1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Audit userspace, documentation, tests, and bug/issue trackers: 42 * https://github.com/linux-audit 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/file.h> 48 #include <linux/init.h> 49 #include <linux/types.h> 50 #include <linux/atomic.h> 51 #include <linux/mm.h> 52 #include <linux/export.h> 53 #include <linux/slab.h> 54 #include <linux/err.h> 55 #include <linux/kthread.h> 56 #include <linux/kernel.h> 57 #include <linux/syscalls.h> 58 #include <linux/spinlock.h> 59 #include <linux/rcupdate.h> 60 #include <linux/mutex.h> 61 #include <linux/gfp.h> 62 #include <linux/pid.h> 63 64 #include <linux/audit.h> 65 66 #include <net/sock.h> 67 #include <net/netlink.h> 68 #include <linux/skbuff.h> 69 #ifdef CONFIG_SECURITY 70 #include <linux/security.h> 71 #endif 72 #include <linux/freezer.h> 73 #include <linux/pid_namespace.h> 74 #include <net/netns/generic.h> 75 76 #include "audit.h" 77 78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 79 * (Initialization happens after skb_init is called.) */ 80 #define AUDIT_DISABLED -1 81 #define AUDIT_UNINITIALIZED 0 82 #define AUDIT_INITIALIZED 1 83 static int audit_initialized; 84 85 u32 audit_enabled = AUDIT_OFF; 86 bool audit_ever_enabled = !!AUDIT_OFF; 87 88 EXPORT_SYMBOL_GPL(audit_enabled); 89 90 /* Default state when kernel boots without any parameters. */ 91 static u32 audit_default = AUDIT_OFF; 92 93 /* If auditing cannot proceed, audit_failure selects what happens. */ 94 static u32 audit_failure = AUDIT_FAIL_PRINTK; 95 96 /* private audit network namespace index */ 97 static unsigned int audit_net_id; 98 99 /** 100 * struct audit_net - audit private network namespace data 101 * @sk: communication socket 102 */ 103 struct audit_net { 104 struct sock *sk; 105 }; 106 107 /** 108 * struct auditd_connection - kernel/auditd connection state 109 * @pid: auditd PID 110 * @portid: netlink portid 111 * @net: the associated network namespace 112 * @rcu: RCU head 113 * 114 * Description: 115 * This struct is RCU protected; you must either hold the RCU lock for reading 116 * or the associated spinlock for writing. 117 */ 118 static struct auditd_connection { 119 struct pid *pid; 120 u32 portid; 121 struct net *net; 122 struct rcu_head rcu; 123 } *auditd_conn = NULL; 124 static DEFINE_SPINLOCK(auditd_conn_lock); 125 126 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 127 * to that number per second. This prevents DoS attacks, but results in 128 * audit records being dropped. */ 129 static u32 audit_rate_limit; 130 131 /* Number of outstanding audit_buffers allowed. 132 * When set to zero, this means unlimited. */ 133 static u32 audit_backlog_limit = 64; 134 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 135 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 136 137 /* The identity of the user shutting down the audit system. */ 138 kuid_t audit_sig_uid = INVALID_UID; 139 pid_t audit_sig_pid = -1; 140 u32 audit_sig_sid = 0; 141 142 /* Records can be lost in several ways: 143 0) [suppressed in audit_alloc] 144 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 145 2) out of memory in audit_log_move [alloc_skb] 146 3) suppressed due to audit_rate_limit 147 4) suppressed due to audit_backlog_limit 148 */ 149 static atomic_t audit_lost = ATOMIC_INIT(0); 150 151 /* Hash for inode-based rules */ 152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 153 154 static struct kmem_cache *audit_buffer_cache; 155 156 /* queue msgs to send via kauditd_task */ 157 static struct sk_buff_head audit_queue; 158 /* queue msgs due to temporary unicast send problems */ 159 static struct sk_buff_head audit_retry_queue; 160 /* queue msgs waiting for new auditd connection */ 161 static struct sk_buff_head audit_hold_queue; 162 163 /* queue servicing thread */ 164 static struct task_struct *kauditd_task; 165 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 166 167 /* waitqueue for callers who are blocked on the audit backlog */ 168 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 169 170 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 171 .mask = -1, 172 .features = 0, 173 .lock = 0,}; 174 175 static char *audit_feature_names[2] = { 176 "only_unset_loginuid", 177 "loginuid_immutable", 178 }; 179 180 /** 181 * struct audit_ctl_mutex - serialize requests from userspace 182 * @lock: the mutex used for locking 183 * @owner: the task which owns the lock 184 * 185 * Description: 186 * This is the lock struct used to ensure we only process userspace requests 187 * in an orderly fashion. We can't simply use a mutex/lock here because we 188 * need to track lock ownership so we don't end up blocking the lock owner in 189 * audit_log_start() or similar. 190 */ 191 static struct audit_ctl_mutex { 192 struct mutex lock; 193 void *owner; 194 } audit_cmd_mutex; 195 196 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 197 * audit records. Since printk uses a 1024 byte buffer, this buffer 198 * should be at least that large. */ 199 #define AUDIT_BUFSIZ 1024 200 201 /* The audit_buffer is used when formatting an audit record. The caller 202 * locks briefly to get the record off the freelist or to allocate the 203 * buffer, and locks briefly to send the buffer to the netlink layer or 204 * to place it on a transmit queue. Multiple audit_buffers can be in 205 * use simultaneously. */ 206 struct audit_buffer { 207 struct sk_buff *skb; /* formatted skb ready to send */ 208 struct audit_context *ctx; /* NULL or associated context */ 209 gfp_t gfp_mask; 210 }; 211 212 struct audit_reply { 213 __u32 portid; 214 struct net *net; 215 struct sk_buff *skb; 216 }; 217 218 /** 219 * auditd_test_task - Check to see if a given task is an audit daemon 220 * @task: the task to check 221 * 222 * Description: 223 * Return 1 if the task is a registered audit daemon, 0 otherwise. 224 */ 225 int auditd_test_task(struct task_struct *task) 226 { 227 int rc; 228 struct auditd_connection *ac; 229 230 rcu_read_lock(); 231 ac = rcu_dereference(auditd_conn); 232 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 233 rcu_read_unlock(); 234 235 return rc; 236 } 237 238 /** 239 * audit_ctl_lock - Take the audit control lock 240 */ 241 void audit_ctl_lock(void) 242 { 243 mutex_lock(&audit_cmd_mutex.lock); 244 audit_cmd_mutex.owner = current; 245 } 246 247 /** 248 * audit_ctl_unlock - Drop the audit control lock 249 */ 250 void audit_ctl_unlock(void) 251 { 252 audit_cmd_mutex.owner = NULL; 253 mutex_unlock(&audit_cmd_mutex.lock); 254 } 255 256 /** 257 * audit_ctl_owner_current - Test to see if the current task owns the lock 258 * 259 * Description: 260 * Return true if the current task owns the audit control lock, false if it 261 * doesn't own the lock. 262 */ 263 static bool audit_ctl_owner_current(void) 264 { 265 return (current == audit_cmd_mutex.owner); 266 } 267 268 /** 269 * auditd_pid_vnr - Return the auditd PID relative to the namespace 270 * 271 * Description: 272 * Returns the PID in relation to the namespace, 0 on failure. 273 */ 274 static pid_t auditd_pid_vnr(void) 275 { 276 pid_t pid; 277 const struct auditd_connection *ac; 278 279 rcu_read_lock(); 280 ac = rcu_dereference(auditd_conn); 281 if (!ac || !ac->pid) 282 pid = 0; 283 else 284 pid = pid_vnr(ac->pid); 285 rcu_read_unlock(); 286 287 return pid; 288 } 289 290 /** 291 * audit_get_sk - Return the audit socket for the given network namespace 292 * @net: the destination network namespace 293 * 294 * Description: 295 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 296 * that a reference is held for the network namespace while the sock is in use. 297 */ 298 static struct sock *audit_get_sk(const struct net *net) 299 { 300 struct audit_net *aunet; 301 302 if (!net) 303 return NULL; 304 305 aunet = net_generic(net, audit_net_id); 306 return aunet->sk; 307 } 308 309 void audit_panic(const char *message) 310 { 311 switch (audit_failure) { 312 case AUDIT_FAIL_SILENT: 313 break; 314 case AUDIT_FAIL_PRINTK: 315 if (printk_ratelimit()) 316 pr_err("%s\n", message); 317 break; 318 case AUDIT_FAIL_PANIC: 319 panic("audit: %s\n", message); 320 break; 321 } 322 } 323 324 static inline int audit_rate_check(void) 325 { 326 static unsigned long last_check = 0; 327 static int messages = 0; 328 static DEFINE_SPINLOCK(lock); 329 unsigned long flags; 330 unsigned long now; 331 unsigned long elapsed; 332 int retval = 0; 333 334 if (!audit_rate_limit) return 1; 335 336 spin_lock_irqsave(&lock, flags); 337 if (++messages < audit_rate_limit) { 338 retval = 1; 339 } else { 340 now = jiffies; 341 elapsed = now - last_check; 342 if (elapsed > HZ) { 343 last_check = now; 344 messages = 0; 345 retval = 1; 346 } 347 } 348 spin_unlock_irqrestore(&lock, flags); 349 350 return retval; 351 } 352 353 /** 354 * audit_log_lost - conditionally log lost audit message event 355 * @message: the message stating reason for lost audit message 356 * 357 * Emit at least 1 message per second, even if audit_rate_check is 358 * throttling. 