT;
1719 
1720 	return 0;
1721 }
1722 
1723 /* Copy inode data into an audit_names. */
1724 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1725 		      const struct inode *inode)
1726 {
1727 	name->ino   = inode->i_ino;
1728 	name->dev   = inode->i_sb->s_dev;
1729 	name->mode  = inode->i_mode;
1730 	name->uid   = inode->i_uid;
1731 	name->gid   = inode->i_gid;
1732 	name->rdev  = inode->i_rdev;
1733 	security_inode_getsecid(inode, &name->osid);
1734 	audit_copy_fcaps(name, dentry);
1735 }
1736 
1737 /**
1738  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1739  * @context: audit_context for the task
1740  * @n: audit_names structure with reportable details
1741  * @path: optional path to report instead of audit_names->name
1742  * @record_num: record number to report when handling a list of names
1743  * @call_panic: optional pointer to int that will be updated if secid fails
1744  */
1745 void audit_log_name(struct audit_context *context, struct audit_names *n,
1746 		    struct path *path, int record_num, int *call_panic)
1747 {
1748 	struct audit_buffer *ab;
1749 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1750 	if (!ab)
1751 		return;
1752 
1753 	audit_log_format(ab, "item=%d", record_num);
1754 
1755 	if (path)
1756 		audit_log_d_path(ab, " name=", path);
1757 	else if (n->name) {
1758 		switch (n->name_len) {
1759 		case AUDIT_NAME_FULL:
1760 			/* log the full path */
1761 			audit_log_format(ab, " name=");
1762 			audit_log_untrustedstring(ab, n->name->name);
1763 			break;
1764 		case 0:
1765 			/* name was specified as a relative path and the
1766 			 * directory component is the cwd */
1767 			audit_log_d_path(ab, " name=", &context->pwd);
1768 			break;
1769 		default:
1770 			/* log the name's directory component */
1771 			audit_log_format(ab, " name=");
1772 			audit_log_n_untrustedstring(ab, n->name->name,
1773 						    n->name_len);
1774 		}
1775 	} else
1776 		audit_log_format(ab, " name=(null)");
1777 
1778 	if (n->ino != AUDIT_INO_UNSET)
1779 		audit_log_format(ab, " inode=%lu"
1780 				 " dev=%02x:%02x mode=%#ho"
1781 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1782 				 n->ino,
1783 				 MAJOR(n->dev),
1784 				 MINOR(n->dev),
1785 				 n->mode,
1786 				 from_kuid(&init_user_ns, n->uid),
1787 				 from_kgid(&init_user_ns, n->gid),
1788 				 MAJOR(n->rdev),
1789 				 MINOR(n->rdev));
1790 	if (n->osid != 0) {
1791 		char *ctx = NULL;
1792 		u32 len;
1793 		if (security_secid_to_secctx(
1794 			n->osid, &ctx, &len)) {
1795 			audit_log_format(ab, " osid=%u", n->osid);
1796 			if (call_panic)
1797 				*call_panic = 2;
1798 		} else {
1799 			audit_log_format(ab, " obj=%s", ctx);
1800 			security_release_secctx(ctx, len);
1801 		}
1802 	}
1803 
1804 	/* log the audit_names record type */
1805 	audit_log_format(ab, " nametype=");
1806 	switch(n->type) {
1807 	case AUDIT_TYPE_NORMAL:
1808 		audit_log_format(ab, "NORMAL");
1809 		break;
1810 	case AUDIT_TYPE_PARENT:
1811 		audit_log_format(ab, "PARENT");
1812 		break;
1813 	case AUDIT_TYPE_CHILD_DELETE:
1814 		audit_log_format(ab, "DELETE");
1815 		break;
1816 	case AUDIT_TYPE_CHILD_CREATE:
1817 		audit_log_format(ab, "CREATE");
1818 		break;
1819 	default:
1820 		audit_log_format(ab, "UNKNOWN");
1821 		break;
1822 	}
1823 
1824 	audit_log_fcaps(ab, n);
1825 	audit_log_end(ab);
1826 }
1827 
1828 int audit_log_task_context(struct audit_buffer *ab)
1829 {
1830 	char *ctx = NULL;
1831 	unsigned len;
1832 	int error;
1833 	u32 sid;
1834 
1835 	security_task_getsecid(current, &sid);
1836 	if (!sid)
1837 		return 0;
1838 
1839 	error = security_secid_to_secctx(sid, &ctx, &len);