359 * Always increment the lost messages counter. 360 */ 361 void audit_log_lost(const char *message) 362 { 363 static unsigned long last_msg = 0; 364 static DEFINE_SPINLOCK(lock); 365 unsigned long flags; 366 unsigned long now; 367 int print; 368 369 atomic_inc(&audit_lost); 370 371 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 372 373 if (!print) { 374 spin_lock_irqsave(&lock, flags); 375 now = jiffies; 376 if (now - last_msg > HZ) { 377 print = 1; 378 last_msg = now; 379 } 380 spin_unlock_irqrestore(&lock, flags); 381 } 382 383 if (print) { 384 if (printk_ratelimit()) 385 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 386 atomic_read(&audit_lost), 387 audit_rate_limit, 388 audit_backlog_limit); 389 audit_panic(message); 390 } 391 } 392 393 static int audit_log_config_change(char *function_name, u32 new, u32 old, 394 int allow_changes) 395 { 396 struct audit_buffer *ab; 397 int rc = 0; 398 399 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 400 if (unlikely(!ab)) 401 return rc; 402 audit_log_format(ab, "%s=%u old=%u ", function_name, new, old); 403 audit_log_session_info(ab); 404 rc = audit_log_task_context(ab); 405 if (rc) 406 allow_changes = 0; /* Something weird, deny request */ 407 audit_log_format(ab, " res=%d", allow_changes); 408 audit_log_end(ab); 409 return rc; 410 } 411 412 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 413 { 414 int allow_changes, rc = 0; 415 u32 old = *to_change; 416 417 /* check if we are locked */ 418 if (audit_enabled == AUDIT_LOCKED) 419 allow_changes = 0; 420 else 421 allow_changes = 1; 422 423 if (audit_enabled != AUDIT_OFF) { 424 rc = audit_log_config_change(function_name, new, old, allow_changes); 425 if (rc) 426 allow_changes = 0; 427 } 428 429 /* If we are allowed, make the change */ 430 if (allow_changes == 1) 431 *to_change = new; 432 /* Not allowed, update reason */ 433 else if (rc == 0) 434 rc = -EPERM; 435 return rc; 436 } 437 438 static int audit_set_rate_limit(u32 limit) 439 { 440 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 441 } 442 443 static int audit_set_backlog_limit(u32 limit) 444 { 445 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 446 } 447 448 static int audit_set_backlog_wait_time(u32 timeout) 449 { 450 return audit_do_config_change("audit_backlog_wait_time", 451 &audit_backlog_wait_time, timeout); 452 } 453 454 static int audit_set_enabled(u32 state) 455 { 456 int rc; 457 if (state > AUDIT_LOCKED) 458 return -EINVAL; 459 460 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 461 if (!rc) 462 audit_ever_enabled |= !!state; 463 464 return rc; 465 } 466 467 static int audit_set_failure(u32 state) 468 { 469 if (state != AUDIT_FAIL_SILENT 470 && state != AUDIT_FAIL_PRINTK 471 && state != AUDIT_FAIL_PANIC) 472 return -EINVAL; 473 474 return audit_do_config_change("audit_failure", &audit_failure, state); 475 } 476 477 /** 478 * auditd_conn_free - RCU helper to release an auditd connection struct 479 * @rcu: RCU head 480 * 481 * Description: 482 * Drop any references inside the auditd connection tracking struct and free 483 * the memory. 484 */ 485 static void auditd_conn_free(struct rcu_head *rcu) 486 { 487 struct auditd_connection *ac; 488 489 ac = container_of(rcu, struct auditd_connection, rcu); 490 put_pid(ac->pid); 491 put_net(ac->net); 492 kfree(ac); 493 } 494 495 /** 496 * auditd_set - Set/Reset the auditd connection state 497 * @pid: auditd PID 498 * @portid: auditd netlink portid 499 * @net: auditd network namespace pointer 500 * 501 * Description: 502 * This function will obtain and drop network namespace references as 503 * necessary. Returns zero on success, negative values on failure. 504 */ 505 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 506 { 507 unsigned long flags; 508 struct auditd_connection *ac_old, *ac_new; 509 510 if (!pid || !net) 511 return -EINVAL; 512 513 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 514 if (!ac_new) 515 return -ENOMEM; 516 ac_new->pid = get_pid(pid); 517 ac_new->portid = portid; 518 ac_new->net = get_net(net); 519 520 spin_lock_irqsave(&auditd_conn_lock, flags); 521 ac_old = rcu_dereference_protected(auditd_conn, 522 lockdep_is_held(&auditd_conn_lock)); 523 rcu_assign_pointer(auditd_conn, ac_new); 524 spin_unlock_irqrestore(&auditd_conn_lock, flags); 525 526 if (ac_old) 527 call_rcu(&ac_old->rcu, auditd_conn_free); 528 529 return 0; 530 } 531 532 /** 533 * kauditd_print_skb - Print the audit record to the ring buffer 534 * @skb: audit record 535 * 536 * Whatever the reason, this packet may not make it to the auditd connection 537 * so write it via printk so the information isn't completely lost. 538 */ 539 static void kauditd_printk_skb(struct sk_buff *skb) 540 { 541 struct nlmsghdr *nlh = nlmsg_hdr(skb); 542 char *data = nlmsg_data(nlh); 543 544 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 545 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 546 } 547 548 /** 549 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 550 * @skb: audit record 551 * 552 * Description: 553 * This should only be used by the kauditd_thread when it fails to flush the 554 * hold queue. 555 */ 556 static void kauditd_rehold_skb(struct sk_buff *skb) 557 { 558 /* put the record back in the queue at the same place */ 559 skb_queue_head(&audit_hold_queue, skb); 560 } 561 562 /** 563 * kauditd_hold_skb - Queue an audit record, waiting for auditd 564 * @skb: audit record 565 * 566 * Description: 567 * Queue the audit record, waiting for an instance of auditd. When this 568 * function is called we haven't given up yet on sending the record, but things 569 * are not looking good. The first thing we want to do is try to write the 570 * record via printk and then see if we want to try and hold on to the record 571 * and queue it, if we have room. If we want to hold on to the record, but we 572 * don't have room, record a record lost message. 573 */ 574 static void kauditd_hold_skb(struct sk_buff *skb) 575 { 576 /* at this point it is uncertain if we will ever send this to auditd so 577 * try to send the message via printk before we go any further */ 578 kauditd_printk_skb(skb); 579 580 /* can we just silently drop the message? */ 581 if (!audit_default) { 582 kfree_skb(skb); 583 return; 584 } 585 586 /* if we have room, queue the message */ 587 if (!audit_backlog_limit || 588 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 589 skb_queue_tail(&audit_hold_queue, skb); 590 return; 591 } 592 593 /* we have no other options - drop the message */ 594 audit_log_lost("kauditd hold queue overflow"); 595 kfree_skb(skb); 596 } 597 598 /** 599 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 600 * @skb: audit record 601 * 602 * Description: 603 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 604 * but for some reason we are having problems sending it audit records so 605 * queue the given record and attempt to resend. 606 */ 607 static void kauditd_retry_skb(struct sk_buff *skb) 608 { 609 /* NOTE: because records should only live in the retry queue for a 610 * short period of time, before either being sent or moved to the hold 611 * queue, we don't currently enforce a limit on this queue */ 612 skb_queue_tail(&audit_retry_queue, skb); 613 } 614 615 /** 616 * auditd_reset - Disconnect the auditd connection 617 * @ac: auditd connection state 618 * 619 * Description: 620 * Break the auditd/kauditd connection and move all the queued records into the 621 * hold queue in case auditd reconnects. It is important to note that the @ac 622 * pointer should never be dereferenced inside this function as it may be NULL 623 * or invalid, you can only compare the memory address! If @ac is NULL then 624 * the connection will always be reset. 625 */ 626 static void auditd_reset(const struct auditd_connection *ac) 627 { 628 unsigned long flags; 629 struct sk_buff *skb; 630 struct auditd_connection *ac_old; 631 632 /* if it isn't already broken, break the connection */ 633 spin_lock_irqsave(&auditd_conn_lock, flags); 634 ac_old = rcu_dereference_protected(auditd_conn, 635 lockdep_is_held(&auditd_conn_lock)); 636 if (ac && ac != ac_old) { 637 /* someone already registered a new auditd connection */ 638 spin_unlock_irqrestore(&auditd_conn_lock, flags); 639 return; 640 } 641 rcu_assign_pointer(auditd_conn, NULL); 642 spin_unlock_irqrestore(&auditd_conn_lock, flags); 643 644 if (ac_old) 645 call_rcu(&ac_old->rcu, auditd_conn_free); 646 647 /* flush the retry queue to the hold queue, but don't touch the main 648 * queue since we need to process that normally for multicast */ 649 while ((skb = skb_dequeue(&audit_retry_queue))) 650 kauditd_hold_skb(skb); 651 } 652 653 /** 654 * auditd_send_unicast_skb - Send a record via unicast to auditd 655 * @skb: audit record 656 * 657 * Description: 658 * Send a skb to the audit daemon, returns positive/zero values on success and 659 * negative values on failure; in all cases the skb will be consumed by this 660 * function. If the send results in -ECONNREFUSED the connection with auditd 661 * will be reset. This function may sleep so callers should not hold any locks 662 * where this would cause a problem. 663 */ 664 static int auditd_send_unicast_skb(struct sk_buff *skb) 665 { 666 int rc; 667 u32 portid; 668 struct net *net; 669 struct sock *sk; 670 struct auditd_connection *ac; 671 672 /* NOTE: we can't call netlink_unicast while in the RCU section so 673 * take a reference to the network namespace and grab local 674 * copies of the namespace, the sock, and the portid; the 675 * namespace and sock aren't going to go away while we hold a 676 * reference and if the portid does become invalid after the RCU 677 * section netlink_unicast() should safely return an error */ 678 679 rcu_read_lock(); 680 ac = rcu_dereference(auditd_conn); 681 if (!ac) { 682 rcu_read_unlock(); 683 kfree_skb(skb); 684 rc = -ECONNREFUSED; 685 goto err; 686 } 687 net = get_net(ac->net); 688 sk = audit_get_sk(net); 689 portid = ac->portid; 690 rcu_read_unlock(); 691 692 rc = netlink_unicast(sk, skb, portid, 0); 693 put_net(net); 694 if (rc < 0) 695 goto err; 696 697 return rc; 698 699 err: 700 if (ac && rc == -ECONNREFUSED) 701 auditd_reset(ac); 702 return rc; 703 } 704 705 /** 706 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 707 * @sk: the sending sock 708 * @portid: the netlink destination 709 * @queue: the skb queue to process 710 * @retry_limit: limit on number of netlink unicast failures 711 * @skb_hook: per-skb hook for additional processing 712 * @err_hook: hook called if the skb fails the netlink unicast send 713 * 714 * Description: 715 * Run through the given queue and attempt to send the audit records to auditd, 716 * returns zero on success, negative values on failure. It is up to the caller 717 * to ensure that the @sk is valid for the duration of this function. 718 * 719 */ 720 static int kauditd_send_queue(struct sock *sk, u32 portid, 721 struct sk_buff_head *queue, 722 unsigned int retry_limit, 723 void (*skb_hook)(struct sk_buff *skb), 724 void (*err_hook)(struct sk_buff *skb)) 725 { 726 int rc = 0; 727 struct sk_buff *skb; 728 static unsigned int failed = 0; 729 730 /* NOTE: kauditd_thread takes care of all our locking, we just use 731 * the netlink info passed to us (e.g. sk and portid) */ 732 733 while ((skb = skb_dequeue(queue))) { 734 /* call the skb_hook for each skb we touch */ 735 if (skb_hook) 736 (*skb_hook)(skb); 737 738 /* can we send to anyone via unicast? */ 739 if (!sk) { 740 if (err_hook) 741 (*err_hook)(skb); 742 continue; 743 } 744 745 /* grab an extra skb reference in case of error */ 746 skb_get(skb); 747 rc = netlink_unicast(sk, skb, portid, 0); 748 if (rc < 0) { 749 /* fatal failure for our queue flush attempt? */ 750 if (++failed >= retry_limit || 751 rc == -ECONNREFUSED || rc == -EPERM) { 752 /* yes - error processing for the queue */ 753 sk = NULL; 754 if (err_hook) 755 (*err_hook)(skb); 756 if (!skb_hook) 757 goto out; 758 /* keep processing with the skb_hook */ 759 continue; 760 } else 761 /* no - requeue to preserve ordering */ 762 skb_queue_head(queue, skb); 763 } else { 764 /* it worked - drop the extra reference and continue */ 765 consume_skb(skb); 766 failed = 0; 767 } 768 } 769 770 out: 771 return (rc >= 0 ? 0 : rc); 772 } 773 774 /* 775 * kauditd_send_multicast_skb - Send a record to any multicast listeners 776 * @skb: audit record 777 * 778 * Description: 779 * Write a multicast message to anyone listening in the initial network 780 * namespace. This function doesn't consume an skb as might be expected since 781 * it has to copy it anyways. 782 */ 783 static void kauditd_send_multicast_skb(struct sk_buff *skb) 784 { 785 struct sk_buff *copy; 786 struct sock *sock = audit_get_sk(&init_net); 787 struct nlmsghdr *nlh; 788 789 /* NOTE: we are not taking an additional reference for init_net since 790 * we don't have to worry about it going away */ 791 792 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 793 return; 794 795 /* 796 * The seemingly wasteful skb_copy() rather than bumping the refcount 797 * using skb_get() is necessary because non-standard mods are made to 798 * the skb by the original kaudit unicast socket send routine. The 799 * existing auditd daemon assumes this breakage. Fixing this would 800 * require co-ordinating a change in the established protocol between 801 * the kaudit kernel subsystem and the auditd userspace code. There is 802 * no reason for new multicast clients to continue with this 803 * non-compliance. 804 */ 805 copy = skb_copy(skb, GFP_KERNEL); 806 if (!copy) 807 return; 808 nlh = nlmsg_hdr(copy); 809 nlh->nlmsg_len = skb->len; 810 811 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 812 } 813 814 /** 815 * kauditd_thread - Worker thread to send audit records to userspace 816 * @dummy: unused 817 */ 818 static int kauditd_thread(void *dummy) 819 { 820 int rc; 821 u32 portid = 0; 822 struct net *net = NULL; 823 struct sock *sk = NULL; 824 struct auditd_connection *ac; 825 826 #define UNICAST_RETRIES 5 827 828 set_freezable(); 829 while (!kthread_should_stop()) { 830 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 831 rcu_read_lock(); 832 ac = rcu_dereference(auditd_conn); 833 if (!ac) { 834 rcu_read_unlock(); 835 goto main_queue; 836 } 837 net = get_net(ac->net); 838 sk = audit_get_sk(net); 839 portid = ac->portid; 840 rcu_read_unlock(); 841 842 /* attempt to flush the hold queue */ 843 rc = kauditd_send_queue(sk, portid, 844 &audit_hold_queue, UNICAST_RETRIES, 845 NULL, kauditd_rehold_skb); 846 if (ac && rc < 0) { 847 sk = NULL; 848 auditd_reset(ac); 849 goto main_queue; 850 } 851 852 /* attempt to flush the retry queue */ 853 rc = kauditd_send_queue(sk, portid, 854 &audit_retry_queue, UNICAST_RETRIES, 855 NULL, kauditd_hold_skb); 856 if (ac && rc < 0) { 857 sk = NULL; 858 auditd_reset(ac); 859 goto main_queue; 860 } 861 862 main_queue: 863 /* process the main queue - do the multicast send and attempt 864 * unicast, dump failed record sends to the retry queue; if 865 * sk == NULL due to previous failures we will just do the 866 * multicast send and move the record to the hold queue */ 867 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 868 kauditd_send_multicast_skb, 869 (sk ? 870 kauditd_retry_skb : kauditd_hold_skb)); 871 if (ac && rc < 0) 872 auditd_reset(ac); 873 sk = NULL; 874 875 /* drop our netns reference, no auditd sends past this line */ 876 if (net) { 877 put_net(net); 878 net = NULL; 879 } 880 881 /* we have processed all the queues so wake everyone */ 882 wake_up(&audit_backlog_wait); 883 884 /* NOTE: we want to wake up if there is anything on the queue, 885 * regardless of if an auditd is connected, as we need to 886 * do the multicast send and rotate records from the 887 * main queue to the retry/hold queues */ 888 wait_event_freezable(kauditd_wait, 889 (skb_queue_len(&audit_queue) ? 