1840 	if (error) {
1841 		if (error != -EINVAL)
1842 			goto error_path;
1843 		return 0;
1844 	}
1845 
1846 	audit_log_format(ab, " subj=%s", ctx);
1847 	security_release_secctx(ctx, len);
1848 	return 0;
1849 
1850 error_path:
1851 	audit_panic("error in audit_log_task_context");
1852 	return error;
1853 }
1854 EXPORT_SYMBOL(audit_log_task_context);
1855 
1856 void audit_log_d_path_exe(struct audit_buffer *ab,
1857 			  struct mm_struct *mm)
1858 {
1859 	struct file *exe_file;
1860 
1861 	if (!mm)
1862 		goto out_null;
1863 
1864 	exe_file = get_mm_exe_file(mm);
1865 	if (!exe_file)
1866 		goto out_null;
1867 
1868 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1869 	fput(exe_file);
1870 	return;
1871 out_null:
1872 	audit_log_format(ab, " exe=(null)");
1873 }
1874 
1875 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1876 {
1877 	const struct cred *cred;
1878 	char comm[sizeof(tsk->comm)];
1879 	char *tty;
1880 
1881 	if (!ab)
1882 		return;
1883 
1884 	/* tsk == current */
1885 	cred = current_cred();
1886 
1887 	spin_lock_irq(&tsk->sighand->siglock);
1888 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1889 		tty = tsk->signal->tty->name;
1890 	else
1891 		tty = "(none)";
1892 	spin_unlock_irq(&tsk->sighand->siglock);
1893 
1894 	audit_log_format(ab,
1895 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1896 			 " euid=%u suid=%u fsuid=%u"
1897 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1898 			 task_ppid_nr(tsk),
1899 			 task_pid_nr(tsk),
1900 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1901 			 from_kuid(&init_user_ns, cred->uid),
1902 			 from_kgid(&init_user_ns, cred->gid),
1903 			 from_kuid(&init_user_ns, cred->euid),
1904 			 from_kuid(&init_user_ns, cred->suid),
1905 			 from_kuid(&init_user_ns, cred->fsuid),
1906 			 from_kgid(&init_user_ns, cred->egid),
1907 			 from_kgid(&init_user_ns, cred->sgid),
1908 			 from_kgid(&init_user_ns, cred->fsgid),
1909 			 tty, audit_get_sessionid(tsk));
1910 
1911 	audit_log_format(ab, " comm=");
1912 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1913 
1914 	audit_log_d_path_exe(ab, tsk->mm);
1915 	audit_log_task_context(ab);
1916 }
1917 EXPORT_SYMBOL(audit_log_task_info);
1918 
1919 /**
1920  * audit_log_link_denied - report a link restriction denial
1921  * @operation: specific link operation
1922  * @link: the path that triggered the restriction
1923  */
1924 void audit_log_link_denied(const char *operation, struct path *link)
1925 {
1926 	struct audit_buffer *ab;
1927 	struct audit_names *name;
1928 
1929 	name = kzalloc(sizeof(*name), GFP_NOFS);
1930 	if (!name)
1931 		return;
1932 
1933 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1934 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1935 			     AUDIT_ANOM_LINK);
1936 	if (!ab)
1937 		goto out;
1938 	audit_log_format(ab, "op=%s", operation);
1939 	audit_log_task_info(ab, current);
1940 	audit_log_format(ab, " res=0");
1941 	audit_log_end(ab);
1942 
1943 	/* Generate AUDIT_PATH record with object. */
1944 	name->type = AUDIT_TYPE_NORMAL;
1945 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1946 	audit_log_name(current->audit_context, name, link, 0, NULL);
1947 out:
1948 	kfree(name);
1949 }
1950 
1951 /**
1952  * audit_log_end - end one audit record
1953  * @ab: the audit_buffer
1954  *
1955  * netlink_unicast() cannot be called inside an irq context because it blocks
1956  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1957  * on a queue and a tasklet is scheduled to remove them from the queue outside
1958  * the irq context.  May be called in any context.