1 : 0)); 890 } 891 892 return 0; 893 } 894 895 int audit_send_list(void *_dest) 896 { 897 struct audit_netlink_list *dest = _dest; 898 struct sk_buff *skb; 899 struct sock *sk = audit_get_sk(dest->net); 900 901 /* wait for parent to finish and send an ACK */ 902 audit_ctl_lock(); 903 audit_ctl_unlock(); 904 905 while ((skb = __skb_dequeue(&dest->q)) != NULL) 906 netlink_unicast(sk, skb, dest->portid, 0); 907 908 put_net(dest->net); 909 kfree(dest); 910 911 return 0; 912 } 913 914 struct sk_buff *audit_make_reply(int seq, int type, int done, 915 int multi, const void *payload, int size) 916 { 917 struct sk_buff *skb; 918 struct nlmsghdr *nlh; 919 void *data; 920 int flags = multi ? NLM_F_MULTI : 0; 921 int t = done ? NLMSG_DONE : type; 922 923 skb = nlmsg_new(size, GFP_KERNEL); 924 if (!skb) 925 return NULL; 926 927 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 928 if (!nlh) 929 goto out_kfree_skb; 930 data = nlmsg_data(nlh); 931 memcpy(data, payload, size); 932 return skb; 933 934 out_kfree_skb: 935 kfree_skb(skb); 936 return NULL; 937 } 938 939 static int audit_send_reply_thread(void *arg) 940 { 941 struct audit_reply *reply = (struct audit_reply *)arg; 942 struct sock *sk = audit_get_sk(reply->net); 943 944 audit_ctl_lock(); 945 audit_ctl_unlock(); 946 947 /* Ignore failure. It'll only happen if the sender goes away, 948 because our timeout is set to infinite. */ 949 netlink_unicast(sk, reply->skb, reply->portid, 0); 950 put_net(reply->net); 951 kfree(reply); 952 return 0; 953 } 954 955 /** 956 * audit_send_reply - send an audit reply message via netlink 957 * @request_skb: skb of request we are replying to (used to target the reply) 958 * @seq: sequence number 959 * @type: audit message type 960 * @done: done (last) flag 961 * @multi: multi-part message flag 962 * @payload: payload data 963 * @size: payload size 964 * 965 * Allocates an skb, builds the netlink message, and sends it to the port id. 966 * No failure notifications. 967 */ 968 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 969 int multi, const void *payload, int size) 970 { 971 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 972 struct sk_buff *skb; 973 struct task_struct *tsk; 974 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 975 GFP_KERNEL); 976 977 if (!reply) 978 return; 979 980 skb = audit_make_reply(seq, type, done, multi, payload, size); 981 if (!skb) 982 goto out; 983 984 reply->net = get_net(net); 985 reply->portid = NETLINK_CB(request_skb).portid; 986 reply->skb = skb; 987 988 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 989 if (!IS_ERR(tsk)) 990 return; 991 kfree_skb(skb); 992 out: 993 kfree(reply); 994 } 995 996 /* 997 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 998 * control messages. 999 */ 1000 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1001 { 1002 int err = 0; 1003 1004 /* Only support initial user namespace for now. */ 1005 /* 1006 * We return ECONNREFUSED because it tricks userspace into thinking 1007 * that audit was not configured into the kernel. Lots of users 1008 * configure their PAM stack (because that's what the distro does) 1009 * to reject login if unable to send messages to audit. If we return 1010 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1011 * configured in and will let login proceed. If we return EPERM 1012 * userspace will reject all logins. This should be removed when we 1013 * support non init namespaces!! 1014 */ 1015 if (current_user_ns() != &init_user_ns) 1016 return -ECONNREFUSED; 1017 1018 switch (msg_type) { 1019 case AUDIT_LIST: 1020 case AUDIT_ADD: 1021 case AUDIT_DEL: 1022 return -EOPNOTSUPP; 1023 case AUDIT_GET: 1024 case AUDIT_SET: 1025 case AUDIT_GET_FEATURE: 1026 case AUDIT_SET_FEATURE: 1027 case AUDIT_LIST_RULES: 1028 case AUDIT_ADD_RULE: 1029 case AUDIT_DEL_RULE: 1030 case AUDIT_SIGNAL_INFO: 1031 case AUDIT_TTY_GET: 1032 case AUDIT_TTY_SET: 1033 case AUDIT_TRIM: 1034 case AUDIT_MAKE_EQUIV: 1035 /* Only support auditd and auditctl in initial pid namespace 1036 * for now. */ 1037 if (task_active_pid_ns(current) != &init_pid_ns) 1038 return -EPERM; 1039 1040 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1041 err = -EPERM; 1042 break; 1043 case AUDIT_USER: 1044 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1045 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1046 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1047 err = -EPERM; 1048 break; 1049 default: /* bad msg */ 1050 err = -EINVAL; 1051 } 1052 1053 return err; 1054 } 1055 1056 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 1057 { 1058 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1059 pid_t pid = task_tgid_nr(current); 1060 1061 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1062 *ab = NULL; 1063 return; 1064 } 1065 1066 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 1067 if (unlikely(!*ab)) 1068 return; 1069 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1070 audit_log_session_info(*ab); 1071 audit_log_task_context(*ab); 1072 } 1073 1074 int is_audit_feature_set(int i) 1075 { 1076 return af.features & AUDIT_FEATURE_TO_MASK(i); 1077 } 1078 1079 1080 static int audit_get_feature(struct sk_buff *skb) 1081 { 1082 u32 seq; 1083 1084 seq = nlmsg_hdr(skb)->nlmsg_seq; 1085 1086 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1087 1088 return 0; 1089 } 1090 1091 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1092 u32 old_lock, u32 new_lock, int res) 1093 { 1094 struct audit_buffer *ab; 1095 1096 if (audit_enabled == AUDIT_OFF) 1097 return; 1098 1099 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1100 if (!ab) 1101 return; 1102 audit_log_task_info(ab); 1103 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1104 audit_feature_names[which], !!old_feature, !!new_feature, 1105 !!old_lock, !!new_lock, res); 1106 audit_log_end(ab); 1107 } 1108 1109 static int audit_set_feature(struct sk_buff *skb) 1110 { 1111 struct audit_features *uaf; 1112 int i; 1113 1114 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1115 uaf = nlmsg_data(nlmsg_hdr(skb)); 1116 1117 /* if there is ever a version 2 we should handle that here */ 1118 1119 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1120 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1121 u32 old_feature, new_feature, old_lock, new_lock; 1122 1123 /* if we are not changing this feature, move along */ 1124 if (!(feature & uaf->mask)) 1125 continue; 1126 1127 old_feature = af.features & feature; 1128 new_feature = uaf->features & feature; 1129 new_lock = (uaf->lock | af.lock) & feature; 1130 old_lock = af.lock & feature; 1131 1132 /* are we changing a locked feature? */ 1133 if (old_lock && (new_feature != old_feature)) { 1134 audit_log_feature_change(i, old_feature, new_feature, 1135 old_lock, new_lock, 0); 1136 return -EPERM; 1137 } 1138 } 1139 /* nothing invalid, do the changes */ 1140 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1141 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1142 u32 old_feature, new_feature, old_lock, new_lock; 1143 1144 /* if we are not changing this feature, move along */ 1145 if (!(feature & uaf->mask)) 1146 continue; 1147 1148 old_feature = af.features & feature; 1149 new_feature = uaf->features & feature; 1150 old_lock = af.lock & feature; 1151 new_lock = (uaf->lock | af.lock) & feature; 1152 1153 if (new_feature != old_feature) 1154 audit_log_feature_change(i, old_feature, new_feature, 1155 old_lock, new_lock, 1); 1156 1157 if (new_feature) 1158 af.features |= feature; 1159 else 1160 af.features &= ~feature; 1161 af.lock |= new_lock; 1162 } 1163 1164 return 0; 1165 } 1166 1167 static int audit_replace(struct pid *pid) 1168 { 1169 pid_t pvnr; 1170 struct sk_buff *skb; 1171 1172 pvnr = pid_vnr(pid); 1173 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1174 if (!skb) 1175 return -ENOMEM; 1176 return auditd_send_unicast_skb(skb); 1177 } 1178 1179 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1180 { 1181 u32 seq; 1182 void *data; 1183 int err; 1184 struct audit_buffer *ab; 1185 u16 msg_type = nlh->nlmsg_type; 1186 struct audit_sig_info *sig_data; 1187 char *ctx = NULL; 1188 u32 len; 1189 1190 err = audit_netlink_ok(skb, msg_type); 1191 if (err) 1192 return err; 1193 1194 seq = nlh->nlmsg_seq; 1195 data = nlmsg_data(nlh); 1196 1197 switch (msg_type) { 1198 case AUDIT_GET: { 1199 struct audit_status s; 1200 memset(&s, 0, sizeof(s)); 1201 s.enabled = audit_enabled; 1202 s.failure = audit_failure; 1203 /* NOTE: use pid_vnr() so the PID is relative to the current 1204 * namespace */ 1205 s.pid = auditd_pid_vnr(); 1206 s.rate_limit = audit_rate_limit; 1207 s.backlog_limit = audit_backlog_limit; 1208 s.lost = atomic_read(&audit_lost); 1209 s.backlog = skb_queue_len(&audit_queue); 1210 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1211 s.backlog_wait_time = audit_backlog_wait_time; 1212 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1213 break; 1214 } 1215 case AUDIT_SET: { 1216 struct audit_status s; 1217 memset(&s, 0, sizeof(s)); 1218 /* guard against past and future API changes */ 1219 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1220 if (s.mask & AUDIT_STATUS_ENABLED) { 1221 err = audit_set_enabled(s.enabled); 1222 if (err < 0) 1223 return err; 1224 } 1225 if (s.mask & AUDIT_STATUS_FAILURE) { 1226 err = audit_set_failure(s.failure); 1227 if (err < 0) 1228 return err; 1229 } 1230 if (s.mask & AUDIT_STATUS_PID) { 1231 /* NOTE: we are using the vnr PID functions below 1232 * because the s.pid value is relative to the 1233 * namespace of the caller; at present this 1234 * doesn't matter much since you can really only 1235 * run auditd from the initial pid namespace, but 1236 * something to keep in mind if this changes */ 1237 pid_t new_pid = s.pid; 1238 pid_t auditd_pid; 1239 struct pid *req_pid = task_tgid(current); 1240 1241 /* Sanity check - PID values must match. Setting 1242 * pid to 0 is how auditd ends auditing. */ 1243 if (new_pid && (new_pid != pid_vnr(req_pid))) 1244 return -EINVAL; 1245 1246 /* test the auditd connection */ 1247 audit_replace(req_pid); 1248 1249 auditd_pid = auditd_pid_vnr(); 1250 if (auditd_pid) { 1251 /* replacing a healthy auditd is not allowed */ 1252 if (new_pid) { 1253 audit_log_config_change("audit_pid", 1254 new_pid, auditd_pid, 0); 1255 return -EEXIST; 1256 } 1257 /* only current auditd can unregister itself */ 1258 if (pid_vnr(req_pid) != auditd_pid) { 1259 audit_log_config_change("audit_pid", 1260 new_pid, auditd_pid, 0); 1261 return -EACCES; 1262 } 1263 } 1264 1265 if (new_pid) { 1266 /* register a new auditd connection */ 1267 err = auditd_set(req_pid, 1268 NETLINK_CB(skb).portid, 1269 sock_net(NETLINK_CB(skb).sk)); 1270 if (audit_enabled != AUDIT_OFF) 1271 audit_log_config_change("audit_pid", 1272 new_pid, 1273 auditd_pid, 1274 err ? 0 : 1); 1275 if (err) 1276 return err; 1277 1278 /* try to process any backlog */ 1279 wake_up_interruptible(&kauditd_wait); 1280 } else { 1281 if (audit_enabled != AUDIT_OFF) 1282 audit_log_config_change("audit_pid", 1283 new_pid, 1284 auditd_pid, 1); 1285 1286 /* unregister the auditd connection */ 1287 auditd_reset(NULL); 1288 } 1289 } 1290 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1291 err = audit_set_rate_limit(s.rate_limit); 1292 if (err < 0) 1293 return err; 1294 } 1295 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1296 err = audit_set_backlog_limit(s.backlog_limit); 1297 if (err < 0) 1298 return err; 1299 } 1300 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1301 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1302 return -EINVAL; 1303 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1304 return -EINVAL; 1305 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1306 if (err < 0) 1307 return err; 1308 } 1309 if (s.mask == AUDIT_STATUS_LOST) { 1310 u32 lost = atomic_xchg(&audit_lost, 0); 1311 1312 audit_log_config_change("lost", 0, lost, 1); 1313 return lost; 1314 } 1315 break; 1316 } 1317 case AUDIT_GET_FEATURE: 1318 err = audit_get_feature(skb); 1319 if (err) 1320 return err; 1321 break; 1322 case AUDIT_SET_FEATURE: 1323 err = audit_set_feature(skb); 1324 if (err) 1325 return err; 1326 break; 1327 case AUDIT_USER: 1328 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1329 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1330 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1331 return 0; 1332 1333 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1334 if (err == 1) { /* match or error */ 1335 err = 0; 1336 if (msg_type == AUDIT_USER_TTY) { 1337 err = tty_audit_push(); 1338 if (err) 1339 break; 1340 } 1341 audit_log_common_recv_msg(&ab, msg_type); 1342 if (msg_type != AUDIT_USER_TTY) 1343 audit_log_format(ab, " msg='%.*s'", 1344 AUDIT_MESSAGE_TEXT_MAX, 1345 (char *)data); 1346 else { 1347 int size; 1348 1349 audit_log_format(ab, " data="); 1350 size = nlmsg_len(nlh); 1351 if (size > 0 && 1352 ((unsigned char *)data)[size - 1] == '\0') 1353 size--; 1354 audit_log_n_untrustedstring(ab, data, size); 1355 } 1356 audit_log_end(ab); 1357 } 1358 break; 1359 case AUDIT_ADD_RULE: 1360 case AUDIT_DEL_RULE: 1361 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1362 return -EINVAL; 1363 if (audit_enabled == AUDIT_LOCKED) { 1364 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1365 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1366 audit_log_end(ab); 1367 return -EPERM; 1368 } 1369 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1370 break; 1371 case AUDIT_LIST_RULES: 1372 err = audit_list_rules_send(skb, seq); 1373 break; 1374 case AUDIT_TRIM: 1375 audit_trim_trees(); 1376 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1377 audit_log_format(ab, " op=trim res=1"); 1378 audit_log_end(ab); 1379 break; 1380 case AUDIT_MAKE_EQUIV: { 1381 void *bufp = data; 1382 u32 sizes[2]; 1383 size_t msglen = nlmsg_len(nlh); 1384 char *old, *new; 1385 1386 err = -EINVAL; 1387 if (msglen < 2 * sizeof(u32)) 1388 break; 1389 memcpy(sizes, bufp, 2 * sizeof(u32)); 1390 bufp += 2 * sizeof(u32); 1391 msglen -= 2 * sizeof(u32); 1392 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1393 if (IS_ERR(old)) { 1394 err = PTR_ERR(old); 1395 break; 1396 } 1397 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1398 if (IS_ERR(new)) { 1399 err = PTR_ERR(new); 1400 kfree(old); 1401 break; 1402 } 1403 /* OK, here comes... */ 1404 err = audit_tag_tree(old, new); 1405 1406 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1407 1408 audit_log_format(ab, " op=make_equiv old="); 1409 audit_log_untrustedstring(ab, old); 1410 audit_log_format(ab, " new="); 1411 audit_log_untrustedstring(ab, new); 1412 audit_log_format(ab, " res=%d", !err); 1413 audit_log_end(ab); 1414 kfree(old); 1415 kfree(new); 1416 break; 1417 } 1418 case AUDIT_SIGNAL_INFO: 1419 len = 0; 1420 if (audit_sig_sid) { 1421 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1422 if (err) 1423 return err; 1424 } 1425 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1426 if (!sig_data) { 1427 if (audit_sig_sid) 1428 security_release_secctx(ctx, len); 1429 return -ENOMEM; 1430 } 1431 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1432 sig_data->pid = audit_sig_pid; 1433 if (audit_sig_sid) { 1434 memcpy(sig_data->ctx, ctx, len); 1435 security_release_secctx(ctx, len); 1436 } 1437 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1438 sig_data, sizeof(*sig_data) + len); 1439 kfree(sig_data); 1440 break; 1441 case AUDIT_TTY_GET: { 1442 struct audit_tty_status s; 1443 unsigned int t; 1444 1445 t = READ_ONCE(current->signal->audit_tty); 1446 s.enabled = t & AUDIT_TTY_ENABLE; 1447 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1448 1449 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1450 break; 1451 } 1452 case AUDIT_TTY_SET: { 1453 struct audit_tty_status s, old; 1454 struct audit_buffer *ab; 1455 unsigned int t; 1456 1457 memset(&s, 0, sizeof(s)); 1458 /* guard against past and future API changes */ 1459 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1460 /* check if new data is valid */ 1461 if ((s.enabled != 0 && s.enabled != 1) || 1462 (s.log_passwd != 0 && s.log_passwd != 1)) 1463 err = -EINVAL; 1464 1465 if (err) 1466 t = READ_ONCE(current->signal->audit_tty); 1467 else { 1468 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1469 t = xchg(¤t->signal->audit_tty, t); 1470 } 1471 old.enabled = t & AUDIT_TTY_ENABLE; 1472 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1473 1474 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1475 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1476 " old-log_passwd=%d new-log_passwd=%d res=%d", 1477 old.enabled, s.enabled, old.log_passwd, 1478 s.log_passwd, !err); 1479 audit_log_end(ab); 1480 break; 1481 } 1482 default: 1483 err = -EINVAL; 1484 break; 1485 } 1486 1487 return err < 0 ? err : 0; 1488 } 1489 1490 /** 1491 * audit_receive - receive messages from a netlink control socket 1492 * @skb: the message buffer 1493 * 1494 * Parse the provided skb and deal with any messages that may be present, 1495 * malformed skbs are discarded. 