1959  */
1960 void audit_log_end(struct audit_buffer *ab)
1961 {
1962 	if (!ab)
1963 		return;
1964 	if (!audit_rate_check()) {
1965 		audit_log_lost("rate limit exceeded");
1966 	} else {
1967 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1968 
1969 		nlh->nlmsg_len = ab->skb->len;
1970 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1971 
1972 		/*
1973 		 * The original kaudit unicast socket sends up messages with
1974 		 * nlmsg_len set to the payload length rather than the entire
1975 		 * message length.  This breaks the standard set by netlink.
1976 		 * The existing auditd daemon assumes this breakage.  Fixing
1977 		 * this would require co-ordinating a change in the established
1978 		 * protocol between the kaudit kernel subsystem and the auditd
1979 		 * userspace code.
1980 		 */
1981 		nlh->nlmsg_len -= NLMSG_HDRLEN;
1982 
1983 		if (audit_pid) {
1984 			skb_queue_tail(&audit_skb_queue, ab->skb);
1985 			wake_up_interruptible(&kauditd_wait);
1986 		} else {
1987 			audit_printk_skb(ab->skb);
1988 		}
1989 		ab->skb = NULL;
1990 	}
1991 	audit_buffer_free(ab);
1992 }
1993 
1994 /**
1995  * audit_log - Log an audit record
1996  * @ctx: audit context
1997  * @gfp_mask: type of allocation
1998  * @type: audit message type
1999  * @fmt: format string to use
2000  * @...: variable parameters matching the format string
2001  *
2002  * This is a convenience function that calls audit_log_start,
2003  * audit_log_vformat, and audit_log_end.  It may be called
2004  * in any context.
2005  */
2006 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2007 	       const char *fmt, ...)
2008 {
2009 	struct audit_buffer *ab;
2010 	va_list args;
2011 
2012 	ab = audit_log_start(ctx, gfp_mask, type);
2013 	if (ab) {
2014 		va_start(args, fmt);
2015 		audit_log_vformat(ab, fmt, args);
2016 		va_end(args);
2017 		audit_log_end(ab);
2018 	}
2019 }
2020 
2021 #ifdef CONFIG_SECURITY
2022 /**
2023  * audit_log_secctx - Converts and logs SELinux context
2024  * @ab: audit_buffer
2025  * @secid: security number
2026  *
2027  * This is a helper function that calls security_secid_to_secctx to convert
2028  * secid to secctx and then adds the (converted) SELinux context to the audit
2029  * log by calling audit_log_format, thus also preventing leak of internal secid
2030  * to userspace. If secid cannot be converted audit_panic is called.
2031  */
2032 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2033 {
2034 	u32 len;
2035 	char *secctx;
2036 
2037 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2038 		audit_panic("Cannot convert secid to context");
2039 	} else {
2040 		audit_log_format(ab, " obj=%s", secctx);
2041 		security_release_secctx(secctx, len);
2042 	}
2043 }
2044 EXPORT_SYMBOL(audit_log_secctx);
2045 #endif
2046 
2047 EXPORT_SYMBOL(audit_log_start);
2048 EXPORT_SYMBOL(audit_log_end);
2049 EXPORT_SYMBOL(audit_log_format);
2050 EXPORT_SYMBOL(audit_log);
2051