1496 */ 1497 static void audit_receive(struct sk_buff *skb) 1498 { 1499 struct nlmsghdr *nlh; 1500 /* 1501 * len MUST be signed for nlmsg_next to be able to dec it below 0 1502 * if the nlmsg_len was not aligned 1503 */ 1504 int len; 1505 int err; 1506 1507 nlh = nlmsg_hdr(skb); 1508 len = skb->len; 1509 1510 audit_ctl_lock(); 1511 while (nlmsg_ok(nlh, len)) { 1512 err = audit_receive_msg(skb, nlh); 1513 /* if err or if this message says it wants a response */ 1514 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1515 netlink_ack(skb, nlh, err, NULL); 1516 1517 nlh = nlmsg_next(nlh, &len); 1518 } 1519 audit_ctl_unlock(); 1520 } 1521 1522 /* Run custom bind function on netlink socket group connect or bind requests. */ 1523 static int audit_bind(struct net *net, int group) 1524 { 1525 if (!capable(CAP_AUDIT_READ)) 1526 return -EPERM; 1527 1528 return 0; 1529 } 1530 1531 static int __net_init audit_net_init(struct net *net) 1532 { 1533 struct netlink_kernel_cfg cfg = { 1534 .input = audit_receive, 1535 .bind = audit_bind, 1536 .flags = NL_CFG_F_NONROOT_RECV, 1537 .groups = AUDIT_NLGRP_MAX, 1538 }; 1539 1540 struct audit_net *aunet = net_generic(net, audit_net_id); 1541 1542 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1543 if (aunet->sk == NULL) { 1544 audit_panic("cannot initialize netlink socket in namespace"); 1545 return -ENOMEM; 1546 } 1547 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1548 1549 return 0; 1550 } 1551 1552 static void __net_exit audit_net_exit(struct net *net) 1553 { 1554 struct audit_net *aunet = net_generic(net, audit_net_id); 1555 1556 /* NOTE: you would think that we would want to check the auditd 1557 * connection and potentially reset it here if it lives in this 1558 * namespace, but since the auditd connection tracking struct holds a 1559 * reference to this namespace (see auditd_set()) we are only ever 1560 * going to get here after that connection has been released */ 1561 1562 netlink_kernel_release(aunet->sk); 1563 } 1564 1565 static struct pernet_operations audit_net_ops __net_initdata = { 1566 .init = audit_net_init, 1567 .exit = audit_net_exit, 1568 .id = &audit_net_id, 1569 .size = sizeof(struct audit_net), 1570 }; 1571 1572 /* Initialize audit support at boot time. */ 1573 static int __init audit_init(void) 1574 { 1575 int i; 1576 1577 if (audit_initialized == AUDIT_DISABLED) 1578 return 0; 1579 1580 audit_buffer_cache = kmem_cache_create("audit_buffer", 1581 sizeof(struct audit_buffer), 1582 0, SLAB_PANIC, NULL); 1583 1584 skb_queue_head_init(&audit_queue); 1585 skb_queue_head_init(&audit_retry_queue); 1586 skb_queue_head_init(&audit_hold_queue); 1587 1588 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1589 INIT_LIST_HEAD(&audit_inode_hash[i]); 1590 1591 mutex_init(&audit_cmd_mutex.lock); 1592 audit_cmd_mutex.owner = NULL; 1593 1594 pr_info("initializing netlink subsys (%s)\n", 1595 audit_default ? "enabled" : "disabled"); 1596 register_pernet_subsys(&audit_net_ops); 1597 1598 audit_initialized = AUDIT_INITIALIZED; 1599 1600 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1601 if (IS_ERR(kauditd_task)) { 1602 int err = PTR_ERR(kauditd_task); 1603 panic("audit: failed to start the kauditd thread (%d)\n", err); 1604 } 1605 1606 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1607 "state=initialized audit_enabled=%u res=1", 1608 audit_enabled); 1609 1610 return 0; 1611 } 1612 postcore_initcall(audit_init); 1613 1614 /* 1615 * Process kernel command-line parameter at boot time. 1616 * audit={0|off} or audit={1|on}. 1617 */ 1618 static int __init audit_enable(char *str) 1619 { 1620 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1621 audit_default = AUDIT_OFF; 1622 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1623 audit_default = AUDIT_ON; 1624 else { 1625 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1626 audit_default = AUDIT_ON; 1627 } 1628 1629 if (audit_default == AUDIT_OFF) 1630 audit_initialized = AUDIT_DISABLED; 1631 if (audit_set_enabled(audit_default)) 1632 pr_err("audit: error setting audit state (%d)\n", 1633 audit_default); 1634 1635 pr_info("%s\n", audit_default ? 1636 "enabled (after initialization)" : "disabled (until reboot)"); 1637 1638 return 1; 1639 } 1640 __setup("audit=", audit_enable); 1641 1642 /* Process kernel command-line parameter at boot time. 1643 * audit_backlog_limit=<n> */ 1644 static int __init audit_backlog_limit_set(char *str) 1645 { 1646 u32 audit_backlog_limit_arg; 1647 1648 pr_info("audit_backlog_limit: "); 1649 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1650 pr_cont("using default of %u, unable to parse %s\n", 1651 audit_backlog_limit, str); 1652 return 1; 1653 } 1654 1655 audit_backlog_limit = audit_backlog_limit_arg; 1656 pr_cont("%d\n", audit_backlog_limit); 1657 1658 return 1; 1659 } 1660 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1661 1662 static void audit_buffer_free(struct audit_buffer *ab) 1663 { 1664 if (!ab) 1665 return; 1666 1667 kfree_skb(ab->skb); 1668 kmem_cache_free(audit_buffer_cache, ab); 1669 } 1670 1671 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1672 gfp_t gfp_mask, int type) 1673 { 1674 struct audit_buffer *ab; 1675 1676 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1677 if (!ab) 1678 return NULL; 1679 1680 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1681 if (!ab->skb) 1682 goto err; 1683 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1684 goto err; 1685 1686 ab->ctx = ctx; 1687 ab->gfp_mask = gfp_mask; 1688 1689 return ab; 1690 1691 err: 1692 audit_buffer_free(ab); 1693 return NULL; 1694 } 1695 1696 /** 1697 * audit_serial - compute a serial number for the audit record 1698 * 1699 * Compute a serial number for the audit record. Audit records are 1700 * written to user-space as soon as they are generated, so a complete 1701 * audit record may be written in several pieces. The timestamp of the 1702 * record and this serial number are used by the user-space tools to 1703 * determine which pieces belong to the same audit record. The 1704 * (timestamp,serial) tuple is unique for each syscall and is live from 1705 * syscall entry to syscall exit. 1706 * 1707 * NOTE: Another possibility is to store the formatted records off the 1708 * audit context (for those records that have a context), and emit them 1709 * all at syscall exit. However, this could delay the reporting of 1710 * significant errors until syscall exit (or never, if the system 1711 * halts). 1712 */ 1713 unsigned int audit_serial(void) 1714 { 1715 static atomic_t serial = ATOMIC_INIT(0); 1716 1717 return atomic_add_return(1, &serial); 1718 } 1719 1720 static inline void audit_get_stamp(struct audit_context *ctx, 1721 struct timespec64 *t, unsigned int *serial) 1722 { 1723 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1724 ktime_get_coarse_real_ts64(t); 1725 *serial = audit_serial(); 1726 } 1727 } 1728 1729 /** 1730 * audit_log_start - obtain an audit buffer 1731 * @ctx: audit_context (may be NULL) 1732 * @gfp_mask: type of allocation 1733 * @type: audit message type 1734 * 1735 * Returns audit_buffer pointer on success or NULL on error. 1736 * 1737 * Obtain an audit buffer. This routine does locking to obtain the 1738 * audit buffer, but then no locking is required for calls to 1739 * audit_log_*format. If the task (ctx) is a task that is currently in a 1740 * syscall, then the syscall is marked as auditable and an audit record 1741 * will be written at syscall exit. If there is no associated task, then 1742 * task context (ctx) should be NULL. 1743 */ 1744 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1745 int type) 1746 { 1747 struct audit_buffer *ab; 1748 struct timespec64 t; 1749 unsigned int uninitialized_var(serial); 1750 1751 if (audit_initialized != AUDIT_INITIALIZED) 1752 return NULL; 1753 1754 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1755 return NULL; 1756 1757 /* NOTE: don't ever fail/sleep on these two conditions: 1758 * 1. auditd generated record - since we need auditd to drain the 1759 * queue; also, when we are checking for auditd, compare PIDs using 1760 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1761 * using a PID anchored in the caller's namespace 1762 * 2. generator holding the audit_cmd_mutex - we don't want to block 1763 * while holding the mutex */ 1764 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1765 long stime = audit_backlog_wait_time; 1766 1767 while (audit_backlog_limit && 1768 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1769 /* wake kauditd to try and flush the queue */ 1770 wake_up_interruptible(&kauditd_wait); 1771 1772 /* sleep if we are allowed and we haven't exhausted our 1773 * backlog wait limit */ 1774 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1775 DECLARE_WAITQUEUE(wait, current); 1776 1777 add_wait_queue_exclusive(&audit_backlog_wait, 1778 &wait); 1779 set_current_state(TASK_UNINTERRUPTIBLE); 1780 stime = schedule_timeout(stime); 1781 remove_wait_queue(&audit_backlog_wait, &wait); 1782 } else { 1783 if (audit_rate_check() && printk_ratelimit()) 1784 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1785 skb_queue_len(&audit_queue), 1786 audit_backlog_limit); 1787 audit_log_lost("backlog limit exceeded"); 1788 return NULL; 1789 } 1790 } 1791 } 1792 1793 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1794 if (!ab) { 1795 audit_log_lost("out of memory in audit_log_start"); 1796 return NULL; 1797 } 1798 1799 audit_get_stamp(ab->ctx, &t, &serial); 1800 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1801 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1802 1803 return ab; 1804 } 1805 1806 /** 1807 * audit_expand - expand skb in the audit buffer 1808 * @ab: audit_buffer 1809 * @extra: space to add at tail of the skb 1810 * 1811 * Returns 0 (no space) on failed expansion, or available space if 1812 * successful. 1813 */ 1814 static inline int audit_expand(struct audit_buffer *ab, int extra) 1815 { 1816 struct sk_buff *skb = ab->skb; 1817 int oldtail = skb_tailroom(skb); 1818 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1819 int newtail = skb_tailroom(skb); 1820 1821 if (ret < 0) { 1822 audit_log_lost("out of memory in audit_expand"); 1823 return 0; 1824 } 1825 1826 skb->truesize += newtail - oldtail; 1827 return newtail; 1828 } 1829 1830 /* 1831 * Format an audit message into the audit buffer. If there isn't enough 1832 * room in the audit buffer, more room will be allocated and vsnprint 1833 * will be called a second time. Currently, we assume that a printk 1834 * can't format message larger than 1024 bytes, so we don't either. 1835 */ 1836 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1837 va_list args) 1838 { 1839 int len, avail; 1840 struct sk_buff *skb; 1841 va_list args2; 1842 1843 if (!ab) 1844 return; 1845 1846 BUG_ON(!ab->skb); 1847 skb = ab->skb; 1848 avail = skb_tailroom(skb); 1849 if (avail == 0) { 1850 avail = audit_expand(ab, AUDIT_BUFSIZ); 1851 if (!avail) 1852 goto out; 1853 } 1854 va_copy(args2, args); 1855 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1856 if (len >= avail) { 1857 /* The printk buffer is 1024 bytes long, so if we get 1858 * here and AUDIT_BUFSIZ is at least 1024, then we can 1859 * log everything that printk could have logged. */ 1860 avail = audit_expand(ab, 1861 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1862 if (!avail) 1863 goto out_va_end; 1864 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1865 } 1866 if (len > 0) 1867 skb_put(skb, len); 1868 out_va_end: 1869 va_end(args2); 1870 out: 1871 return; 1872 } 1873 1874 /** 1875 * audit_log_format - format a message into the audit buffer. 1876 * @ab: audit_buffer 1877 * @fmt: format string 1878 * @...: optional parameters matching @fmt string 1879 * 1880 * All the work is done in audit_log_vformat. 1881 */ 1882 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1883 { 1884 va_list args; 1885 1886 if (!ab) 1887 return; 1888 va_start(args, fmt); 1889 audit_log_vformat(ab, fmt, args); 1890 va_end(args); 1891 } 1892 1893 /** 1894 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1895 * @ab: the audit_buffer 1896 * @buf: buffer to convert to hex 1897 * @len: length of @buf to be converted 1898 * 1899 * No return value; failure to expand is silently ignored. 1900 * 1901 * This function will take the passed buf and convert it into a string of 1902 * ascii hex digits. The new string is placed onto the skb. 1903 */ 1904 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1905 size_t len) 1906 { 1907 int i, avail, new_len; 1908 unsigned char *ptr; 1909 struct sk_buff *skb; 1910 1911 if (!ab) 1912 return; 1913 1914 BUG_ON(!ab->skb); 1915 skb = ab->skb; 1916 avail = skb_tailroom(skb); 1917 new_len = len<<1; 1918 if (new_len >= avail) { 1919 /* Round the buffer request up to the next multiple */ 1920 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1921 avail = audit_expand(ab, new_len); 1922 if (!avail) 1923 return; 1924 } 1925 1926 ptr = skb_tail_pointer(skb); 1927 for (i = 0; i < len; i++) 1928 ptr = hex_byte_pack_upper(ptr, buf[i]); 1929 *ptr = 0; 1930 skb_put(skb, len << 1); /* new string is twice the old string */ 1931 } 1932 1933 /* 1934 * Format a string of no more than slen characters into the audit buffer, 1935 * enclosed in quote marks. 1936 */ 1937 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1938 size_t slen) 1939 { 1940 int avail, new_len; 1941 unsigned char *ptr; 1942 struct sk_buff *skb; 1943 1944 if (!ab) 1945 return; 1946 1947 BUG_ON(!ab->skb); 1948 skb = ab->skb; 1949 avail = skb_tailroom(skb); 1950 new_len = slen + 3; /* enclosing quotes + null terminator */ 1951 if (new_len > avail) { 1952 avail = audit_expand(ab, new_len); 1953 if (!avail) 1954 return; 1955 } 1956 ptr = skb_tail_pointer(skb); 1957 *ptr++ = '"'; 1958 memcpy(ptr, string, slen); 1959 ptr += slen; 1960 *ptr++ = '"'; 1961 *ptr = 0; 1962 skb_put(skb, slen + 2); /* don't include null terminator */ 1963 } 1964 1965 /** 1966 * audit_string_contains_control - does a string need to be logged in hex 1967 * @string: string to be checked 1968 * @len: max length of the string to check 1969 */ 1970 bool audit_string_contains_control(const char *string, size_t len) 1971 { 1972 const unsigned char *p; 1973 for (p = string; p < (const unsigned char *)string + len; p++) { 1974 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 /** 1981 * audit_log_n_untrustedstring - log a string that may contain random characters 1982 * @ab: audit_buffer 1983 * @len: length of string (not including trailing null) 1984 * @string: string to be logged 1985 * 1986 * This code will escape a string that is passed to it if the string 1987 * contains a control character, unprintable character, double quote mark, 1988 * or a space. Unescaped strings will start and end with a double quote mark. 1989 * Strings that are escaped are printed in hex (2 digits per char). 1990 * 1991 * The caller specifies the number of characters in the string to log, which may 1992 * or may not be the entire string. 1993 */ 1994 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1995 size_t len) 1996 { 1997 if (audit_string_contains_control(string, len)) 1998 audit_log_n_hex(ab, string, len); 1999 else 2000 audit_log_n_string(ab, string, len); 2001 } 2002 2003 /** 2004 * audit_log_untrustedstring - log a string that may contain random characters 2005 * @ab: audit_buffer 2006 * @string: string to be logged 2007 * 2008 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2009 * determine string length. 2010 */ 2011 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2012 { 2013 audit_log_n_untrustedstring(ab, string, strlen(string)); 2014 } 2015 2016 /* This is a helper-function to print the escaped d_path */ 2017 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2018 const struct path *path) 2019 { 2020 char *p, *pathname; 2021 2022 if (prefix) 2023 audit_log_format(ab, "%s", prefix); 2024 2025 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2026 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2027 if (!pathname) { 2028 audit_log_string(ab, "<no_memory>"); 2029 return; 2030 } 2031 p = d_path(path, pathname, PATH_MAX+11); 2032 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2033 /* FIXME: can we save some information here? */ 2034 audit_log_string(ab, "<too_long>"); 2035 } else 2036 audit_log_untrustedstring(ab, p); 2037 kfree(pathname); 2038 } 2039 2040 void audit_log_session_info(struct audit_buffer *ab) 2041 { 2042 unsigned int sessionid = audit_get_sessionid(current); 2043 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2044 2045 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2046 } 2047 2048 void audit_log_key(struct audit_buffer *ab, char *key) 2049 { 2050 audit_log_format(ab, " key="); 2051 if (key) 2052 audit_log_untrustedstring(ab, key); 2053 else 2054 audit_log_format(ab, "(null)"); 2055 } 2056 2057 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 2058 { 2059 int i; 2060 2061 if (cap_isclear(*cap)) { 2062 audit_log_format(ab, " %s=0", prefix); 2063 return; 2064 } 2065 audit_log_format(ab, " %s=", prefix); 2066 CAP_FOR_EACH_U32(i) 2067 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 2068 } 2069 2070 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 2071 { 2072 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 2073 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 2074 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 2075 name->fcap.fE, name->fcap_ver); 2076 } 2077 2078 static inline int audit_copy_fcaps(struct audit_names *name, 2079 const struct dentry *dentry) 2080 { 2081 struct cpu_vfs_cap_data caps; 2082 int rc; 2083 2084 if (!dentry) 2085 return 0; 2086 2087 rc = get_vfs_caps_from_disk(dentry, &caps); 2088 if (rc) 2089 return rc; 2090 2091 name->fcap.permitted = caps.permitted; 2092 name->fcap.inheritable = caps.inheritable; 2093 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2094 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2095 VFS_CAP_REVISION_SHIFT; 2096 2097 return 0; 2098 } 2099 2100 /* Copy inode data into an audit_names. */ 2101 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2102 struct inode *inode) 2103 { 2104 name->ino = inode->i_ino; 2105 name->dev = inode->i_sb->s_dev; 2106 name->mode = inode->i_mode; 2107 name->uid = inode->i_uid; 2108 name->gid = inode->i_gid; 2109 name->rdev = inode->i_rdev; 2110 security_inode_getsecid(inode, &name->osid); 2111 audit_copy_fcaps(name, dentry); 2112 } 2113 2114 /** 2115 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2116 * @context: audit_context for the task 2117 * @n: audit_names structure with reportable details 2118 * @path: optional path to report instead of audit_names->name 2119 * @record_num: record number to report when handling a list of names 2120 * @call_panic: optional pointer to int that will be updated if secid fails 2121 */ 2122 void audit_log_name(struct audit_context *context, struct audit_names *n, 2123 const struct path *path, int record_num, int *call_panic) 2124 { 2125 struct audit_buffer *ab; 2126 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2127 if (!ab) 2128 return; 2129 2130 audit_log_format(ab, "item=%d", record_num); 2131 2132 if (path) 2133 audit_log_d_path(ab, " name=", path); 2134 else if (n->name) { 2135 switch (n->name_len) { 2136 case AUDIT_NAME_FULL: 2137 /* log the full path */ 2138 audit_log_format(ab, " name="); 2139 audit_log_untrustedstring(ab, n->name->name); 2140 break; 2141 case 0: 2142 /* name was specified as a relative path and the 2143 * directory component is the cwd */ 2144 audit_log_d_path(ab, " name=", &context->pwd); 2145 break; 2146 default: 2147 /* log the name's directory component */ 2148 audit_log_format(ab, " name="); 2149 audit_log_n_untrustedstring(ab, n->name->name, 2150 n->name_len); 2151 } 2152 } else 2153 audit_log_format(ab, " name=(null)"); 2154 2155 if (n->ino != AUDIT_INO_UNSET) 2156 audit_log_format(ab, " inode=%lu" 2157 " dev=%02x:%02x mode=%#ho" 2158 " ouid=%u ogid=%u rdev=%02x:%02x", 2159 n->ino, 2160 MAJOR(n->dev), 2161 MINOR(n->dev), 2162 n->mode, 2163 from_kuid(&init_user_ns, n->uid), 2164 from_kgid(&init_user_ns, n->gid), 2165 MAJOR(n->rdev), 2166 MINOR(n->rdev)); 2167 if (n->osid != 0) { 2168 char *ctx = NULL; 2169 u32 len; 2170 if (security_secid_to_secctx( 2171 n->osid, &ctx, &len)) { 2172 audit_log_format(ab, " osid=%u", n->osid); 2173 if (call_panic) 2174 *call_panic = 2; 2175 } else { 2176 audit_log_format(ab, " obj=%s", ctx); 2177 security_release_secctx(ctx, len); 2178 } 2179 } 2180 2181 /* log the audit_names record type */ 2182 switch(n->type) { 2183 case AUDIT_TYPE_NORMAL: 2184 audit_log_format(ab, " nametype=NORMAL"); 2185 break; 2186 case AUDIT_TYPE_PARENT: 2187 audit_log_format(ab, " nametype=PARENT"); 2188 break; 2189 case AUDIT_TYPE_CHILD_DELETE: 2190 audit_log_format(ab, " nametype=DELETE"); 2191 break; 2192 case AUDIT_TYPE_CHILD_CREATE: 2193 audit_log_format(ab, " nametype=CREATE"); 2194 break; 2195 default: 2196 audit_log_format(ab, " nametype=UNKNOWN"); 2197 break; 2198 } 2199 2200 audit_log_fcaps(ab, n); 2201 audit_log_end(ab); 2202 } 2203 2204 int audit_log_task_context(struct audit_buffer *ab) 2205 { 2206 char *ctx = NULL; 2207 unsigned len; 2208 int error; 2209 u32 sid; 2210 2211 security_task_getsecid(current, &sid); 2212 if (!sid) 2213 return 0; 2214 2215 error = security_secid_to_secctx(sid, &ctx, &len); 2216 if (error) { 2217 if (error != -EINVAL) 2218 goto error_path; 2219 return 0; 2220 } 2221 2222 audit_log_format(ab, " subj=%s", ctx); 2223 security_release_secctx(ctx, len); 2224 return 0; 2225 2226 error_path: 2227 audit_panic("error in audit_log_task_context"); 2228 return error; 2229 } 2230 EXPORT_SYMBOL(audit_log_task_context); 2231 2232 void audit_log_d_path_exe(struct audit_buffer *ab, 2233 struct mm_struct *mm) 2234 { 2235 struct file *exe_file; 2236 2237 if (!mm) 2238 goto out_null; 2239 2240 exe_file = get_mm_exe_file(mm); 2241 if (!exe_file) 2242 goto out_null; 2243 2244 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2245 fput(exe_file); 2246 return; 2247 out_null: 2248 audit_log_format(ab, " exe=(null)"); 2249 } 2250 2251 struct tty_struct *audit_get_tty(void) 2252 { 2253 struct tty_struct *tty = NULL; 2254 unsigned long flags; 2255 2256 spin_lock_irqsave(¤t->sighand->siglock, flags); 2257 if (current->signal) 2258 tty = tty_kref_get(current->signal->tty); 2259 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2260 return tty; 2261 } 2262 2263 void audit_put_tty(struct tty_struct *tty) 2264 { 2265 tty_kref_put(tty); 2266 } 2267 2268 void audit_log_task_info(struct audit_buffer *ab) 2269 { 2270 const struct cred *cred; 2271 char comm[sizeof(current->comm)]; 2272 struct tty_struct *tty; 2273 2274 if (!ab) 2275 return; 2276 2277 cred = current_cred(); 2278 tty = audit_get_tty(); 2279 audit_log_format(ab, 2280 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2281 " euid=%u suid=%u fsuid=%u" 2282 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2283 task_ppid_nr(current), 2284 task_tgid_nr(current), 2285 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2286 from_kuid(&init_user_ns, cred->uid), 2287 from_kgid(&init_user_ns, cred->gid), 2288 from_kuid(&init_user_ns, cred->euid), 2289 from_kuid(&init_user_ns, cred->suid), 2290 from_kuid(&init_user_ns, cred->fsuid), 2291 from_kgid(&init_user_ns, cred->egid), 2292 from_kgid(&init_user_ns, cred->sgid), 2293 from_kgid(&init_user_ns, cred->fsgid), 2294 tty ? tty_name(tty) : "(none)", 2295 audit_get_sessionid(current)); 2296 audit_put_tty(tty); 2297 audit_log_format(ab, " comm="); 2298 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2299 audit_log_d_path_exe(ab, current->mm); 2300 audit_log_task_context(ab); 2301 } 2302 EXPORT_SYMBOL(audit_log_task_info); 2303 2304 /** 2305 * audit_log_link_denied - report a link restriction denial 2306 * @operation: specific link operation 2307 */ 2308 void audit_log_link_denied(const char *operation) 2309 { 2310 struct audit_buffer *ab; 2311 2312 if (!audit_enabled || audit_dummy_context()) 2313 return; 2314 2315 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2316 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK); 2317 if (!ab) 2318 return; 2319 audit_log_format(ab, "op=%s", operation); 2320 audit_log_task_info(ab); 2321 audit_log_format(ab, " res=0"); 2322 audit_log_end(ab); 2323 } 2324 2325 /** 2326 * audit_log_end - end one audit record 2327 * @ab: the audit_buffer 2328 * 2329 * We can not do a netlink send inside an irq context because it blocks (last 2330 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2331 * queue and a tasklet is scheduled to remove them from the queue outside the 2332 * irq context. May be called in any context. 2333 */ 2334 void audit_log_end(struct audit_buffer *ab) 2335 { 2336 struct sk_buff *skb; 2337 struct nlmsghdr *nlh; 2338 2339 if (!ab) 2340 return; 2341 2342 if (audit_rate_check()) { 2343 skb = ab->skb; 2344 ab->skb = NULL; 2345 2346 /* setup the netlink header, see the comments in 2347 * kauditd_send_multicast_skb() for length quirks */ 2348 nlh = nlmsg_hdr(skb); 2349 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2350 2351 /* queue the netlink packet and poke the kauditd thread */ 2352 skb_queue_tail(&audit_queue, skb); 2353 wake_up_interruptible(&kauditd_wait); 2354 } else 2355 audit_log_lost("rate limit exceeded"); 2356 2357 audit_buffer_free(ab); 2358 } 2359 2360 /** 2361 * audit_log - Log an audit record 2362 * @ctx: audit context 2363 * @gfp_mask: type of allocation 2364 * @type: audit message type 2365 * @fmt: format string to use 2366 * @...: variable parameters matching the format string 2367 * 2368 * This is a convenience function that calls audit_log_start, 2369 * audit_log_vformat, and audit_log_end. It may be called 2370 * in any context. 2371 */ 2372 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2373 const char *fmt, ...) 2374 { 2375 struct audit_buffer *ab; 2376 va_list args; 2377 2378 ab = audit_log_start(ctx, gfp_mask, type); 2379 if (ab) { 2380 va_start(args, fmt); 2381 audit_log_vformat(ab, fmt, args); 2382 va_end(args); 2383 audit_log_end(ab); 2384 } 2385 } 2386 2387 EXPORT_SYMBOL(audit_log_start); 2388 EXPORT_SYMBOL(audit_log_end); 2389 EXPORT_SYMBOL(audit_log_format); 2390 EXPORT_SYMBOL(audit_log); 2391